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1. Introduction



Overview: Theory of Hyperbolic PDEs

k-
is a large subject, which has close connections

with the other areas of mathematics including

Analysis, Differential Geometry, Topology,
Mechanics, Relativity, Mathematical Physics, ...

Besides its mathematical importance, it has a
wide range of applications in

Engineering, Physics, Biology, Economics, ...

* Backbone of the year: Introduction to most facets
of the theory of hyperbolic PDEs and related PDEs:
Features, methods, approaches, connections, ....

* Knowledge with PDE Foundation module and
Analysis of PDEs (Parts I-II) is desirable



Synopsis-I: ==

1. Introduction

Part |I: Hyperbolic Systems of First-Order
Equations

2. Linear Theory:
Spaces involving time;
Hyperbolic systems of first-order equations, examples;
Weak solutions, well-posedness;
Vanishing viscosity method, energy methods,
Fourier transform method.

3. Nonlinear Theory | - Multi-D Scalar Conservation Laws:
L - well-posedness theory, test function methods,
vanishing viscosity method,
*Other methods (numerical methods, kinetic method, relaxation
method, the layering method, ...);
*Further results (compactness, regularity, decay, trace, structure).
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4. Nonlinear Theory Il — One-Dimensional Systems of
Conservation Laws:
Riemann problem, Cauchy problem;
Elementary waves: shock waves, rarefaction waves,
contact discontinuities;
Lax entropy conditions;
Glimm scheme, front-tracking, BV solutions;
Compensated compactness, entropy analysis, Lr solutions,

vanishing viscosity methods;
*Unigueness and continuous dependence; ...

5. *Nonlinear Theory Ill - Multidimensional Systems of
Conservation Laws:

Basic features/phenomena (re-visit);

Local existence and stability; formation of singularities;

Discontinuities and free boundary problems;

Stability of shock waves, rarefaction waves, vortex sheets,
entropy waves.
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Part Il: Second-Order Wave Equations

6. Energy estimates and local existence, Galerkin method,;
Global existence of semi-linear wave equations with small data
(Quasilinear case could be similarly treated);
Lower regularity results for large data;
*Littlewood-Paley theory and Strichartz estimates.

* Optional
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Conservation Laws:

Rate of change of the total amount of certain . [ {2
quantity contained in a fixed region O N
= Flux of this quantity across T ha

the boundary ¢Q of the region

» The amount of such a quantity in any region can be measured
by accounting for how much of it is currently present and how
much of it enters or leaves the region in any fixed period of time.

Examples: Three Fundamental Laws of Nature

J Conservation Laws of Mass and Energy: Mass and Energy can be
neither created nor destroyed.

J Conservation Law of Momentum: The total momentum of a
closed system of objects remains constant through time.
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Rate of Change of the Total Amount of Ze A
Certain Quantity in a Fixed Region v | Q 3
= Flux of the Quantity across the Boundary (). - _,.r\\ /\‘ﬁ
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Conservation Law via Calculus \\-,-)—6""/
(10
d . .
— — udx = — f-ndS
dt J Q2 J O
u — Density of the Quantity f — Flux of the Quantity
n — Outward Normal to @2 dS — Surface Element on 0Q2

Calculus Manipulations ==~
Qv+ Vy-fu) =0

Physical Systems with m > 2 Quantities — Density Functions

— Systems of Conservation Laws:




Euler Equations for Compressible Eluids

(Oep+ Vx-(pv) =0 (conservation of mass)
de(pv) + Vy (pv@ V) + Vyp =0 (conservation of momentum)

1 ) e . ,
\“r(*;/'\V” - pe) + Vy - (.(f,;v2 - pe + p)v) = U (conservation of energy)

- .-

N

Constitutive Relations: p — p(p.e)

@ p — density, v=(vq,Vp,v3)" = fluid velocity
@ p — pressure, e — internal energy
*Govern the Flows when Convective Motions Leonhard Euler
Dominate Diffusion/Dispersion, ... e
e.g., shockwaves in Gases, Elastic Fluids, Shallow Water, ...... = 3

Poisson, Challis, Stokes, Kelvin, Rayleigh, Airy, Earnshaw,
Riemann, Rankine, Christoffel, Mach, Clausius, Kirchhoff,
Gibbs, Hugoniot, Duhem, Hadamard, Jouguet, Zamplen,
Weber, Taylor, Becker, Bethe, Weyl, von Neumann,
Courant, Friedrichs, ......




