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Hyperbolic Systems of Conservation Laws
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Hyperbolic Systems

u; + f(u), =0 u—u(t,x)eR"
u; + A(u)uy, =0 A(u) = Vf(u)

The system is strictly hyperbolic if each m x m matrix A(u) has real
distinct eigenvalues

,:\1 (l]) < ;\2([]) e <A m (U)
Right eigenvectors ri(u).--- .rp(u)  (column vectors)
Left eigenvectors li(u), - .In(u)  (row vectors)
AI’; — A;r; I;A — )\jlj

Choose the bases so that

1 if i =
li-rj = L
{O if 1 # |



Global in Time Solutions to the Cauchy Problem

u, + f(u), =0, u(0, x) = u(x)

o Construct a sequence of approximate solutions {u”},-;
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o Show that (a subsequence) converges: u” — uin L
e Show that the limit u is an entropy solution.
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Need: a-priori bound on the total variation (J. Glimm, 1965)



Building Block: The Riemann Problem

u- x <0

u, + f(u), =0, u(0,x) = {
u’ x >0
e B. Riemann 1860: 2 x 2 Isentropic Euler equations

o P. Lax 1957: m x m systems (+ special assumptions)
o T.-P. Liu 1975: m x m systems (generic case)

*The Riemann solutions are also the vanishing viscosity limits
for general hyperbolic systems, possibly non-conservative



Solution to the Riemann problem

@ is invariant w.r.t. rescaling symmetry:  u”(t,x) = w(ft, 0x) 8 =0
@ describes local behavior of BV solutions near each point (tg, )

@ describes large-time asymptotics as t — +oo (for small total variation)



Riemann Problem for Linear Systems

u- if x < 0
ur + Aux =0 u(0,x) = .
I : (0.%) { ut if x>0
t x(t=],
x/t=h, xt=1,
[
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ut —u = Z Gl (sum of eigenvectors of A)
i=1
intermediate states : w; = u + Z G Ij
45l

i-th jump: wi —wi—1 = giri travels with speed A;



Scalar Conservation Law

Ur‘l'f{u}:f = 0 ue R

CASE 1: Linear fluxx:  f(u) = Au.

Jump travels with speed A (contact discontinuity)

£ (u)=A u” u(t)
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CASE 2: the flux f is convex, so that v~ f'(u) is increasing.

ut = u — centered rarefaction wave
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A class of nonlinear hyperbolic systems

ur+flu)y = 0
Alu) = Df(u) Alu)ri(u) = Ai(u)ri(u)

Assumption (H) (P.Lax, 1957): Each i-th characteristic field is

@ either genuinely nonlinear, so that VA; - r; = 0 for all u

@ or linearly degenerate, so that VA; -, =0 for all u



genuinely nonlinear — characteristic speed A;(uv) is strictly increasing along
integral curves of the eigenvectors r;

linearly degenerate — characteristic speed A;(u) is constant along integral
curves of the eigenvectors r;
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Shock and Rarefaction curves

uy + flu)y = 0 Alu) = Df (u)

i-rarefaction curve through wy: o7 — Ri(o)(ug)

= integral curve of the field of eigenvectors r; through ug

%~ t(u) u(0) = u

i-shock curve through w: o+ 5i(7)(w)
= set of points v connected to wp by an i-shock, so that

U — ug is an i-eigenvector of the averaged matrix A(u. ug)




Elementary waves

ur+flu)y =0 u(0,x) = { 3; !f iig

CASE 1 (Centered rarefaction wave). Let the j-th field be genuinely nonlinear.

If ut = R;(7)(u—) for some o = 0, then

—
|:;:l
S

ISE [0, o]

— —
Lify
_l_"'l--"

=

ut it x> tA

is a weak solution of the Riemann problem

u- if X < tA
u(t,x) = { Ri(s)(u™) if  x =1\



A centered rarefaction wave




CASE 2 (Shock or contact discontinuity). Assume that
ut = Si(o)(u) for some i.o. Let A= Aj(u.u") be the shock speed.

