Hyperbolic Partial Differential Equations

Nonlinear Theory

Mathematics Taught Course Centre Michaelmas Term October – December 2011 Monday 10:00-12:00

By Professor Gui-Qiang G. Chen

Lecture-8: 12 December 2011 (Last meeting of this class)

In order to receive credits, you should write a miniproject (5-8 pages) after the end of the course on some (your favorite) topic which the course will cover.

Oxford grades: pass/fail, or distinction for particularly good work.

*The final report (pdf-file) for your miniproject should be submitted to Dr. Laura Caravenna at:

Laura.Caravenna@maths.ox.ac.uk

by 15 December 2011, in order to receive your credits.

Course Homepage:

http://people.maths.ox.ac.uk/chengq/teach/tcc11/tcc-hpde.html

References:

- 1. R. Courant and D. Hilbert: Methods of Mathematical Physics, Vol. II. Reprint of the 1962 original. John Wiley & Sons, Inc.: New York, 1989.
- 2. **C. M. Dafermos: Hyperbolic Conservation Laws in Continuum Physics,** Third edition. Springer-Verlag: Berlin, 2010.
- 3. L. C. Evans: Partial Differential Equations, Second edition. AMS: Providence, RI, 2010.
- 4. L. Hormander: Lectures on Nonlinear Hyperbolic Differential Equations
 Springer-Verlag: Berlin-Heidelberg, 1997
- 5. P. D. Lax: Hyperbolic Differential Equations, AMS: Providence, 2000
- 6. A. Bressan, G.-Q. Chen, M. Lewicka, D. Wang: Nonlinear Conservation Laws and Applications, IMA Volume 153, Springer: New York, 2011.
- 7. **D. Serre, Systems of Conservation Laws, Vols. I, II**, Cambridge University Press: Cambridge, 1999, 2000.
- 8. C. D. Sogge, Lectures on Nonlinear Wave Equations, Second edition. International Press, Boston, MA, 2008.

Hyperbolic Conservation Laws

$$\partial_{t} \mathbf{u} + \nabla \cdot \mathbf{f}(\mathbf{u}) = 0
\mathbf{u} = (u_{1}, \dots, u_{m})^{\top}, \ \mathbf{x} = (x_{1}, \dots, x_{d}), \ \nabla = (\partial_{x_{1}}, \dots, \partial_{x_{d}})
\mathbf{f} = (\mathbf{f}_{1}, \dots, \mathbf{f}_{d}) : \mathbb{R}^{m} \to (\mathbb{R}^{m})^{d} \text{ is a nonlinear mapping}
\mathbf{f}_{i} : \mathbb{R}^{m} \to \mathbb{R}^{m} \text{ for } i = 1, \dots, d
\partial_{t} \mathbf{A}(\mathbf{u}, \mathbf{u}_{t}, \nabla \mathbf{u}) + \nabla \cdot \mathbf{B}(\mathbf{u}, \mathbf{u}_{t}, \nabla \mathbf{u}) = 0$$

 $A, B: \mathbb{R}^m \times \mathbb{R}^m \times (\mathbb{R}^m)^d \to \mathbb{R}^m$ are nonlinear mappings

Connections and Applications:

- Fluid Mechanics and Related: Euler Equations and Related Equations
 Gas, shallow water, elastic body, reacting gas, plasma,
- Special Relativity: Relativistic Euler Equations and Related Equations General Relativity: Einstein Equations and Related Equations
- Differential Geometry: Isometric Embeddings, Nonsmooth Manifolds..
- • • • •

Convex Entropy and Hyperbolicity

Entropy: $\eta : \mathbb{R}^m \to \mathbb{R}$ if there exists **q**:

$$\mathbf{q}=(q_1,\cdots,q_d):\mathbb{R}^m\to\mathbb{R}^d,$$

satisfying
$$\nabla q_i(\mathbf{u}) = \nabla \eta(\mathbf{u}) \nabla \mathbf{f}_i(\mathbf{u}), i = 1, \dots, d$$

Convex entropy
$$\eta(\mathbf{u})$$
: $\nabla^2 \eta(\mathbf{u}) \geq 0$

Strictly convex entropy
$$\eta(\mathbf{u})$$
: $\nabla^2 \eta(\mathbf{u}) > 0$

Entropy inequality: For any convex $(\eta, \mathbf{q}) \in C^2$.

$$\partial_t \eta(\mathbf{u}) + \nabla \cdot \mathbf{q}(\mathbf{u}) < 0$$
 \mathcal{D}

Theorem. If system (*) is endowed with a strictly convex entropy η in a state domain D, then system (*) must be hyperbolic and symmetrizable in D.

Proof —I: Sketch

1. Taking $\nabla_{\mathbf{u}}$ both sides: $\nabla_{\mathbf{u}}\eta(\mathbf{u})\nabla_{\mathbf{u}}\mathbf{f}_k(\mathbf{u}) = \nabla_{\mathbf{u}}\mathbf{q}_k(\mathbf{u}), \ k=1,2,\cdots,d,$ to obtain

$$\nabla_{\mathbf{u}}^{2} \eta(\mathbf{u}) \nabla_{\mathbf{u}} \mathbf{f}_{k}(\mathbf{u}) + \nabla_{\mathbf{u}} \eta(\mathbf{u}) \nabla_{\mathbf{u}}^{2} \mathbf{f}_{k}(\mathbf{u}) = \nabla_{\mathbf{u}}^{2} \mathbf{q}_{k}(\mathbf{u}).$$

Using the **symmetry** of the matrices $\nabla_{\mathbf{u}}\eta(\mathbf{u})\nabla_{\mathbf{u}}^{2}\mathbf{f}_{k}(\mathbf{u})$ and $\nabla_{\mathbf{u}}^{2}\mathbf{q}_{k}(\mathbf{u})$, we find that, for fixed $k=1,2,\cdots,d$,

$$\nabla_{\mathbf{u}}^2 \eta(\mathbf{u}) \nabla_{\mathbf{u}} \mathbf{f}_k(\mathbf{u})$$
 is symmetric.

2. Multiplying system (*) by $\nabla^2_{\mathbf{u}} \eta(\mathbf{u})$ yields

$$\nabla_{\mathbf{u}}^{2} \eta(\mathbf{u}) \partial_{t} \mathbf{u} + \nabla_{\mathbf{u}}^{2} \eta(\mathbf{u}) \nabla_{\mathbf{u}} \mathbf{f}(\mathbf{u}) \cdot \nabla_{\mathbf{x}} \mathbf{u} = 0. \quad (**)$$

Since $\nabla_{\mathbf{u}}^2 \eta(\mathbf{u}) > 0$, the hyperbolicity of (*) and the hyperbolicity of (**) is equivalent.

