
Analysis of PDE-3: Problem Set-1

29 April 2019

Instructions: Please submit your complete work by 3:00pm Monday, 13
May 2019. Please work on these problems only by yourself.

1. (i) Assume that {
uk ⇀ u in L2(0, T ;H1

0 (Ω)),

u′k ⇀ v in L2(0, T ;H−1(Ω)).

Prove that v = u′.

(ii) Suppose that H is a Hilbert space. Assume that

uk ⇀ u in L2(0, T ;H),

and, for k = 1, 2, . . . ,
ess sup

0≤t≤T
‖uk(t)‖H ≤ C

for some C independent of k. Prove

ess sup
0≤t≤T

‖u(t)‖H ≤ C.

(iii) Assume that Ω is open, bounded, and ∂Ω is smooth. Suppose that u ∈
L2(0, T ;H2(Ω)) with u′ ∈ L2(0, T ;L2(Ω)). Prove

(a) u ∈ C([0, T ];H1(Ω)) (after possibly being redefined on a set of measure
zero).

(b) the following estimate holds:

max
0≤t≤T

‖u‖H1(Ω) ≤ C
(
‖u‖L2(0,T ;H2(Ω)) + ‖u′‖L2(0,T ;L2(Ω))

)
where the constant C depends only on T and Ω.

2. Estimates for solutions in bounded regions for symmetric hyperbolic system.
Consider the following hyperbolic system:

Lu := B0(t, x)ut +
n∑
j=1

Bj(t, x)uxj + C(t, x)u = f , u ∈ Rm,

where B0,B1, . . . ,Bn,C are given m ×m square matrices, and f a given m-
vector function.

Definition. A hyper-surface S = {t = φ(x)} is called “space-like” with
respect to the operator L if the matrix

B0(t, x)−
n∑
j=1

φxj(x)Bj(t, x)
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is positive definite for all (t, x) ∈ S.

(i) Write the wave equation utt − c2∆u = 0 (c is a constant) as a symmetric
hyperbolic system. Show that the definition of “space-like” agrees with the
following:

1− c2

n∑
j=1

φ2
xj
> 0.

(ii) For fixed positive a, T , and for 0 < λ < T , consider the “truncated cone”:

Rλ = {(t, x) : |x| ≤ a(T − t)
T

, 0 ≤ t ≤ λ}

bounded by the planes t = 0 and t = λ, and the conical surface:

Sλ = {(t, x) : t = T − T

a
|x|, 0 ≤ t ≤ λ}.

We call Rλ space-like if Sλ is space-like, that is,

B0(t, x) +
T

a|x|

n∑
j=1

xjBj(t, x).

is positive definite for all (t, x) ∈ Sλ. Let B0,B1, . . . ,Bn be symmetric, B0

positive definite, and Rλ be space-like. Let u ∈ C1(Rλ) be a solution of{
Lu = f for (t, x) ∈ Rλ,

u|t=0 = g(x) for |x| ≤ a.
(1)

Set

E(µ) =

∫
σµ

u>B0u dx,

where σµ is the cross section:

σµ = {(t, x) : (t, x) ∈ Rλ, t = µ}

of Rλ. Show that, for 0 < µ < λ,

E(µ) ≤ E(0) +

∫
Rµ

(−u>Du + 2u>f)dxdt,

where D = 2C−B0,t −
∑n

j=1 Bj,xj .

(iii) Show that there exists a constant K (depending only on upper bounds
for the matrices B−1

0 ,B0,B1, . . . ,Bn,C and their first derivatives in Rλ) such
that ∫

σµ

|u|2 dx ≤ K

[∫∫
Rµ

|f |2dxdt+

∫
|x|<a
|g|2dx

]
for 0 ≤ µ ≤ λ (This implies that u in Rλ is determined uniquely by the val-
ues of f in Rλ of g on |x| ≤ a). [Hint: Estimate the forms ξ>B0ξ, ξ

