Analysis of PDE-3: Problem Set-1

29 April 2019

Instructions: Please submit your complete work by 3:00pm Monday, 13 May 2019. Please work on these problems only by yourself.

1. (i) Assume that

$$\begin{cases} \mathbf{u}_k \rightharpoonup \mathbf{u} & \text{in } L^2(0,T; H_0^1(\Omega)), \\ \mathbf{u}'_k \rightharpoonup \mathbf{v} & \text{in } L^2(0,T; H^{-1}(\Omega)). \end{cases}$$

Prove that $\mathbf{v} = \mathbf{u}'$.

(ii) Suppose that H is a Hilbert space. Assume that

$$\mathbf{u}_k \rightharpoonup \mathbf{u} \quad \text{in } L^2(0,T;H),$$

and, for k = 1, 2, ...,

$$\operatorname{ess\,sup}_{0 \le t \le T} \|\mathbf{u}_k(t)\|_H \le C$$

for some C independent of k. Prove

$$\operatorname{ess\,sup}_{0 \le t \le T} \|\mathbf{u}(t)\|_H \le C.$$

(iii) Assume that Ω is open, bounded, and $\partial\Omega$ is smooth. Suppose that $\mathbf{u} \in L^2(0,T; H^2(\Omega))$ with $\mathbf{u}' \in L^2(0,T; L^2(\Omega))$. Prove

(a) $\mathbf{u} \in C([0,T]; H^1(\Omega))$ (after possibly being redefined on a set of measure zero).

(b) the following estimate holds:

$$\max_{0 \le t \le T} \|\mathbf{u}\|_{H^1(\Omega)} \le C \big(\|\mathbf{u}\|_{L^2(0,T;H^2(\Omega))} + \|\mathbf{u}'\|_{L^2(0,T;L^2(\Omega))} \big)$$

where the constant C depends only on T and Ω .

2. Estimates for solutions in bounded regions for symmetric hyperbolic system. Consider the following hyperbolic system:

$$\mathbf{L}\mathbf{u} := \mathbf{B}_0(t, x)\mathbf{u}_t + \sum_{j=1}^n \mathbf{B}_j(t, x)\mathbf{u}_{x_j} + \mathbf{C}(t, x)\mathbf{u} = \mathbf{f}, \qquad \mathbf{u} \in \mathbb{R}^m,$$

where $\mathbf{B}_0, \mathbf{B}_1, \ldots, \mathbf{B}_n, \mathbf{C}$ are given $m \times m$ square matrices, and \mathbf{f} a given *m*-vector function.

Definition. A hyper-surface $S = \{t = \phi(x)\}$ is called "space-like" with respect to the operator **L** if the matrix

$$\mathbf{B}_0(t,x) - \sum_{j=1}^n \phi_{x_j}(x) \mathbf{B}_j(t,x)$$

is positive definite for all $(t, x) \in S$.

(i) Write the wave equation $u_{tt} - c^2 \Delta u = 0$ (c is a constant) as a symmetric hyperbolic system. Show that the definition of "space-like" agrees with the following:

$$1 - c^2 \sum_{j=1}^n \phi_{x_j}^2 > 0.$$

(ii) For fixed positive a, T, and for $0 < \lambda < T$, consider the "truncated cone":

$$R_{\lambda} = \{(t, x) : |x| \le \frac{a(T-t)}{T}, 0 \le t \le \lambda\}$$

bounded by the planes t = 0 and $t = \lambda$, and the conical surface:

$$S_{\lambda} = \{(t, x) : t = T - \frac{T}{a}|x|, 0 \le t \le \lambda\}.$$

We call R_{λ} space-like if S_{λ} is space-like, that is,

$$\mathbf{B}_0(t,x) + \frac{T}{a|x|} \sum_{j=1}^n x_j \mathbf{B}_j(t,x).$$

is positive definite for all $(t, x) \in S_{\lambda}$. Let $\mathbf{B}_0, \mathbf{B}_1, \ldots, \mathbf{B}_n$ be symmetric, \mathbf{B}_0 positive definite, and R_{λ} be space-like. Let $u \in C^1(R_{\lambda})$ be a solution of

$$\begin{cases} \mathbf{L}\mathbf{u} = \mathbf{f} & \text{for } (t, x) \in R_{\lambda}, \\ \mathbf{u}|_{t=0} = \mathbf{g}(x) & \text{for } |x| \le a. \end{cases}$$
(1)

