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Abstract

It is well known that, when the vertex angle of a straight wedge is less
than the critical angle, there exists a shock-front emanating from the wedge
vertex so that the constant states on both sides of the shock-front are su-
personic. Since the shock-front at the vertex is usually strong, especially
when the vertex angle of the wedge is large, then such a global flow is phys-
ically required to be governed by the isentropic or adiabatic Euler equations.
In this paper, we systematically study two-dimensional steady supersonic
Euler (i.e. non-potential) flows past Lipschitz wedges and establish the ex-
istence and stability of supersonic Euler flows when the total variation of
the tangent angle functions along the wedge boundaries is suitably small.
We develop a modified Glimm difference scheme and identify a Glimm-type
functional, by incorporating the Lipschitz wedge boundary and the strong
shock-front naturally and by tracing the interaction not only between the
boundary and weak waves but also between the strong shock front and
weak waves, to obtain the required BV estimates. Then these estimates are
employed to establish the convergence of both approximate solutions to a
global entropy solution and corresponding approximate strong shock-fronts
emanating from the vertex to the strong shock-front of the entropy solution.
The regularity of strong shock-fronts emanating from the wedge vertex and
the asymptotic stability of entropy solutions in the flow direction are also
established.

1. Introduction

We are concerned with the existence and behavior of two-dimensional
steady supersonic Euler flows past Lipschitz wedges with arbitrary vertex
angles that are less than the critical angle so that there is a supersonic
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shock-front emanating from the wedge vertex. The two-dimensional steady
supersonic Euler flows are generally governed by





(ρu)x + (ρv)y = 0,
(ρu2 + p)x + (ρuv)y = 0,
(ρuv)x + (ρv2 + p)y = 0,
(u(E + p))x + (v(E + p))y = 0,

(1)

where (u, v) is the velocity, ρ the density, p the scalar pressure, and

E =
1
2
ρ(u2 + v2) + ρe(ρ, p)

is the total energy with e the internal energy (a given function of (ρ, p)
defined through thermodynamical relationships). The other two thermo-
dynamic variables are the temperature T and the entropy S. If (ρ, S) are
chosen as the independent variables, then we have the constitutive relations:

(e, p, T ) = (e(ρ, S), p(ρ, S), T (ρ, S)), (2)

governed by
TdS = de− p

ρ2
dρ. (3)

For an ideal gas,

p = RρT, e = cvT, γ = 1 +
R

cv
> 1, (4)

and
p = p(ρ, S) = κργeS/cv , e =

κ

γ − 1
ργ−1eS/cv =

RT

γ − 1
, (5)

where R, κ, and cv are all positive constants.
If the flow is isentropic, i.e., S = const., then the pressure p is a function

of the density ρ, p = p(ρ), and the flow is governed by the following simpler
isentropic Euler equations:





(ρu)x + (ρv)y = 0,
(ρu2 + p)x + (ρuv)y = 0,
(ρuv)x + (ρv2 + p)y = 0.

(6)

For polytropic isentropic gases, by scaling, the pressure-density relationship
can be expressed as

p(ρ) = ργ/γ, γ > 1. (7)

For the isothermal flow, γ = 1. The quantity

c =
√

pρ(ρ, S)

is defined as the sonic speed and, for polytropic gases, c =
√

γp/ρ.
System (1) or (6) governing a supersonic flow (i.e., u2 + v2 > c2) has

all real eigenvalues and is hyperbolic, while system (1) or (6) governing a
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subsonic flow (i.e., u2 + v2 < c2) has complex eigenvalues and is elliptic-
hyperbolic mixed and composite.

The study of two-dimensional steady supersonic flows past wedges can
date back to the 1940s (cf. Courant-Friedrichs [8]). Local solutions around
the wedge vertex were first constructed in Gu [12], Li [16], Schaeffer [22],
and the references cited therein. Global potential solutions were constructed
in [4–8,28,29] when the wedge has certain convexity or the wedge is a small
perturbation of the straight wedge with fast decay in the flow direction,
whose vertex angle is less than the critical angle. In particular, in Zhang
[29], the existence of two-dimensional steady supersonic potential flows past
piecewise smooth curved wedges, which are a small perturbation of the
straight wedge, was established.

As is well-known, the potential flow equation is an excellent model for
the flow containing only weak shocks since it approximates to the isentropic
Euler equations up to third-order in shock strength. For the flow containing
shocks of large strength, the isentropic or adiabatic Euler equations are
required to govern the physical flow. For the wedge problem, when the
vertex angle is large, the flow contains a strong shock-front emanating from
the wedge vertex and, for this case, the Euler equations should take the
position to describe the physical flow. Thus it is important to study the
two-dimensional steady supersonic flows governed by the Euler equations,
rather than the potential flow equation, for the wedge problem with a large
vertex angle. When a wedge is straight and the wedge vertex angle is less
than the critical angle, there exists a supersonic shock-front emanating from
the wedge vertex so that the constant states on both sides of the shock-front
are supersonic; the critical angle condition is necessary and sufficient for the
existence of the supersonic shock. These facts can be seen through the shock
polar in Fig. 3 in Section 2 (also cf. Courant-Friedrichs [8]).

In this paper, we analyze the two-dimensional steady supersonic Euler
flows past two-dimensional Lipschitz wedges whose vertex angles are less
than the critical angle, along which the total variation of the tangent angle
function is suitably small; and we establish the existence and behavior of
such global supersonic Euler flows, especially the nonlinear stability of the
strong shock-front emanating from the wedge vertex under the BV pertur-
bation.

For concreteness, we will analyze the problem in the region below the
lower side Γ of the wedge for the Euler flows for U = (u, v, p, ρ) governed
by system (1) and U = (u, v, ρ) by (6); the case above the wedge can be
handled in the same fashion. Then we have

(i). There exists a Lipschitz function g ∈ Lip(R+) with g′ ∈ BV (R+),
g′(0+) = 0, and g(0) = 0 such that

Ω := {(x, y) : y < g(x), x ≥ 0}, Γ := {(x, y) : y = g(x), x ≥ 0},
and n(x±) = (−g′(x±),1)√

(g′(x±))2+1
is the outer normal vector to Γ at the point

x± (see Fig. 1);
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Fig. 1. Supersonic flow past a curved wedge

(ii). The upstream flow is a constant state U− satisfying

u− > 0, v− > 0, u2
− + v2

− > c2
− :=

γp−
ρ−

,

and
0 < arctan(v−/u−) < ωcrit,

so that there is a supersonic shock-front emanating from the wedge ver-
tex, where ωcrit is the critical vertex angle (cf. Fig. 3).

With this setup, the wedge problem can be formulated into the following
problem of initial-boundary value type for system (1) or (6):

Cauchy Condition:
U |x=0 = U−; (8)

Boundary Condition:

(u, v) · n = 0 on Γ. (9)

The main theorem of this paper is the following.

Main Theorem (Existence and Stability). There exist ε > 0 and C > 0
such that, if

TV (g′(·)) < ε, (10)

then there exists a pair of functions

U ∈ BVloc(R2
+), σ ∈ BV (R+),

with χ =
∫ x

0
σ(t)dt ∈ Lip(R+) such that

(i) U is a global entropy solution of problem (1), or (6), and (8)–(9) in
Ω with

TV {U(x, ·) : (−∞, g(x)]} ≤ C TV (g′(·)) for every x ∈ R+, (11)
(u, v) · n|y=g(x) = 0 in the trace sense; (12)
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(ii) The curve y = χ(x) is a strong shock-front with χ(x) < g(x) for any
x > 0 and

U |{y<χ(x)} = U−,
√

u2 + v2|{χ(x)<y<g(x)} < u−, (13)

that is, y = χ(x) is the strong shock next to the constant state U−;
(iii) There exist constants p∞ and σ∞ such that

lim
x→∞

sup{|p(x, y)− p∞| : χ(x) < y < g(x)} = 0,

lim
x→∞

|σ(x)− σ∞| = 0,

and

lim
x→∞

sup{| arctan (v(x, y)/u(x, y))− ω∞| : χ(x) < y < g(x)} = 0,

where ω∞ = lim
x→∞

arctan(g′(x+)).
This theorem indicates that the strong shock-front emanating from the

wedge vertex is nonlinearly stable in structure, although there may be many
weak waves and vortex sheets between the wedge boundary and the strong
shock-front, under the BV perturbation of the wedge boundary so long as
the wedge vertex angle is less than the critical angle. This asserts that any
supersonic shock for the wedge problem is nonlinearly stable.

In order to establish this theorem, we develop a modified Glimm scheme
and identify a Glimm-type functional by incorporating the curved wedge
boundary and the strong shock-front naturally and by tracing the interac-
tions not only between the wedge boundary and weak waves but also the
interaction between the strong shock-front and weak waves. Some detailed
interaction estimates are carefully made to ensure that the Glimm-type
functional monotonically decreases in the flow direction. In particular, one
of the essential estimates is on the strengths of the reflected 4-waves for (1),
or 3-waves for (6), in the interaction between the strong shock-front and
weak waves; and the second essential estimate is the interaction estimate
between the wedge boundary and weak waves. Another essential estimate is
on tracing the approximate strong shocks in order to establish the nonlinear
stability and asymptotic behavior of the strong shock-front emanating from
the wedge vertex under the wedge perturbation.

We remark that, in Lien-Liu [17], the nonlinear stability of a self-similar
three-dimensional gas flow past an infinite cone with small vertex angle was
established upon the perturbation of the obstacle. It would be interesting
to combine the analysis in this paper with the argument in [17] to study
the nonlinear stability of a self-similar three-dimensional gas flow past an
infinite cone with arbitrary vertex angle. We also remark in passing that
condition (10) can be relaxed by combining the analysis in this paper with
the argument in [24,25].

In this paper we first focus on the isentropic Euler flows in Sections 2–5
and then we extend to the adiabatic (full) Euler flows in Section 6.



6 Gui-Qiang Chen, Yongqian Zhang, Dianwen Zhu

In Section 2, we study the lateral Riemann problem and the classical
Riemann problem, and analyze the properties of the Riemann solutions to
the isentropic Euler equations (6), which are essential for the interaction
estimates among the nonlinear waves and the wedge boundary in Section 3
and for the existence and behavior of entropy solutions of the wedge problem
in Sections 4–5. In Section 3, we make estimates on the wave interactions
and reflections on the wedge and the strong shock, respectively. In Section
4, we develop a modified Glimm scheme to construct approximate solutions
and establish necessary estimates for them in the approximate domains. In
Section 5, we establish the convergence of approximate solutions to a global
entropy solution and prove the nonlinear stability and asymptotic behavior
of the strong shock-front emanating from the wedge vertex under the wedge
perturbation. In Section 6, we extend the analysis and approach to establish
the existence and behavior of two-dimensional steady supersonic flows past
the Lipschitz wedges for the adiabatic Euler equations.

2. Riemann Problems and Riemann Solutions

In this section, we study the lateral Riemann problem and the classical
Riemann problem, and analyze the properties of the Riemann solutions
to the isentropic Euler equations (6), which are essential not only for the
interaction estimates among the nonlinear waves and the wedge boundary
but also for the existence and behavior of solutions for the wedge problem
in Sections 3–5.

2.1. Euler Equations

The Euler system can be written in the following conservation form:

W (U)x + H(U)y = 0, (14)

where

U = (u, v, ρ), W (U) = (ρu, ρu2 + p, ρuv), H(U) = (ρv, ρuv, ρv2 + p).

For a smooth solution U(x, y), system (14) is equivalent to

∇UW (U)Ux +∇UH(U)Uy = 0. (15)

Then the eigenvalues of (14) are the roots of the third order polynomial:

det(λ∇UW (U)−∇UH(U)), (16)

and are thus the solutions of the cubic equation:

(v − λ)
(
(v − λu)2 − c2(1 + λ2)

)
= 0,
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where c =
√

p′(ρ) is the sonic speed. If the flow is supersonic (i.e., u2 +v2 >
c2), then we have three eigenvalues λj , j = 1, 2, 3:

λ2 = v/u, λj =
uv + (−1)

j+1
2 c
√

u2 + v2 − c2

u2 − c2
, j = 1, 3, (17)

which implies that the system is always hyperbolic in the flow. When u 6= 0,
the corresponding eigenvectors are

r2 = (1, v/u, 0)>, rj = κj(−λj , 1, ρ(λju− v)/c2)>, j = 1, 3, (18)

where κj are chosen so that rj · ∇λj = 1 because of genuine nonlinearity
of the jth-characteristic fields, j = 1, 3. Note that the second characteristic
field is always linearly degenerate: r2 · ∇λ2 = 0.

Definition 1 (Entropy Solutions). A function U = U(x, y) ∈ BVloc(Ω)
is called an entropy solution of problem (6) and (8)–(9) provided that

(i) U is a weak solution of (6) and satisfies

(u, v) · n|y=g(x) = 0 in the trace sense;

(ii) U satisfies the following entropy inequality:

(u(E + p(ρ)))x + (v(E + p(ρ)))y ≤ 0 (19)

in the sense of distributions in Ω including the boundary.

2.2. Basic Properties of Nonlinear Waves

In this subsection, we analyze some basic properties of nonlinear waves,
especially the global behavior of shock curves and rarefaction wave curves
in the phase space.