The hyperbolicity of (**) is equivalent to:

For any $\omega \in S^{d-1}$, all zeros of the determinant

$$|\lambda \nabla_{\mathbf{u}}^2 \eta(\mathbf{u}) - \nabla_{\mathbf{u}}^2 \eta(\mathbf{u}) \nabla_{\mathbf{u}} \mathbf{f}(\mathbf{u}) \cdot \omega|$$
 are real.

Proof —II: Sketch

3. Since $\nabla^2 \eta(\mathbf{u})$ is a real symmetric, positive definite matrix, then there exists a matrix $C(\mathbf{u})$ such that

$$\nabla^2 \eta(\mathbf{u}) = C(\mathbf{u}) C(\mathbf{u})^{\top}.$$

Then it is equivalent to showing that,

For any $\omega \in S^{d-1}$, the eigenvalues of the following matrix $C(\mathbf{u})^{-1} \left(\nabla^2 \eta(\mathbf{u}) \nabla \mathbf{f}(\mathbf{u}) \cdot \omega \right) (C(\mathbf{u})^{-1})^{\top}$ are real.

This is TRUE since the matrix is real and symmetric.

Remarks.

- 1. The proof is taken from Friedrich-Lax 1971
- 2. A system of conservation laws is endowed with a strictly convex entropy if and only if the system is conservatively symmetrizable.

Friedrich-Lax 1971 Godunov 1961, 1978, 1987; Boillat 1965; Mock (Sever) 1980;

Conservatively Symmetrizable: Godunov 1961

There exists an invertible change of variables $\mathbf{u} = \Phi(\mathbf{w}) \in \mathbb{R}^m$, with inverse $\mathbf{w} = \Psi(\mathbf{u})$, such that

- $\Phi(\mathbf{w})$ is the gradient (with respect to \mathbf{w}) of a scalar map $a_0 : \mathbb{R}^m \to \mathbb{R}$ with $\nabla_{\mathbf{w}} \Phi(\mathbf{w}) = \nabla^2_{\mathbf{w}} a_0(\mathbf{w})$ strictly positive definite.
- $\mathbf{f}(\Phi(\mathbf{w}))$ is the gradient (with respect to \mathbf{w}) of a vector may $(a_1, \dots, a_d) : \mathbb{R}^m \to \mathbb{R}^d$.

Then system (*) can be written as

$$\partial_t (\nabla_{\mathbf{w}} a_0(\mathbf{w})) + \sum_{j=1}^d \partial_{x_j} (\nabla_{\mathbf{w}} a_j(\mathbf{w})) = 0,$$

or, equivalently, as $\mathbf{A}_0(\mathbf{w})\partial_t \mathbf{w} + \sum_{j=1}^d \mathbf{A}_j(\mathbf{w})\partial_{x_j} \mathbf{w} = 0$ where the $m \times m$ matrices $\mathbf{A}_i, i = 0, 1, \dots, d$, are symmetric Jacobians.

Remarks:

- $\mathbf{u} \to \mathbf{w} = \Psi(\mathbf{u}) = \nabla_{\mathbf{u}} \eta(\mathbf{u})$
- $\eta(\mathbf{u}) = \mathbf{u} \cdot \Psi(\mathbf{u}) a_0(\Psi(\mathbf{u})), \quad \mathbf{q}(\mathbf{u}) = \mathbf{u} \cdot \Psi(\mathbf{u}) (a_1, \dots, a_j)(\Psi(\mathbf{u}))$

Applications I: Local Existence and Stability

Local Existence of Classical Solutions

$$\mathbf{u}_0 \in H^s \cap L^\infty, s > \frac{d}{2} + 1 \Longrightarrow \mathbf{u} \in C([0, T]; H^s) \cap C^1([0, T]; H^{s-1})$$

Kato 1975, Majda 1984
Makino-Ukai-Kawashima 1986, Chemin 1990, ...

Local Existence and Stability of Shock Front Solutions

$$\mathbf{u}(\mathbf{x}) = \begin{cases} \mathbf{u}^+(t, \mathbf{x}), & (t, \mathbf{x}) \in S^+, \\ \mathbf{u}^-(t, \mathbf{x}), & (t, \mathbf{x}) \in S^- \end{cases}$$

Majda 1983, Métivier 1990, · · ·

The symmetry plays an essential role in the following situation:

$$2\mathbf{u}^{\top}\nabla^{2}\eta(\mathbf{v})\nabla\mathbf{f}_{k}(\mathbf{v})\partial_{x_{k}}\mathbf{u}$$

$$=\partial_{x_{k}}(\mathbf{u}^{\top}\nabla^{2}\eta(\mathbf{v})\nabla\mathbf{f}_{k}(\mathbf{v})\mathbf{u}) - \mathbf{u}^{\top}\partial_{x_{k}}(\nabla^{2}\eta(\mathbf{v})\nabla\mathbf{f}_{k}(\mathbf{v}))\mathbf{u}$$

to get the first energy estimate (the L^2 estimate)

Applications II: Stability of Lipschitz Solutions-1

 $\mathbf{v} \in K$ is a Lipschitz solution on [0, T) with initial data $\mathbf{v}_0(\mathbf{x})$ $\mathbf{u} \in K$ is any entropy solution on [0, T) with initial data $\mathbf{u}_0(\mathbf{x})$

$$\int_{|\mathbf{x}| < R} |\mathbf{u}(t, \mathbf{x}) - \mathbf{v}(t, \mathbf{x})|^2 d\mathbf{x} \le C(T) \int_{|\mathbf{x}| < R + Lt} |\mathbf{u}_0(\mathbf{x}) - \mathbf{v}_0(\mathbf{x})|^2 d\mathbf{x}$$

Sketch of Proof: Assume that $\nabla_{\mathbf{u}}^2 \eta(\mathbf{u}) \geq c_0 > 0$