Set

$$E(\mu) = \int_{\sigma_{\mu}} \mathbf{u}^{\mathsf{T}} \mathbf{B}_0 \mathbf{u} \, dx,$$

where σ_{μ} is the cross section:

$$\sigma_{\mu} = \{(t, x) : (t, x) \in R_{\lambda}, t = \mu\}$$

of R_{λ} . Show that, for $0 < \mu < \lambda$,

$$E(\mu) \leq E(0) + \int_{R_{\mu}} (-\mathbf{u}^{\top} \mathbf{D} \mathbf{u} + 2\mathbf{u}^{\top} \mathbf{f}) dx dt,$$

where $\mathbf{D} = 2\mathbf{C} - \mathbf{B}_{0,t} - \sum_{j=1}^{n} \mathbf{B}_{j,x_j}$.

(iii) Show that there exists a constant K (depending only on upper bounds for the matrices $\mathbf{B}_0^{-1}, \mathbf{B}_0, \mathbf{B}_1, \ldots, \mathbf{B}_n, \mathbf{C}$ and their first derivatives in R_{λ}) such that

$$\int_{\sigma_{\mu}} |\mathbf{u}|^2 \, dx \le K \left[\iint_{R_{\mu}} |\mathbf{f}|^2 \, dx \, dt + \int_{|x| < a} |\mathbf{g}|^2 \, dx \right]$$

for $0 \leq \mu \leq \lambda$ (This implies that **u** in R_{λ} is determined uniquely by the values of **f** in R_{λ} of **g** on $|x| \leq a$). [Hint: Estimate the forms $\xi^{\top} \mathbf{B}_{0} \xi, \xi^{\top} \mathbf{D} \xi$, using $\inf_{|\xi|=1}\xi^{\top} \mathbf{B}_{0} \xi = (\sup_{|x|=1}\xi^{\top} \mathbf{B}_{0}^{-1}\xi)^{-1}$; For $\phi, \phi', \psi, \psi' \geq 0$, the inequality $\phi'(\mu) \leq \gamma(\phi(\mu) + \psi(\mu) + \phi'(0))$ implies the "Gronwall lemma": $\phi'(\mu) \leq \gamma e^{\gamma \mu} (\psi(\mu) + \phi'(0))$.]

(iv) For $\mathbf{g} = \mathbf{g}(x)$, $\mathbf{f} = \mathbf{f}(t, x)$ and an integer $k \ge 0$, define

$$\|\mathbf{g}\|_{k} = \sqrt{\sum_{|\alpha| \le k} \int_{|x| \le a} |D^{\alpha}\mathbf{g}|^{2} dx}$$
$$\|\mathbf{f}\|_{k} = \sqrt{\sum_{|\alpha| \le k} \int_{\sigma_{\mu}} |D^{\alpha}\mathbf{f}|^{2} dx}$$

Show that there exists a constant K_k depending on upper bounds for the matrices $\mathbf{B}_0^{-1}, \mathbf{B}_0, \mathbf{B}_1, \ldots, \mathbf{B}_n, \mathbf{C}$ and their derivatives of orders $\leq k + 1$ such that, for $0 < \mu < \lambda$,

$$\|\mathbf{u}(\mu)\|_k^2 \le K_k \left(\int_0^{\mu} \|\mathbf{f}(\gamma)\|_k^2 d\gamma + \|\mathbf{g}\|_k^2\right).$$

[Hint: Show that, for $|\alpha \leq k$, we have $\mathbf{L}D^{\alpha}\mathbf{u} = D^{\alpha}\mathbf{f} + \mathbf{L}_{\alpha}$, where \mathbf{L}_{α} is an operator of order $\leq k$. Apply Gronwall's lemma with $\phi(\mu) = \int_{0}^{\mu} \|\mathbf{u}\|_{k}^{2} d\gamma$ and $\psi(\mu) = \int_{0}^{\mu} \|\mathbf{f}(\gamma)\|_{k}^{2} d\gamma$.]

