Geometric Measures and Conservation Laws

Lecture Room C1 Weeks 1-4, Hilary Term 2020 Wednesdays 14:00-16:00

By Professor Gui-Qiang G. Chen

Geometric Measures

have contributed greatly to the development of Conservation Laws, Partial Differential Equations, Calculus of Variations, Geometric Analysis, ... have a wide range of applications to Differential Geometry/Topology, Continuum Physics, Fluid Mechanics, Stochastic Analysis, Dynamical Systems,

- An introduction to some facets of Geometric Measures and Conservation Laws, and related applications.
- Basic Analysis & PDE the only essential prerequisites.
- However, some familiarity with basic measure theory, functional analysis, nonlinear PDEs, and differential geometry is desirable.

Topics:

- **1. Connections: Geometric Measures and Conservation Laws**
- 2. Review: Basic Measure Theory
- 3. Hausdorff Measures
- 4. Area/Co-Area Formulas
- 5. BV Functions and Sets of Finite Perimeter
- 6. Theory of Divergence-Measure Fields and Connections with Conservation Laws
- 7. *Differentiability and Approximation
- 8. *Varifolds and Currents
- 9. *Further Connections with Nonlinear PDEs

The topics with * are optional, depending on the course development.

References:

- 1. H. Federer: Geometric Measure Theory, Springer-Verlag: Berlin, 1996.
- 2. L. C. Evans & R. F. Gariepy: Measure Theory and Fine Properties of Functions, CRC Press: Boca Raton, Florida, 1992.
- 3. R. Hardt & L. Simon: Seminar on Geometric Measure Theory, Birkhauser, 1986.
- 4. L. Ambrosio, N. Fusco & D. Pallara: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Univ. Press, 2000.
- 5. W. P. Ziemer: Weakly Differentiable Functions, Springer: NY, 1989.
- C. M. Dafermos: Hyperbolic Conservation Laws in Continuum Physics, 4th Edition, Springer-Verlag: Berlin, 2016.
- 7. F. Morgan: Geometric Measure Theory: A Beginners Guide, Academic Press: Boston, 1988.
- 8. H. Whitney: Geometric Integration Theory, Princeton Univ. Press, 1957
- 9. L. C. Evans: Partial Differential Equations, 2nd ed., AMS: Providence, RI, 2010.
- 10. G.-Q. Chen: Some Lecture Notes

Geometric Measure Theory

could be described as differential geometry, generalised through measure theory to deal with

Maps Surfaces

that are not necessarily smooth.

DeGiorgi (1961), H. Federer (1969)

→ Almgren, Schoen-Simon, Bomberi,

Integration by Parts & Gauss-Green Theorem in Analysis

Integration by Parts (Taylor 1715): Let $f(y), g(y) \in C^1(\mathbb{R})$. Then

$$\int_a^b f(y)g'(y)\,\mathrm{d}y = \big(f(b)g(b) - f(a)g(a)\big) - \int_a^b f'(y)g(y)\,\mathrm{d}y \qquad \text{for any } a \le b.$$

The rule is shown via the fundamental theorem of calculus and the product rule for derivatives:

$$f(b)g(b)-f(a)g(a) = \int_a^b \frac{d}{dy}(f(y)g(y))\,\mathrm{d}y = \int_a^b f'(y)g(y)\,\mathrm{d}y + \int_a^b f(y)g'(y)\,\mathrm{d}y.$$

Gauss-Green Theorem (Divergence Theorem): Let $\Omega \subseteq \mathcal{D} \subset \mathbb{R}^N$ be compact and have a smooth boundary. If $\mathbf{F} \in C^1(\mathcal{D}; \mathbb{R}^N)$, then

$$\int_{\Omega} \varphi \operatorname{div} \mathbf{F} \, \mathrm{d} \mathbf{y} = -\int_{\partial \Omega} \varphi \, \mathbf{F} \cdot \boldsymbol{\nu} \, \mathrm{d} S - \int_{\Omega} \mathbf{F} \cdot \nabla \varphi \, \mathrm{d} \mathbf{y} \quad \text{for any } \varphi \in C^1(\mathbb{R}^N; \mathbb{R}^N),$$

where ν is the unit interior normal on $\partial \Omega$ to Ω and dS is the surface measure (Carl Friedrich Gauss in 1813, George Green in 1825).

One of the Major Achievements of 20th Century in Mathematical Analysis:Spaces of "Generalized" Functions:Sobolev Spaces, BV Space, ...Calculus of "Generalized" Functions:Traces, Gauss-Green formula, ...