1. Use the Dafermos relative entropy and entropy flux pair:

$$\bar{\eta}(\mathbf{u}, \mathbf{v}) = \eta(\mathbf{u}) - \eta(\mathbf{v}) - \nabla \eta(\mathbf{v})(\mathbf{u} - \mathbf{v}) \geq c_0(\mathbf{u} - \mathbf{v})^2,$$

$$\bar{\mathbf{q}}(\mathbf{u}, \mathbf{v}) = \mathbf{q}(\mathbf{u}) - \mathbf{q}(\mathbf{v}) - \nabla \eta(\mathbf{v})(\mathbf{f}(\mathbf{u}) - \mathbf{f}(\mathbf{v}))$$

and compute to find

$$\begin{split} &\partial_t \bar{\eta}(\mathbf{u}, \mathbf{v}) + \nabla_{\mathbf{x}} \cdot \bar{\mathbf{q}}(\mathbf{u}, \mathbf{v}) \\ &\leq -\{\partial_t (\nabla \eta(\mathbf{v}))(\mathbf{u} - \mathbf{v}) + \sum_{k=1}^d \partial_{x_k} (\nabla \eta(\mathbf{v}))(\mathbf{f}_k(\mathbf{u}) - \mathbf{f}_k(\mathbf{v}))\}. \end{split}$$

Applications III: Stability of Lipschitz Solutions-2

2. Since \mathbf{v} is a classical solution, we use the symmetry property with the strictly convex entropy η to have

$$\begin{split} &\partial_t(\nabla \eta(\mathbf{v})) = (\partial_t \mathbf{v})^\top \nabla^2 \eta(\mathbf{v}) = -\sum_{k=1}^d (\partial_{x_k} \mathbf{f}_k(\mathbf{v}))^\top \nabla^2 \eta(\mathbf{v}) \\ &= -\sum_{k=1}^d (\partial_{x_k} \mathbf{v})^\top (\nabla \mathbf{f}_k(\mathbf{v}))^\top \nabla^2 \eta(\mathbf{v}) = -\sum_{k=1}^d (\partial_{x_k} \mathbf{v})^\top (\nabla^2 \eta(\mathbf{v}) \nabla \mathbf{f}_k(\mathbf{v}))^\top \\ &= -\sum_{k=1}^d (\partial_{x_k} \mathbf{v})^\top \nabla^2 \eta(\mathbf{v}) \nabla \mathbf{f}_k(\mathbf{v}). \end{split}$$

$$\Rightarrow \partial_t \bar{\eta}(\mathbf{u}, \mathbf{v}) + \nabla_{\mathbf{x}} \cdot \bar{\mathbf{q}}(\mathbf{u}, \mathbf{v})$$

$$\leq -\sum_{k=1}^d (\partial_{x_k} \mathbf{v})^\top \nabla^2 \eta(\mathbf{v}) (\mathbf{f}_k(\mathbf{u}) - \mathbf{f}_k(\mathbf{v}) - \nabla \mathbf{f}_k(\mathbf{v}) (\mathbf{u} - \mathbf{v}))$$

Integrating over a set $\{(\tau, \mathbf{x}) : 0 \le \tau \le t \le T, |\mathbf{x}| \le R + L(t - \tau)\}$ for $L \gg 0$ and employing the Gronwall inequality to conclude the result.

Applications III: Remarks

- 1. The proof is taken from Dafermos 2002
 Also Dafermos 1979 and DiPerna 1979
- 2. The stability of rarefaction waves for the Euler equations for multidimensional compressible fluids also holds:

G.-Q. Chen & J. Chen: JHDE 2007

- 3. Multidimensional hyperbolic systems of conservation laws with partially convex entropies and involutions: Dafermos 2002 Also Dafermos 1986, Boillat 1988.
- 4. For multidimensional hyperbolic systems of conservation laws without a strictly convex entropy, it is possible to enlarge the system so that the enlarged system is endowed with a globally defined, strictly convex entropy.

Elastodynamics: Isentropic Model

Electromagnetism: Born-Infeld Nonlinear Model

Strict Hyperbolicity

Lax 1982, Friedland-Robin-Sylvester 1984:

For d = 3, there are no strictly hyperbolic systems when

$$m \equiv \pm 2, \pm 3, \pm 4 \pmod{8}$$

Theorem. Let A, B, C be the three matrices such that

$$\alpha A + \beta B + \gamma C$$

has real eigenvalues for any real α, β, γ .

When

$$m \equiv \pm 2, \pm 3, \pm 4 \pmod{8}$$
,

then there exist $(\alpha_0, \beta_0, \gamma_0), \alpha_0^2 + \beta_0^2 + \gamma_0^2 \neq 0$ such that

$$\alpha_0 A + \beta_0 B + \gamma_0 C$$

is degenerate, that is, there are two eigenvalues of the matrix which coincide.

Proof—I: We prove only the case $m \equiv 2 \pmod{4}$

1. Denote \mathcal{M} the set of all real $m \times m$ matrices with real eigenvalues Denote \mathcal{N} the set of nondegenerate matrices that have m distinct real eigenvalues in \mathcal{M}

The normalized eigenvectors \mathbf{r}_j of $N \in \mathcal{N}$

$$N\mathbf{r}_j = \lambda_j \mathbf{r}_j, \quad |\mathbf{r}_j| = 1, j = 1, 2, \cdots, m,$$

are determined up to a factor ± 1 .

2. Let $N(\theta)$, $0 \le \theta \le 2\pi$, be a closed curve in \mathcal{N} (if exists!).

If we fix $\mathbf{r}_j(0)$, then $\mathbf{r}_j(\theta)$ can be determined uniquely by requiring continuous dependence on θ . Since $N(2\pi) = N(0)$, then

$$\mathbf{r}_j(2\pi) = \tau_j \mathbf{r}_j(0), \qquad \tau_j = \pm 1.$$

Clearly,

- (i) Each τ_i is a homotopy invariant of the closed curve;
- (ii) Each $\tau_i = 1$ when $N(\theta)$ is constant.

Proof—II: $m \equiv 2 \pmod{4}$

3. Suppose now that the theorem is false. Then

$$N(\theta) = \cos\theta A + \sin\theta B$$

is a closed curve in \mathcal{N} and $\lambda_1(\theta) < \lambda_2(\theta) < \cdots < \lambda_m(\theta)$.

Since $N(\pi) = -N(0)$, we have

$$\lambda_j(\pi) = -\lambda_{m-j+1}(0), \quad \mathbf{r}_j(\pi) = \rho_j \mathbf{r}_{m-j+1}(0), \qquad \rho_j = \pm 1.$$

Since the ordered basis $\{\mathbf{r}_1(\theta), \mathbf{r}_2(\theta), \cdots, \mathbf{r}_m(\theta)\}$ is defined continuously, it retains its orientation. Then the ordered bases

$$\{\mathbf{r}_1(0), \mathbf{r}_2(0), \cdots, \mathbf{r}_m(0)\}\$$
and $\{\rho_1\mathbf{r}_m(0), \rho_2\mathbf{r}_{m-1}(0), \cdots, \rho_m\mathbf{r}_1(0)\}\$

have the same orientation.

