PDE-CDT Core Course

Analysis of Partial Differential Equations-Part III

Lecture 4

EPSRC Centre for Doctoral Training in Partial Differential Equations Trinity Term

25 April – 15 June 2018 (16 hours; Wednesdays)

Final Exam: 22 June 2018 (Friday)

Course format: Teaching Course (TT)

By Prof. Gui-Qiang G. Chen

Prof. Qian Wang

Hyperbolic Systems of Conservation Laws

$$\begin{cases} \frac{\partial}{\partial t} u_1 + \frac{\partial}{\partial x} f_1(u_1, \dots, u_m) = 0, \\ \dots \\ \frac{\partial}{\partial t} u_m + \frac{\partial}{\partial x} f_m(u_1, \dots, u_m) = 0, \end{cases}$$

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_{x} = 0$$

$$\mathbf{u} = (u_1, \cdots, u_m)^{\top} \in \mathbb{R}^m$$
 conserved quantities $\mathbf{f}(\mathbf{u}) = (f_1(\mathbf{u}), \cdots, f_m(\mathbf{u}))^{\top}$ fluxes

Hyperbolic Systems

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = 0$$
 $\mathbf{u} = \mathbf{u}(t, x) \in \mathbb{R}^m$
 $\mathbf{u}_t + \mathbf{A}(\mathbf{u})\mathbf{u}_x = 0$ $\mathbf{A}(\mathbf{u}) = \nabla \mathbf{f}(\mathbf{u})$

The system is **strictly hyperbolic** if each $m \times m$ matrix $\mathbf{A}(\mathbf{u})$ has real distinct eigenvalues

$$\lambda_1(\mathbf{u}) < \lambda_2(\mathbf{u}) < \cdots < \lambda_m(\mathbf{u})$$

Right eigenvectors Left eigenvectors

$$\mathbf{r}_1(\mathbf{u}), \cdots, \mathbf{r}_m(\mathbf{u})$$
 (column vectors)
 $\mathbf{I}_1(\mathbf{u}), \cdots, \mathbf{I}_m(\mathbf{u})$ (row vectors)

$$\mathbf{A}\mathbf{r}_i = \lambda_i \mathbf{r}_i \qquad \mathbf{I}_i \mathbf{A} = \lambda_i \mathbf{I}_i$$

Choose the bases so that

$$\mathbf{I}_i \cdot \mathbf{r}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Global in Time Solutions to the Cauchy Problem

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = 0, \qquad \mathbf{u}(0, x) = \mathbf{u}(x)$$

- Construct a sequence of approximate solutions $\{\mathbf{u}^{\nu}\}_{\nu\geq 1}$
- Show that (a subsequence) converges: $\mathbf{u}^{\nu} \to \mathbf{u}$ in L^1_{loc}
- Show that the limit u is an entropy solution.

Need: a-priori bound on the total variation (J. Glimm, 1965)

Building Block: The Riemann Problem

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = 0, \qquad \mathbf{u}(0, x) = \begin{cases} \mathbf{u}^- & x < 0 \\ \mathbf{u}^+ & x > 0 \end{cases}$$

- B. Riemann 1860: 2×2 Isentropic Euler equations
- P. Lax 1957: $m \times m$ systems (+ special assumptions)
- T.-P. Liu 1975: $m \times m$ systems (generic case)

*The Riemann solutions are also the vanishing viscosity limits for general hyperbolic systems, possibly non-conservative

Solution to the Riemann problem

- is invariant w.r.t. rescaling symmetry: $u^{\theta}(t,x) \doteq u(\theta t, \theta x)$ $\theta > 0$
- describes local behavior of BV solutions near each point (t₀, x₀)
- describes large-time asymptotics as $t \to +\infty$ (for small total variation)

