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Supersolutions of BSDE
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Motivation

Superhedging problem

T
Yo+ /O ZydSy = ¢ m Y= superhedging price of ¢

— m Z= superhedging strategy
trading gains

Value
Yy
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Time
0 T
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Motivation

Superhedging problem
T
Yt + /t Z,dSy > ¢ m Y= superhedging price of ¢ at t

- X m Z= superhedging strategy
trading gains

Value

min
¥y

—\
~min minimal superhedging
0 toy t price at time t T
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Motivation

Supersolutions of Backward Stochastic Differential Equations

Definition
(Y, Z) is a supersolution of the Backward Stochastic Differential Equation
with driver g and terminal condition & if

T T
Yt—/ 9(Yu, Z))du+ / ZadW, >¢ Vie[o,T]
Jt t

drift part martingale part

m Y =value process
m Z = control process
Equality instead of inequality: (Y, Z) is solution of the BSDE.

Extensively studied:
~ Bismut, Pardoux, Peng, Ma, Protter, Yong, Briand, Hu, Kobylanski, Touzi,
Delbaen, Imkeller, El Karoui, ...

Applications in utility maximization, stochastic games, stochastic equilibria,
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Motivation

Supersolutions of Backward Stochastic Differential Equations

m Supersolutions are typically not unique.

® Find a minimal supersolution (Y™", Z™")!
Thatis Y™" < Y for any other supersolution (Y, Z).

1

Yy

min
¥y

i A\
~min mMinimal superhedging
0 ty t price at time t T
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Minimal Supersolutions

Filtrated probability space (2, F, (Ft), P), filtration generated by a Brownian
motion W satisfying the usual conditions.

t t
st/ g(Yu,Zu)dqu/ ZdW,> Y, 0<s<t<T
S S
(0.1)
Yr>¢

¢ is Fr-measurable.
Y is (F:)-adapted and cadlag ~ S
Z is (Ft)-progressive, such that foT Z5du < 400 and !
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Minimal Supersolutions

Filtrated probability space (2, F, (Ft), P), filtration generated by a Brownian
motion W satisfying the usual conditions.

t t
st‘/ g(Yu,Zu)dqu/ ZydW, > Yy, 0<s<t<T
S S
(0.1)
Yr>¢

¢ is Fr-measurable.
A Y is (F:)-adapted and cadlag ~ S

Z is (Ft)-progressive, such that foT Z2du < +o0o and Z is admissible, i.e.
J ZdW is a supermartingale (— Dudley and Harrison/Pliska) ~ £

The set of supersolutions with driver g and terminal condition &

A:={(Y,Z2) e Sx L:(Y,Z)fulfils (0.1)}
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Minimal Supersolutions

A generator is a lower semicontinuous function

9:RxRY =] — 00, ).

Additional properties:
(Pos) g(y,z) €[0,+oc] forall (y, z).

(Conv) z+ g(y,2z)Iis convex.
(Mon) g(y,2) 2g(y',2)forally > y".

(Mon’) g(y,z)<g(y',z)forally >y
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Minimal Supersolutions

A natural candidate for the value process of a minimal supersolution:
& =essinf{Y;:(Y,Z)e A}, te[0,T]

Question: Does there exist a cadlag modification £ of £ and a control process
Z € L such that (€, Z) is a supersolution ?
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Minimal Supersolutions

A natural candidate for the value process of a minimal supersolution:

& =essinf{Y;:(Y,Z)e A}, tel0,T]

Assume (Pos), (Conv) and either (Mon) or (Mon'). Suppose ¢~ € L' and
A # (. Then

g( = (cf?» = ||m SAS
slt,seQ

is the value process of the unique minimal supersolution, that is, there exists
a unique control process Z such that (£, Z) € A.

m Compactness (DELBAEN and SCHACHERMAYER) versus fixpoint.
m Drop positivity for (Pos’) g(y, z) > az + b. (utility maximization)

m Gregor Heyne, Michael Kupper and Christoph Mainberger, drop
convexity in z for g(y,0) = 0. (BARLOW and PROTTER).
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Minimal Supersolutions

Compactness

m Any sequence (x») in R? such that sup,..,, [|X»|| < oo has a subsequence
(xn,) converging to some x € R,

m Let (X,) be a sequence of random variables in L?(Q, F, P) such that
sup,cy E[X3] < co. Then there exists a sequence
Yo € conv(Xn, Xpy1,...) such that Y, — Yin L3(Q, F, P).

m (Delbaen/Schachermayer) Let ([ H"dW) be a H'-bounded sequence of
martingales. Then there exist K" € conv{H", H""" . } and a localizing
sequence of stopping times (") such that ([ K”dW — [KaW in H'.
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Minimal Supersolutions

Idea of the proof

1) Paste strategies between stopping times ~ construct (Y”,Z") C A with,
Ep>Yp—1/n, and Y=Y

2) Y =lim, ... Y"and £ are supermartingales ~ £ := £+ = Y*.
3) Show that &> &.
4) There is a localizing sequence (o) such that

Ok
(o
is bounded in .