(v) Let $s = [\frac{n}{2}] + 1$, and let k > 0. Let $\mathbf{B}_0, \mathbf{B}_1, \ldots, \mathbf{B}_n, \mathbf{C} \in C^{k+s+1}(R_{\lambda})$, $\mathbf{f} \in C^{k+s}(R_{\lambda})$. Show that there exists a constant K_k (depending on upper bounds for $\mathbf{B}_0^{-1}, \mathbf{B}_0, \mathbf{B}_1, \ldots, \mathbf{B}_n, \mathbf{C}$ and their derivatives of orders $\leq k + s + 1$ in R_{λ}) such that, for a solution $\mathbf{u} \in C^m(R_{\lambda})$ of (1), the inequalities

$$|D^{\alpha}\mathbf{u}(t,x)| \leq K_k \left[\max_{|\beta| \leq k+s} \sup_{R_{\lambda}} |D^{\beta}\mathbf{f}(t,x)| + \max_{|\beta| \leq k+s} \sup_{|x| < a} |D^{\beta}\mathbf{g}(x)| \right]$$

hold for any $(t, x) \in R_{\lambda}, |\alpha| \leq k$.

3. Consider the following the Cauchy problem:

$$\begin{cases} u_t + f(u)_x + u = 0, \\ u|_{t=0} = u_0(x), \end{cases}$$
(2)

where $f : \mathbb{R} \to \mathbb{R}$ is a given C^1 function and $u_0 \in L^{\infty}(\mathbb{R}) \cap L^1(\mathbb{R})$ is given initial data function.

Definition. A function $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R})$ is called an entropy solution of Problem (2) provided that, for any convex entropy $\eta(u), \eta''(u) \ge 0$, and corresponding entropy flux $q(u) = \int^u \eta'(v) f'(v) dv$, and any non-negative test function $\psi \in C_0^{\infty}(\mathbb{R} \times \mathbb{R}), \psi \ge 0$,

$$\int_0^\infty \int_{-\infty}^\infty \left(\eta(u)\psi_t + q(u)\psi_x - \eta'(u)u\psi\right) dxdt + \int_{-\infty}^\infty \psi(0,x)\eta(u_0(x))dx \ge 0.$$

(i) Prove that problem (2) admits a global entropy solution $u \in C([0, \infty); L^1_{loc}(\mathbb{R}))$ via the vanishing viscosity method.

(ii) Let $u(t, \cdot), v(t, \cdot) \in C([0, \infty); L^1_{loc}(\mathbb{R}))$ be entropy solutions with the initial data functions $u_0, v_0 \in L^{\infty}(\mathbb{R})$, respectively. Prove in detail via the test function method that there exists s > 0 depending on $||u_0||_{L^{\infty}}$ and $||v_0||_{L^{\infty}}$ such that, for any t > 0 and r > 0,

$$\int_{-r}^{r} [u(t,x) - v(t,x)]^{+} dx \le \int_{-r-st}^{r+st} [u_{0}(x) - v_{0}(x)]^{+} dx,$$

and

$$\|u(t,\cdot) - v(t,\cdot)\|_{L^1(\mathbb{R})} \le e^{-t} \|u_0(\cdot) - v_0(\cdot)\|_{L^1(\mathbb{R})}.$$
(3)

(iii) If $u_0 \in BV_{loc}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, then

$$u(t,x) \in BV_{loc}(\mathbb{R}_+ \times \mathbb{R}).$$

(iv) If equation in (2) is replaced by

$$u_t + f(u)_x + a(x)u = 0,$$

with $a \in C^1(\mathbb{R})$ and $|a(x)| \leq a_0 < \infty$, can a similar L^1 -stability estimate to (3) be obtained with e^{-t} replaced by another factor? If so, please prove your claim; otherwise, please provide your reason(s).