Riemann Problem for Linear Systems

$$u_{t} + Au_{x} = 0 \qquad u(0, x) = \begin{cases} u^{-} & \text{if } x < 0 \\ u^{+} & \text{if } x > 0 \end{cases}$$

$$x/t = \lambda_{1} \qquad \omega_{2} \qquad x/t = \lambda_{3}$$

$$\omega_{0} = u^{-} \qquad \omega_{3} = u^{+}$$

$$u^+ - u^- = \sum_{j=1}^n c_j r_j$$
 (sum of eigenvectors of A)

intermediate states :
$$\omega_i \doteq u^- + \sum_{i \leq i} c_i r_i$$

i-th jump: $\omega_i - \omega_{i-1} = c_i r_i$ travels with speed λ_i

Scalar Conservation Law

$$u_t + f(u)_x = 0 \qquad u \in \mathbb{R}$$

CASE 1: Linear flux: $f(u) = \lambda u$.

Jump travels with speed λ (contact discontinuity)

CASE 2: the flux f is convex, so that $u \mapsto f'(u)$ is increasing.

A class of nonlinear hyperbolic systems

$$u_t + f(u)_x = 0$$

$$A(u) = Df(u)$$
 $A(u)r_i(u) = \lambda_i(u)r_i(u)$

Assumption (H) (P.Lax, 1957): Each i-th characteristic field is

- either genuinely nonlinear, so that $\nabla \lambda_i \cdot r_i > 0$ for all u
- or linearly degenerate, so that $\nabla \lambda_i \cdot r_i = 0$ for all u

genuinely nonlinear \implies characteristic speed $\lambda_i(u)$ is strictly increasing along integral curves of the eigenvectors r_i

linearly degenerate \implies characteristic speed $\lambda_i(u)$ is constant along integral curves of the eigenvectors r_i

Shock and Rarefaction curves

$$u_t + f(u)_x = 0$$
 $A(u) = Df(u)$

i-rarefaction curve through $u_0: \sigma \mapsto R_i(\sigma)(u_0)$

= integral curve of the field of eigenvectors r_i through u₀

$$\frac{du}{d\sigma}=r_i(u), \qquad u(0)=u_0$$

i-shock curve through u_0 : $\sigma \mapsto S_i(\sigma)(u_0)$

= set of points u connected to u₀ by an i-shock, so that

 $u-u_0$ is an i-eigenvector of the averaged matrix $A(u,u_0)$

Elementary waves

$$u_t + f(u)_x = 0$$
 $u(0,x) = \begin{cases} u^- & \text{if } x < 0 \\ u^+ & \text{if } x > 0 \end{cases}$

CASE 1 (Centered rarefaction wave). Let the i-th field be genuinely nonlinear.

If $u^+ = R_i(\sigma)(u^-)$ for some $\sigma > 0$, then

$$u(t,x) = \begin{cases} u^{-} & \text{if } x < t\lambda_{i}(u^{-}), \\ R_{i}(s)(u^{-}) & \text{if } x = t\lambda_{i}(s) \ s \in [0,\sigma] \\ u^{+} & \text{if } x > t\lambda_{i}(u^{+}) \end{cases}$$

is a weak solution of the Riemann problem

A centered rarefaction wave

CASE 2 (Shock or contact discontinuity). Assume that

$$u^+ = S_i(\sigma)(u^-)$$
 for some i, σ . Let $\lambda = \lambda_i(u^-, u^+)$ be the shock speed.

Then the function

$$u(t,x) = \begin{cases} u^{-} & \text{if } x < \lambda t, \\ u^{+} & \text{if } x > \lambda t, \end{cases}$$

is a weak solution to the Riemann problem.

In the genuinely nonlinear case, this shock is admissible (i.e., it satisfies the Lax condition and the Liu condition) iff σ < 0.