Since $m \equiv 2 \pmod{4}$, reversing the order reverses the orientation of an ordered basis, which implies $\prod_{j=1}^{m} \rho_j = -1$ (exercise?). Then there exists k such that

$$\rho_k \rho_{m-k+1} = -1.$$

Proof—III: $m \equiv 2 \pmod{4}$

Since $N(\theta + \pi) = -N(\theta)$, then

$$\lambda_j(\theta + \pi) = -\lambda_{m-j+1}(\theta),$$

which implies $\mathbf{r}_j(2\pi) = \rho_j \mathbf{r}_{m-j+1}(\pi) = \rho_j \rho_{m-j+1} \mathbf{r}_{m-j+1}(0)$. Therefore, we have

$$\tau_j = \rho_j \rho_{m-j+1}$$
.

Then Step 3 implies $\tau_k = -1$, which yields that the curve

$$N(\theta) = \cos\theta A + \sin\theta B$$
 is not homotopic to a point.

4. Suppose that all matrices of form

$$\alpha A + \beta B + \gamma C$$
, $\alpha^2 + \beta^2 + \gamma^2 = 1$, belong \mathcal{N} .

Then, since the sphere is simply connected, the curve $N(\theta)$ could be contracted to a point, contracting $\tau_k = -1$. This completes the proof.

Isentropic Euler Equations

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0 \\ \partial_t (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) + \nabla \rho = 0 \end{cases}$$

where the pressure is regarded as a function of density with constant S_0 :

$$p = p(\rho, S_0)$$

For a polytropic gas,

$$p(\rho) = \kappa_0 \rho^{\gamma}, \qquad \gamma > 1,$$

where $\kappa_0 > 0$ is any constant under scaling

Isentropic Euler Equations

Case d = 2, m = 3: Strictly hyperbolic

$$\lambda_- < \lambda_0 < \lambda_+, \quad \text{when } \rho > 0$$

$$\lambda_0 = \omega_1 u_1 + \omega_2 u_2, \quad \lambda_{\pm} = \omega_1 u_1 + \omega_2 u_2 \pm \sqrt{p'(\rho)}$$

Case d = 3, m = 4: Nonstrictly hyperbolic since

$$\lambda_0 = \omega_1 u_1 + \omega_2 u_2 + \omega_3 u_3$$

has double multiplicity, with

$$\lambda_{\pm} = \omega_1 u_1 + \omega_2 u_2 + \omega_3 u_3 \pm \sqrt{p'(\rho)}$$

Full Euler Equations

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0, \\ \partial_t (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) + \nabla \rho = 0, \\ \partial_t (\rho E) + \nabla \cdot (\rho \mathbf{v}(E + \frac{p}{\rho})) = 0 \end{cases} (t, \mathbf{x}) \in \mathbb{R}_+^{d+1} := (0, \infty) \times \mathbb{R}^d$$

Constitutive Relations: $p = p(\rho, e), E = \frac{1}{2} |\mathbf{v}|^2 + e$

$$\tau = \frac{1}{\rho}$$
 —Deformation gradient (specific volume for fluids, strain for solids)

$$\mathbf{v} = (v_1, \cdots, v_d)^{\top}$$
 —Fluid velocity with $\mathbf{m} = \rho \mathbf{v}$ the momentum vector p —Scalar pressure

E —Total energy with *e* the internal energy which is a given function of (τ, p) or (ρ, p) defined through thermodynamical relations

The notation $\mathbf{a} \otimes \mathbf{b}$ denotes the tensor product of the vectors \mathbf{a} and \mathbf{b}

Full Euler Equations

Case d = 2, m = 4: Nonstrictly hyperbolic since

$$\lambda_0 = \omega_1 u_1 + \omega_2 u_2$$

has double multiplicity, with

$$\lambda_{\pm} = \omega_1 u_1 + \omega_2 u_2 \pm \sqrt{\gamma p/\rho}$$

Case d = 3, m = 5: Nonstrictly hyperbolic since

$$\lambda_0 = \omega_1 u_1 + \omega_2 u_2 + \omega_3 u_3$$

has triple multiplicity, with

$$\lambda_{\pm} = \omega_1 u_1 + \omega_2 u_2 + \omega_3 u_3 \pm \sqrt{\gamma p/\rho}$$

$$\nabla_{\mathbf{u}} \lambda_j(\mathbf{u}; \omega) \cdot \mathbf{r}_j(\mathbf{u}; \omega) \neq 0$$
 for any $\omega \in S^{d-1}$

Theorem. Any scalar quasilinear conservation law in d-space dimension $(d \ge 2)$ is never genuinely nonlinear in all directions.

In this case,
$$\lambda(u;\omega)=\mathbf{f}'(u)\cdot\omega$$
 and $r=1$,
$$\lambda'(u;\omega)r\equiv\mathbf{f}'(u)\cdot\omega$$

Impossible to make this never equals to zero.

Generalization: Genuine Nonlinearity:

$$|\{u: \tau + \mathbf{f}'(u) \cdot \omega = 0\}| = 0$$
 for any $(\tau, \omega) \in S^{d+1}$

Under this strong nonlinearity:

- (i) Solution operators are compact:
 - Lions-Perthame-Tadmor 1994, Tao-Tadmor 2007
- (ii) Decay of periodic solutions: Chen-Frid 1999
- (iii) Trace of entropy solutions: Chen-Rascle 2000, Vasseur 2001, · · ·
- (iv) Structure of L^{∞} entropy solutions: Otto-DeLellis-Westdickenberg 2003

Theorem (Lax 1984). Every real, strictly hyperbolic quasilinear system for

$$d=2, m=2k, k\geq 1 \text{ odd},$$

is linearly degenerate in some direction.

Proof. We prove only for the case m = 2.

1. For fixed $\mathbf{u} \in \mathbb{R}^m$, define $C(\theta; \mathbf{u}) = \nabla \mathbf{f}_1(\mathbf{u}) \cos \theta + \nabla \mathbf{f}_2(\mathbf{u}) \sin \theta$.

Denote the eigenvalues of $C(\theta; \mathbf{u})$ by $\lambda_{\pm}(\theta; \mathbf{u})$: $\lambda_{-}(\theta; \mathbf{u}) < \lambda_{+}(\theta; \mathbf{u})$ with

$$C(\theta; \mathbf{u})\mathbf{r}_{\pm}(\theta; \mathbf{u}) = \lambda_{\pm}(\theta; \mathbf{u})\mathbf{r}_{\pm}(\theta; \mathbf{u}), \quad |\mathbf{r}_{\pm}(\theta; \mathbf{u})| = 1.$$

This still leaves an arbitrary factor ± 1 , which we fix arbitrarily at $\theta = 0$.