Transport Equation:

 $\partial_t \rho + \partial_x (\boldsymbol{v} \rho) = 0$

* v - velocity, ρ - density

Isentropic Euler Equations: Pressure Function $p(\rho) = \kappa \rho^{\gamma}$

 $\partial_t \rho + \partial_x (\rho \mathbf{v}) = 0, \qquad \partial_t (\rho \mathbf{v}) + \partial_x (\rho \mathbf{v}^2 + \mathbf{p}(\rho)) = 0$

 $(t,x) \to (t,y): y_t = \rho(t,x), y_x = -(\rho v)(t,x); \qquad \tau(t,y) = 1/\rho(t,x)$

 $\partial_t \tau - \partial_y v = 0, \qquad \partial_t v + \partial_y p(1/\tau) = 0$

Nonlinear Hyperbolic Conservation Laws

$$\partial_t \mathbf{u} + \nabla_{\mathbf{x}} \cdot \mathbf{f}(\mathbf{u}) = 0$$

 $\mathbf{u} = (u_1, \cdots, u_m)^{\top}, \ \mathbf{x} = (x_1, \cdots, x_d), \ \nabla_{\mathbf{x}} = (\partial_{x_1}, \cdots, \partial_{x_d})$

 $\mathbf{f} = (\mathbf{f}_1, \cdots, \mathbf{f}_d) : \mathbb{R}^m \to (\mathbb{R}^m)^d \text{ is a nonlinear mapping} \\ \mathbf{f}_i : \mathbb{R}^m \to \mathbb{R}^m \text{ for } i = 1, \cdots, d$

Connections and Applications:

- Fluid Mechanics and Related: Euler Equations and Related Equations Gas, shallow water, elastic body, reacting gas, plasma,
- Special Relativity: Relativistic Euler Equations and Related Equations General Relativity: Einstein Equations and Related Equations
- Differential Geometry: Isometric Embeddings, Nonsmooth Manifolds...

o

$\partial_t \mathbf{u} + \nabla_{\mathbf{x}} \cdot \mathbf{f}(\mathbf{u}) = 0$

 $\begin{tabular}{llenges}{lle$

- Concentration, Cavitation, ...
- Shock Waves, Vortex Sheets, Vorticity Waves, Entropy Waves, ...
- Breaking and Focusing of Waves, ...
-

Entropy Solutions:

(i) $\mathbf{u}(t, \mathbf{x}) \in L^{\infty}, L^{p}, \mathcal{M};$

(ii) For any convex entropy pair (η, \mathbf{q}) , $\partial_t \eta(\mathbf{u}) + \nabla_{\mathbf{x}} \cdot \mathbf{q}(\mathbf{u}) \leq 0 \mathcal{D}'$ as long as $(\eta(\mathbf{u}(t, \mathbf{x})), \mathbf{q}(\mathbf{u}(t, \mathbf{x}))) \in \mathcal{D}'$; that is, $(\eta, \mathbf{q}) := (\eta, q_1, \dots, q_d)$ is a solution of $\nabla q_k(\mathbf{u}) = \nabla \eta(\mathbf{u}) \nabla \mathbf{f}_k(\mathbf{u}), 1 \leq k \leq d$.

Posed Spaces for Entropy Solutions ?? Candidates: L^{∞} , L^{p} , \mathcal{M} , ...

The Mathematics of Shock Reflection-Diffraction and von Neumann's Conjectures

> Gui-Qiang G. Chen Mikhail Feldman

ANNALS OF MATHEMATICS STUDIES

Chen-Feldman: Research Monograph, 832 pages Annals of Mathematics Studies, 197, Princeton Univ. Press, 2018

Entropy Methods for the Analysis of Entropy Solutions of Multidimensional Conservation Laws?

A general mathematical framework may be derived from the theory of divergence-measure fields via the entropy methods, which are based on the Entropy Solutions:

(i)
$$\mathbf{u}(t,\mathbf{x}) \in \mathcal{M}, L^{\infty}, L^{p};$$

(ii) \forall convex entropy pair (η, \mathbf{q}) (i.e. $\nabla q_k(\mathbf{u}) = \nabla \eta(\mathbf{u}) \nabla \mathbf{f}_k(\mathbf{u}), k = 1, ..., d$),

 $\partial_t \eta(\mathbf{u}) + \nabla_{\mathbf{x}} \cdot \mathbf{q}(\mathbf{u}) \leq 0 \qquad \mathcal{D}'$

as long as $(\eta(\mathbf{u}(t, \mathbf{x})), \mathbf{q}(\mathbf{u}(t, \mathbf{x}))) \in \mathcal{D}'$.