We first seek the self-similar solution to (6):

(u, v, ρ)(x, y) = (u(ξ), v(ξ), ρ(ξ)), ξ = y/x,

which connects to a state U0 = (u0, v0, ρ0). Then we have

det (ξ∇UW (U)−∇UH(U)) = 0. (20)

Hence

ξ = λ2 = v/u, or ξ = λj =
uv + (−1)

j+1
2 c
√

u2 + v2 − c2

u2 − c2
, j = 1, 3.

(21)
Plugging ξ = λ2 into (20), we obtain

dρ = 0, vdu− udv = 0.

Then the contact discontinuity curve C2(U0) in the phase space is:

C2(U0) : ρ = ρ0, w = v/u = v0/u0, (22)
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which describes compressible vortex sheets.
Plugging ξ = λj into (20), we get the jth-rarefaction wave curve Rj(U0)

in the phase space through U0:

Rj(U0) : du = −λjdv, ρ(λju− v)dv = dp, j = 1, 3. (23)

We now compute dλj

dρ along Rj(U0), j = 1, 3. Since (v−ξu)2 = c2(1+ξ2)
along Rj(U0), we differentiate the equation to have

(
c2λj + u(v − λju)

) dλj

dρ
= −(1 + λ2

j )
(

1
ρ

dp

dρ
+ c

dc

dρ

)
< 0.

Noting that c2λj + u(v − λju) = (−1)
j+3
2 c
√

u2 + v2 − c2, we conclude

dλ1

dρ
|R1(U0) < 0,

dλ4

dρ
|R3(U0) > 0. (24)

Now we consider discontinuous solutions so that (6) is satisfied in the
distributional sense, which implies that the following Rankine-Hugoniot con-
ditions hold along the discontinuity with speed σ, which connects to a state
U0 = (u0, v0, ρ0):

σ[ρu] = [ρv], (25)
σ[ρu2 + p] = [ρuv], (26)
σ[ρuv] = [ρv2 + p], (27)

where the jump symbol [·] stands for the value of the quantity of the front
state minus that of the back state. This can be rewritten as




−σρ ρ v0 − σu0

ρ(v0 − σu0) 0 −σc̄2
0

0 ρ(v0 − σu0) c̄2
0







[u]
[v]
[ρ]


 = 0 (28)

with c̄2
0 = ρ

ρ0

[p]
[ρ] . Then we have

σ = σ2 := v0/u0, σ = σj :=
u0v0 + (−1)

j+1
2 c̄0

√
u2

0 + v2
0 − c̄2

0

u2
0 − c̄2

0

, j = 1, 3.

(29)
Plugging σ2 into (28), we get the same C2(U0) as defined in (22). Plug-

ging σj into (28), we obtain the jth-shock curve Sj(U0) in the phase space
through U0:

Sj(U0) : [u] = −σ[v], ρ0(σju0 − v0)[v] = [p], j = 1, 3. (30)

It is straightforward to see that the shock curve Sj(U0) contacts with
Rj(U0) at U0 up to second-order and, along Sj(U0), j = 1, 3,

dσ1

dρ
|S1(U0) < 0,

dσ3

dρ
|S3(U0) > 0. (31)
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Lemma 1. If U is a piecewise smooth solution, then, on the shock wave, the
entropy inequality (19) in Definition 2.1 is equivalent to any of the following:

(i) The physical entropy condition: the density increases across the shock
in the flow direction:

ρfront < ρback; (32)

(ii) The Lax entropy condition: on the jth-shock with the shock speed σj:

λj(back) < σj < λj(front), j = 1, 3, (33)
σ1 < λ2(back), λ2(front) < σ3. (34)

Proof. Since the system is Galilean invariant, we may assume that the back
state of the shock is U+ = (u+, 0, ρ+) with u+ > 0.

We first show the equivalence between (19) and (32). Along the discon-
tinuity with speed σ and back state U+, (19) is equivalent to

σ[u(E + p)] ≥ [v(E + p)]. (35)

Plugging (25) into (35) and using v+ = 0, we have

ργ−1/(γ − 1) + (u2 + v2)/2 ≥ ργ−1
+ /(γ − 1) + u2

+/2. (36)

Using (25) and (26), we have

u = u+ − p− p+

ρ+u+
. (37)

Using (25) and (27), we get

p− p+ = σρ+u+v. (38)

Combining (25) with (38) yields

v2 =
(ρu− ρ+u+)(p− p+)

ρρ+u+
. (39)

Then plugging (37) and (39) into (36) yields that (19) is equivalent to

H(ρ) := 2γ(pρ+ − p+ρ)− (γ − 1)(p− p+)(ρ + ρ+) ≥ 0,

with H(ρ+) = 0, which implies ρ < ρ+ that is (32).

Now we show the equivalence between (32) and (33)–(34).
Case (32)⇒ (33)–(34): We now prove the 1-shock with the physical

entropy condition satisfies the Lax entropy condition; the 3-shock can be
proved in the same way.

First, since λ1(U+) = −c+√
u2

+−c2
+

and σ1 = −c̄+√
u2

+−c̄2
+

, then σ1 < λ2(U+) is

direct, and λ1(U+) < σ1 is equivalent to the inequality:

c+/
√

u2
+ − c2

+ > c̄+/
√

u2
+ − c̄2

+. (40)
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Since the function f(x) = x√
u2

+−x2
is strictly increasing in x ∈ [0, u+),

inequality (40) holds if and only if c+ > c̄+, which is equivalent to

p′(ρ+) >
ρ−
ρ+

p− − p+

ρ− − ρ+
=

ρ−
ρ+

p′(θρ+ + (1− θ)ρ−) (41)

for some θ ∈ (0, 1), where U− = (u−, v−, ρ−) is the front state of the 1-shock.
By the entropy condition, ρ− < ρ+, so that θρ+ +(1− θ)ρ− < ρ+. Then

the convexity of p(ρ) implies p′(θρ+ + (1− θ)ρ−) ≤ p′(ρ+). Then inequality
(41) follows.

Second, set ω− = arctan(v−/u−) and

ωma = arctan(
c−√

u2− + v2− − c2−
), ω̄ma = arctan(

c̄−√
u2− + v2− − c̄2−

).

A direct calculation shows that σ1 < λ1(U−) ⇔ ωma < ω̄ma ⇔ c− <
c̄−, while c− < c̄− is equivalent to

p′(ρ−) <
ρ+

ρ−

p+ − p−
ρ+ − ρ−

=
ρ+

ρ−
p′(θρ+ + (1− θ)ρ−)

for some θ ∈ (0, 1), which is a corollary of the convexity of p(ρ) and ρ+ > ρ−.
Case (33)–(34)⇒ (32): We prove by contradiction. Instead, if ρ+ < ρ−,

similarly to the previous case, we find that λ1(U+) < σ1 is equivalent to
c+ > c̄+, i.e.,

p′(ρ+) >
ρ−
ρ+

p− − p+

ρ− − ρ+
=

ρ−
ρ+

p′(θρ+ + (1− θ)ρ−)

for some θ ∈ (0, 1), which is impossible since p′′(ρ) > 0 and ρ+ < ρ−.

In view of (29) and (32), for a shock wave, u2
0 + v2

0 ≥ c̄2
0 > c2

0, which
indicates that the front state of a shock must be supersonic. Choosing a
coordinate system so that u0 > 0 and v0 = 0, then we have y

x = σj =
(−1)

j+1
2 c̄0/

√
u2

0 − c̄2
0. Thus, 1-shocks and 3-shocks must be as shown in

Fig. 2.

 

 

  

  

U0
U0

Fig. 2. Shock waves in the physical plane
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Fig. 3. Shock polar and critical angle

Define the angle of the flow direction:

ω = arctan(v/u).

Then the shock curves Sj(U0), j = 1, 3, in the (ω, ρ)-plane and (u, v)-plane
form shock polars, respectively, as shown in Fig. 3. In general,

ωcrit = sup{|ω(u, v)−ω(u0, v0)| : (u, v, ρ) ∈ S(U0), c2
∗ < u2+v2 < u2

0+v2
0},

where S(U0) = S1(U0)∪S3(U0) is the shock polar associated with U0, similar
to that shown above, and c∗ > 0 is a constant such that u2 + v2 ≥ c2(ρ) is
equivalent to u2 + v2 > c2

∗ on S(U0).

2.3. Lateral Riemann Problem

The simplest case of problem (6) and (8)–(9) is g ≡ 0. It has been
shown in [8] that, if g ≡ 0, then problem (6) admits an entropy solution
that consists of the constant states U− and U+, with U+ = (u+, 0, ρ+)
and u+ > c+ > 0 in the subdomain of Ω, separated by a straight shock-
front emanating from the vertex. That is to say that the state ahead of the
shock-front is U−, while the state behind the shock-front is U+ (see Fig. 4).
When the angle between the flow direction of the front state and the wedge
boundary at a boundary vertex is larger than π, then an entropy solution
contains a rarefaction wave that separates the front state from the back
state (see Fig. 5 for the difference).

2.4. Riemann Problem Involving Only Weak Waves

Consider the Riemann problem for (14):

U |x=x0 = U =
{

Ua, y > y0,
Ub, y < y0,

(42)

where Ua and Ub are constant states which are regarded as the above state
and below state with respect to the line y = y0, respectively.
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Fig. 4. Unperturbed case when g ≡ 0
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Fig. 5. Lateral Riemann solutions

Following Lax [14], we can parameterize any physically admissible wave
curve in a neighborhood of a constant state U+, Oε(U+), by αj 7→ Φj(αj ; Ub),
with Φ ∈ C2, Φj |αj=0 = Ub, and ∂Φj

∂αj
|αj=0 = rj(Ub). Set

Φ(α3, α2, α1;Ub) := Φ3(α3;Φ2(α2; Φ1(α1; Ub))).

Here and in what follows, we denote Oε(W ) is a universal ball with radius
Mε > 0 and center W , where M > 0 is a universal constant depending only
on the parameters in the system and possibly on the boundary function
g(x) starting from Section 4.2, which may be different at each occurrence.
Then we have

Lemma 2. There exits ε > 0 such that, for any states Ua, Ub ∈ Oε(U+),
the Riemann problem (42) admits a unique admissible solution consisting of
three elementary waves. In addition, state Ua can be represented by

Ua = Φ(α3, α2, α1;Ub)

with Φ|α1=α2=α3=0 = Ub and ∂Φ
∂αi

|α1=α2=α3=0 = ri(Ub), i = 1, 2, 3.

Furthermore, we find that the renormalization factors κj(U), j = 1, 3,
in (18) are positive in a neighborhood Oε(U0) of any state U0 = (u0, 0, ρ0)
with u0 > 0.

Lemma 3. At any state U0 = (u0, 0, ρ0) with u0 > 0,

κ1(U0) = κ3(U0) > 0,
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which implies κj(U) > 0 for any U ∈ Oε(U0) since κj(U) are continuous
for j = 1, 3.

At state U0 = (u0, 0, ρ0), it is straightforward to see that

∇Uλ10 · (−λ10, 1, ρ0u0λ10/c2
0) = ∇Uλ30 · (−λ30, 1, ρ0u0λ30/c2

0) > 0.

Therefore, we have κ1(U0) = κ3(U0) > 0.

2.5. Riemann Problem Involving a Strong 1-Shock

For simplicity, we use the notation {Ub, Ua} = (α1, α2, α3) to denote
that Ua = Φ(α3, α2, α1; Ub) throughout the paper. For any U ∈ S1(U−), we
also use {U−, U} = (σ, 0, 0) to denote the 1-shock that connects U− and U
with speed σ. Then we have

Lemma 4. Let {U−, U+} = (σ0, 0, 0) with U+ = (u+, 0, ρ+), ρ+ > ρ−, and
γ ≥ 1. Then

σ0 < 0, u+ < u− < (1 + 1/γ)u+.

Proof. From the Rankine-Hugoniot conditions (25)–(27), we have

σ0(ρ−u− − ρ+u+) = ρ−v−, (43)
σ0(ρ−u2

− − ρ+u2
+ + p− − p+) = ρ−v−u−, (44)

which implies σ0 = −c̄0/
√

u2
+ − c̄2

0 < 0. Substituting (43) into (44), we
have p+− p− = ρ+u+(u−−u+). By the entropy condition: ρ+ > ρ−, which
implies p+ > p−. Then we have u− > u+. Furthermore, since p− > 0, we
have p+ > ρ+u+(u− − u+), which implies

ρ+c2
+/γ > ρ+u+(u− − u+).

Using u+ > c+, we have u+/γ > u− − u+ and thus u− < (1 + 1/γ)u+.

Moreover, it is direct to conclude

Lemma 5. There exists a neighborhood Oε(U+) of U+ such that the shock
polar S1(U−) ∩Oε(U+) can be parameterized by the shock speed σ as

σ → G(σ)

with G ∈ C2 near σ0 and G(σ0) = U+.

The following lemma is essential to estimate the strengths of reflected
weak waves in the interaction between the strong 1-shock and weak waves
(see the proofs for Propositions 1–4).

Lemma 6. Set A = ∇UH(U+)− σ0∇UW (U+). Then

detA < 0, det(Ar3, Ar2, Ar1)|U=U+ < 0, det(Ar3, Ar2, AGσ(σ0))|U=U+ < 0.
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Proof. A direct calculation shows that

A =




−σ0ρ+ ρ+ −σ0u+

−2σ0ρ+u+ ρ+u+ −σ0(u2
+ + c2

+)
0 −σ0ρ+u+ c2

+


 ,

and

r2(U+) = (1, 0, 0)>, rj(U+) = κj(U+)(−λj+, 1, ρ+u+λj+/c2
+)>, j = 1, 3.