For all other $\theta \in [0, 2\pi]$ by requiring $\mathbf{r}_{\pm}(\theta; \mathbf{u})$ to vary continuously with θ .

2. Since $C(\theta + \pi; \mathbf{u}) = -C(\theta; \mathbf{u})$,

$$\lambda_{+}(\theta + \pi; \mathbf{u}) = -\lambda_{-}(\theta; \mathbf{u}), \quad \lambda_{-}(\theta + \pi; \mathbf{u}) = -\lambda_{+}(\theta; \mathbf{u}).$$

It follows from this and $|\mathbf{r}_{\pm}| = 1$ that

$$\mathbf{r}_{+}(\theta+\pi;\mathbf{u}) = \sigma_{+}\mathbf{r}_{-}(\theta;\mathbf{u}), \ \mathbf{r}_{-}(\theta+\pi;\mathbf{u}) = \sigma_{-}\mathbf{r}_{+}(\theta;\mathbf{u}), \ \text{with } \sigma_{\pm}=1 \text{ or } -1.$$

- 3. Since $\mathbf{r}_{\pm}(\theta;\mathbf{u})$ were chosen to be continuous functions of θ , we have
- (i) σ_{\pm} are also continuous functions of θ and, thus, they must be constant since $\sigma_{\pm}=\pm 1$;
- (ii) The orientation of the ordered basis: $\{\mathbf{r}_{-}(\theta;\mathbf{u}), \mathbf{r}_{+}(\theta;\mathbf{u})\}$ does not change and, hence, the bases

$$\{\mathbf{r}_{-}(0;\mathbf{u}), \ \mathbf{r}_{+}(0;\mathbf{u})\}\$$
and $\{\mathbf{r}_{-}(\pi;\mathbf{u}), \ \mathbf{r}_{+}(\pi;\mathbf{u})\}$

have the same orientation.

Therefore, by Step 2,

$$\{\mathbf{r}_{-}(0;\mathbf{u}), \ \mathbf{r}_{+}(0;\mathbf{u})\}\$$
and $\{\sigma_{-}\mathbf{r}_{+}(0;\mathbf{u}), \ \sigma_{+}\mathbf{r}_{-}(0;\mathbf{u})\}$

have the same orientation. Then

$$\sigma_{+}\sigma_{-} = -1$$
, $\mathbf{r}_{+}(2\pi;\mathbf{u}) = \sigma_{+}\mathbf{r}_{-}(\pi;\mathbf{u}) = \sigma_{+}\sigma_{-}\mathbf{r}_{+}(0,\mathbf{u}) = -\mathbf{r}_{+}(0,\mathbf{u})$.

Similarly, we have

$$\mathbf{r}_{-}(2\pi;\mathbf{u}) = -\mathbf{r}_{-}(0;\mathbf{u}).$$

4. Since the eigenvalues $\lambda_{\pm}(\theta; \mathbf{u})$ are periodic functions of θ with period 2π for fixed $\mathbf{u} \in \mathbb{R}^2$, so are their gradients. Then

$$\nabla_{\mathbf{u}}\lambda_{\pm}(2\pi;\mathbf{u})\cdot\mathbf{r}_{\pm}(2\pi;\mathbf{u})=-\nabla_{\mathbf{u}}\lambda_{\pm}(0;\mathbf{u})\cdot\mathbf{r}_{\pm}(0;\mathbf{u}).$$

Noticing that

$$\nabla_{\mathbf{u}}\lambda_{\pm}(\theta;\mathbf{u})\cdot\mathbf{r}_{\pm}(\theta;\mathbf{u})$$

varies continuously with θ for any fixed $\mathbf{u} \in \mathbb{R}^2$, we conclude that there exists $\theta_{\pm} \in (0, 2\pi)$ such that

$$\nabla_{\mathbf{u}}\lambda_{\pm}(\theta_{\pm};\mathbf{u})\cdot\mathbf{r}_{\pm}(\theta_{\pm};\mathbf{u})=0.$$

This completes the proof.

Exercise: Give a detailed proof for the general case m=2k, $k \ge 1$ odd.

Euler Equations: d = 2

Isentropic Euler Equations: m = 3

$$\lambda_0 = \omega_1 u_1 + \omega_2 u_2, \quad \lambda_{\pm} = \omega_1 u_1 + \omega_2 u_2 \pm \sqrt{p'(\rho)},$$

$$\mathbf{r}_0 = (-\omega_2, \omega_1, 0)^{\top}, \quad \mathbf{r}_{\pm} = (\pm \omega_1, \pm \omega_2, \frac{\rho}{\sqrt{p'(\rho)}})^{\top},$$

which implies

$$\nabla \lambda_0 \cdot \mathbf{r}_0 \equiv 0, \quad \nabla \lambda_{\pm} \cdot \mathbf{r}_{\pm} = \pm \frac{\rho p''(\rho) + 2p'(\rho)}{2p'(\rho)}.$$

Full Euler Equations: m = 4

$$\lambda_0 = \omega_1 u_1 + \omega_2 u_2, \quad \lambda_{\pm} = \omega_1 u_1 + \omega_2 u_2 \pm \sqrt{\gamma p/\rho},$$

$$\mathbf{r}_0 = (-\omega_2, \omega_1, 0, 1)^{\top}, \quad \mathbf{r}_{\pm} = (\pm \omega_1, \pm \omega_2, \sqrt{\gamma p \rho}, \rho \frac{\rho}{\gamma \rho})^{\top},$$

which implies

$$\nabla \lambda_0 \cdot \mathbf{r}_0 \equiv 0, \quad \nabla \lambda_{\pm} \cdot \mathbf{r}_{\pm} = \pm \frac{\gamma + 1}{2} \neq 0.$$

Quite often, linear degeneracy results from the loss of strict hyperbolicity.

For example, even in the one-dimensional case:

If there exists $j \neq k$ such that

$$\lambda_j(\mathbf{u}) = \lambda_k(\mathbf{u})$$
 for all $\mathbf{u} \in K$,

then Boillat (1972) proved that

the j- and k-characteristic families are linearly degenerate in K.