Solution to a 2 x 2 Riemann problem

Solution of the general Riemann problem (P. Lax, 1957)

$$u_t + f(u)_x = 0$$
 $u(0,x) = \begin{cases} u^- & \text{if } x < 0 \\ u^+ & \text{if } x > 0 \end{cases}$

Problem: Find states $\omega_0, \omega_1, \cdots, \omega_m$ such that

$$\omega_0 = \mathbf{u}^- \qquad \omega_m = \mathbf{u}^+$$

and every couple ω_{i-1} , ω_i are connected by an elementary wave (shock or rarefaction)

$$\left\{ \begin{array}{ll} \text{either } \omega_i &= R_i(\sigma_i)(\omega_{i-1}) & \sigma_i \geq 0 \\ \\ \text{or } \omega_i &= S_i(\sigma_i)(\omega_{i-1}) & \sigma_i < 0 \end{array} \right.$$

define:
$$\Psi_i(\sigma)(u) = \begin{cases} R_i(\sigma)(u) & \text{if } \sigma \geq 0 \\ S_i(\sigma)(u) & \text{if } \sigma < 0 \end{cases}$$

$$(\sigma_1, \sigma_2, \ldots, \sigma_n) \mapsto \Psi_n(\sigma_n) \circ \cdots \circ \Psi_2(\sigma_2) \circ \Psi_1(\sigma_1)(u^-)$$

Jacobian matrix at the origin:
$$J \doteq \left(r_1(u^-)\middle|r_2(u^-)\middle|\cdots\middle|r_n(u^-)\right)$$
 always has full rank

If $|u^+ - u^-|$ is small, then the implicit function theorem yields existence and uniqueness of the intermediate states $\omega_0, \omega_1, \dots, \omega_n$

General solution of the Riemann problem

Concatenation of elementary waves (shocks, rarefactions, or contact discontinuities)

Global solution to the Cauchy problem

$$u_t + f(u)_x = 0, \qquad u(0, x) = \overline{u}(x)$$

Theorem (Glimm, 1965).

Assume:

- system is strictly hyperbolic
- each characteristic field is either linearly degenerate or genuinely nonlinear

Then there exists a constant $\delta > 0$ such that, for every initial condition $\bar{u} \in L^1(\mathbb{R}; \mathbb{R}^n)$ with

Tot.
$$Var.(\bar{u}) \leq \delta$$
,

the Cauchy problem has an entropy admissible weak solution u = u(t, x) defined for all t > 0.

Construction of a sequence of approximate solutions by piecing together solutions of Riemann problems

on a fixed grid in t-x plane (Glimm scheme)

at points where fronts interact (front tracking)

Piecewise constant approximate solution to a Riemann problem

replace centered rarefaction waves with piecewise constant rarefaction fans

Front Tracking Approximations

- Approximate the initial data with a piecewise constant function
- Construct a piecewise constant approximate solution to each Riemann problem at t = 0
- at each time t_j where two fronts interact, construct a piecewise constant approximate solution to the new Riemann problem . . .
- NEED TO CHECK: { total variation remains small number of wave fronts remains finite

Interaction estimates

GOAL: estimate the strengths of the waves in the solution of a Riemann problem, depending on the strengths of the two interacting waves σ' , σ''

Incoming: a j-wave of strength σ' and an i-wave of strength σ''

Outgoing: waves of strengths $\sigma_1, \dots, \sigma_m$. Then

$$|\sigma_i - \sigma''| + |\sigma_j - \sigma'| + \sum_{k \neq i,j} |\sigma_k| = O(1) \cdot |\sigma'\sigma''|$$

Incoming: two *i*-waves of strengths σ' and σ''

Outgoing: waves of strengths $\sigma_1, \dots, \sigma_m$. Then

$$|\sigma_i - \sigma' - \sigma''| + \sum_{k \neq i} |\sigma_k| \ = \ \mathcal{O}(1) \cdot |\sigma' \sigma''| \Big(|\sigma'| + |\sigma''| \Big)$$

Glimm functionals

Total strength of waves:
$$V(t) \doteq \sum_{\alpha} |\sigma_{\alpha}|$$

Wave interaction potential:
$$Q(t) \doteq \sum_{(\alpha,\beta) \in \mathcal{A}} |\sigma_{\alpha}\sigma_{\beta}|$$

