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Hyperbolic Conservation Laws

dfu+v f( ):O

u=(u. - um)', x=0xq, " .xq), V="_(0y, - .0,)
f=(f.---.f5): R™ = (R™)? s a nonlinear mapping
fi R"m —R™ for i=1,---.d
JeA(u,ug, Vu) + V- B(u,u;, Vu) =0
A.B: R™ x R™ x (R™)4 — R™ are nonlinear mappings

Connections and Applications:

@ Fluid Mechanics and Related: Euler Equations and Related Equations
Gas, shallow water, elastic body, reacting gas, plasma, ....

@ Special Relativity: Relativistic Euler Equations and Related Equations
General Relativity: Einstein Equations and Related Equations

o Differential Geometry: lsometric Embeddings, Nonsmooth Manifolds..



Convex Entropy and Hyperbolicity

Entropy: 1 : R” — R if there exists q:
q=(q, - .qq) : R" = R

satisfying Vg;(u) = Vy(u)Vfi(u), i=1---.d

Convex entropy 7(u): V2n(u)

v o IV

0
Strictly convex entropy 7(u):  V?;(u) > 0
Entropy inequality:  For any convex (1. q) € C°.

dn(u)+V-qu)<0 D

Theorem. If system (*) is endowed with a strictly convex

entropy 77 in a state domain D, then system (*) must be
hvperbolic and symmetrizable in D.



Proof —I: Sketch

1. Taking V, both sides: Vn(u) Vyfi(u) = Vyqe(u), k =1,2,--- . d, to

obtain
\73”(“) v’ufk(“) - VUU(U) vgfk(u) — vﬁQk(u)*

Using the symmetry of the matrices V,,7)(u)V2f,(u) and VZ2q,(u), we
find that, for fixed k =1,2.--- .d,

V21(u)Vufi(u) is symmetric.
2. Multiplying system (*) by V25(u) yields
V2n(u)deu + V21(u)Vyf(u) - Veu = 0. (%)

Since V2n(u) > 0, the hyperbolicity of (*) and the hyperbolicity of (**)
is equivalent.

The hyperbolicity of (**) is equivalent to:

For any w € S9=1 3|l zeros of the determinant

AVin(u) — Vin(u)Vf(u) - o are real.




Proof —Il: Sketch

3. Since V?7)(u) is a real symmetric, positive definite matrix,
then there exists a matrix C(u) such that

V2(u) = C(u)C(u)T.

Then it is equivalent to showing that,

For any w € S9=1  the eigenvalues of the following matrix
C(u)~t (V*n(u)Vf(u) - w) (C(u)™)' are real.
This is TRUE  since the matrix is real and symmetric.

Remarks.
1. The proof is taken from Friedrich-Lax 1971

2. A system of conservation laws is endowed with a strictly convex entropy
if and only if the system is conservatively symmetrizable.

Friedrich-Lax 1971
Godunov 1961, 1978, 1987;  Boillat 1965;  Mock (Sever) 1980;



Conservatively Symmetrizable: Godunov 1961

There exists an invertible change of variables u = ®(w) € R™, with
inverse w — W(u), such that
o d(w) is the gradient (with respect to w) of a scalar map
a0 : R™ — R with V,,®(w) = V2 ap(w) strictly positive definite.
o f(d(w)) is the gradient (with respect to w) of a vector may
(a1, .ag) : R™ — RY.

Then system (*) can be written as

d
“’r WSU Z = 0.

or, equivalently, as Ao(w)drw + ijl Aj(w)dxw =0
where the m x m matrices A;.i =0,1,--- .d, are symmetric Jacobians.
Remarks:

o u—w=V(u)=V,yn(u)
o 7j(u) =u-V(u) —a(V¥(u)), q(u)=u-V(u)—(ar.---.3)(V(u))




Applications |: Local Existence and Stability

@ Local Existence of Classical Solutions

up € H-NL*. s> g+ 1 = ue C([0. T]; H5)n C([0, T]; H* 1)

Kato 1975, Majda 1984
Makino-Ukai-Kawashima 1986, Chemin 1990, - - -

@ Local Existence and Stability of Shock Front Solutions
u(x) = ut(t.x), (t.x)e ST,
u—(t.x), (t.x)e S~
Majda 1983, Métivier 1990,

The symmetry plays an essential role in the following situation:

2u’ V25(v)VFi(v)dy, u
= Oy, (U V2(V)VE (V)u) — u' 0y (V25(v) Vi (v))u

to get the first energy estimate (the [? estimate)



Applications Il: Stability of Lipschitz Solutions—1

v € K is a Lipschitz solution on [0, T') with initial data vo(x)
u € K is any entropy solution on [0, T) with initial data ugp(x)

/ u(t.x) — v(t.x)]%dx < C(T)/ lug(x) — vo(x)|%dx
x|<R

|x|<R+Lt

Sketch of Proof: Assume that V27(u) > ¢ > 0

1. Use the Dafermos relative entropy and entropy flux pair:

i(u,v) = () = n(v) = Vi(v)(u —v)> co(u —v)?,
q(u.v) = q(u) —q(v) — Vi(v)(f(u) — f(v))

and compute to find

def(u.v) + Vi - q(u.v)

d
< —{De(Vn(v)(u—v) + Y 9 (Vn(v))(Fi(u) — fie(v))}.
k=1



Applications Ill: Stability of Lipschitz Solutions—2

2. Since v is a classical solution, we use the symmetry property with the
strictly convex entropy 1 to have

d
0:(Vn(v)) = (8:v) TV n(v) = =) (9 fk(v)) T V7n(v)
k=1
d d
= =3 (@, V)T (VR (V) TV2(v) = = Y (0, v) T (V2 (v) Vi (v)) "
k=1 k=1

d
= =) (8v)TV(v) Vi (V).
k=1

— deij(u,v) + Vy - q(u, v)
d
< — Z(E:")xku) VZ(v) (fi(u) — fi(v) — VE(v)(u —v))
k=1
Integrating over aset {(7.x) : 0 <7< t<T. x| <R+ L(t—7)} for
[ > 0 and employing the Gronwall inequality to conclude the result.



Applications Ill: Remarks

1. The proof is taken from Dafermos 2002
Also Dafermos 1979 and DiPerna 1979

2. The stability of rarefaction waves for the Euler equations for

multidimensional compressible fluids also holds:
G.-Q. Chen & J. Chen: JHDE 2007

3. Multidimensional hyperbolic systems of conservation laws with

partially convex entropies and involutions: Dafermos 2002
Also Dafermos 1986, Boillat 1988.

4. For multidimensional hyperbolic systems of conservation laws
without a strictly convex entropy, it is possible to enlarge the
system so that the enlarged system is endowed with a globally
defined, strictly convex entropy.

Elastodynamics: Isentropic Model

Electromagnetism: Born-Infeld Nonlinear Model



Strict Hyperbolicity

Lax 1982, Friedland-Robin-Sylvester 1984
For d = 3, there are no strictly hyperbolic systems when

m = 2, £3, 4 (mod 8)

Theorem. Let A, B. C be the three matrices such that
oA+ (B +~C

has real eigenvalues for any real v, 3. 7.

When
m = +2. 43, £4 (mod 8),

then there exist (. 50.70). u% + _.-"fg + ",S -+ 0 such that
EIU.A + ng -+ ’f-'[jC

is degenerate, that is, there are two eigenvalues of the matrix which
coincide.



Proof—I: We prove only the case m = 2(mod 4)

1. Denote M the set of all real m x m matrices with real eigenvalues

Denote N the set of nondegenerate matrices that have m distinct real
eigenvalues in M

The normalized eigenvectors r; of N € N
Nrj:)\jl’j. ‘l‘j‘:l‘__,f':1.2.-” . 1M,
are determined up to a factor =1.

2. Let N(#).0 < # < 27, be a closed curve in NV (if exists!).

If we fix rj(0), then r;(f)) can be determined uniquely by requiring
continuous dependence on . Since N(27) = N(0), then

r_,-(2?r) — le’j(o)ﬁ Tj = +1.
Clearly,
(i) Each 7 is a homotopy invariant of the closed curve;

(ii) Each 7; = 1 when N(#) is constant.



Proof—Il: m = 2(mod 4)

3. Suppose now that the theorem is false. Then
N(6) = cos#A + sinfl B
is a closed curve in N and  A(6) < A\a(6) < --- < Am(0).
Since N(m) = —N(0), we have
Ni(m) = =Am—j+1(0).  rj(7m) = pjrm—j+1(0). pj = =1.

