Foundation Module: PDE Problems

October 2018

Instructions: Work out at least 5 of the following 6 problems. Please specify which are the 5 problems you want to be graded. Please work on these problems only by yourself.

1. Let $\Omega \subset R^{n}$ be open, bounded, smooth domain, and $f \in L^{2}(\Omega)$. Consider Poisson's problem:

$$
(*) \quad\left\{\begin{array}{l}
-\Delta u=f \quad \text { for } x \in \Omega, \\
\left.u\right|_{\partial \Omega}=g,
\end{array}\right.
$$

and the variational problem:

$$
(* *) \quad I[u]=\min _{\omega \in \mathcal{A}} I[\omega],
$$

with

$$
I[\omega] \equiv \int_{\Omega}\left(\frac{1}{2}|\nabla \omega|^{2}-\omega f\right) d x, \quad \mathcal{A} \equiv\left\{\omega \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega}):\left.\omega\right|_{\partial \Omega}=g\right\} .
$$

Assume $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$. Show that $u(x)$ solves Poisson's problem (*) if and only if $u(x)$ is a minimizer of the variational problem $\left({ }^{* *}\right)$.
2. Let $\Omega \subset \mathbb{R}^{n}$ open and bounded. Consider the initial-boundary value problem:

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=f \quad \text { for } x \in \Omega, t>0 \tag{1}\\
\left.u\right|_{\partial \Omega \times\{t>0\}}=g \\
\left.u\right|_{t=0}=u_{0}(x)
\end{array}\right.
$$

where f, g, and u_{0} are given smooth functions depending only on $x \in \mathbb{R}^{n}$.
(a). Using the energy method to show the uniqueness of solutions in the class of functions in $C^{2,1}(\Omega \times(0, \infty)) \cap C^{1,0}(\bar{\Omega} \times[0, \infty))$.
(b). Consider the corresponding stationary problem:

$$
\left\{\begin{array}{l}
-\Delta u=f \quad \text { in } \Omega, \tag{2}\\
\left.u\right|_{\partial \Omega}=g
\end{array}\right.
$$

Using the energy method to show the uniqueness of solutions in the class of functions in $C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$.
(c). For the unique solution $u(x, t)$ of problem (1) and the unique solution $u_{*}(x)$ of problem (2), show that there exists a constant $C>0$ such that

$$
\int_{\Omega}\left|u(x, t)-u_{*}(x)\right|^{2} d x \leq \int_{\Omega}\left|u_{0}(x)-u_{*}(x)\right|^{2} d x e^{-C t} \quad \text { for } t>0
$$

3. Let M be a first-order operator of the form:

$$
M=\partial_{t}+a \cdot \nabla_{x}+b, \quad x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}
$$

where $a=\left(a_{1}, \cdots, a_{n}\right) \in R^{n}$ and $b \in R$ are constants. Consider the following mixed problem:

$$
\begin{cases}u_{t t}-\Delta_{x} u=0 & \text { for } x_{1}>0, t>0 \\ \left.u\right|_{t=0}=f(x),\left.\quad u_{t}\right|_{t=0}=g(x) & \text { for } x_{1}>0 \\ \left.M u\right|_{x_{1}=0}=0, & \text { for } t>0,\end{cases}
$$

where f, g vanish for all sufficiently small $x_{1}>0$ and are smooth. Prove that there exists a solution $u(x, t)$ provided $a_{1} \leq 0$.
4. Let $a \in C(R)$. Show that the solution $u(x, t)$ of the Cauchy problem of the quasilinear partial differential equation

$$
u_{t}+a(u) u_{x}=0
$$

with initial condition $u(x, 0)=u_{0}(x)$ is given implicitly by

$$
u(x, t)=u_{0}(x-a(u(x, t)) t)
$$

Show that the solution becomes singular for some positive t, unless $a\left(u_{0}(s)\right)$ is a nondecreasing function of s.
5. Derive an explicit formula for the solution of the nonhomogeneous initialboundary problem for the heat equation:

$$
\begin{cases}u_{t}-u_{x x}=f(x, t) & \text { for } x>0 \\ \left.u\right|_{x=0}=g(t) & \text { for } t>0 \\ \left.u\right|_{t=0}=u_{0}(x) & \text { for } x \geq 0\end{cases}
$$

for smooth and compact supported functions f, g, and u_{0}. Hint: Divide the problem into three problems.
6. Consider Burgers' equation

$$
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0
$$

with initial data:

$$
\left.u\right|_{t=0}= \begin{cases}1 & \text { for } x<-1 \\ 0 & \text { for }-1<x<0 \\ 2 & \text { for } 0<x<1 \\ 0 & \text { for } x>1\end{cases}
$$

Construct the entropy solution for all $t>0$.

