Analysis of PDE-3: Problem Set-1

29 April 2019

Instructions: Please submit your complete work by 3:00pm Monday, 13 May 2019. Please work on these problems only by yourself.

1. (i) Assume that

$$
\begin{cases}\mathbf{u}_{k} \rightharpoonup \mathbf{u} & \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \\ \mathbf{u}_{k}^{\prime} \rightharpoonup \mathbf{v} & \text { in } L^{2}\left(0, T ; H^{-1}(\Omega)\right)\end{cases}
$$

Prove that $\mathbf{v}=\mathbf{u}^{\prime}$.
(ii) Suppose that H is a Hilbert space. Assume that

$$
\mathbf{u}_{k} \rightharpoonup \mathbf{u} \quad \text { in } L^{2}(0, T ; H)
$$

and, for $k=1,2, \ldots$,

$$
\underset{0 \leq t \leq T}{\text { ess } \sup _{0 \leq t}\left\|\mathbf{u}_{k}(t)\right\|_{H} \leq C}
$$

for some C independent of k. Prove

$$
\underset{0 \leq t \leq T}{\operatorname{ess} \sup _{0 \leq T}\|\mathbf{u}(t)\|_{H} \leq C . ~ . ~ . ~}
$$

(iii) Assume that Ω is open, bounded, and $\partial \Omega$ is smooth. Suppose that $\mathbf{u} \in$ $L^{2}\left(0, T ; H^{2}(\Omega)\right)$ with $\mathbf{u}^{\prime} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$. Prove
(a) $\mathbf{u} \in C\left([0, T] ; H^{1}(\Omega)\right)$ (after possibly being redefined on a set of measure zero).
(b) the following estimate holds:

$$
\max _{0 \leq t \leq T}\|\mathbf{u}\|_{H^{1}(\Omega)} \leq C\left(\|\mathbf{u}\|_{L^{2}\left(0, T ; H^{2}(\Omega)\right)}+\left\|\mathbf{u}^{\prime}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}\right)
$$

where the constant C depends only on T and Ω.
2. Estimates for solutions in bounded regions for symmetric hyperbolic system. Consider the following hyperbolic system:

$$
\mathbf{L u}:=\mathbf{B}_{0}(t, x) \mathbf{u}_{t}+\sum_{j=1}^{n} \mathbf{B}_{j}(t, x) \mathbf{u}_{x_{j}}+\mathbf{C}(t, x) \mathbf{u}=\mathbf{f}, \quad \mathbf{u} \in \mathbb{R}^{m},
$$

where $\mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{n}, \mathbf{C}$ are given $m \times m$ square matrices, and \mathbf{f} a given m vector function.
Definition. A hyper-surface $S=\{t=\phi(x)\}$ is called "space-like" with respect to the operator \mathbf{L} if the matrix

$$
\mathbf{B}_{0}(t, x)-\sum_{j=1}^{n} \phi_{x_{j}}(x) \mathbf{B}_{j}(t, x)
$$

is positive definite for all $(t, x) \in S$.
(i) Write the wave equation $u_{t t}-c^{2} \Delta u=0$ (c is a constant) as a symmetric hyperbolic system. Show that the definition of "space-like" agrees with the following:

$$
1-c^{2} \sum_{j=1}^{n} \phi_{x_{j}}^{2}>0 .
$$

(ii) For fixed positive a, T, and for $0<\lambda<T$, consider the "truncated cone":

$$
R_{\lambda}=\left\{(t, x):|x| \leq \frac{a(T-t)}{T}, 0 \leq t \leq \lambda\right\}
$$

bounded by the planes $t=0$ and $t=\lambda$, and the conical surface:

$$
S_{\lambda}=\left\{(t, x): t=T-\frac{T}{a}|x|, 0 \leq t \leq \lambda\right\} .
$$