Singularities \Longrightarrow Discontinuous/Singular Solutions

Cauchy Problem in \mathbb{R}^3 for polytropic gases with smooth initial data:

$$(\rho, \mathbf{v}, S)|_{t=0} = (\rho_0, \mathbf{v}_0, S_0)(\mathbf{x}), \quad \rho_0(\mathbf{x}) > 0, \ \mathbf{x} \in \mathbb{R}^3,$$

satisfying

$$(\rho_0, \mathbf{v}_0, S_0)(\mathbf{x}) = (\bar{\rho}, 0, \bar{S}) \quad \text{for} \quad |\mathbf{x}| \ge R, \tag{1}$$

where $\bar{\rho} > 0$, \bar{S} , and R are given constants.

The support of the smooth disturbance $(\rho_0(\mathbf{x}) - \bar{\rho}, \mathbf{v}_0(\mathbf{x}), S_0(\mathbf{x}) - \bar{S})$ propagates with speed at most $\sigma = \sqrt{p_\rho(\bar{\rho}, \bar{S})}$ (the sound speed), that is,

$$(\rho, \mathbf{v}, S)(t, \mathbf{x}) = (\bar{\rho}, 0, \bar{S}), \quad \text{if} \quad |\mathbf{x}| \ge R + \sigma t.$$
 (2)

Singularities

$$P(t) = \int_{\mathbb{R}^3} \left(\rho(t, \mathbf{x}) \exp(S(t, \mathbf{x})/\gamma) - \bar{\rho} \exp(\bar{S}/\gamma) \right) d\mathbf{x},$$

$$F(t) = \int_{\mathbb{R}^3} \mathbf{x} \cdot (\rho \mathbf{v})(t, \mathbf{x}) d\mathbf{x}$$

Theorem (Sideris 1985). Suppose that $(\rho, \mathbf{v}, S)(t, \mathbf{x})$ is a C^1 solution for 0 < t < T and

$$P(0) \ge 0, \quad F(0) > \frac{16\pi}{3} \sigma R^4 \max_{\mathbf{x}} \{ \rho_0(\mathbf{x}) \}.$$
 (3)

Then the lifespan T of the C^1 solution is finite.

Remark. Condition (3) can be replaced by the condition: $S_0(\mathbf{x}) \geq \bar{S}$ and, for some $0 < R_0 < R$,

$$\int_{|\mathbf{x}|>r} |\mathbf{x}|^{-1} (|\mathbf{x}|-r)^2 (\rho_0(\mathbf{x})-\bar{\rho}) d\mathbf{x} > 0,$$

$$\int_{|\mathbf{x}|>r} |\mathbf{x}|^{-3} (|\mathbf{x}|^2-r^2) \mathbf{x} \cdot (\rho_0 \mathbf{v}_0)(\mathbf{x}) d\mathbf{x} \ge 0 \quad \text{for } R_0 < r < R.$$

Singularities: Proof —1: $M(t) = \int_{\mathbb{R}^3} (\rho(t, \mathbf{x}) - \bar{\rho}) d\mathbf{x}$

Using (2), equations (E-1), and integration by parts yields

$$M'(t) = -\int_{\mathbb{R}^3} \nabla \cdot (\rho \mathbf{v}) d\mathbf{x} = 0, \quad P'(t) = -\int_{\mathbb{R}^3} \nabla \cdot (\rho \mathbf{v} \exp(S/\gamma)) d\mathbf{x} = 0,$$

which implies M(t) = M(0), P(t) = P(0).

$$F'(t) = \int_{\mathbb{R}^3} (\rho |\mathbf{v}|^2 + 3(p - \bar{p})) d\mathbf{x} = \int_{B(t)} (\rho |\mathbf{v}|^2 + 3(p - \bar{p})) d\mathbf{x}, \quad (4)$$

where $B(t) = \{ \mathbf{x} \in \mathbb{R}^3 : |\mathbf{x}| \le R + \sigma t \}.$

From Hölder's inequality and (3)–(4), one has

$$\int_{B(t)} p \, d\mathbf{x} \ge \frac{1}{|B(t)|^{\gamma - 1}} \left(\int_{B(t)} p^{1/\gamma} d\mathbf{x} \right)^{\gamma} \\
= \frac{1}{|B(t)|^{\gamma - 1}} \left(P(0) + \int_{B(t)} \bar{p}^{1/\gamma} d\mathbf{x} \right)^{\gamma} \ge \int_{B(t)} \bar{p} \, d\mathbf{x}.$$

$$\Longrightarrow F'(t) \ge \int_{\mathbb{R}^3} \rho |\mathbf{v}|^2 d\mathbf{x} \ge 0. \tag{5}$$

Proof —2: By the Cauchy-Schwarz inequality and (4)

(i)
$$F(0) > 0 \implies F(t) > 0$$
 for $0 < t < T$.

(ii)
$$F(t)^{2} = \left(\int_{B(t)} \mathbf{x} \cdot \rho \mathbf{v} d\mathbf{x}\right)^{2} \leq \int_{B(t)} \rho |\mathbf{v}|^{2} d\mathbf{x} \int_{B(t)} \rho |\mathbf{x}|^{2} d\mathbf{x}$$

$$\leq (R + \sigma t)^{2} \int_{B(t)} \rho |\mathbf{v}|^{2} d\mathbf{x} \left(M(t) + \int_{B(t)} \bar{\rho} d\mathbf{x}\right)$$

$$\leq (R + \sigma t)^{2} \int_{B(t)} \rho |\mathbf{v}|^{2} d\mathbf{x} \left(\int_{B(t)} (\rho_{0}(\mathbf{x}) - \bar{\rho}) d\mathbf{x} + \int_{B(t)} \bar{\rho} d\mathbf{x}\right)$$

$$\leq \frac{4\pi}{3} (R + \sigma t)^{5} \max_{\mathbf{x}} \{\rho_{0}(\mathbf{x})\} \int_{B(t)} \rho |\mathbf{v}|^{2} d\mathbf{x}$$

$$\leq \frac{4\pi}{3} (R + \sigma t)^{5} \max_{\mathbf{x}} \{\rho_{0}(\mathbf{x})\} F'(t).$$

Dividing by $F(t)^2$ above and integrating from 0 to T yields

$$F(0)^{-1} > F(0)^{-1} - F(T)^{-1} \ge \frac{R^{-4} - (R + \sigma T)^{-4}}{\frac{16}{3}\pi\sigma\max\{\rho_0(x)\}}$$

$$\implies (R + \sigma T)^4 < \frac{R^4 F(0)}{F(0) - \frac{16}{3} \pi \sigma R^4 \max\{\rho_0(x)\}}$$

Singularities: Remarks

- 1. The method of the proof above applies equally well in 1– and 2–space dimensions. In the isentropic case (S is a constant), the condition $P(0) \ge 0$ reduces to $M(0) \ge 0$.
- 2. To illustrate a way in which the conditions in (3) may be satisfied, consider the case: $\rho_0 = \bar{\rho}$, $S_0 = \bar{S}$. Then (3) holds (with P(0) = 0) if

$$\int_{|\mathbf{x}| < R} \mathbf{x} \cdot \mathbf{v}_0(\mathbf{x}) d\mathbf{x} > \frac{16\pi}{3} \sigma R^4.$$

Comparing both sides, one finds that the initial velocity must be supersonic in some region relative to the sound speed at infinity. The formation of a singularity is detected as the disturbance overtakes the wave front forcing the front to propagate with supersonic speed.