Then we have

Ar2(U+) = −σ0ρ+(1, 2u+, 0)>,

Arj(U+) =
κj(U+)ρ+(λj+ − σ0)

λj+
(1, u+, u+λj+)>, j = 1, 3,

and

AGσ(σ0) = W (U+)−W (U−) = −ρ−v−
σ0

(1, u−, σ0u−)>.

Using Lemma 4, we can directly identify the signs of the following de-
terminants:

detA = σ0ρ
2
+u+(λ2

1+ − σ2
0)(u2

+ − c2
+) < 0,

det(Ar3, Ar2, Ar1)|U=U+ =
(κ3(U+))2σ0ρ

3
+u2

+

λ1+λ3+
(λ3+ − σ0)(σ0 − λ1+)(λ1+ − λ3+) < 0,

and

det(Ar3, Ar2, AGσ(σ0))|U=U+

=
κ3(U+)ρ−v−ρ2

+u+

λ3+
(λ3+ − σ0) ((2u+ − u−)λ3+ − σ0u−) < 0.

3. Estimates on wave interactions and reflections

We now make estimates on wave interactions and reflections on the
wedge and the strong 1-shock, respectively.
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3.1. Estimates on Weak Wave Interactions

We first estimate the interactions among weak waves. We will use the
following elementary identities, whose proofs are straightforward.

Lemma 7. (i) If f ∈ C1(R), then, for any x ∈ R,

f(x)− f(0) = x

∫ 1

0

fx(rx)dr; (45)

(ii) If f ∈ C2(R2), then, for any (x, y) ∈ R2,

f(x, y)− f(x, 0)− f(0, y) + f(0, 0) = xy

∫ 1

0

∫ 1

0

fxy(rx, sy)drds. (46)

Proposition 1. Suppose that Ub, Um, and Ua are three states in a small
neighborhood Oε(U+) with

{Ub, Um} = (α1, α2, α3), {Um, Ua} = (β1, β2, β3), {Ub, Ua} = (γ1, γ2, γ3).

Then
γi = αi + βi + O(1)4(α, β), (47)

where 4(α, β) = |α3||β1|+ |α2||β1|+ |α3||β2|+
∑

j=1,34j(α, β) with

4j(α, β) =
{

0, αj ≥ 0 and βj ≥ 0,
|αj ||βj |, otherwise.
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Fig. 6. Weak wave interactions
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Proof. First, Lemma 6 yields

det(
∂Φ(γ3, γ2, γ1; Ub)

∂(γ3, γ2, γ1)
)|γ1=γ2=γ3=0 =

1
det A

det(Ar3, Ar2, Ar1)|U=U+ > 0.

Then, by the implicit function theorem, there exists (γ3, γ2, γ1) as a C2−function
of (β1, β2, β3, α3, α2, α1; Ub) so that

Φ(β3, β2, β1; Φ(α3, α2, α1; Ub)) = Φ(γ3, γ2, γ1; Ub).

We omit Ub now for simplicity and will only compute γ3 here since the
estimates for γ1 and γ2 can be carried out in the same way. We can rewrite

γ3 = I1 + I2 + I3 + I4,

where

I1 = γ3(β3, β2, β1, α3, α2, α1)− γa
3 (β3, β2, β1, 0, α2, α1)

−γb
3(β3, β2, 0, α3, α2, α1) + γ3(β3, β2, 0, 0, α2, α1),

I2 = γa
3 (β3, β2, β1, 0, α2, α3)− γc

3(β3, β2, β1, 0, 0, α1)
−γ3(β3, β2, 0, 0, α2, α1) + γ3(β3, β2, 0, 0, 0, α1),

I3 = γb
3(β3, β2, 0, α3, α2, α1)− γ3(β3, β2, 0, 0, α2, α1)
−γd

3 (β3, 0, 0, α3, α2, α1) + γ3(β3, 0, 0, 0, α2, α1),
I4 = γc

3(β3, β2, β1, 0, 0, α1) + γd
3 (β3, 0, 0, α3, α2, α1)

+γ3(β3, β2, 0, 0, α2, α1)− γ3(β3, β2, 0, 0, 0, α1)
−γ3(β3, 0, 0, 0, α2, α1).

Note here we add the super-scriptions a, b, c, and d just to trace the terms.
From (46), we have

I1 = O(1)|β1||α3|, I2 = O(1)|β1||α2|, I3 = O(1)|β2||α3|.

Now we estimate I4. First we have We rely on the implicit function
theorem to obtain the uniqueness of the solution in a small neighborhood of
U+, Oε(U+), to get the following facts, which make the above decomposition
possible:

γ3(β3, β2, β1, 0, 0, 0) = γ3(β3, β2, 0, 0, 0, 0) = β3,

γ3(0, 0, 0, α3, α2, α1) = α3, γ3(0, 0, 0, 0, α2, α1) = 0,

γ3(β3, β2, 0, 0, 0, α1) = γ3(β3, 0, 0, 0, α2, α1) = β3.

The implicit function theorem also implies γ3(β3, β2, 0, 0, α2, α1) = β3. There-
fore,

I4 = β3 + α3 + O(1)(|α1||β1|+ |α3||β3|).
Summing up I1, I2, I3, and I4, we get (47).
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3.2. Estimates on the Weak Wave Reflections on the Boundary (see Fig. 7)

Denote {Ck(ak, bk)}∞k=0 the points {(ak, bk)}∞k=0 in the xy-plane with
ak+1 > ak > 0. Set

ωk,k+1 = arctan
(

bk+1 − bk

ak+1 − ak

)
, ωk = ωk,k+1 − ωk−1,k, ω−1,0 = 0,

Ωk+1 = {(x, y) : x ∈ [ak, ak+1), y < bk + (x− ak) tan(ωk,k+1)}, (48)
Γk+1 = {(x, y) : x ∈ [ak, ak+1), y = bk + (x− ak) tan(ωk,k+1)},

and the outer normal vector to Γk:

nk+1 =
−(bk+1 − bk, ak+1 − ak)√

(bk+1 − bk)2 + (ak+1 − ak)2
= (− sin(ωk,k+1), cos(ωk,k+1)).

(49)

 

 

 

 

 

 

 
 

  

 
 

 

 

Um

U
b

U
b

Fig. 7. Weak wave reflections on the boundary

Then we consider the initial-boundary value problem:




(14) in Ωk+1,
U |x=ak

= U,
(u, v) · nk+1 = 0 on Γk+1,

where U is a constant state.

Proposition 2. Let {Ub, Um} = (α3, α2, 0) and {Um, Uk} = (0, 0, β1) with

(uk, vk) · nk = 0.

Then there exists Uk+1 such that

{Ub, Uk+1} = (0, 0, δ1) with (uk+1, vk+1) · nk+1 = 0.
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Furthermore,
δ1 = β1 + Kb3α3 + Kb2α2 + Kb0ωk,

where Kb3,Kb2, and Kb0 are C2−functions of (α3, α2, β1, ωk; Ub) satisfying
that

Kb3|{ωk=α3=α2=β1=0,Ub=U+} = 1, Kb2|{ωk=α3=α2=β1=0,Ub=U+} = 0,

and Kb0 is bounded.

Proof. Since

∂

∂δ1
(Φ(0, 0, δ1;Ub) · (nk+1, 0))|{δ1=0,Ub=U+,ωk,k+1=0} (50)

= κ1(U+)(−λ1+, 1, ρ+u+λ1+/c2
+) · (0, 1, 0) > 0,

we know from the implicit function theorem that δ1 can be solved as a
C2−function of (α3, α2, β1, ωk−1,k, ωk; Ub) such that

Φ(0, 0, β1;Φ(α3, α2, 0;Ub)) · (nk, 0) = Φ(0, 0, δ1; Ub) · (nk+1, 0). (51)

Since ωk−1,k and Ub are constant, we will also omit Ub and ωk−1,k and write
δ1 = δ1(ωk, α2, α3, β1) for simplicity. Again, from (45), we can obtain

δ1(ωk, α2, α3, β1) = δ1(ωk, α2, α3, β1)− δ1(0, α2, α3, β1)
+δ1(0, α2, α3, β1)− δ1(0, 0, α3, β1)
+δ1(0, 0, α3, β1)− δ1(0, 0, 0, β1) + δ1(0, 0, 0, β1)

= Kb0ωk + Kb2α2 + Kb3α3 + β1.

Differentiating (51) with respect to α3 and α2, respectively, and letting
ωk = α3 = α2 = β1 = 0 and Ub = U+ yields

r3(U+)·(0, 1, 0) =
∂δ1

∂α3
r1(U+)·(0, 1, 0), r2(U+)·(0, 1, 0) =

∂δ1

∂α2
r1(U+)·(0, 1, 0).

Hence, Kb3|{ωk=α3=α2=β1=0,Ub=U+} = 1 and Kb2|{ωk=α3=α2=β1=0,Ub=U+} =
0. It is clear that Kb0 = ∂δ1

∂ωk
is bounded. This completes the proof.

3.3. Estimate on the Boundary Perturbation of the Strong Shock

Proposition 3. For ε > 0, there exists ε̂ = ε̂(ε) < ε so that G(Oε̂(σ0)) ⊂
Oε(U+) and, when |ωk| < ε, the following equation

G(σ) · (nk, 0) = 0 (52)

admits a unique solution σk ∈ Oε̂(σ0). Moreover, we have

σk+1 = σk + Kbsωk + O(1)|ωk|2, (53)

where Kbs is bounded.
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Proof. We first show that there exists a solution σ = σ(h) to the following
equation:

G(σ) · (− sin h, cos h, 0) = 0. (54)

This can be seen as follows: Differentiating the quantity G(σ)·(− sin h, cosh, 0)
with respect to σ, following the part of the calculations we had in Lemma
6, and denoting by (A∗ij) the cofactor matrix of (aij), we have

∂

∂σ
(G(σ) · (− sin h, cosh, 0))|{σ=σ0,h=0}

= (A−1 ·AGσ(σ0)) · (0, 1, 0) =
1

detA
(A∗12, A

∗
22, A

∗
32) ·AGσ(σ0)

=
ρ−v−ρ+

detA

(
(u− − 2u+)c2

+ + σ2
0u−(c2

+ − u2
+)

)
> 0.

Hence, by the implicit function theorem, there exists a unique C2−function
σ = σ(h) with σ(0) = σ0, which solves (54) in some neighborhood of (σ, h) =
(σ0, 0). Then

σ(Ωj) = σj , j = k, k + 1,

and, by the Taylor expansion formula, we have the desired estimates (53).

3.4. Estimates on the Interactions Between the Strong Shock and Weak
Waves

Proposition 4. Let Um, Ua ∈ Oε(U+) with

{G(σ), Um} = (0, α2, α3), {Um, Ua} = (β1, β2, 0).

Then there exists a unique (σ′, δ2, δ3) such that the Riemann problem (42)
with Ub = U− admits an admissible solution that consists of a strong 1-shock
of strength σ′, a contact discontinuity of strength δ2, and a weak 3-wave of
strength δ3:

{U−, Ua} = (σ′, δ2, δ3).

Moreover,

δ3 = α3+Ks3β1+O(1)∆, δ2 = α2+β2+Ks2β1+O(1)∆,σ′ = σ+Ks1β1+O(1)∆,
(55)

where
|Ks3| < 1, (56)

|Ks2| and |Ks3| are bounded, and ∆ = |α3||β1|+ |α2||β1|+ |α3||β2|. Further-
more, we can write the estimates in a more precise fashion:

σ′ = σ + K̃s1β1 + O(1)|α3||β2|, δ2 = α2 + β2 + K̃s2β1 + O(1)|α3||β2|,
δ3 = α3 + K̃s3β1 + O(1)|α3||β2|, (57)

where

|K̃s3| < 1, |K̃s1|+ |K̃s2| ≤ M for some constant M > 0. (58)
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Fig. 8. Interactions between the strong shock and weak waves

Proof. We first show that there exists a unique solution

(σ′, δ2, δ3) = (σ′(σ, α2, α3, β1, β2), δ2(σ, α2, α3, β1, β2), δ3(σ, α2, α3, β1, β2))

to
Φ(0, β2, β1; Φ(α3, α2, 0; G(σ))) = Φ(δ3, δ2, 0; G(σ′)). (59)

By Proposition 1, there exists (γ3, γ2, γ1) such that

Φ(0, β2, β1; Φ(α3, α2, 0; G(σ))) = Φ(γ3, γ2, γ1; G(σ)) (60)

with γ1 = β1 + O(1)∆, γ2 = β2 + α2 + O(1)∆, and γ3 = α3 + O(1)∆. Thus,
(59) can be reduced to

Φ(γ3, γ2, γ1; G(σ)) = Φ(δ3, δ2, 0; G(σ′)). (61)

Furthermore, Lemma 6 implies

det(
∂Φ(δ3, δ2, 0;G(σ′))

∂(δ3, δ2, σ′)
)|{δ3=δ2=0,σ′=σ0}

=
1

detA
det(Ar3(U+), Ar2(U+), AGσ(σ0)) > 0.