 $A \doteq$ couples of approaching wave fronts

Changes in V, Q at time τ when the fronts $\sigma_{\alpha}, \sigma_{\beta}$ interact:

$$\Delta V(\tau) = \mathcal{O}(1)|\sigma_{\alpha}\sigma_{\beta}|$$

$$\Delta Q(\tau) = -|\sigma_{\alpha}\sigma_{\beta}| + \mathcal{O}(1) \cdot V(\tau -)|\sigma_{\alpha}\sigma_{\beta}|$$

Choosing a constant C_0 large enough, the map

$$t \mapsto V(t) + C_0 Q(t)$$

is nonincreasing, as long as V remains small

Total variation initially small ⇒ global BV bounds

$$Tot.Var.\{u(t,\cdot)\} \leq V(t) \leq V(0) + C_0Q(0)$$

Front tracking approximations can be constructed for all $t \geq 0$

Keeping finite the number of wave fronts

At each interaction point, the Accurate Riemann Solver yields a solution, possibly introducing several new fronts

The total number of fronts can become infinite in finite time

Need: a Simplified Riemann Solver, producing only one "non-physical" front

A sequence of approximate solutions

$$u_t + f(u)_x = 0 \qquad u(0,x) = \bar{u}(x)$$

 $(u_{\nu})_{\nu \geq 1}$ sequence of approximate front tracking solutions

- initial data satisfy $\|u_{\nu}(0,\cdot) \bar{u}\|_{L^{1}} \leq \varepsilon_{\nu} \rightarrow 0$
- all shock fronts in u_{ν} are entropy-admissible
- each rarefaction front in u_{ν} has strength $\leq \varepsilon_{\nu}$
- at each time $t \geq 0$, the total strength of all non-physical fronts in $u_{\nu}(t,\cdot)$ is $\leq \varepsilon_{\nu}$

Existence of a convergent subsequence

Tot.
$$Var. \{u_{\nu}(t, \cdot)\} \leq C$$

$$\|u_{
u}(t) - u_{
u}(s)\|_{\mathsf{L}^1} \le (t-s) \cdot [ext{total strength of all wave fronts}] \cdot [ext{maximum speed}]$$
 $\le L \cdot (t-s)$

Helly's compactness theorem \Longrightarrow a subsequence converges

$$u_{\nu} \rightarrow u$$
 in L^1_{loc}

Claim:
$$u = \lim_{\nu \to \infty} u_{\nu}$$
 is a weak solution

$$\iint \left\{ \phi_t u + \phi_x f(u) \right\} dxdt = 0 \qquad \qquad \phi \in \mathcal{C}_c^1 \bigg(]0, \, \infty[\, \times \mathbb{R} \bigg)$$

Need to show:

$$\lim_{\nu\to\infty}\int\!\!\int\left\{\phi_t u_\nu + \phi_X f(u_\nu)\right\}\,dxdt = 0$$

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} \left\{ \phi_{t}(t,x) u_{\nu}(t,x) + \phi_{x}(t,x) f\left(u_{\nu}(t,x)\right) \right\} dxdt$$

$$= \sum_{j} \int_{\partial \Gamma_{j}} \Phi_{\nu} \cdot \mathbf{n} d\sigma$$

$$\limsup_{\nu \to \infty} \left| \sum_{j} \int_{\partial \Gamma_{j}} \Phi_{\nu} \cdot \mathbf{n} \ d\sigma \right|$$

$$\leq \limsup_{\nu \to \infty} \left| \sum_{\alpha \in \mathcal{S} \cup \mathcal{R} \cup \mathcal{N}P} \left[\dot{x}_{\alpha}(t) \cdot \Delta u_{\nu}(t, x_{\alpha}) - \Delta f \left(u_{\nu}(t, x_{\alpha}) \right) \right] \phi(t, x_{\alpha}(t)) \right|$$

$$\leq \left(\left. \max_{t,x} \left| \phi(t,x) \right| \right) \cdot \limsup_{\nu \to \infty} \left\{ \mathcal{O}(1) \cdot \sum_{\alpha \in \mathcal{R}} \varepsilon_{\nu} |\sigma_{\alpha}| \right. \\ \left. + \left. \mathcal{O}(1) \cdot \sum_{\alpha \in \mathcal{N}P} |\sigma_{\alpha}| \right\}$$