- 3. The result indicates that the C^1 regularity of solutions breaks down in a finite time. It is believed that in fact only $\nabla \rho$ and $\nabla \mathbf{v}$ blow up in most cases [Alinhac 1993: Axisymmetric initial data in \mathbb{R}^2 .]
- D. Christodoulou, 2007: The formation of shocks in 3-dimensional relativistic perfect fluids: Nature of breakdown...

BV or L^1 Bounds for Multi-D Case?

Case $d = 1, m \ge 2$: Glimm's BV theory: 1965

$$\|\mathbf{u}(t,\cdot)\|_{BV} \leq C\|\mathbf{u}_0(\cdot)\|_{BV}$$

as long as $\|\mathbf{u}_0(\cdot)\|_{BV}$ is small enough.

Case d = 1, m = 2: L^{∞} Bounds

or

$$\|\mathbf{u}(t,\cdot)-\bar{\mathbf{u}}\|_{L^{\infty}}\leq C\|\mathbf{u}_0-\bar{\mathbf{u}}\|_{L^{\infty}}$$

for the Isentropic Euler equations [DiPerna, Ding-Chen-Luo, Chen, Lions-Perthame-Tadmor, Lions-Perthame-Souganidis, Chen-LeFloch].

The first test should be to investigate whether entropy solutions for the multidimensional case satisfy the relatively modest stability estimate:

$$\|\mathbf{u}(t,\cdot) - \bar{\mathbf{u}}\|_{L^p} \le C_p \|\mathbf{u}_0 - \bar{\mathbf{u}}\|_{L^p},$$
 (*)
 $\|\mathbf{u}(t,\cdot)\|_{BV} \le C \|\mathbf{u}_0\|_{BV}.$

Since we assume that the system is endowed with a strictly convex entropy, then we conclude that the L^2 -estimate holds.

Question: ?? L^p -estimate for any $p \neq 2$?? The case p = 1 and $p = \infty$ is of particular interest.

BV or L^1 Bounds for Multi-D Case?

Rauch (1987): The necessary condition for the system to be held is

$$\nabla \mathbf{f}_k \, \nabla \mathbf{f}_l = \nabla \mathbf{f}_l \, \nabla \mathbf{f}_k, \quad k, l = 1, \cdots, d.$$
 (**)

Dafermos (1995): When m=2, the necessary condition (**) is also sufficient for (*) for any $1 \le p \le 2$ and, under additional assumptions on the system, even for $p=\infty$.

The analysis suggests that only systems in which the commutativity relation (**) holds offer any hope for treatment in the framework of L^1 .

This special case includes the scalar case m=1 and the case of single space dimension d=1. Beyond that, it contains very few systems of (even modest) physical interest. An example is the system with fluxes:

$$\mathbf{f}_k(\mathbf{u}) = \phi(|\mathbf{u}|^2)\mathbf{u}, \qquad k = 1, 2, \dots, d,$$

which governs the flow of a fluid in an anisotropic porous medium.

- L. Ambrosio and C. De Lellis 2003: $\exists \mathbf{u}(t, \mathbf{x}) \in L^{\infty}$ for t > 0
- C. De Lellis: Duke Math. J. 2005: $u_0 \in BV$, but $u(t, \mathbf{x}) \notin BV$ for t > 0

Question: ?? L^1 -Stability??

Commutativity Relation (**) vs Linear Stability

The reason why the relation (**) is the necessary condition for (*) is based on the linear theory by Brenner 1966 who proved the following:

Consider the linear symmetric hyperbolic system

$$\partial_t \mathbf{u} + \sum_{k=1}^d A_k(t, \mathbf{x}) \partial_{x_k} \mathbf{u} = 0.$$
 (***)

Then the following three statements are equivalent:

- (i) (*) is satisfied for some $p \neq 2$;
- (ii) (*) holds for all $1 \le p \le \infty$;
- (iii) A_k commute:

$$A_k A_l = A_l A_k$$
, for all $l, k = 1, 2, \dots, d$.

Nonuniquess for the Isentropic Euler Equations

Camillo De Lellis and László Székelyhidi Jr.: 2010:

Theorem

Let $d \geq 2$. Then, for any given function $p = p(\rho)$ with $p'(\rho) > 0$ when $\rho > 0$, there exist bounded initial data (ρ_0, \mathbf{v}_0) with $\rho_0(\mathbf{x}) \geq c_0 > 0$ for which there exist infinitely many bounded solutions (ρ, \mathbf{v}) with $\rho \geq c > 0$, satisfying the energy identity in the sense of distributions:

$$\partial_t \left(\rho \left(\frac{|\mathbf{v}|^2}{2} + e(\rho) \right) \right) + \nabla_{\mathbf{x}} \cdot \left(\rho \mathbf{v} \left(\frac{|\mathbf{v}|^2}{2} + e + \frac{p}{\rho} \right) \right) = 0.$$

Point: Vortex Sheets, Vorticity Waves, Entropy Waves,

. . . ,

Discontinuities of Solutions

$$\partial_t \mathbf{u} + \nabla \cdot \mathbf{f}(\mathbf{u}) = 0, \qquad \mathbf{x} = (x_1, \dots, x_d)^\top \in \mathbb{R}^d$$

An oriented surface $\Gamma(t)$ with unit normal $\mathbf{n} = (n_t, \dots, n_d)^{\top} \in \mathbb{R}^d$ in the (t, \mathbf{x}) -space is a discontinuity of a piecewise smooth entropy solution U with

$$\mathbf{u}(t,\mathbf{x}) = \begin{cases} \mathbf{u}^+(t,\mathbf{x}), & (t,\mathbf{x}) \cdot \mathbf{n} > 0, \\ \mathbf{u}^-(t,\mathbf{x}), & (t,\mathbf{x}) \cdot \mathbf{n} < 0, \end{cases}$$

if the Rankine-Hugoniot Condition is satisfied

$$(\mathbf{u}^+ - \mathbf{u}^-, \mathbf{f}(\mathbf{u}^+) - \mathbf{f}(\mathbf{u}^-)) \cdot \mathbf{n} = \mathbf{0} \quad \text{along } \mathbf{\Gamma}(\mathbf{t}).$$