Since the ordered basis {ri(f).ra2(#), - ,rm(#)} is defined continuously, it
retains its orientation. Then the ordered bases

111(0),r2(0), - ,rm(0)} and  {p1rm(0). parm_1(0).--- , pmr1(0)}

have the same orientation.
Since m = 2(mod 4), reversing the order reverses the orientation of an

ordered basis, which implies 172, p; = —1 (exercise?). Then there exists k
such that
PkPm—k+1 — —1.



Proof—Ill: m = 2(mod 4)

Since N(6 +m) = —N(#), then
/“\j(lg + ’}T) — _/\m—j—l—l(ﬁ)*

which iITI[J“E‘S rj(QFT) — f"jrm—j—l—l(ﬁ) — f"jf”m—j—l—lrm—j—l—l(o)-
T herefore, we have

Tj = PjiPm—j+1-

Then Step 3 implies 7, = —1, which yields that the curve

N(#) = costlA + sinf B is not homotopic to a point.

4. Suppose that all matrices of form
aA+ B+~C, o?+p%2+~2=1, belong .

Then, since the sphere is simply connected, the curve N(#) could be
contracted to a point, contracting 7, = —1.
This completes the proof.



Isentropic Euler Equations

dep+ V- (pv) =0
Ot (pv) + V - (pv X V) +Vp =0

where the pressure is regarded as a function of density
with constant Sp:

p = p(p: So)
For a polytropic gas,

p(p) = Kop'. v > 1.

where rg > 0 Is any constant under scaling



Isentropic Euler Equations

Case d = 2, m = 3: Strictly hyperbolic

A < Ao < AL, when p > 0

AL = with + woun =/ p'(p)

Case d = 3, m = 4: Nonstrictly hyperbolic since

Ao = wily + wolo.

Ao = Wil + woly + w3u3

has double multiplicity, with
AL = wiug + watn +w3uz £/ p'(p)



Full Eul

(Dep+ V- (pv) =
J Oc(pv) V- (pv e ’“’) TVP=0 (¢ x) e R¥ = (0, 00) x RY
k de (pE) + V- (;N(E + —})) = (
Constitutive Relations: p=p(p.e). E = %|w|2 +e
T = % —Deformation gradient (specific volume for fluids, strain for solids)
v=_(vi. - .vg)" —Fluid velocity with m = pv the momentum vector

p —Scalar pressure

E —Total energy with e the internal energy which is a given function of
(7.p) or (p. p) defined through thermodynamical relations

The notation a @ b denotes the tensor product of the vectors a and b



Full Euler Equations

Case d = 2, m = 4: Nonstrictly hyperbolic since
Ao = Wil + wols

has double multiplicity, with

AL = wiug +woatp £/ Yp/p

Case d = 3, m = 5: Nonstrictly hyperbolic since
Ao = wil] + wolp + w3 U3

has triple multiplicity, with

AL = wWily + wolly + w3z = \/ "}-"p/ﬂ



Genuine Nonlinearity

VuAj(u;w) - rj(u;w) #0 for any w € S9-1
Theorem. Any scalar quasilinear conservation law in d-space dimension
(d > 2) is never genuinely nonlinear in all directions.
In this case, A(v;w) =f(u)-wand r=1,
N(u;w)r=f(u)-w
Impossible to make this never equals to zero.

Generalization: Genuine Nonlinearity:

(u:7+F(u)-w=0}[=0 forany (r.w)e 5%

Under this strong nonlinearity:
(i) Solution operators are compact:
Lions-Perthame-Tadmor 1994, Tao-Tadmor 2007
(ii) Decay of periodic solutions: ~ Chen-Frid 1999
(iii) Trace of entropy solutions: Chen-Rascle 2000, Vasseur 2001, - --
(iv) Structure of L* entropy solutions: Otto-Delellis-Westdickenberg 2003




Genuine Nonlinearity

Theorem (Lax 1984). Every real, strictly hyperbolic quasilinear system for
d =2, m=2k. k > 1 odd.

is linearly degenerate in some direction.

Proof. We prove only for the case m = 2.
1. For fixed u € R™, define C(#;u) = Vfi(u) costl + Vi (u) sinf.
Denote the eigenvalues of C(#;u) by Ay(#;u): A_(6;u) < AL(#;u) with

C(O;u)re(0;u) = A (; u)re(O;u).  |re(G;u)| = 1.