The Glimm scheme

$$u_t + f(u)_x = 0 \qquad \qquad u(0,x) = \bar{u}(x)$$

Assume: all characteristic speeds satisfy $\lambda_i(u) \in [0, 1]$

This is not restrictive. If $\lambda_i(u) \in [-M, M]$, simply change coordinates:

$$y = x + Mt$$
, $\tau = 2Mt$

Choose:

- a grid in the t-x plane with step size $\Delta t = \Delta x$
- a sequence of numbers $\theta_1, \theta_2, \theta_3, \dots$ uniformly distributed over [0, 1]

$$\lim_{N\to\infty}\frac{\#\{j\;;\;\;1\leq j\leq N,\;\;\theta_j\in[0,\lambda]\;\}}{N}=\lambda\qquad \text{for each }\lambda\in[0,1].$$

Glimm approximations

Grid points :
$$x_j = j \cdot \Delta x$$
, $t_k = k \cdot \Delta t$

- for each $k \ge 0$, $u(t_k, \cdot)$ is piecewise constant, with jumps at the points x_j . The Riemann problems are solved exactly, for $t_k \le t < t_{k+1}$
- \bullet at time t_{k+1} the solution is again approximated by a piecewise constant function, by a sampling technique

Example: Glimm's scheme applied to a solution containing a single shock

$$U(t,x) = \begin{cases} u^+ & \text{if } x > \lambda t \\ u^- & \text{if } x < \lambda t \end{cases}$$

Fix
$$T>0$$
, take $\Delta x=\Delta t=T/N$

$$x(T) = \#\{j : 1 \le j \le N, \theta_j \in [0, \lambda] \} \cdot \Delta t$$

$$= \ \frac{\# \big\{ j \ ; \ 1 \leq j \leq N, \ \theta_j \in [0,\lambda] \ \big\}}{N} \cdot T \ \rightarrow \ \lambda T$$

as $N o \infty$

Rate of convergence for Glimm approximations

Random sampling at points determined by the equidistributed sequence $(\theta_k)_{k>1}$

$$\lim_{N\to\infty}\frac{\#\{j\;;\;\;1\leq j\leq N,\;\;\theta_j\in[0,\lambda]\;\}}{N}\;=\;\lambda\qquad \text{for each }\lambda\in[0,1].$$

Need fast convergence to uniform distribution. Achieved by choosing:

$$\theta_1 = 0.1$$
, ..., $\theta_{759} = 0.957$, ..., $\theta_{39022} = 0.22093$, ...

Convergence rate:
$$\lim_{\Delta x \to 0} \frac{\left\| u^{\text{Glimm}}(T, \cdot) - u^{\text{exact}}(T, \cdot) \right\|_{\mathbf{L}^1}}{\sqrt{\Delta x} \cdot |\ln \Delta x|} = 0$$

(A.Bressan & A.Marson, 1998)

Bressan, A.: Hyperbolic Systems of Conservation Laws.
The One-Dimensional Cauchy Problem.

Oxford University Press: Oxford, 2000.

Dafermos, C: Hyperbolic Conservation Laws in Continuum Physics, 4rd Edition, Springer-Verlag: Berlin, 2016.

Functional Analytic Approaches for the Existence Theory:

- Compensated Compactness
- Weak Convergence Methods
- Geometric Measure Arguments
- •
- 1. C. M. Dafermos: Hyperbolic Conservation Laws in Continuum Physics, Third edition. Springer-Verlag: Berlin, 2010.
- 2. B. Dacorogna: Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals, Lecture Notes in Mathematics, Vol. 922, 1-120, Springer-Verlag, 1982.
- 3. L. C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS-RCSM, 74. AMS: Providence, RI, 1990
- **4. D. Serre**, La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations à une dimension d'espace. *J. Math. Pures Appl.* (9) 65 (1986), 423–468.
- 5. The references cited therein, especially more recent references.