The surface $(\Gamma(t), \mathbf{u})$ is called a Shock Wave if the Entropy Condition (i.e., the Second Law of Thermodynamics) is satisfied:

$$(\eta(\mathbf{u}^+) - \eta(\mathbf{u}^-), \mathbf{q}(\mathbf{u}^+) - \mathbf{q}(\mathbf{u}^-)) \cdot \mathbf{n} > \mathbf{0}$$
 along $\Gamma(\mathbf{t})$,

for some $(\eta(\mathbf{u}), \mathbf{q}(\mathbf{u}))$: $\nabla^2 \eta(\mathbf{u}) \geq 0$, $\nabla q_j(\mathbf{u}) = \nabla \eta(\mathbf{u}) \mathbf{f}_j(\mathbf{u})$, $j = 1, \dots, d$ Example: For the full Euler equations: $(\eta(\mathbf{u}), \mathbf{q}(\mathbf{u})) = (-\rho S, -\rho \mathbf{v} S)$.

Two Types of Discontinuities

Noncharacteristic Discontinuities: Shock Waves:

Characteristic Discontinuities: Vortex Sheets/Entropy Waves

Vortex from a Wedge

82. Vortex from a wedge in a shock tube. This schileren photograph shows the vertex that spirals from the tip of a thin wedge after the sit is set in motion normal to it by the passage of a weak place shock wave, which is our of sight to the right. Other photographs show that the flow pattern is "conical" or "pseudo-stationary," remaining always similar to itself but growing in size in proportion to the time. Photograph by Walter Biositary.

83. Density in a vortex from a wedge. A quite different view of the phenomenon above is given by this infinitefrings interferogram, which shows lines of constant den-

sity. A striking feature is the almost perfectly circular density distribution about the center of the vortex, extending nearly to the wedge. Photograph by Walker Blasious

Mach Reflection-Diffraction I

Mach Reflection-Diffraction II

Kelvin-Helmholtz Instability I: Clouds over San Francisco

Kelvin-Helmholtz Instability II

Kelvin-Helmholtz Instability III

Good Frameworks for Studying Entropy Solutions of Multidimensional Conservation Laws?

One of such candidates may be derived from the theory of divergence-measure fields, which is based on the following class of Entropy Solutions:

(i)
$$\mathbf{u}(t,\mathbf{x}) \in \mathcal{M}, L^p, 1 \leq p \leq \infty$$
;

(ii) For any convex entropy pair (η, \mathbf{q}) ,

$$\partial_t \eta(\mathbf{u}) + \nabla_{\mathbf{x}} \cdot \mathbf{q}(\mathbf{u}) \leq 0 \qquad \mathcal{D}'$$

as long as
$$(\eta(\mathbf{u}(t,\mathbf{x})),\mathbf{q}(\mathbf{u}(t,\mathbf{x}))) \in \mathcal{D}'$$

Then Schwartz lemma tells us that

$$\operatorname{div}_{(t,x)}(\eta(\mathbf{u}(t,x)), \mathbf{q}(\mathbf{u}(t,x))) \in \mathcal{M}$$

$$\Longrightarrow$$

The vector field $(\eta(\mathbf{u}(t,\mathbf{x})),\mathbf{q}(\mathbf{u}(t,\mathbf{x})))$ is a divergence measure field.

Approaches and Strategies: Proposal

Diverse Approaches in Sciences:

- Experimental data
- Large and small scale computing by a search for effective numerical methods
- Modelling (Asymptotic and Qualitative)
- Rigorous proofs for prototype problems and an understanding of the solutions

Two Strategies as a first step:

- Study good, simpler nonlinear models with physical motivations;
- Study special, concrete nonlinear problems with physical motivations

Meanwhile, extend the results and ideas to:

- Study the Euler equations in gas dynamics and elasticity
- Study nonlinear systems that the Euler equations are the main subsystem or describe the dynamics of macroscopic variables such as MHD, Euler-Poisson Equations, Combustion, Relativistic Euler Equations,
- Study more general hyperbolic systems and related problems
- Develop further new mathematical ideas, techniques, approaches, as well as new mathematical theories

Basic References I

- Gui-Qiang Chen, Multidimensional Conservation Laws: Overview, Problems, and Perspective, In: Nonlinear Conservation Laws and Applications, IMA Volume 153 in Mathematics and Its Applications, pp. 23–72, Eds. A. Bressan, G.-Q. Chen, M. Lewicka, and D. Wang, Springer-Verlag: New York, 2010
- Gui-Qiang Chen, Euler Equations and Related Hyperbolic Conservation Laws, In: Handbook of Differential Equations: Evolutionary Differential Equations, Vol. 2, pp. 1-104, 2005, Elsevier: Amsterdam, Netherlands
- Gui-Qiang Chen and Mikhail Feldman, Shock Reflection-Diffraction and Multidimensional Conservation Laws, In: Hyperbolic Problems: Theory, Numerics and Applications, pp, 25–51, Proc. Sympos. Appl. Math. 67, Part 1, AMS: Providence, RI, 2009.
- Gui-Qiang Chen, Monica Torres, and William Ziemer, Measure-Theoretical Analysis and Nonlinear Conservation Laws, Pure Appl. Math. Quarterly, 3 (2007), 841–879.

Basic References II

- Gui-Qiang Chen and Mikhail Feldman, Global Solutions of Shock Reflection by Large-Angle Wedges for Potential Flow, Annals of Mathematics, 171 (2010), 1067–1182.
- Gui-Qiang Chen and Ya-Guang Wang, Characteristic Discontinuities and Free Boundary Problems for Hyperbolic Conservation Laws, Proceedings of the Abel Symposium on Nonlinear PDE, Springer, 2011 (to appear)
- Gui-Qiang Chen, Monica Torres, and William Ziemer, Gauss-Green Theorem for Weakly Differentiable Fields, Sets of Finite Perimeter, and Balance Laws, Communications on Pure and Applied Mathematics, 62 (2009), 242–304.
- Gui-Qiang Chen, Marshall Slemrod, and Dehua Wang, Conservation Laws: Transonic Flow and Differential Geometry, Proc. Sympos. Appl. Math. 67, Part 1, pp. 217–226, AMS: Providence, RI, 2009.
- Constantine M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Third edition. Springer-Verlag: Berlin, 2010.