Euler E ' for Potential F

Oip+ Vi - (pVx®) =0, (Conservation of mass)
T—1 Hr-_l—ﬂr.r;] - .y
D0+ LV + £ = P o P — 70 - (Bernoulli's law)

for v > 1 or, equivalently,
f)ffl{f)f O, vx{]}. B‘x_J T vx : ({J‘{f)f(:[} v}({:[}. Br_‘x_‘_- }Y’x{]}) — ().

with
1
p(0rD, Vx®. By) = (Bm — (v =1)(D + %meg))ﬁ.

o Aerodynamics/Gas Dynamics: Fundamental PDE

@ The potential flow equations and the full Euler equations
coincide or are close each other in many important physical
situations

J. Hadamard: Lecons sur la Propagation des Ondes,
Hermann: Paris 1903



Conservation Laws

and Einstein Equations
G,uu — Bf‘TT,uL' 2

I, — Stress-energy tensor (Energy-momentum tensor)
G, — Einstein tensor (Function of the metric)

These equations, with the geodesic equation,
form the core of the mathematical formulation
of General Relativity

Structure of the Einstein Equations
— Conservation Laws of
Energy and Momentum:

VpT?® = T2P, =0




CALCULUS OF VARIATIONS

A Field of Mathematics that deals with extremizing functionals, as
opposed to ordinary calculus which deals with functions:

I[w}_/f;L(wa(x).w(x).x]dx

* Energy or Action Functionals in Physics/Engineering/industry....
= Distance/Metric Functional in Optics (light),
Geometry (geodesics, minimal surfaces, ...), ....
= Cost Functionals in Optimization (controls, games, image processing, design,
finance, transportation, ...), ...

POINT: Seek a Minimizer or Critical Point U of I[-]:

I’[u]=0

Great Progress has been made in the recent four decades...
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Conservation Laws
and Calculus of Variations
] Systems of Euler-Lagrange Equations

] Noether’s Theorem:

Any Differentiable Symmetry of
the Action of a Physical System Has
a Corresponding Conservation Law.

Any Invariance of the Variational
Integral I[w] leads to a corresponding
Conservation Law for the critical
point of I[]




Oru+V-flu)=0, ucR™ xcR?

Plane Wave Solutions:  u(t,x) = w(t, w - Xx)
w(t. &) is determined by:  diw + (Vf(w) - w)dew =0

77 Existence of stable plane wave solutions 77
Hyperbolicity in D:  For any w € S 1 ue D,
(Vuf(u) - w)pumri(u,w) = Aj(u,w)rj(u,w), 1 <j<m
Ai(u, w) are real

Main Features:
Finiteness of Propagation Speeds:;
Discontinuities of Solutions, -+ .- .-

Well-Posedness: Existence, Uniqueness, Stability, - - -
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( Jeu+ Oxf(u) =0

Cauchy Problem: 4 <5i”(””)> (U)
Ult—g = 8 — 0 as n — oc.

u:(i) f(u):(_‘*'i). Vf(u):(_(}l [1}) \ = (—1YV—1

Well-Posedness: Expect that the Limit Solution u’(t.x) =0
Fixed n > 0, the Unique Solution:

sin(nx)(e" 4+ e™") cos(nx)(e™ —e™™
u(t,x) = ( (nx)(e™ + ) (nx)( ))T
2n on
lim [u”(t,x) — Uu(f-}f” = o0 for t > 0 for any reasonable topology
— o0

*Small Changes in the Data —> Large Changes in the Solutions
*Mapping: “Data Space” — “Solutions Space” Is Not Continuous

UNSTABLE!




Scalar Conservation Laws
Oru+V-flu)=0, uvucR, xecR”

f: R — R
T hen

ANu,w) = f(u) - w,. rlu,w) =1

— Scalar conservation laws
are always hyperbolic

* This is not the case for Systems,
or High-Order Equations