Then the function

u- if X < AL,

ult,x) = { oyt

is a weak solution to the Riemann problem.

In the genuinely nonlinear case, this shock is admissible (i.e., it satisfies the Lax
condition and the Liu condition) iff &= < 0.

i
t X=Mt

1n=1u =11




Solution to a 2 x 2 Riemann problem




Solution of the general Riemann problem (P. Lax, 1957)

u- if x<0

ur+flu)y =0 u(0,x) = { - £ =0
Problem: Find states wqg.wy. -+ .w,, such that
Wwp=u Wy =uT

and every couple w;_1, w; are connected by an elementary wave (shock or

rarefaction) - |
either wi = Ri(oj)(wi-1) @20

or wj = 5;((?1')(&;;_1:1 ai < 0



Ri(o)(u) if =0
Si(a)(u) if <0

0

5] Ed

define: Vi(a)(u) = {

-

(71, 02,...,0,) = Wolap)o---oWs(aa) o Wi(ay)(u)

fniu_})

If |u™ — u™| is small, then the implicit function theorem yields existence and uniqueness

m{u_}‘

Jacobian matrix at the origin: J = (n{u_]l

always has full rank

of the intermediate states wy, wy, ..., W



General solution of the Riemann problem

Concatenation of elementary waves (shocks, rarefactions, or contact
discontinuities)




Global solution to the Cauchy problem

u, + f(u), =0, u(0,x) = 1(x)

Theorem (Glimm, 1965).
Assume:
@ system is strictly hyperbolic
@ each characteristic field is either linearly degenerate or genuinely nonlinear

Then there exists a constant & > 0 such that, for every initial condition
o e LY(R; B") with
Tot. Var(Oo) < 4,
the Cauchy problem has an entropy admissible weak solution u = u(t, x) defined
for all t = 0.




Construction of a sequence of approximate solutions

by piecing together solutions of Riemann problems

- on a fixed grid in t-x plane (Glimm scheme)
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Piecewise constant approximate solution to a Riemann

problem

replace centered rarefaction waves with piecewise constant rarefaction fans

u(t)
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Front Tracking Approximations

@ Approximate the initial data T with a piecewise constant function

@ Construct a piecewise constant approximate solution to each Riemann problem at
t=20

@ at each time t; where two fronts interact, construct a piecewise constant
approximate solution to the new Riemann problem . ..

- total variation remains small
- number of wave fronts remains finite

@ NEED TO CHECK: {



Interaction estimates

GOAL: estimate the strengths of the waves in the solution of a Riemann problem,
depending on the strengths of the two interacting waves o', "

Incoming: a j-wave of strength ' and an i-wave of strength "

Outgoing: waves of strengths ,.--- ,0,. Then

joi — | + oy — [+ D lok| = O(1) - |o'a”|
ki
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Incoming: two i-waves of strengths " and "

Outgoing: waves of strengths o¢,--- ,7,,. Then

o1 =0’ —a"|+ Y low| = O(1)-|o'a”|(|o'| + |o”)
ki



Glimm functionals

Total strength of waves: V(t) = Z 1T |

Wave interaction potential: Q1) = Z T s
(a.8)EA

A = couples of approaching wave fronts
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Changes in V. @ at time 7 when the fronts . 75 interact:

AV(r) = O(1)|oacs]

AQ(r) = —loaog|+O(1)- V(r—)|oaog]|

Choosing a constant (p large enough, the map
t— V(1) + CoQ(1)

is nonincreasing, as long as V' remains small

Total variation initially small == global BV bounds

Tot.Var{u(t.-)} < V(t) < V(0)+ GQ(0)

Front tracking approximations can be constructed for all £ = 0



Keeping finite the number of wave fronts

At each interaction point, the Accurate Riemann Solver yields a solution, possibly
introducing several new fronts

The total number of fronts can become infinite in finite time

accurate Rismann solver simplified Riemann solver
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MNeed: a Simplified Riemann Solver, producing only one “non-physical” front



A sequence of approximate solutions

u+ f(u) = 0 u(0,x) = O(x)