Therefore, the implicit function theorem implies that (δ3, δ2, σ
′) can be

solved as a C2−function of (γ1, γ2, γ3, σ) uniquely:

δ3 = δ3(γ3, γ2, γ1, σ), δ2 = δ2(γ3, γ2, γ1, σ), σ′ = σ′(γ3, γ2, γ1, σ).

Using identity (45), we find that, for i = 2, 3,

δi = δi(γ3, γ2, γ1, σ)− δi(γi, γ2, 0, σ) + δi(γ3, γ2, 0, σ) = Ksiγ1 + γi,

σ′ = σ′(γ3, γ2, γ1, σ)− σ′(γ3, γ2, 0, σ) + σ′(γ3, γ2, 0, σ) = Ks1γ1 + σ,
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where Ks1 =
∫ 1

0
∂γ1σ

′(γ3, γ2, λγ1, σ)dλ and Ksi =
∫ 1

0
∂γ1δi(γ3, γ2, λγ1, σ)dλ.

When γ3 = γ2 = γ1 = 0, it is clear that | ∂δ3
∂γ1
|, | ∂δ2

∂γ1
|, and | ∂σ′

∂γ1
| are

bounded. We can further claim the important feature that

|∂δ3

∂γ1
| < 1 when γ3 = γ2 = γ1 = 0.

This can be shown by differentiating (61) with respect to γ1 and let γ3 =
γ2 = γ1 = 0 to obtain

r1(U+) = r3(U+)
∂δ3

∂γ1
+ r2(U+)

∂δ2

∂γ1
+ Gσ(σ0)

∂σ′

∂γ1
. (62)

Multiplying both sides by A which is defined in Lemma 6, we have

|∂δ3

∂γ1
| = |det(Ar1(U+), Ar2(U+), AGσ(σ0))

det(Ar3(U+), Ar2(U+), AGσ(σ0))
|

= |λ3+ + σ0

λ3+ − σ0
|| (2u+ − u−)λ3+ + σ0u−

(2u+ − u−)λ3+ − σ0u−
| < 1.

Combining these with the estimates we had for γ1, γ2, and γ3, we con-
clude the proof.

4. Approximate Solutions

In this section, we develop a modified Glimm difference scheme to con-
struct a family of approximate solutions and establish their necessary esti-
mates for the initial-boundary value problem (1) and (8)–(9) in the corre-
sponding approximate domains Ω∆x.

4.1. A Modified Glimm Scheme

To define the scheme more clearly, we first use the fact that the boundary
is a perturbation of the straight wedge:

sup
x≥0

|g′(x)| < ε for sufficiently small ε > 0.

For any ∆x ≥ 0, set ak := k∆x and bk := yk = g(k∆x) in (48) and (49),
and follow the notations in Subsection 3.2 (also see Fig. 7). Then

m := sup
k>0

{yk − yk−1

∆x
} < ε. (63)

Define
Ω∆x =

⋃

k≥0

Ω∆x,k,
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where Ω∆x,k = {(x, y) : (k − 1)∆x ≤ x < k∆x, y ≤ yk−1 + (x − (k −
1)∆x) tan(ωk−1,k)}. We also need the Courant-Friedrichs-Lewy type condi-
tion:

∆y −m∆x

∆x
< |σ0|+ max

j=1,3
( sup
U∈Oε(U+)

|λj(U)|).

Define
ak,n = (2n + 1 + θk)∆y + yk,

where θk is randomly chosen in (−1, 1). Then we choose

pk,n = (k∆x, ak,n), k ≥ 0, n = 0,−1,−2, ...,

to be the mesh points and define the approximate solutions U∆x,θ in Ω∆x

for any θ = (θ0, θ1, θ2, ...) in an inductive way:
For k = 0, we define U∆x,θ in {0 ≤ x < ∆x} ∩ Ω∆x to be the strong

1-shock solution starting from U∆x,θ|{x=0,y<0} = U−.
Assume that U∆x,θ has been constructed for {0 ≤ x < k∆x}. Denoting,

for n ≤ −1,

U0
k := U∆x,θ(k∆x−, ak,n) if y ∈ (yk + 2n∆y, yk + (2n + 2)∆y),

then we define U∆x,θ in {k∆x ≤ x < (k + 1)∆x} as follows: We first solve
the following lateral Riemann problem in diamond Tk,0, whose vertices are
((k+1)∆x, yk+1), ((k+1)∆x,−∆y+yk+1), (k∆x, yk), and (k∆x,−∆y+yk):





W (Uk)x + H(Uk)y = 0 in Tk,0,
Uk|x=k∆x = U0

k ,
(uk, vk) · nk = 0 on Γk

to obtain the lateral Riemann solution Uk in Tk,0 as constructed in Section
2.3 and define

U∆x,θ = Uk in Tk,0.

Then we solve the following Riemann problem in each diamond Tk,n for
n ≤ −1, whose vertices are ((k+1)∆x, (2n−1)∆y+yk+1), ((k+1)∆x, (2n+
1)∆y + yk+1), (k∆x, (2n− 1)∆x + yk), and (k∆x, (2n + 1)∆y + yk):

{
W (Uk)x + H(Uk)y = 0 in Tk,n,
Uk|x=k∆x = U0

k ,

to obtain the Riemann solution Uk(x, y) in Tk,n as constructed in Sections
2.4–2.5, and define

U∆x,θ = Uk in Tk,n, n ≤ −1.

In this way, we have constructed the approximate solutions U∆x,θ(x, y)
globally provided that we can obtain a uniform bound of the approximate
solutions.
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4.2. Glimm-Type Functional and Its Bounds

In this section, we prove that the approximate solutions can be well
defined in Ω∆x indeed via the steps in Section 4.1 by providing a uniform
bound for them. First, we introduce the following lemma.

Lemma 8. (i) If {Ub, Ua} = (α1, α2, α3) with Ub, Ua ∈ Oε(U+), then

|Ub − Ua| ≤ s1(|α1|+ |α2|+ |α3|)

with s1 = max1≤i≤3

(
supU∈Oε(U+) |∂αi

Φ(α3, α2, α1; U)|
)

;
(ii) For any σ ∈ Oε̂(σ0) ⊂ Oε(U+),

|G(σ)−G(σ0)| ≤ s2|σ − σ0|

with s2 = maxσ∈Oε̂(σ0){G′σ(σ)}.

Next, we show that U∆x,θ can be globally defined. Assume that U∆x,θ

has been defined in {x < k∆x}∩Ω∆x by the steps in Section 4.1 and assume
that the following conditions are satisfied:

C1(k − 1) :





In each Ω∆x,j for 0 ≤ j ≤ k−1, there is a strong 1-shock S∗(σ(j))
in U∆x,θ with speed σ(j) ∈ Oε̂(σ0), which divides Ω∆x,j into two
parts: Ω+

∆x,j and Ω−
∆x,j , where Ω+

∆x,j is the part bounded by
S∗(σ(j)) and Γj = {y = g(x, j,∆x)};

C2(k − 1) : U∆x,θ|Ω+
∆x,j

∈ Oε(U+) and U∆x,θ|Ω−∆x,j
= U− for 0 ≤ j ≤ k−1;

C3(k − 1) :
{
{S∗(σ(j))}k−1

j=0 forms an approximate 1-characteristic χ∆x,θ : y =
χ∆x,θ(x), which emanating from the origin.

Here and in what follows, we use S∗(σ(j)) to denote the strong 1-shock
with speed σ(j). Then we prove that U∆x,θ can be defined in Ω∆x,k and
satisfies C1(k), C2(k), and C3(k).

From the construction steps in Section 4.1, we first define U∆x,θ and
the strong 1-shock S∗(σ(k)) in Ω∆x,k. Then there exists a diamond Λk,n(k)

such that S∗(σ(k−1)) enters Λk,n(k) and S∗(σ(k)) emanates from the center
of Λk,n(k). We extend χ∆x,θ to Ω∆x,k such that χ∆x,θ = S∗(σ(k)) in Ω∆x,k

and define Ω−
∆x,j and Ω+

∆x,j in the same way as in C1(k−1). Then it suffices
to impose some conditions so that C2(k − 1) holds and σ(k) ∈ Oε̂(σ0).

To achieve this, we establish the bound on the total variation of U∆x,θ

on a class of space-like curves. Denote by

N(θk+1, n) =
{

Pk+1,n if θk+1 ≤ 0,
Pk+1,n−1 if θk+1 > 0,

S(θk, n) =
{

Pk−1,n−1 if θk ≤ 0,
Pk−1,n if θk > 0.

Then we introduce
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Definition 2. A j−mesh curve J is defined to be an unbounded space-like
curve lying in the strip {(j − 1)∆x ≤ x ≤ (j + 1)∆x} and consisting of the
segments of the form Pk,n−1N(θk+1, n), Pk,n−1S(θk, n), S(θk, n)Pk,n, and
N(θk+1, n)Pk,n.

This means that we connect the mesh point Pk,n by two line segments
to the two mesh points Pk−1,n−1 and Pk−1,n if θk ≤ 0, or we connect the
mesh point Pk,n by two line segments to the two mesh points Pk−1,n and
Pk−1,n+1 if θk > 0 (see Fig. 9).

 

 

 

 

Fig. 9. Interaction diamond Λk,n and orientation of the segments

Clearly, for any k > 0, each k−mesh curve I divides the plane R2 into
I+ part and I− part, where I− is the one containing the set {x < 0}. As
in Glimm [10], we also partially order these mesh curves by saying J > I
if every point of the mesh curve J is either on I or contained in I+, and
we call J an immediate successor to I if J > I and every mesh point of J
except one is on I.

With these mesh curves J , we associate the Glimm-type functional
Fs(J):

Definition 3. We define

Fs(J) = C∗|σJ − σ0|+ F (J)

with

F (J) = L(J) + KQ(J),
L(J) = K∗

0L0(J) + L1(J) + K∗
2L2(J) + K∗

3L3(J),
Q(J) =

∑{|αi||βj | : both αi and βj cross J and approach},
and

L0(J) =
∑

{|ω(Ck)| : Ck ∈ ΩJ}, Lj(J) =
∑

{|αj | : αj crosses J}, j = 1, 2, 3,

where K and C∗ will be defined later, while ΩJ is the set of the corner
points Ck lying in J+:

ΩJ = {Ck ∈ J+ ∩ ∂Ω∆x : k ≥ 0},
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σJ stands for the speed of the strong shock crossing J , and K∗
0 ,K∗

2 and K∗
3

are the constants that satisfy the following conditions:

K∗
0 > |Kb0|, |Kb2| < K∗

2 <
1− |Ks3|K∗

3

|Ks2| , |Kb3| < K∗
3 <

1
Ks3

,

which can be achieved from our discussions of the properties of Kbi and
Ksi, i = 1, 2, 3, as in Propositions 3.2–3.4 in Section 3.

As indicated in Section 2.4, from now on, we denote M > 0 a universal
constant, depending only the parameters in the system and the boundary
function g(x), which may be different at each occurrence. We now prove the
decreasing property of our functional Fs. We first have

Proposition 5. Suppose that the wedge function g(x) satisfies (63), and I
and J are two k−mesh curves such that J is an immediate successor of I.
Suppose that

|U∆x,θ |
I ∩ ( Ω

+
∆x,k−1∪ Ω

+
∆x,k

)
− U+| < ε, |σI − σ0| < ε̂(ε),

where ε̂(ε) is determined in Proposition 3 and Lemma 8. Then there exist
constants ε̃ > 0,K > 0, and C∗ > 1, depending only on the system in (6)
and states U− and U+, such that, if Fs(I) ≤ ε̃, then

Fs(J) ≤ Fs(I),

and hence

|U∆x,θ |
J ∩ ( Ω

+
∆x,k−1∪ Ω

+
∆x,k

)
− U+| < ε, |σJ − σ0| < ε̂(ε).

Proof. Let Λ be the diamond that is formed by I and J . We can always
assume that I = I0 ∪ I ′ and J = J0 ∪ J ′ such that ∂Λ = I ′ ∪ J ′. We divide
our proof into four cases depending on the location of the diamond.

Case 1 (interior weak-weak interaction): Λ lies in the interior of Ω∆x

and does not touch χ∆x,θ. Then only weak waves enter Λ. Denote Q(Λ) =
∆(α, β) defined as in Proposition 1. Then, for some constant M > 0,

L(J)− L(I) ≤ (1 + K∗
2 + K∗

3 )MQ(Λ).

Since L(I0) < ε̃ from Fs(I) < ε̃, we have

Q(J)−Q(I) = Q(I0) + Q(γ1, I0) + Q(γ2, I0) + Q(γ3, I0)
−(Q(I0) + Q(Λ) + Q(α1, I0) + Q(α2, I0) + Q(α3, I0)

+Q(β1, I0) + Q(β2, I0) + Q(β3, I0))

≤ Q(MQ(Λ), I0)−Q(Λ) = (ML(I0)− 1)Q(Λ) ≤ −1
2
Q(Λ).

Hence, by choosing suitably large K, we obtain

F (J)− F (I) ≤ ((1 + K∗
2 + K∗

3 )M −K/2)Q(Λ) ≤ −1
4
Q(Λ).
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Fig. 10. Case 2: near the boundary

Case 2 (near the boundary): Λ touches the approximate boundary ∂Ω∆x

and is away from the strong shock χ∆x,θ. Then ΩJ = ΩI\{Ck} for certain
k and σI = σJ .