This still leaves an arbitrary factor =1, which we fix arbitrarily at # = 0.
For all other ¢ € [0, 27] by requiring r.(#; u) to vary continuously with 6.
2. Since C(0 + m;u) = —C(0;u),

Ae(0+mu)==A_(6;u), \_(0+m;u) ==\, (#;u).
It follows from this and |r+| = 1 that

ro(0+mu)=orr_(0;u), r_(0+m,u) =o_r.(0;u), with o =1 or —1.



Genuine Nonlinearity

3. Since r+(#; u) were chosen to be continuous functions of #, we have

(i) o4+ are also continuous functions of # and, thus, they must be constant
since o+ = +1;

(ii) The orientation of the ordered basis: {r_(#;u), r-(#;u)} does not
change and, hence, the bases

{r_(O;u), r.(0;u)} and {r_(m;u), ro(mu)}
have the same orientation.
Therefore, by Step 2,
{r_(O;u), r.(0;u)} and {o_r.(0;u), o r_(O;u)}
have the same orientation. Then
oro_=—1. rio(2mu)=oyr_(mu) =ocro_r(0,u) = —ro (0. u).

Similarly, we have
r_(2m;u) = —r_(0; u).



Genuine Nonlinearity

4. Since the eigenvalues A\ (#; u) are periodic functions of # with period
27 for fixed u € R?, so are their gradients. Then

Vud+(2mu) - re(2mu) = =V AL (0;u) - r+(0; u).

Noticing that
VuAsL(G;u) -re(f;u)

varies continuously with @ for any fixed u € R?, we conclude that there
exists #+ € (0, 27) such that

Vu/\i(ﬁi; l.l) . I‘i(ﬁi; I.I) = 0.
T his completes the proof.

Exercise: Give a detailed proof for the general case m = 2k, k > 1
odd.



Euler Equations: d = 2

Isentropic Euler Equations: m = 3

Ao = Wil] + wolr, AL = wily +wallh =4/ p
P
)

o = (—Ldg.u.,’l._ U)T. r = (j:wl +wo.

Vv P (p)

ppP"(p) +2p'(p)
2p'(p)

which implies

VAD*FQEU. \7/“\:4':::

Full Euler Equations: m =4

Ao = Wil +wollr, AL = wily + wous = ’T,D/p._

ro = (—wo.w1,0. l)T. ry — (fwi, Tws. 1/*‘};0,9._,0%)?

which implies

¥+ 1

VAg-rg =0, ‘\7)\:|Z~I’:|:::|:'2 =+ 0.




Quite often, linear degeneracy results from
the loss of strict hyperbolicity.

~or example, even in the one-dimensional case:

f there exists j # k such that

Ai(u) = Ay (u) for all u € K,

J

then Boillat (1972) proved that

the j— and k—characteristic families are linearly
degenerate in K.,



Singularities = Discontinuous/Singular Solutions

Cauchy Problem in R for polytropic gases with smooth initial data:
(pV.S)|t=0 = (po.vo. So)(X). po(x) >0, x e R®

satisfying )
(P0: Vo, S0)(x) = (7,0,5)  for [x| >R, (1)

where p > 0, S, and R are given constants.

The support of the smooth disturbance (pg(x) — 7. vo(X), So(x) — S)

propagates with speed at most o = \/pp(ﬁ. S) (the sound speed). that is,

(p.v, S)(t.x) = (p.0.5), if |x|>R+ot. (2)



Singularities

P(t) = [as (p(t,x) exp(S(t.x)/v) — pexp(S/7)) dx.
F(t) = [E3 X - (pv)(t.x)dx

Theorem (Sideris 1985). Suppose that (p.v.S)(t.x) is a C* solution for
0<t< T and

16w 4
; aR" max{po(x)}. (3)

Then the lifespan T of the C! solution is finite.

P(0) >0, F(0) >

Remark. Condition (3) can be replaced by the condition: Sp(x) > S and,
for some 0 < Ry < R,

/ 0= Pols) - ) >0

f x| 3(1x]2 = r3) x - (povo)(x)dx > 0 for Rop < r < R.
x|>r



Singularities: Proof —1: M(t) = [ps(p(t,x) — p)dx

Using (2), equations (E-1), and integration by parts yields
M(t) =~ | V-(w)dx=0. P(t)=— | V-(pwexp(5/7))dx=0.
which impnef M(t) = M(0). P(t) = P(URS.