We call R_{λ} space-like if S_{λ} is space-like, that is,

$$
\mathbf{B}_{0}(t, x)+\frac{T}{a|x|} \sum_{j=1}^{n} x_{j} \mathbf{B}_{j}(t, x) .
$$

is positive definite for all $(t, x) \in S_{\lambda}$. Let $\mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{n}$ be symmetric, \mathbf{B}_{0} positive definite, and R_{λ} be space-like. Let $u \in C^{1}\left(R_{\lambda}\right)$ be a solution of

$$
\begin{cases}\mathbf{L u}=\mathbf{f} & \text { for }(t, x) \in R_{\lambda} \tag{1}\\ \left.\mathbf{u}\right|_{t=0}=\mathbf{g}(x) & \text { for }|x| \leq a\end{cases}
$$

Set

$$
E(\mu)=\int_{\sigma_{\mu}} \mathbf{u}^{\top} \mathbf{B}_{0} \mathbf{u} d x
$$

where σ_{μ} is the cross section:

$$
\sigma_{\mu}=\left\{(t, x):(t, x) \in R_{\lambda}, t=\mu\right\}
$$

of R_{λ}. Show that, for $0<\mu<\lambda$,

$$
E(\mu) \leq E(0)+\int_{R_{\mu}}\left(-\mathbf{u}^{\top} \mathbf{D} \mathbf{u}+2 \mathbf{u}^{\top} \mathbf{f}\right) d x d t
$$

where $\mathbf{D}=2 \mathbf{C}-\mathbf{B}_{0, t}-\sum_{j=1}^{n} \mathbf{B}_{j, x_{j}}$.
(iii) Show that there exists a constant K (depending only on upper bounds for the matrices $\mathbf{B}_{0}^{-1}, \mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{n}, \mathbf{C}$ and their first derivatives in R_{λ}) such that

$$
\int_{\sigma_{\mu}}|\mathbf{u}|^{2} d x \leq K\left[\iint_{R_{\mu}}|\mathbf{f}|^{2} d x d t+\int_{|x|<a}|\mathbf{g}|^{2} d x\right]
$$

for $0 \leq \mu \leq \lambda$ (This implies that \mathbf{u} in R_{λ} is determined uniquely by the values of \mathbf{f} in R_{λ} of \mathbf{g} on $|x| \leq a$). [Hint: Estimate the forms $\xi^{\top} \mathbf{B}_{0} \xi, \xi^{\top} \mathbf{D} \xi$, using $\inf _{|\xi|=1} \xi^{\top} \mathbf{B}_{0} \xi=\left(\sup _{|x|=1} \xi^{\top} \mathbf{B}_{0}^{-1} \xi\right)^{-1}$; For $\phi, \phi^{\prime}, \psi, \psi^{\prime} \geq 0$, the inequality $\phi^{\prime}(\mu) \leq \gamma\left(\phi(\mu)+\psi(\mu)+\phi^{\prime}(0)\right)$ implies the "Gronwall lemma": $\phi^{\prime}(\mu) \leq$ $\left.\gamma e^{\gamma \mu}\left(\psi(\mu)+\phi^{\prime}(0)\right).\right]$
(iv) For $\mathbf{g}=\mathbf{g}(x), \mathbf{f}=\mathbf{f}(t, x)$ and an integer $k \geq 0$, define

$$
\begin{aligned}
& \|\mathbf{g}\|_{k}=\sqrt{\sum_{|\alpha| \leq k} \int_{|x| \leq a}\left|D^{\alpha} \mathbf{g}\right|^{2} d x} \\
& \|\mathbf{f}\|_{k}=\sqrt{\sum_{|\alpha| \leq k} \int_{\sigma_{\mu}}\left|D^{\alpha} \mathbf{f}\right|^{2} d x}
\end{aligned}
$$

Show that there exists a constant K_{k} depending on upper bounds for the matrices $\mathbf{B}_{0}^{-1}, \mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{n}, \mathbf{C}$ and their derivatives of orders $\leq k+1$ such that, for $0<\mu<\lambda$,

$$
\|\mathbf{u}(\mu)\|_{k}^{2} \leq K_{k}\left(\int_{0}^{\mu}\|\mathbf{f}(\gamma)\|_{k}^{2} d \gamma+\|\mathbf{g}\|_{k}^{2}\right)
$$