(uy )u>1 sequence of approximate front tracking solutions

@ initial data satisty ||w.(0,:) —Ol|p < =, — 0
@ all shock fronts in W are entropy-admissible
@ each rarefaction front in u has strength < =,
@ at each time t > 0, the total strength of all non-physical fronts in w.(t.-) is < =o
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Existence of a convergent subsequence

Tot.Var.{u,(t,-)} = C

|u(t) — w(s)||. = (t—s)-[total strength of all wave fronts] - [maximum speed]

< L-(t—s)

Helly's compactness theorem — a subsequence converges

. 1
Uy — U in I—I'l:'E



Claim: wu= lim u, is a weak solution

M — OO

[f {q&:ru—l—n;hxf{u]} dxdt = 0 ﬁiEﬂ,}(]ﬂ_.:m[:w:R)

Meed to show:

lmf/l {{;':[uy—h;':xf{uy]} dxdt = 0



/I;w /:Ju {'?E'[trxjutfh._x}‘I‘i;L'I]'x{t,I}fl:uy{tjx}]} dxdt
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The Glimm scheme

ug+ flu)e = 0 u(0.x) = @(x)

Assume: all characteristic speeds satisfy A;(u) £ [0, 1]

This is not restrictive. If A;(u) € [-M. M], simply change coordinates:

y = x + Mt, T = 2Mt

Choose:

e a grid in the t-x plane with step size At = Ax

¢ a sequence of numbers 81, 82,83, . .. uniformly distributed over [0, 1]
elj: 1<j< N, &c|0 A
Jim alk —*’—N' €0} _ ) for each A € [0,1].




Glimm approximations

Grid points : x5 =j-Ax, 1t = k- At

e for each k = 0, u(tg, -) is piecewise constant, with jumps at the points x;. The
Riemann problems are solved exactly, for &, < t < i1

¢ at time f;.1 the solution is again approximated by a piecewise constant
function, by a sampling technique
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Example: Glimm's scheme applied to a solution containing a single shock

Ult,x) = { .

At |

ut if

T, if

X = At
x < At

AX

Fix T =0, take Ax =At=T/N

x(T) = #{:

1<j<N, 6[0,A] }-At

A} - . a7

N

as N—= =



Rate of convergence for Glimm approximations

Random sampling at points determined by the equidistributed sequence (f )x~1

o F#js 1=j=N, 8, €[0,7] }
lim —
N— oo N

A for each A € [0, 1].

Meed fast convergence to uniform distribution. Achieved by choosing:

# =01, ... , Hywe=0957, ... , H3gg22=0.22003,

” u'l:'a']irrun{ T? } _ u-:r:-:ar.'t{ T. }H .
Convergence rate: lim L. — 0
Lx—0 Vx| In Ax|

(A.Bressan & A Marson, 1998)
Bressan, A.: Hyperbolic Systems of Conservation Laws.
The One-Dimensional Cauchy Problem.
Oxford University Press: Oxford, 2000.
Dafermos, C: Hyperbolic Conservation Laws in Continuum
Physics, 4" Edition, Springer-Verlag: Berlin, 2016.



Functlonal Analytic Approaches
for the Existence Theory:

* Compensated Compactness
* Weak Convergence Methods
* Geometric Measure Arguments

1. C. M. Dafermos: Hyperbolic Conservation Laws in Continuum Physics,
Third edition. Springer-Verlag: Berlin, 2010.

2. B. Dacorogna: Weak Continuity and Weak Lower Semicontinuity of Nonlinear
Functionals, Lecture Notes in Mathematics, Vol. 922, 1-120, Springer-Verlag, 1982.

3. L.C. Evans:. Weak Convergence Methods for Nonlinear Partial Differential
Equations. CBMS-RCSM, 74. AMS: Providence, RI, 1990

4. D. Serre, Lacompacité par compensation pour les systémes hyperboliques non
linéaires de deux équations a une dimension d'espace. J. Math. Pures Appl. (9) 65

(1986), 423-468.
5. The references cited therein, especially more recent references.


http://www.ams.org/mathscinet/search/author.html?mrauthid=64480