F(0) = [, (7 3P dx= [ (o 43— P) dx. ()

where B(t) = {x ¢ R3 : |x| < R + ot}.
From Holder's inequality and ( )—(4

),
pdx > / Pt/ dx f
/B(:) B (f}\ (¢) )
1 ( —1/ i _
P{O)—i—[ pt/ 7 dx 2/ p dx.
\ (£)[r1 JB(t) ) B(t)

— F'(t) = / p|v[>dx > 0. (5)
Js

one has




Proof —2: By the Cauchy-Schwarz inequality and (4)

(i) F(0)>0 — F(t)>0 forO<t<T.

2
(ii) F(r)zz(/ X pudlx) g/ p|u\2dx/ olxPdx
B(1) B(1) B(1)
< (R+c:rr)2f p|v\2dx(M(t)+f ﬁdx)

B(t) B(t)

< (R+crt)zf p|u\2dx(/ (;:Jg(x)—ﬁ)dx—kf jdx )
B(1) B(1) B(1)

4_;rr
3

am 5 !

3 (R—I— f‘:rt) mf}{{ﬂg(}{)} F (t)

< —(R + ot)> max{po(x) plv[?dx

B(t)

<

Dividing by F(t)? above and integrating from 0 to T yields
F0)"1 > F(0)~1 — F(T)~1 » R_=(RtaT)

Lo max{ pg(x)}

R*F(0)
(0)—27o R* max{po(x)}

— (R+0T)* < 7




Singularities: Remarks

1. The method of the proof above applies equally well in 1- and 2—space
dimensions. In the isentropic case (S is a constant), the condition

P(0) > 0 reduces to M(0) > 0.
2. To illustrate a way in which the conditions in (3) may be satisfied,
consider the case: pg = g, So = S. Then (3) holds (with P(0) = 0) if

167
/ X - Vo(X)dx > —oR*.
Ix|<R 3

Comparing both sides, one finds that the initial velocity must be
supersonic in some region relative to the sound speed at infinity. The
formation of a singularity is detected as the disturbance overtakes the
wave front forcing the front to propagate with supersonic speed.

3. The result indicates that the C! regularity of solutions breaks down in a
finite time. It is believed that in fact only Vp and Vv blow up in most
cases [Alinhac 1993: Axisymmetric initial data in R? ]

4. D. Christodoulou, 2007: The formation of shocks in 3-dimensional
relativistic perfect fluids: Nature of breakdown...



BV or L' Bounds for Multi-D Case?

Case d =1,m > 2: Glimm's BV theory: 1965

lu(t, )]sy < Clluo(-)l|av
as long as ||ug(+)||gy is small enough.
Case d =1,m=2: L™ Bounds
lu(t,-) = @lp= < Cllup — @lf =

for the Isentropic Euler equations [DiPerna, Ding-Chen-Luo, Chen,
Lions-Perthame-Tadmor, Lions-Perthame-Souganidis, Chen-LeFloch].

The first test should be to investigate whether entropy solutions for the

multidimensional case satisfy the relatively modest stability estimate:

|U(?f?-}—l_le_.D*’_~: Cﬂ‘ll[]—l_,l‘f_p. (*)

or ‘ll(f. j‘ By < C ‘UDHBV'
Since we assume that the system is endowed with a strictly convex entropy, then

we conclude that the [?—estimate holds.

Question: 77 [P—estimate for any p # 2 77
The case p =1 and p = o0 is of particular interest.



BV or [! Bounds for Multi-D Case?

Rauch (1987): The necessary condition for the system to be held is
Vi, Vi =V V., k=1 ---,d. ()

Dafermos (1995): When m = 2, the necessary condition (**) is also

sufficient for (*) for any 1 < p < 2 and, under additional assumptions on
the system, even for p = oc.

The analysis suggests that only systems in which the commutativity
relation (**) holds offer any hope for treatment in the framework of L.

This special case includes the scalar case m = 1 and the case of single

space dimension d — 1. Beyond that, it contains very few systems of (even
modest) physical interest. An example is the system with fluxes:

f(u) = o(|ul*)u. k=1.2,---.d,

which governs the flow of a fluid in an anisotropic porous medium.
L. Ambrosio and C. De Lellis 2003: 3 u(t.x) € L™ for t > 0
C. De Lellis: Duke Math. J. 2005: v € BV, but u(t.x) ¢ BV fort > 0

Question: 7?7 [1=Stability??