Let δ1 be the weak 1-wave going out of Λ through J ′, and let β1, α2,
and α3 be the weak waves entering Λ through I ′, as shown in Fig. 10. Then

L0(J)− L0(I) = −|ωk|,
L2(J)− L2(I) =

∑

γ2 crosses I0

|γ2| − (|α2|+
∑

γ2 crosses I0

|γ2|) = −|α2|,

L3(J)− L3(I) =
∑

γ3 crosses I0

|γ3| − (|α3|+
∑

γ3 crosses I0

|γ3|) = −|α3|,

L1(J)− L1(I) = (|δ1|+
∑

γ1 crosses I0

|γ1|)− (|β1|+
∑

γ1 crosses I0

|γ1|)

= |δ1| − |β1| ≤ |Kb3||α3|+ |Kb2||α2|+ |Kb0||ωk|,
where the last step is from Proposition 2. Thus,

L(J)− L(I) ≤ (|Kb0| −K∗
0 )|ωk|+ (|Kb2| −K∗

2 )|α2|+ (|Kb3| −K∗
3 )|α3|.

From our requirement in Definition 3, we find L(J) − L(I) ≤ 0. Since
Fs(I) ≤ ε̃ implies L(I) ≤ ε̃, the higher order term Q(I) can always be
bounded by the linear term L(I). Then we can easily conclude that F (J) ≤
F (I).

Case 3 (near the wedge vertex): Λ covers a part of ∂Ω∆x, and S∗(σ(k−1))
emanates from {Ck−1} and enters Λ. Then, from our construction, we find
ΩJ = ΩI\{Ck}, S∗(σ(k)) emanates from {Ck} and crosses J , σI = σ(k−1),
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and σJ = σ(k). Moreover, there is no weak wave crossing I ′ or J ′. Then we
have

F (J)− F (I) ≤ −K∗
0 |ωk|.

Since

|σJ − σ0| − |σI − σ0| ≤ |σJ − σI | ≤ |Kbs||ωk|+ M |ωk|2,

we can further choose C∗ suitably small and τ > 0 such that

Fs(J)− Fs(I) ≤ C∗|σJ − σI |+ F (J)− F (I) ≤ −τ |ωk|.

Case 4 (near the strong 1-shock): Λ lies in the interior of Ω∆x, and the
strong 1-shock S∗(σ(k−1)) enters Λ. Then S∗(σ(k)) is generated from the
inside of Λ, σI = σ(k−1), and σJ = σ(k).

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Case 4: near the strong 1-shock

Let δ3 and δ2 be the weak waves going out of Λ through J ′, and let
α3, α2, β1, and β2 be the weak waves entering Λ through I ′, as shown in
Fig. 11. Then

L1(J)− L1(I) =
∑

γ1 crosses I0

|γ1| − (|β1|+
∑

γ1 crosses I0

|γ1|) = −|β1|,

L2(J)− L2(I) = (|δ2|+
∑

γ2 crosses I0

|γ2|)− (|α2|+ |β2|+
∑

γ2 crosses I0

|γ2|)

≤ |Ks2||β1|+ M |α3||β2|,
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L3(J)− L3(I) = (|δ3|+
∑

γ3 crosses I0

|γ3|)− (|α3|+
∑

γ3 crosses I0

|γ3|)

≤ |Ks3||β1|+ M |α3||β2|,

where we have used the estimates in Proposition 4.
This case is more complicated, which requires a careful calculation of

Q(J)−Q(I). For simplicity, for any weak wave γ, we denote

Q(γ, I0) = |γ|
∑

{|γj | : γj and γ approach}.

Then

Q(J)−Q(I) = Q(I0) + Q(δ3, I0) + Q(δ2, I0)− (Q(I0) + |β1||α2|+ |α3||β1|
+|α3||β2|+ Q(α2, I0) + Q(α3, I0) + Q(β1, I0) + Q(β2, I0))

≤ − (|β1||α2|+ |α3||β1|+ |α3||β2|) +
(
|K̃s3|+ |K̃s2| − 1

)
Q(β1, I0)

+Q(M |α3||β2|, I0)
≤ (−1 + ML(I0)) |α3||β2|+ (−|α2| − |α3|+ ML(I0)) |β1|.

Again, since L(I0) ≤ ε̃ sufficiently small, then

Q(J)−Q(I) ≤ −1
2
|α3||β2|+ ML(I0)|β1|.

Therefore, we have

F (J)− F (I) ≤ (−1 + K∗
2 |Ks2|+ K∗

3 |Ks3|) |β1|+ M |α3||β2|
+K

(
−1

2
|α3||β2|+ ML(I0)|β1|

)

≤ −1
4
|β1|+ ML(I0)|β1| − 1

8
|α3||β2|

≤ −1
8
(|β1|+ |α3||β2|),

where we have chosen suitably large K and used the fact that L(I0) ≤ ε̃.
Furthermore, since |σJ −σI | ≤ |Ks1||β1|+M |α3||β2|, we can further choose
C∗ suitably small such that

Fs(J)− Fs(I) ≤ C∗|σJ − σI |+ F (J)− F (I) ≤ − 1
16
|β1| − 1

16
|α3||β2|.

Again, we have F (J) ≤ F (I).
Then, from Lemma 4.1, there exists ε̃ > 0 such that, when F (I) < ε̃, we

have |U − U+| < ε.

Let Ik be the k−mesh curve lying in {(j − 1)∆x ≤ x ≤ j∆x}. From
Proposition 5, we obtain the following theorem for any k ≥ 1.
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Theorem 1. Suppose that the function g(x) satisfies (63). Let ε, ε̃, ε̂(ε),K,
and C∗ be the constants specified in Proposition 5. If the induction hypothe-
ses C1(k − 1), C2(k − 1), and C3(k − 1) hold and if Fs(Ik−1) ≤ ε̃, then

|U∆x,θ |
Ω

+
∆x,k

− U+| < ε, U∆x,θ |
Ω
−
∆x,k

= U−, |σk − σ0| < ε̂(ε),

and

Fs(Ik) ≤ Fs(Ik−1). (64)

Moreover, we obtain

Theorem 2. There exists ε > 0 such that, if TV (g′(·)) < ε, then, for any
θ ∈ ∏∞

k=0(−1, 1) and every ∆x > 0, the modified Glimm scheme defines a
family of global approximate solutions U∆x,θ and the corresponding family of
approximate strong 1-shocks χ∆x,θ in Ω∆x,θ which satisfy C1(k−1), C2(k−
1), C3(k − 1), and (64) for any k ≥ 1. In addition,

TV {U∆x,θ(k∆x−, ·) : (−∞, yk]} ≤ C TV (g′(·))

for any k ≥ 0 and

|χ∆x,θ(x + h)− χ∆x,θ(x)| ≤ (|σ0|+ M)|h|+ 2∆x

for any x ≥ 0 and h > 0, where the constant C depends only on the bound
M , K, C∗, and K∗

i , i = 0, 2, 3.

4.3. Estimates on the Approximate Shock-Fronts

We use the notations and estimates in the previous section and define

σ∆x,θ(x) = σ(k) if x ∈ (k∆x, (k + 1)∆x].

From Proposition 4, we have

Lemma 9. There exists a constant M , independent of ∆x, θ, and U∆x,θ,
such that

TV {σ∆x,θ : [0,∞)} =
∞∑

k=0

|σ(k+1) − σ(k)| ≤ M.

Proof. For any k ≥ 1 and any interaction diamond Λ ⊂ {(k− 1)∆x ≤ x ≤
(k + 1)∆x}, define

E∆x,θ(Λ) =





0 for Case 1,
|ωk|+ |α2|+ |α3| for Case 2,
|ωk| for Case 3,
|β1| for Case 4;
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and

Q∆x,θ(Λ) =





Q(Λ) for Case 1,
0 for Case 2,
|ω|2 for Case 3,
|α3||β2| for Case 4.

Then ∑

Λ

E∆x,θ(Λ) ≤
∑

Λ

1
ε′

(F (I)− F (J)) ≤ 1
ε′

F (0) := M̃,

and ∑

Λ

Q∆x,θ(Λ) ≤ M̃,

where ε′ = supΛ max{K∗
0 − |Kb0|,K∗

2 − |Kb2|,K∗
3 − |Kb3|,K∗

0 ,Ks2,Ks3}.
From Proposition 4, we know that, for some M > 0,
∞∑

k=0

|σ(k+1) − σ(k)| ≤
∑

Λ

(K̃s1E∆x,θ(Λ) + MQ∆x,θ) ≤ (K̃s1 + 1)M ≤ M,

where K̃s1 is the constant in (57).

5. Global Entropy Solutions

In this section we establish the convergence of approximate solutions to
a global entropy solution and show the nonlinear stability and asymptotic
behavior of the strong shock emanating from the wedge vertex under the
BV wedge perturbation.

5.1. Convergence of Approximate Solutions

Following the above discussions, we can extend U∆x,θ by the constant
Uk,0 continuously across the approximate shock-front to the whole strip
{k∆x < x < (k + 1)∆x} for each k ≤ 0.

Let the line x = a > 0 intersects ∂Ω∆x = ∪{Ck−1Ck, k ≥ 1} at the
point (a, p∆x

a ). Similar to [29], by Theorem 2, we can prove

Lemma 10. For any h > 0 and x ≥ 0, there exists a constant M > 0
independent of ∆x, θ, and h such that

∫ 0

−∞
|U∆x,θ(x + h, y + p∆x

x+h)− U∆x,θ(x, y + p∆x
x )|dy ≤ M |h|.

Denote

J(θ, ∆x, φ) =
∞∑

k=1

∫ 0

−∞
φ(k∆x, y + yk) · (Uk∆x+,θ − Uk∆x−,θ)dy

for φ ∈ C∞0 (R2;R3). Following the steps in [10], we have
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Lemma 11. There exists a null set N ⊂ Π∞
k=0(−1, 1) and a subsequence

{∆xj}∞j=1 ⊂ {∆x}, which tends to 0, such that

J(θ, ∆xj , φ)−→ 0 when ∆xj → 0

for any θ ∈ Π∞
k=0(−1, 1)\N and φ ∈ C∞0 (R2;R3).

To establish the main theorem, we need to estimate the jumps of the
approximate strong shock-fronts. Let

dk =
σ(k−1)∆x− (yk − yk−1) + ∆y

∆y
.

Then, by the choice of ∆x and {yk} and by Lemma 4, we find that dk ∈ (0, 1)
which depends only on {θl}k−1

l=1 . Thus, we define

I(x,∆x, θ) =
[x/∆x]∑

k=1

Ik(∆x, θ),

where Ik(∆x, θ) = 1(−1,dk)(θk)(dk−1)∆y+1(dk,1)(θk)(dk+1)∆y, 1A denotes
the characteristic function of the set A, and [x/∆x] denotes the largest
integer less than or equal to x/∆x. Notice that Ik(∆x, θ) is the jump of the
function y = χ∆x,θ(x) at x = k∆x and is a measurable function of (∆x, θ),
which depends only on U∆x,θ|{0≤x≤k∆x} and {θl}k

l=0.

Lemma 12. (i) For any x ≥ 0,∆x > 0, and θ ∈ Π∞
k=0(−1, 1), we have

χ∆x,θ(x) = I(x,∆x, θ) +
∫ x

0

σ∆x,θ(s)ds;

(ii) There exist a null set N1 and a subsequence {∆l}∞l=1 ⊂ {∆xj}∞j=1 such
that ∫ ∞

0

e−x|I(x,∆l, θ)|2dx−→ 0 when ∆l → 0

for any θ ∈ Π∞
k=0(−1, 1)\N1.

Proof. Part (i) can be obtained by a direct calculation. We will focus only
on part (ii). As in [10], let dθ = Π∞

k=0(dθk/2). Then, for any l > j, we have
∫

IlIjdθ =
∫

Π l−1
i=1dθi(Ij

∫
Ildθl) = 0.

Therefore, we can deduce

∫
|I(x,∆x, θ)|2dθ =

[x/∆x]∑

k=1

∫
|Ik(∆x, θ)|2dθ ≤ 4|∆y

∆x
|2x∆x.

Then, by choosing a subsequence {∆l}∞l=1 ⊂ {∆xj}∞j=1 with
∑∞

l=0 ∆l < ∞
as in Lemma 11, we arrive at (ii).
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By Theorem 2 and Lemmas 9 and 10–11, we have

Theorem 3 (Existence and Stability). There exist ε > 0 and C > 0
such that, if (10) holds, then, for each θ ∈ (Π∞

k=0(−1, 1))\(N ∪ N1), there
exist a subsequence {∆l}∞l=1 of mesh sizes with ∆l → 0 as l → ∞ and a
pair of functions Uθ ∈ L∞(Ω;Oε(U+)) and χθ ∈ Lip([0,∞)) with χθ(0) = 0
such that

(i) U∆l,θ(x, ·) converges to Uθ(x, ·) in L1(−∞, g(x)) for every x > 0, and
Uθ is a global entropy solution of problem (6) and (8)–(9) in Ω and satisfies
(11)–(12);

(ii) χ∆l,θ converges to χθ uniformly in any bounded x-interval;
(iii) σ∆l,θ converges to σθ ∈ BV ([0,∞)) a.e. with |σθ − σ0| ≤ ε̂ < ε and

χθ(x) =
∫ x

0

σθ(t)dt.