[Hint: Show that, for $\mid \alpha \leq k$, we have $\mathbf{L} D^{\alpha} \mathbf{u}=D^{\alpha} \mathbf{f}+\mathbf{L}_{\alpha}$, where \mathbf{L}_{α} is an operator of order $\leq k$. Apply Gronwall's lemma with $\phi(\mu)=\int_{0}^{\mu}\|\mathbf{u}\|_{k}^{2} d \gamma$ and $\psi(\mu)=\int_{0}^{\mu}\|\mathbf{f}(\gamma)\|_{k}^{2} d \gamma$.]
(v) Let $s=\left[\frac{n}{2}\right]+1$, and let $k>0$. Let $\mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{n}, \mathbf{C} \in C^{k+s+1}\left(R_{\lambda}\right)$, $\mathbf{f} \in C^{k+s}\left(R_{\lambda}\right)$. Show that there exists a constant K_{k} (depending on upper bounds for $\mathbf{B}_{0}^{-1}, \mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{n}, \mathbf{C}$ and their derivatives of orders $\leq k+s+1$ in R_{λ}) such that, for a solution $\mathbf{u} \in C^{m}\left(R_{\lambda}\right)$ of (1), the inequalities

$$
\left|D^{\alpha} \mathbf{u}(t, x)\right| \leq K_{k}\left[\max _{|\beta| \leq k+s} \sup _{R_{\lambda}}\left|D^{\beta} \mathbf{f}(t, x)\right|+\max _{|\beta| \leq k+s} \sup _{|x|<a}\left|D^{\beta} \mathbf{g}(x)\right|\right]
$$

hold for any $(t, x) \in R_{\lambda},|\alpha| \leq k$.
3. Consider the following the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+f(u)_{x}+u=0, \tag{2}\\
\left.u\right|_{t=0}=u_{0}(x),
\end{array}\right.
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given C^{1} function and $u_{0} \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ is given initial data function.
Definition. A function $u \in L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ is called an entropy solution of Problem (2) provided that, for any convex entropy $\eta(u), \eta^{\prime \prime}(u) \geq 0$, and corresponding entropy flux $q(u)=\int^{u} \eta^{\prime}(v) f^{\prime}(v) d v$, and any non-negative test function $\psi \in C_{0}^{\infty}(\mathbb{R} \times \mathbb{R}), \psi \geq 0$,

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left(\eta(u) \psi_{t}+q(u) \psi_{x}-\eta^{\prime}(u) u \psi\right) d x d t+\int_{-\infty}^{\infty} \psi(0, x) \eta\left(u_{0}(x)\right) d x \geq 0
$$

(i) Prove that problem (2) admits a global entropy solution $u \in C\left([0, \infty) ; L_{\text {loc }}^{1}(\mathbb{R})\right)$ via the vanishing viscosity method.
(ii) Let $u(t, \cdot), v(t, \cdot) \in C\left([0, \infty) ; L_{l o c}^{1}(\mathbb{R})\right)$ be entropy solutions with the initial data functions $u_{0}, v_{0} \in L^{\infty}(\mathbb{R})$, respectively. Prove in detail via the test function method that there exists $s>0$ depending on $\left\|u_{0}\right\|_{L^{\infty}}$ and $\left\|v_{0}\right\|_{L^{\infty}}$ such that, for any $t>0$ and $r>0$,

$$
\int_{-r}^{r}[u(t, x)-v(t, x)]^{+} d x \leq \int_{-r-s t}^{r+s t}\left[u_{0}(x)-v_{0}(x)\right]^{+} d x
$$

and

$$
\begin{equation*}
\|u(t, \cdot)-v(t, \cdot)\|_{L^{1}(\mathbb{R})} \leq e^{-t}\left\|u_{0}(\cdot)-v_{0}(\cdot)\right\|_{L^{1}(\mathbb{R})} \tag{3}
\end{equation*}
$$

(iii) If $u_{0} \in B V_{\text {loc }}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, then

$$
u(t, x) \in B V_{l o c}\left(\mathbb{R}_{+} \times \mathbb{R}\right)
$$

(iv) If equation in (2) is replaced by

$$
u_{t}+f(u)_{x}+a(x) u=0
$$

with $a \in C^{1}(\mathbb{R})$ and $|a(x)| \leq a_{0}<\infty$, can a similar L^{1}-stability estimate to (3) be obtained with e^{-t} replaced by another factor? If so, please prove your claim; otherwise, please provide your reason(s).