Commutativity Relation (**) vs Linear Stability

The reason why the relation (**) is the necessary condition for (*) is
based on the linear theory by Brenner 1966 who proved the following:

Consider the linear symmetric hyperbolic system

d
-‘f)rLH—ZAk(t.x)@xku = 0. (% % %)
k=1

Then the following three statements are equivalent:

(i) (*) is satisfied for some p # 2;

(i) (*) holds for all 1 < p < o0;
(iii)  Ax commute:

A A = A Ax. forall L.k=1.2.---.d.



Nonuniquess for the Isentropic Euler Equations

Camillo De Lellis and Laszlo Székelyhidi Jr.: 2010:

Let d > 2. Then, for any given function p = p(p) with

p'(p) > 0 when p > 0, there exist bounded initial data
(po, Vo) with po(x) > co > 0 for which there exist infinitely
many bounded solutions (p,v) with p > ¢ > 0, satisfying
the energy identity in the sense of distributions:

v[* v|*

O (,0(2 + E‘(p))) + V- (PV(2 +e+ E)) = 0.

Point: Vortex Sheets, Vorticity Waves, Entropy Waves,



Discontinuities of Solutions

du+V-flu)=0. x=(x, - ,xq) eR?

An oriented surface I'(t) with unit normal n = (ne.--- ,ng)' € R? in the
(t,x)-space is a discontinuity of a piecewise smooth entropy solution U

with
u(t,x) = {U+(t.x). (t.x)-n > 0.
u(t,x), (t.x)-n <0,

if the Rankine-Hugoniot Condition is satisfied
(U —u . f(u™)=f(u™))-n=0  along I(t).

The surface (I'(t).u) is called a Shock Wave if the Entropy Condition (i.e.
the Second Law of Thermodynamics) is satisfied:

(n(u™) —=n(u™),q(u™) —q(u7))-n>0  along I(t),

for some (7(u), q(u)): V?p(u) >0, Vgj(u) = Vy(u)fi(u), j=1,--- . d
Example: For the full Euler equations: (1j(u).q(u)) = (—pS.—pvS).



Two Types of Discontinuities

Noncharacteristic Discontinuities: Shock Waves:

)= -0 v # V- (i) (pr Vi )= (p -} 4 # 9-



Vortex from a Wedge

B2, Vortex from & wedge @ s sbock dube, This

L] showns the woreex thai ]
thin wedge afrer the al

83, Densiry i a vortes fram s wadpe, A quite Efereni ity A siriking lessure o the alm
view of i phenomescs abowe B geen by i infinie gry Amrfbunion
Iricg ervterizrogmm, which shows liss of cocaiant den newrly o the we




Mach Reflection-Diffraction |




Mach Reflection-Diffraction ||




Kelvin-Helmholtz Instability I: Clouds over San Francisco




Kelvin-Helmholtz Instability 11




Kelvin-Helmholtz Instability |




Good Frameworks for Studying Entropy Solutions of

Multidimensional Conservation Laws?

One of such candidates may be derived from the theory of
divergence-measure fields, which is based on the following class of
Entropy Solutions:

(i) u(t,x) e M,LP,1 < p < ox;
(i) For any convex entropy pair (77.q),
Opi(u) +Vy-qu) <0 D'
as long as (n(u(t,x)).q(u(t,x))) € D’
Then Schwartz lemma tells us that
div(e ) (n(u(t.x)).q(u(t.x))) € M
—

The vector field (n(u(t.x)),q(u(t.x))) is a divergence measure field.



Approaches and Strategies: Proposal

Diverse Approaches in Sciences:
® Experimental data

@ Large and small scale computing by a search for effective numerical methods
@ Modelling (Asymptotic and Qualitative)

@ Rigorous proofs for prototype problems and an understanding of the solutions
Two Strategies as a first step:

@ Study good, simpler nonlinear models with physical motivations;

@ Study special, concrete nonlinear problems with physical motivations
Meanwhile, extend the results and ideas to:

@ Study the Euler equations in gas dynamics and elasticity

@ Study nonlinear systems that the Euler equations are the main
subsystem or describe the dynamics of macroscopic variables such as
MHD, Euler-Poisson Equations, Combustion, Relativistic Euler Equations,

@ Study more general hyperbolic systems and related problems

@ Develop further new mathematical ideas, techniques, approaches,
as well as new mathematical theories
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