In addition, if θ is equidistributed, then χθ(x) < g(x) for any x > 0 with
(13) and the Rankine-Hugoniot conditions a.e. along the curve {y = χθ(x)}.

The proof of (i) and (ii) and the convergence proof of σ∆k,θ in (iii) can
be carried out in the same way as in the standard cases (see [2,10,11,28])
by using the structure of the approximate solutions. In particular, for any
ϕ ∈ C∞0 (R2;R),

∫

Ω∆x,θ

(ρ∆x,θu∆x,θϕx + ρ∆x,θv∆x,θϕy)dxdy

=
∫

Ω

χΩ∆x,θ
(ρ∆x,θu∆x,θϕx + ρ∆x,θv∆x,θϕy)dxdy

weak-star converges, hence the initial condition is satisfied by the trace
theorem for BV functions (cf. [26]). Similarly, the boundary condition can
be shown to be satisfied. The equality in (iii) can be deduced from Lemma
12 and the result on the convergence of {χ∆l,θ} and {σ∆l,θ}.

5.2. Asymptotic Behavior of the Strong Shock

As in Theorem 3, let θ ∈ (Π∞
k=0(−1, 1))\(N ∪ N1) be equidistributed,

and let Uθ be the solution and χθ its shock-front, respectively. By Theorem
3, we conclude that the solution Uθ contains at most countable shock-fronts
and countable points of wave interactions; Moreover, we can modify the
solution Uθ such that Uθ is continuous except the shock curves and the
points of wave interactions (see [9,11,19]). Then we have

Lemma 13. The solution Uθ and its strong shock-front χθ satisfy

lim
x→∞

TV {arctan (vθ(x, ·)/uθ(x, ·)) : (χθ(x), g(x))} = 0

and
lim

x→∞
TV {ρθ(x, ·) : (χθ(x), g(x))} = 0.
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Proof. Let {∆l} be the sequence given as in Theorem 3, and let E∆l,θ(Λ)
and Q∆l,θ(Λ) be the quantities defined in Lemma 9. As in [11], we denote
by dE∆l,θ and dQ∆l,θ the measures assigning to E∆l,θ(Λ) and Q∆l,θ(Λ) to
the center of Λ, respectively.

The boundedness of E∆l,θ(Λ) and Q∆l,θ(Λ) in Lemma 9 implies the com-
pactness of {dE∆l,θ} and {dQ∆l,θ}. Then we can select their subsequences
(still denoted by themselves) so that ∆l → 0 and the limits:

dE∆l,θ → dEθ and dQ∆l,θ → dQθ

exist in the weak-star topology in the measure space, and the limits are
finite on Ω. Therefore, for any δ > 0, we can choose xδ > 0 independent of
{U∆l,θ} and {∆l} such that, for any l > 0,

∑

k≥[xδ/∆l]

Eλ,θ(Λk,n) < δ,
∑

k≥[xδ/∆l]

Qλ,θ(Λk,n) < δ.

Moreover, let X1
δ = (xδ, y

1
δ )( or X3

δ = (xδ, y
3
δ )) be the point lying in

the χ∆l,θ (or ∂Ω∆k
resp.). Let χ3

∆l,θ
be the minimum approximate 3-

characteristics in U∆l,θ emanating from the point X1
δ , and χ1

∆l,θ
the maxi-

mum approximate 1-characteristics in U∆l,θ emanating from the point X3
δ .

From the construction of the approximate solutions, we have

|χj
∆l,θ

(x + h)− χj
∆l,θ

(x)| ≤ M(|h|+ ∆l), j = 1, 3,

for some constant M > 0 independent of ∆x and θ. Then, for θ ∈ (
∏∞

k=0(−1, 1))\(N∪
N1), we can select a subsequence (still denoted by) {∆l}∞l=1 such that

χj
∆l,θ

→ χj
θ uniformly on every bounded interval as ∆l → 0

for some χj
θ ∈ Lip with (χj

θ)
′ bounded.

Let the characteristics y = χ3
θ(x) and y = χ1

θ(x) intersect ∂Ω and y =
χθ(x), respectively, at (t3δ , χθ(t3δ)) and (t1δ , χθ(t1δ)) for some t3δ and t1δ . Then,
since the flow angle arctan(v/u) and the density ρ are invariant across the
contact discontinuities, by the approximate conservation laws for the weak
j−waves, j = 1, 3, we can deduce in the same way as in [11] that

TV {arctan (v∆l,θ(x−, ·)/u∆l,θ(x−, ·)) : (χ∆l,θ(x), gl(x))} ≤ C δ

and
TV {ρ∆l,θ(x−, ·) : (χ∆l,θ(x), gl(x))} ≤ Cδ

for x > 2(t1δ + t3δ), where C > 0 is independent of δ, x, U∆l,θ, and ∆l.
Thus, taking the limit as ∆l → 0 and using Theorem 3 and the regularity

of Uθ yields that, for x > 2(t1δ + t3δ),

TV {arctan(vθ(x−, ·)/uθ(x−, ·) : (χθ(x), gl(x))} ≤ C δ

and
TV {ρθ(x−, ·) : (χθ(x), gl(x))} ≤ C δ.
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Theorem 4. (i) Let ω∞ = lim
x→∞

arctan(g′(x+)). Then

lim
x→∞

sup{| arctan (vθ(x, y)/uθ(x, y))− ω∞| : χθ(x) < y < g(x)} = 0;

(ii) There exist constants ρ∞ and σ∞ such that

lim
x→∞

sup{|ρθ(x, y)−ρ∞| : χθ(x) < y < g(x)} = 0, lim
x→∞

sup |σθ(x)−σ∞| = 0.

Proof. Let Ul,θ = U∆l,θ, σl,θ = σ∆l,θ, and χl,θ = χ∆l,θ, where ∆l is chosen
as in the proof of Lemma 13. Following the construction of the approximate
solutions, we conclude that, for every x > 0,

arctan(vl,θ/ul,θ)|Γk
= arctan

(
yk+1 − yk

∆x

)
= arctan(g′(ηk))

for some ηk ∈ [k∆x, (k+1)∆x). Then, choosing xδ so that |g′(x+)−g′(∞)| <
δ for x > xδ, we have

sup{| arctan(vl,θ(x, y)/ul,θ(x, y))− ω∞| : χθ(x) < y < g(x)}
≤ TV {arctan (vl,θ(x, ·)/ul,θ(x, ·)) : (χθ(x), g(x))}+ Mδ for x > 2xδ.

Therefore, taking the limit as ∆l → 0, by Theorem 3 and Lemma 13,
and by the regularity of Uθ, we can deduce part (i).

Moreover, from Theorem 3, we also have

σθ ∈ BV (R+), |σθ − σ0| ≤ ε̂ < ε, G(σθ) ∈ BV (R+;Oε(U+)).

Let σ∞ = lim
x→∞

σθ(x+) and U∞ = limx→∞G(σθ(x)). Then part (ii) follows
from Lemma 13.

6. Extension to the Adiabatic Euler Flows past Lipschitz Wedges

In this section, we turn to the adiabatic Euler equations (1) for steady
supersonic flows, which can be written in the following conservation form:

W (U)x + H(U)y = 0, U = (u, v, p, ρ) (65)

with

W (U) = (ρu, ρu2+p, ρuv, ρu(h+
u2 + v2

2
)), H(U) = (ρv, ρuv, ρv2+p, ρv(h+

u2 + v2

2
)),

and h = γp
(γ−1)ρ . As in Section 1, the problem of supersonic Euler flows

governed by (65) past Lipschitz wedges can be formulated as problem (8)–
(9) for system (65) in the region below the lower edge Γ of the wedge.

Definition 4 (Entropy Solutions). A BV function U = U(x, y) is called
an entropy solution of problem (65) and (8)–(9) provided that

(i) U is a weak solution of (65) and satisfies

(u, v) · n|y=g(x) = 0 in the trace sense;

(ii) U satisfies the entropy inequality:

(ρuS)x + (ρvS)y ≤ 0 (66)

in the sense of distributions in Ω including the boundary.
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6.1. Riemann Problems and Riemann Solutions

The eigenvalues of system (65) are the solutions of the fourth order
polynomial equation:

(v − λu)2
(
(v − λu)2 − c2(1 + λ2)

)
= 0,

where c2 = γp/ρ. Then we have

λj =
uv + (−1)jc

√
u2 + v2 − c2

u2 − c2
, j = 1, 4; λi = v/u, i = 2, 3. (67)

When the flow is supersonic (i.e., u2 + v2 > c2), system (65) is hyperbolic
and the corresponding eigenvectors for u 6= 0 are

rj = κj(−λj , 1, ρ(λju− v), ρ(λju− v)/c2)>, j = 1, 4,

r2 = (1, v/u, 0, 0)>, r3 = (0, 0, 0, 1)>,

where κj are chosen so that rj ·∇λj = 1 since the j-characteristic fields are
genuinely nonlinear, j = 1, 4. Note that the second and third characteristic
fields are always linearly degenerate: rj · ∇λj = 0, j = 2, 3.

6.1.1. Wave Curves in the Phase Space Similarly as in Section 2, the
contact discontinuity curves Ci(U0) through U0 are

Ci(U0) : p = p0, w = v/u = v0/u0, i = 2, 3, (68)

which describe compressible vortex sheets. Moreover, the rarefaction wave
curves Rj(U0) in the phase space through U0 are

Rj(U0) : dp = c2dρ, du = −λjdv, ρ(λju− v)dv = dp, j = 1, 4.
(69)

It is easy to check that dλj

dρ along Rj(U0), j = 1, 4, satisfy

dλ1

dρ
|R1(U0) < 0,

dλ4

dρ
|R4(U0) > 0.

Similarly, the Rankine-Hugoniot conditions for (65) are

σ[ρu] = [ρv], (70)
σ[ρu2 + p] = [ρuv], (71)
σ[ρuv] = [ρv2 + p], (72)

σ[ρu(h +
u2 + v2

2
)] = [ρv(h +

u2 + v2

2
)]. (73)

Then we have

(v0 − σu0)2
(
(v0 − σu0)2 − c2

0(1 + σ2)
)

= 0,
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where c2
0 = c2

0
b0

ρ
ρ0

and b0 = γ+1
2 − γ−1

2
ρ
ρ0

. This implies

σ = σj :=
u0v0 + (−1)jc0

√
u2

0 + v2
0 − c2

0

u2
0 − c2

0

, j = 1, 4, σ = σi = v0/u0, i = 2, 3.

Plugging σi, i = 2, 3, into (70)–(73), we get the same Ci(U0), i = 2, 3,
as defined in (68); while plugging σj , j = 1, 4, into (70)–(73), we get the
jth-shock wave curve Sj(U0) through U0:

Sj(U0) : [p] =
c2
0

b0
[ρ], [u] = −σj [v], ρ0(σju0−v0)[v] = [p], j = 1, 4.

(74)
Notice that Sj(U0) contacts with Rj(U0) at U0 up to second-order and

dσ1

dρ
|S1(U0) < 0,

dσ4

dρ
|S4(U0) > 0. (75)

Similarly, Lemma 2.1 still holds for system (65), which implies that the
entropy inequality (66) is equivalent to (32) or

λj(back) < σj < λj(front), j = 1, 4,

σ1 < λ2,3(back), λ2,3(front) < σ4.

We only show here the equivalence between (66) and (32) when the back
state U+ = (u+, 0, p+, ρ+) with u+ > 0 so that σ < 0. First, the entropy
condition (66) is equivalent to

σ[ρu(ln p− γ ln ρ)] < [ρv(ln p− γ ln ρ)]. (76)

From (70), we know

σρu = σρ+u+ + ρv. (77)

Plugging (77) into (76), we get ln(p/p+)− γ ln(ρ/ρ+) > 0. That is,

p/p+ > (ρ/ρ+)γ . (78)

On the other hand, from (70) and (73), we have the Bernoulli law:

h + (u2 + v2)/2 = h+ + u2
+/2, (79)

which implies

p

p+
= H(t) :=

(γ − 1)− (γ + 1)t
(γ − 1)t− (γ + 1)

with t = ρ/ρ+.

Then the function G(t) := H(t)/tγ is strictly decreasing in t, since

G′(t) =
γ(1− γ2)(t + 1)2

tγ+1((γ − 1)t− (γ + 1))2
< 0.

Since G(1) = 1 and G(t) > G(1) from (78), we conclude t < 1, which implies
ρ < ρ+.
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6.1.2. Lateral Riemann Problem Again, the simplest case of problem
(65) and (8)–(9) is g ≡ 0. It can be shown that, if g ≡ 0, then problem
(65) admits an entropy solution that consists of the constant state U− and
a constant state U+, with U+ = (u+, 0, p+, ρ+) and u+ > c+ > 0 in the
subdomain of Ω separated by a straight shock emanating from the vertex.
That is to say that the state ahead of the shock-front is U−, while the state
behind the shock-front is U+ (see Fig. 4). When the angle between the flow
direction of the front state and the wedge boundary at a boundary vertex
is larger than π, then an entropy solution contains a rarefaction wave that
separates the front state from the back state (see Fig. 5).