>Dξ,
using inf |ξ|=1ξ

>B0ξ = (sup|x|=1 ξ
>B−1

0 ξ)−1; For φ, φ′, ψ, ψ′ ≥ 0, the inequali-

ty φ′(µ) ≤ γ
(
φ(µ) + ψ(µ) + φ′(0)

)
implies the “Gronwall lemma”: φ′(µ) ≤

γeγµ
(
ψ(µ) + φ′(0)

)
.]
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(iv) For g = g(x), f = f(t, x) and an integer k ≥ 0, define

‖g‖k =

√√√√∑
|α|≤k

∫
|x|≤a
|Dαg|2dx

‖f‖k =

√√√√∑
|α|≤k

∫
σµ

|Dαf |2dx

Show that there exists a constant Kk depending on upper bounds for the
matrices B−1

0 ,B0,B1, . . . ,Bn,C and their derivatives of orders ≤ k + 1 such
that, for 0 < µ < λ,

‖u(µ)‖2
k ≤ Kk

(∫ µ

0

‖f(γ)‖2
kdγ + ‖g‖2

k

)
.

[Hint: Show that, for |α ≤ k, we have LDαu = Dαf + Lα, where Lα is an
operator of order ≤ k. Apply Gronwall’s lemma with φ(µ) =

∫ µ
0
‖u‖2

kdγ and
ψ(µ) =

∫ µ
0
‖f(γ)‖2

kdγ.]

(v) Let s = [n
2
] + 1, and let k > 0. Let B0,B1, . . . ,Bn,C ∈ Ck+s+1(Rλ),

f ∈ Ck+s(Rλ). Show that there exists a constant Kk (depending on upper
bounds for B−1

0 ,B0,B1, . . . ,Bn,C and their derivatives of orders ≤ k + s+ 1
in Rλ) such that, for a solution u ∈ Cm(Rλ) of (1), the inequalities

|Dαu(t, x)| ≤ Kk

[
max
|β|≤k+s

sup
Rλ

|Dβf(t, x)|+ max
|β|≤k+s

sup
|x|<a
|Dβg(x)|

]

hold for any (t, x) ∈ Rλ, |α| ≤ k.

3. Consider the following the Cauchy problem:{
ut + f(u)x + u = 0,

u|t=0 = u0(x),
(2)

where f : R → R is a given C1 function and u0 ∈ L∞(R) ∩ L1(R) is given
initial data function.

Definition. A function u ∈ L∞(R+ × R) is called an entropy solution of
Problem (2) provided that, for any convex entropy η(u), η′′(u) ≥ 0, and cor-
responding entropy flux q(u) =

∫ u
η′(v)f ′(v)dv, and any non-negative test

function ψ ∈ C∞0 (R× R), ψ ≥ 0,∫ ∞
0

∫ ∞
−∞

(η(u)ψt + q(u)ψx − η′(u)uψ) dxdt+

∫ ∞
−∞

ψ(0, x)η(u0(x))dx ≥ 0.

(i) Prove that problem (2) admits a global entropy solution u ∈ C([0,∞);L1
loc(R))

via the vanishing viscosity method.
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(ii) Let u(t, ·), v(t, ·) ∈ C([0,∞);L1
loc(R)) be entropy solutions with the initial

data functions u0, v0 ∈ L∞(R), respectively. Prove in detail via the test func-
tion method that there exists s > 0 depending on ‖u0‖L∞ and ‖v0‖L∞ such
that, for any t > 0 and r > 0,∫ r

−r
[u(t, x)− v(t, x)]+dx ≤

∫ r+st

−r−st
[u0(x)− v0(x)]+dx,

and
‖u(t, ·)− v(t, ·)‖L1(R) ≤ e−t‖u0(·)− v0(·)‖L1(R). (3)

(iii) If u0 ∈ BVloc(R) ∩ L∞(R), then

u(t, x) ∈ BVloc(R+ × R).

(iv) If equation in (2) is replaced by

ut + f(u)x + a(x)u = 0,

with a ∈ C1(R) and |a(x)| ≤ a0 < ∞, can a similar L1-stability estimate to
(3) be obtained with e−t replaced by another factor? If so, please prove your
claim; otherwise, please provide your reason(s).
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