Existence of entropy solutions in *L^p* via Compensated Compactness **Isentropic Euler Equations, Equations of elastodynamics,** ···

Schwartz's lemma $\implies div_{(t,\mathbf{x})}(\eta(\mathbf{u}(t,\mathbf{x})),\mathbf{q}(\mathbf{u}(t,\mathbf{x}))) \in \mathcal{M}$

 \implies The vector field $(\eta(\mathbf{u}(t, \mathbf{x})), \mathbf{q}(\mathbf{u}(t, \mathbf{x})))$ is a divergence-measure field

Divergence-Measure Fields over an Open Set $\mathcal{D} \subset \mathbb{R}^N$

• For $1 \le p \le \infty$, **F** is called a $\mathcal{DM}^p(\mathcal{D})$ -field if $\mathbf{F} \in L^p(\mathcal{D})$ and

 $\|\mathbf{F}\|_{\mathcal{DM}^{p}(\mathcal{D})} := \|\mathbf{F}\|_{L^{p}(\mathcal{D};\mathbb{R}^{N})} + \|\operatorname{div}\mathbf{F}\|_{\mathcal{M}(\mathcal{D})} < \infty$

(1)

(2)

• The field **F** is called a $\mathcal{DM}^{ext}(\mathcal{D})$ -field if $\mathbf{F} \in \mathcal{M}(\mathcal{D})$ and

 $\|\mathbf{F}\|_{\mathcal{DM}^{\mathsf{ext}}(\mathcal{D})} := \|(\mathbf{F}, \operatorname{div} \mathbf{F})\|_{\mathcal{M}(\mathcal{D})} < \infty$

• **F** is called a $\mathcal{DM}^{p}_{loc}(\mathcal{D})$ field if $\mathbf{F} \in \mathcal{DM}^{p}(\Omega)$ and **F** called a $\mathcal{DM}^{ext}_{loc}(\mathcal{D})$ if $\mathbf{F} \in \mathcal{DM}^{ext}(\Omega)$, for any open set $\Omega \subseteq \mathcal{D}$

 $\mathcal{DM}^{p}(\mathcal{D})$ and $\mathcal{DM}^{ext}(\mathcal{D})$ are **Banach spaces**, which are LARGER than the space of BV fields (they coincide when N = 1).

BV theory (esp. the Gauss-Green Formula and Traces) has significantly advanced our understanding of solutions of nonlinear PDEs and related problems in the calculus of variations, differential geometry,...

Goal: Develop a \mathcal{DM} theory to analyze entropy solutions without BV for nonlinear conservation laws and related problems via entropy methods.

Examples

1:
$$\mathbf{F}(y_1, y_2) = (\sin(\frac{1}{y_1 - y_2}), -\sin(\frac{1}{y_1 - y_2})).$$

(i) $\mathbf{F} \in \mathcal{DM}^{\infty}(\mathbb{R}^2)$, while $F_j \notin BV(\mathbb{R}^2)$ for j = 1, 2;

- (ii) **F** has an essential singularity at each point of $L = \{y_1 = y_2\}$. \implies **F** has no trace on L in the classical sense.
- **2:** Whitney 1957: $\mathbf{F}(y_1, y_2) = \left(\frac{y_1}{y_1^2 + y_2^2}, \frac{y_2}{y_1^2 + y_2^2}\right) \in \mathcal{DM}^1_{loc}(\mathbb{R}^2).$ However, for $\Omega = \{\mathbf{y} : |\mathbf{y}| < 1, y_2 > 0\},$

 $\int_{\Omega} div \, \mathbf{F} \, \mathrm{d} \mathbf{y} = \mathbf{0} \neq - \int_{\partial \Omega} \mathbf{F} \cdot \boldsymbol{\nu} \, \mathrm{d} \mathcal{H}^1 = \pi \quad \text{(in the classical sense)},$

where $\boldsymbol{\nu}$ is the interior unit normal on $\partial \Omega$ to Ω

 \implies The classical Gauss-Green theorem fails for a \mathcal{DM} -field.

3: For any $\mu_i \in \mathcal{M}(\mathbb{R}), i = 1, 2$, with finite total variation,

$$\mathbf{F}(y_1, y_2) = (\mu_1(y_2), \mu_2(y_1)) \in \mathcal{DM}^{ext}(\mathbb{R}^2)$$

A non-trivial example of such fields is provided by the Riemann solutions of the 1-D Isentropic Euler equations in Lagrangian coordinates for which the vacuum generally develops. Axiomatic Foundation for Continuum Physics
Cauchy Flux (Cauchy 1823, 1827): Derivation for
– PDE Systems of Balance Laws/Conservation Laws

Physical Balance Laws/Conservation Laws: Cauchy Flux & Production (Discontinuities & Singularities)

Gauss-Green Formula and Normal Trace for $\mathcal{DM}\text{-}Fields$ over General Open Sets

C–Torres-Ziemer: Gauss-Green Theorem for Weakly Differentiable Fields, Sets of Finite Perimeter, and Balance Laws, Comm. Pure Appl. Math. **62** (2009), 242–304.

C–Comi-Torres: Cauchy Fluxes and Gauss-Green Formulas for Divergence-Measure Fields over General Open Sets, Arch. Rational Mech. Anal. **233** (2019), 87–166.

*Noll, Gurtin-Martins, Ziemer, Šilhavý, · · · · ·