6.1.3. Riemann Problem Involving Only Weak Waves Consider the
following initial value problem:





W (U)x + H(U)y = 0,

U |x=x0 = U =
{

Ua, y > y0,
Ub, y < y0,

(80)

where Ub and Ua are constant states. As before, we can parameterize the
physically admissible elementary solution curve in a neighborhood of U+,
Oε(U+), by αj 7→ Φj(αj ;Ub), with Φ ∈ C2, Φj |αj=0 = Ub, and ∂Φj

∂αj
|αj=0 =

rj(Ub).
Denote Φ(α4, α3, α2, α1; Ub) = Φ4(α4, Φ3(α3, Φ2(α2, Φ1(α1;Ub)))). Then

we have

Lemma 14. There exists ε > 0 such that, for any states Ua, Ub ∈ Oε(U+),
problem (80) admits a unique admissible solution consisting of four elemen-
tary waves. In addition, state Ua can be represented by Ua = Φ(α4, α3, α2, α1; Ub)
with Φ|α1=α2=α3=α4=0 = Ub and ∂Φ

∂αi
|α1=α2=α3=α4=0 = ri(Ub), i = 1, 2, 3, 4.

Similar to the argument for Lemma 2.3, we have

Lemma 15. At state U+ = (u+, 0, p+, ρ+) with u+ > 0, κ1(U+) = κ4(U+) >
0, which implies κj(U) > 0, j = 1, 4, for any state U ∈ Oε(U+) since κj

are continuous, j = 1, 4.

6.1.4. Riemann Problem Involving a Strong 1-Shock For simplicity,
we use notation {Ub, Ua} = (α1, α2, α3, α4) to denote that Ua = Φ(α4, α3, α2, α1; Ub)
throughout this section. For any U ∈ S1(U−), we also use {U−, U} =
(σ, 0, 0, 0) to denote the 1-shock that connects U− and U with speed σ.
Then we have

Lemma 16. Let {U−, U+} = (σ0, 0, 0, 0), ρ+ > ρ−, and γ > 1. Then

σ0 < 0, u+ < u− < (1 + 1/γ)u+.

The slight difference for proving this lemma from that of Lemma 4 lies in
that c0 and c− are different for system (65). However, we still have c0 > c0

and c− < c−, and hence there is no problem to carry out the same steps.
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Lemma 17. There exists a neighborhood Oε(U+) of U+ such that the shock
polar S1(U−) ∩Oε(U+) can be parameterized by the shock speed σ as

σ → G(σ)

with G ∈ C2 near σ0 and G(σ0) = U+.

Lemma 18. For states U− and U+ in the unperturbed solution,

P := u+(h− +
u2
− + v2

−
2

− u2
+

2
) + (

c2
+

γ − 1
+ u2

+)(u+ − u−) > 0.

Proof. From the Bernoulli law (79), we have

P =
c2
+

γ − 1
(2u+ − u−) + u2

+(u+ − u−). (81)

Following the same steps as in Lemma 4, we have the following facts
from Lemma 16: u+(u− − u+) < c2

+/γ, u− < (1 + 1/γ)u+, and u− < 2u+,
which implies

P >
γu+(u− − u+)

γ − 1
((1 + 1/γ)u+ − u−) > 0.

Lemma 19. Let A = ∇UH(U+)− σ0∇UW (U+). Then

det A > 0, det(Ar4, Ar3, Ar2, Ar1)|U=U+ > 0,

det(Ar4, Ar3, Ar2, AGσ(σ0))|U=U+ > 0.

Proof. A direct calculation shows that

A =




−σ0ρ+ ρ+ 0 −σ0u+

−2σ0ρ+u+ ρ+u+ −σ0 −σ0u
2
+

0 −σ0ρ+u+ 1 0

−σ0ρ+( c2
+

γ−1 + 3
2u2

+) ρ+( c2
+

γ−1 + u2
+
2 ) − γ

γ−1σ0u+ − 1
2σ0u

3
+


 ,

and

rj(U+) =
(−1)j−1κj(U+)

c+

√
u2

+ − c2
+

(c2
+, (−1)j−1c+

√
u2

+ − c2
+, ρ+u+c+, ρ+u+)>, j = 1, 4,

r2(U0) = (1, 0, 0, 0)>, r3(U0) = (0, 0, 0, 1)>.

Hence, we have

Arj(U+) =
κj(U+)ρ+(λj+ − σ0)

λj+
(1, u+, u+λj+, (

c2
+

γ − 1
+

u2
+

2
))> for j = 1, 4,

Ar2(U+) = −σ0ρ+(1, 2u+, 0,
c2
+

γ − 1
+

3
2
u2

+)>, Ar3(U+) = −σ0u+(1, u+, 0,
u2

+

2
)>,
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and

AGσ(σ0) = W (U+)−W (U−) = −ρ−v−
σ0

(1, u−, σ0u−, h− +
u2
− + v2

−
2

)>.

By Lemmas 16 and 18, we find

detA =
σ2

0ρ2
+u2

+

γ − 1
(λ2

1+ − σ2
0)(u2

+ − c2
+) > 0,

det(Ar4, Ar3, Ar2, Ar1)|U=U+

=
(κ4(U+))2σ2

0ρ3
+u3

+c2
+

(γ − 1)λ1+λ4+
(σ0 − λ4+)(σ0 − λ1+)(λ4+ − λ1+) > 0,

and

det(Ar4, Ar3, Ar2, AGσ(σ0))|U=U+

=
κ4(U+)σ0ρ−v−ρ2

+u+

λ4+
(σ0 − λ4+)(u+λ4+P + σ0u−Q) > 0,

since P > 0 and Q = −c2
+/(γ − 1) < 0.

6.2. Estimates on Wave Interactions and Reflections

Now we make essential estimates as in Section 3. The interaction es-
timates are similar and the corresponding Figs. 5–7 are the same except
that 2-contact discontinuities and 3-waves in Section 3 are now replaced by
2, 3-contact discontinuities and 4-waves, respectively.

6.2.1. Estimates on Weak Wave Interactions First we have

Proposition 6. Suppose that Ub, Um, Ua ∈ Oε(U+) are three states with
{Ub, Um} = (α1, α2, α3, α4), {Um, Ua} = (β1, β2, β3, β4), and {Ub, Ua} =
(γ1, γ2, γ3, γ4) (cf. Fig. 5). Then

γi = αi + βi + O(1)4(α, β),

where 4(α, β) = (|α4|+ |α3|+ |α2|)|β1|+ |α4|(|β2|+ |β3|)+
∑

j=1,44j(α, β)
with

4j(α, β) =
{

0, αj ≥ 0, βj ≥ 0,
|αj ||βj |, otherwise.

Since, by Lemma 19,

det(
∂Φ(γ4, γ3, γ2, γ1; Ul)

∂(γ4, γ3, γ2, γ1)
)|γ1=γ2=γ3=γ4=0 = det(Ar4, Ar3, Ar2, Ar1)|U=U+ > 0,

then, by the implicit function theorem, there exists (γ4, γ3, γ2, γ1) as a
C2−function of (β4, β3, β2, β1, α4, α3, α2, α1; Ub) so that

Φ(β4, β3, β2, β1; Φ(α4, α3, α2, α1;Ub)) = Φ(γ4, γ3, γ2, γ1; Ub).

Then we follow the proof of Proposition 3.1 to arrive at the result.
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6.2.2. Estimates on the Weak Wave Reflections on the Boundary
We use the same notations as in Section 3.2 for Ck(ak, bk) with ak+1 >
ak > 0, ωk,k+1, ωk, Ωk, Γk, and the outer normal vector nk to Γk (cf. Fig.
7). Then we consider the initial-boundary value problem with U a constant
state: 




(65) in Ωk+1,
U |x=ak

= U,
(u, v) · nk+1 = 0 on Γk+1.

Proposition 7. Let {Ub, Um} = (α4, α3, α2, 0) and {Um, Uk} = (0, 0, 0, β1)
with

(uk, vk) · nk = 0.

Then there exists Uk+1 such that

{Ub, Uk+1} = (0, 0, 0, δ1) and (uk+1, vk+1) · nk+1 = 0.

Furthermore,

δ1 = β1 + Kb4α4 + Kb3α3 + Kb2α2 + Kb0ωk,

where Kb4,Kb3,Kb2, and Kb0 are C2−functions of (α4, α3, α2, β1, ωk;Ub)
satisfying

Kb4|{ωk=α4=α3=α2=β1=0,Ub=U+} = 1,

Kb2|{ωk=α4=α3=α2=β1=0,Ub=U+} = Kb3|{ωk=α4=α3=α2=β1=0,Ub=U+} = 0,

and Kb0 is bounded.

Since

∂

∂δ1
(Φ(0, 0, 0, δ1; Ub) · (nk+1, 0, 0))|{δ1=0,Ub=U+,ωk,k+1=0}

= κ1(U+)(−λ1+, 1, ρ+u+λ1+,
ρ+u+λ1+

c2
+

) · (0, 1, 0, 0) > 0,

we know from the implicit function theorem that δ1 can be solved as a
C2−function of (α4, α3, α2, β1, ωk−1,k, ωk;Ub) such that

Φ(0, 0, 0, β1; Φ(α4, α3, α2, 0;Ub)) · (nk, 0, 0) = Φ(0, 0, 0, δ1;Ub) · (nk+1, 0, 0).
(82)

Then, following the argument in the proof of Proposition 3.2 yields the
results.
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6.2.3. Estimate on the Boundary Perturbation of the Strong Shock
We have

Proposition 8. For ε > 0 sufficiently small, there exists ε̂ = ε̂(ε) < ε so
that G(Oε̂(σ0)) ⊂ Oε(U+) and, when |ωk| < ε, the following equation

G(σ) · (nk, 0, 0) = 0 (83)

admits a unique solution σk ∈ Oε̂(σ0). Moreover, we have

σk+1 = σk + Kbsωk + O(1)|ωk|2, (84)

where |Kbs| is bounded.

Proof. It suffices to find a solution σ = σ(h) to the following equation:

G(σ) · (− sin h, cosh, 0, 0) = 0. (85)

Differentiating both sides of (85) in σ, following the part of the calcu-
lation we had in Lemma 19, and denoting by (A∗ij) the co-factor matrix of
(aij), we obtain

∂

∂σ
(G(σ)·(− sinh, cosh, 0, 0))|{σ=σ0,h=0} =

1
detA

(A∗12, A
∗
22, A

∗
32, A

∗
42)·AGσ(σ0) > 0.

By the implicit function theorem, we can find a unique C2− function
σ = σ(h) with σ(0) = σ0, which solves (85) in some neighborhood of (σ, h) =
(σ0, 0). Then σ(Ωj) = σj , j = k, k + 1, and, by Taylor’s expansion formula,
we have the desired estimates (84).

6.2.4. Estimates on the Interaction Between the Strong Shock and
Weak Waves

Proposition 9. Let Um, Ua ∈ Oε(U+) with

{G(σ), Um} = (0, α2, α3, α4), {Um, Ua} = (β1, β2, β3, 0).

Then there exists a unique (σ′, δ2, δ3, δ4) such that the Riemann problem
(80) with Ub = U− admits an admissible solution consisting of a strong 1-
shock, two contact discontinuities of strengths δ2 and δ3, and a weak 4-wave
of strength δ4:

{U−, Ua} = (σ′, δ2, δ3, δ4).

Moreover,

σ′ = σ0 + Ks1β1 + O(1)∆, δ2 = α2 + β2 + Ks2β1 + O(1)∆,

δ4 = α4 + Ks4β1 + O(1)∆, δ3 = α3 + β3 + Ks3β1 + O(1)∆,

where
|Ks4| < 1 and |Ks3|, |Ks2|, and |Ks1| are bounded,
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and ∆ = |α3||β1|+ |α2||β1|+ |α4||β1|+ |α4||β2|+ |α4||β3|. Furthermore, we
can write the estimates in a more precise fashion:

δ4 = α4 + K̃s4β1 + O(1)∆̃, δ3 = α3 + K̃s3β1 + O(1)∆̃,

δ2 = α2 + K̃s2β1 + O(1)∆̃, σ′ = σ + K̃s1β1 + O(1)∆̃,

where
|K̃s4| < 1, |K̃s3|+ |K̃s2|+ |K̃s1| ≤ M,

for some M > 0 and ∆̃ = |α4||β3|+ |α4||β2|.

Proof. We first show that there exists a unique solution (σ′, δ2, δ3, δ4) as a
function of (σ, α2, α3, α4, β1, β2, β3) to

Φ(0, β3, β2, β1; Φ(α4, α3, α2, 0;G(σ))) = Φ(δ4, δ3, δ2, 0; G(σ′)). (86)

By Proposition 6, there exists (γ4, γ3, γ2, γ1) such that

Φ(0, β3, β2, β1; Φ(α4, α3, α2, 0; G(σ))) = Φ(γ4, γ3, γ2, γ1; G(σ)) (87)

with

γ1 = β1+O(1)∆, γ2 = β2+α2+O(1)∆, γ3 = α3+β3+O(1)∆, γ4 = α4+O(1)∆.

Thus, (86) can be reduced to

Φ(γ4, γ3, γ2, γ1; G(σ)) = Φ(δ4, δ3, δ2, 0;G(σ′)). (88)

Furthermore, Lemma 19 implies

det
(

∂Φ(δ4, δ3, δ2, 0;G(σ′))
∂(δ4, δ3, δ2, σ′)

)
|{δ4=δ3=δ2=0,σ′=σ0}

=
1

detA
det(Ar4(U+), Ar3(U+), Ar2(U+), AGσ(σ0)) > 0.

Therefore, the implicit function theorem implies that (δ4, δ3, δ2, σ
′) can be

solved as a C2−function of (γ1, γ2, γ3, γ4, σ) uniquely:

σ′ = σ′(γ4, γ3, γ2, γ1, σ), δi = δi(γ4, γ3, γ2, γ1, σ), i = 2, 3, 4.

Using identity (45) in Lemma 7, we find

σ′ = Ks1γ1 + σ, δi = Ksiγ1 + γi, i = 2, 3, 4,

where Ks1 =
∫ 1

0
∂γ1σ

′(γ3, γ2, λγ1, σ)dλ and Ksi =
∫ 1

0
∂γ1δi(γ4, γ3, γ2, λγ1, σ)dλ.

When γ4 = γ3 = γ2 = γ1 = 0, it is clear that | ∂σ′
∂γ1
| and | ∂δi

∂γ1
|, i = 2, 3, 4,

are bounded. We can further claim the important fact that

|∂δ4

∂γ1
| < 1 when γ4 = γ3 = γ2 = γ1 = 0.
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This can be shown as follows: Differentiate (88) with respect to γ1 and let
γ4 = γ3 = γ2 = γ1 = 0. Then we have

r1(U+) = r4(U+)
∂δ4

∂γ1
+ r3(U+)

∂δ3

∂γ1
+ r2(U+)

∂δ2

∂γ1
+ Gσ(σ0)

∂σ′

∂γ1
.

Multiplying both sides by A defined in Lemma 19, we have

|∂δ4

∂γ1
| = |det(Ar1(U+), Ar2(U+), Ar3(U+), AGσ(σ0))

det(Ar4(U+), Ar2(U+), Ar3(U+), AGσ(σ0))
|

= |λ4+ + σ0

λ4+ − σ0
| · |σ0u−Q− u+λ4+P

σ0u−Q + u+λ4+P
| < 1,

since P > 0, Q < 0, σ0 < 0, and λ4+ > 0. Combining with the estimates we
had on γ1, γ2, γ3, and γ4, we complete the proof.

6.3. Approximate Solutions

Similarly to Section 4, we can construct the globally defined, modified
Glimm approximate solutions U∆x,θ in the approximate domains (see Fig.
7):

Ω∆x =
⋃

k≥0

Ω∆x,k

with

Ω∆x,k = {(x, y) : (k−1)∆x < x ≤ k∆x, y = yk−1+(x−(k−1)∆x) tan(ωk−1,k)}

under the Courant-Friedrichs-Lewy type condition:

∆y −m∆x

∆x
< |σ0|+ max

j=1,4
( sup
Oε(U+)

|λj(U)|) with m as defined in (63).

Lemma 20. (i) If {Ub, Ua} = (α1, α2, α3, α4) with Ub, Ua ∈ Oε(U+), then

|Ub − Ua| ≤ s1(|α1|+ |α2|+ |α3|+ |α4|),

where s1 = max1≤i≤4(supU∈Oε(U+) |∂αiΦ(α4, α3, α2, α1; U)|);
(ii) For any σ ∈ Oε̂(σ0) with G(Oε̂(σ0)) ⊂ Oε(U+) for ε̂ = ε̂(ε),

|G(σ)−G(σ0)| ≤ s2|σ − σ0|,

where s2 = supσ∈Oε̂(σ0)
|G′σ(σ)|.

We need to establish the estimates on U∆x,θ on a class of space-like
curves, j-mesh curves J as introduced in Definition 2. To achieve this, we
now define the Glimm-type functional.



44 Gui-Qiang Chen, Yongqian Zhang, Dianwen Zhu

Definition 5. We define

Fs(J) = C∗|σJ − σ0|+ F (J),

with

F (J) = L(J) + KQ(J),
L(J) = K∗

0L0(J) + L1(J) + K∗
2L2(J) + K∗

3L3(J) + K∗
4L4(J),

Q(J) =
∑{|αi||βj | : both αi and βj cross J and approach},

and

L0(J) =
∑

{|ω(Ck)| : Ck ∈ ΩJ}, Lj(J) =
∑

{|αj | : αj crosses J}, 1 ≤ j ≤ 4,

where K and C∗ are to be defined later, while ΩJ = {Ck ∈ J+ ∩ ∂Ω∆x :
k ≥ 0} is the set of the corner points Ck lying in J+, σJ stands for the
speed of the strong shock crossing J , and K∗

0 , K∗
2 ,K∗

3 ,K∗
4 are constants

that satisfy the following conditions:

K∗
0 > |Kb0|, |Kb4| < K∗

4 <
1

|Ks4| , |Kb3| < K∗
3 <

1− |Ks4|K∗
4

|Ks3| ,

and

|Kb2| < K∗
2 <

1− |Ks3|K∗
3 − |Ks4|K∗

4

|Ks2| ,

which can be achieved from our discussions of the properties of Kbi and
Ksi, 0 ≤ i ≤ 4, as in the propositions in Section 6.2.

Now we prove the decreasing property of our functional Fs. We have

Proposition 10. Suppose that the wedge boundary function g(x) satisfies
(63), and I and J are two k−mesh curves such that J is an immediate
successor of I. Suppose that

|U∆x,θ|I ∩ ( Ω+
∆x,k−1∪ Ω+

∆x,k) − U+| < ε, |σI − σ0| < ε̂,

where ε̂ = ε̂(ε) is defined in Proposition 8 and Lemma 20. Then there exist
constants ε̃ > 0,K > 0, and C∗ > 1, depending only on the system in (1)
and states U− and U+, such that, if Fs(I) < ε̃, then

Fs(J) ≤ Fs(I)

and hence

|U∆x,θ|J ∩ ( Ω+
∆x,k−1∪ Ω+

∆x,k) − U+| < ε, |σJ − σ0| < ε̂.
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Proof. Let Λ be the diamond that is formed by I and J . We can always
assume that I = I0 ∪ I ′ and J = J0 ∪ J ′ such that ∂Λ = I ′ ∪ J ′. As in the
proof of Proposition 4.1, we divide our proof in four cases depending on the
location of the diamond.

Case 1 (interior weak-weak interaction). Denote Q(Λ) = ∆(α, β) as de-
fined in Proposition 6. Then, for some constant M > 0,

L(J)− L(I) = (1 + K∗
2 + K∗

3 + K∗
4 )MQ(Λ),

and, since L(I0) < ε̃ from Fs(I) < ε̃,

Q(J)−Q(I) = (ML(I0)− 1)Q(Λ) ≤ −1
2
Q(Λ).

Hence, we have

F (J)− F (I) = ((1 + K∗
2 + K∗

3 + K∗
4 )M −K/2)Q(Λ) ≤ −1

4
Q(Λ),

by choosing suitably large K.

Case 2 (near the boundary). Then ΩJ = ΩI\{Ck} for certain k and
σI = σJ . Let δ1 be the weak 1-wave going out of Λ through J ′, and β1, α2,
and α3 be the weak waves entering Λ through I ′, similarly as shown in Fig.
10. Then

L0(J)− L0(I) = −|ωk|,
Li(J)− Li(I) =

∑

γi crosses I0

|γi| − (|αi|+
∑

γi crosses I0

|γi|) = −|αi|, i = 2, 3, 4,

L1(J)− L1(I) = |δ1| − |β1| ≤ |Kb4||α4|+ |Kb3||α3|+ |Kb2||α2|+ |Kb0||ωk|,

where the last step is from Proposition 7. Thus,

L(J)−L(I) ≤ (|Kb0|−K∗
0 )|ωk|+(|Kb2|−K∗

2 )|α2|+(|Kb3|−K∗
3 )|α3|+(|Kb4|−K∗

4 )|α4|.

From our requirement in Definition 5, we get L(J) − L(I) ≤ 0. Since
Fs(I) ≤ ε̃ implies L(I) ≤ ε̃, the higher order term Q(I) can always be
bounded by the linear term L(I). Then we can easily conclude that F (J) ≤
F (I).

Case 3 (near the wedge vertex). Then, from our construction, we find that
ΩJ = ΩI\{Ck}, and S∗(σ(k)) emanates from Ck and crosses J , σI = σ(k−1),
and σJ = σ(k). Moreover, there is no weak wave crossing I ′ or J ′. Then we
have

F (J)− F (I) ≤ −K∗
0 |ωk|.

Since |σJ − σ0| − |σI − σ0| ≤ |σJ − σI | ≤ |Kbs||ωk| + M |ωk|2 and |Kbs| is
bounded, we can further choose suitably small C∗ and τ > 0 such that

Fs(J)− Fs(I) ≤ C∗|σJ − σI |+ F (J)− F (I) ≤ −τ |ωk|.
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Case 4 (near the strong 1-shock). Then S∗(σ(k)) is generated from the
inside of Λ, σI = σ(k−1), and σJ = σ(k). Let δ4, δ3, and δ2 be the weak
waves going out of Λ through J ′, and let α4, α3, α2, β1, β2, and β3 be the
weak waves entering Λ through I ′, similarly as shown in Fig. 11.

Then

L1(J)− L1(I) =
∑

γ1 crosses I0

|γ1| − (|β1|+
∑

γ1 crosses I0

|γ1|) = −|β1|,

Li(J)− Li(I) ≤ |Ksi||β1|+ M |α4||β2|+ |α4||β3|, i = 2, 3,

L4(J)− L4(I) ≤ |Ks4||β1|+ M(|α4||β2|+ |α4||β3|),
where we have used the estimates in Proposition 9.

Again, this case is much more complicated and requires a careful calcu-
lation of Q(J)−Q(I). For simplicity, for any weak wave γ, we denote

Q(γ, I0) = |γ|
∑

{|γj | : γj and γ approach, γj crosses I0}.
Then

Q(J)−Q(I) ≤ −(|α4||β1|+ |α4||β2|+ |α4||β3|+ |β1||α2|+ |β1||α3|)

+(
4∑

i=2

|K̃si| − 1)Q(β1, I0) + Q(M(|α4||β2|+ |α4||β3|), I0)

= (−1 + ML(I0))(|α4||β2|+ |α4||β3|) + (ML(I0)−
4∑

i=2

|αi|)|β1|.

Since L(I0) < ε̃ from Fs(I) < ε̃, then

Q(J)−Q(I) ≤ −1
2

(|α4||β2|+ |α4||β3|) + ML(I0)|β1|.
Therefore, we have

F (J)− F (I) ≤
(
−1 +

4∑

i=2

K∗
i |Ksi|

)
|β1|+ M(|α4||β2|+ |α4||β3|)

+K(−1
2
(|α4||β2|+ |α4||β3|) + ML(I0)|β1|)

≤ −1
8
(|β1|+ |α4||β2|+ |α4||β3|),

where we have chosen suitably large K and used the fact that L(I0) < ε̃.
Furthermore, since

|σJ − σI | ≤ |Ks1||β1|+ M(|α4||β2|+ |α4||β3|),
we can further choose suitably small C∗ such that

Fs(J)−Fs(I) ≤ C∗|σJ−σI |+F (J)−F (I) ≤ − 1
16
|β1|− 1

16
(|α4||β2|+|α4||β3|).

Again we have F (J) ≤ F (I). Then, from Lemma 6.7, there exists ε̃ > 0
such that, when F (I) < ε̃, we have |U − U+| < ε.
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Then the same argument as in Section 4 yields the following theorem.

Theorem 5 (Existence and Stability). There exist ε > 0 and C > 0
such that, if (10) holds, then, for each θ ∈ (Π∞

k=0(−1, 1))\(N ∪ N1), there
exist a sequence {∆l}∞l=1 of mesh sizes with ∆l → 0 as l →∞ and a pair of
functions Uθ ∈ Oε(U+) and χθ ∈ Lip(R+) with χθ(0) = 0 such that

(i) U∆l,θ(x, ·) converges to Uθ(x, ·) in L1(−∞, g(x)) for every x > 0, and
Uθ is a global entropy solution of problem (1) and (8)–(9) in Ω and satisfies
(11)–(12);

(ii) χ∆l,θ converges to χθ uniformly in any bounded x-interval;
(iii) σ∆l,θ converges a.e. to σθ ∈ BV (R+) with |σθ−σ0| < ε̂ and χθ(x) =∫ x

0
σθ(t)dt.
In addition, if θ is equidistributed, then χθ(x) < g(x) for any x > 0 with

(13) and the Rankine-Hugoniot conditions a.e. along the curve {y = χθ(x)}.
Furthermore, let θ ∈ (Π∞

k=0(−1, 1))\(N ∪ N1) be equidistributed, and
let Uθ be the solution and χθ its shock-front, respectively. By Theorem 5,
we find that the solution Uθ contains at most countable shock-fronts and
countable points of wave interactions; Moreover, we can modify the solution
Uθ such that Uθ is continuous except the shock curves and the points of wave
interactions (cf. [9]). Then we have

Theorem 6. (i) Let ω∞ = lim
x→∞

arctan(g′(x+)). Then

lim
x→∞

sup{| arctan (vθ(x, y)/uθ(x, y))− ω∞| : χθ(x) < y < g(x)} = 0.

(ii) There exist constants p∞ and σ∞ such that

lim
x→∞

sup{|pθ(x, y)− p∞| : χθ(x) < y < g(x)} = 0

and
lim

x→∞
|σθ(x)− σ∞| = 0.

Theorem 6 can be proved in the same way as Theorem 4.
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