5) DELBAEN and SCHACHERMAYER ~- convex combinations such that
t
/ Z0dWs —— stWS
0 n— o0

6) Verification with (£, Z) is based on Helly’s theorem and Fatou’s lemma.
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Minimal Supersolutions

0

Nonlinear Expectations

(~ Peng’s g-expectations)
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Stability results

For any “nice” generator g the mapping

&9 : ¢ — minimal supersolution with terminal condition &

satisfies
£ &(8) \ E[g] = [, &(w)P(dw)
(N) &(m)=m E[ml=m
(M €§(£+m) & (£)+m E[§¢+m] = E[{]+m
(TC) £J(¢) = ( (€) E[¢] = E[E[¢ | F]
Linearity: — E[N" + €8] = ME[€'] + E[€7]

~ nonlinear expectation
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Stability results

The nonlinear expectation &J(-) satisfies

m Monotone convergence:

0 < ¢" 1 ¢ implies £7(¢) = lim, £J(€7)
m Fatou’s lemma: &7 (liminf, £7) < liminf, £J(£")
m is o(L', L>)-lower semicontinuous.

If g is independent of y, by convex duality:
&5(€) = sup {Eql¢] — amn(Q)}
Q<P

= representation of a convex risk measure
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Model Uncertainty and Robust Hedging

(~ Peng’s G-expectation)
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The role of the probability measure P

The probability P defines the dynamics of the process

24 ey f‘ N\
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P +— probabilistic model, e.g. on C ([0, T]; R)

What is the probability measure P ?
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The role of the probability measure P

P can only partially be identified by statistical methods

I
Take into account a family P of probability measures (models)

~ ’ Model Uncertainty ‘

Remark: The probability measures are typically singular!

P(A) := sup P[A] = capacity
PeP

~ Denis, Martini, Peng, Hu, Bion-Nadal, Soner, Touzi, Zhang, Nutz,...

aSi(0) —

g = <0<
Eg. ‘g =HUtTOMW,  0<0<D
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Minimal Supersolutions of Robust BSDEs

Setting

m O is a set of volatility processes:
0:Qx[0,T] = Ryr (55°).

m Our state space: ;
Q=Qx06

m Driving process: W : {2 x [0, T] — R, where
W(e):/edm 6co
m Progressively learning about the volatility
~ Fr=oc(Ws:s<t), tel0,T]

In general not right-continuous.
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Minimal Supersolutions of Robust BSDEs

Capacity

Let 11° be the probability measure induced by W(6) on C([0, T], RY) with the
Borel o-algebra. These probability measures are singular to each others.
There is no dominating probability measures!

PIA] :=sup P[A(0)], Ac Fr
6O

Properties (like equality and inequalities) holds quasi-surely if the event B,
where they do not hold is a polar set, i.e., B € Fr with P[B] = 0.
We assume that {1/ : 6 € ©} is weakly compact.

— Denis, Martini, Peng, Hu, Bion-Nadal, Soner, Touzi, Zhang, Nutz
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Minimal Supersolutions of Robust BSDEs

Supersolutions of Robust BSDE

Forall 6 € ©,

{ / gu(Y, ))du+/ Z,(6)dWy(0) > Y-(0),
Y7(0) = £(9)
where o, T are (F;)-stopping times with0 < o <7 < T.

¢ is Fr-measurable.

| Yisladlag and Y; € L) (F) N C(F), Y(0) is optional ~ &

Z is (F;)-predictable, such that [, Z2(8)62du < +oc and [ Z(0)dW/(6)
is a supermartingale forall § € © ~ £

A 9:R xR — (—o0,+o0], such that g(0) is a generator as before for all
0 € 0O.

The set of supersolutions with driver g and terminal condition &

A= {(Y, 2) e S x £ (Y, Z) tulfills (0.2)}
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Minimal Supersolutions of Robust BSDEs

Minimal Supersolution

As a usual, our natural candidate for the minimal supersolution

& =essinf{Y;:(Y,2) e A}

However, there is no reference probability measure!
— Bion-Nadal, Nutz, ...

We consider the infimum:

& =inf{Y;:(Y,2) e A}
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Minimal Supersolutions of Robust BSDEs

Existence Result

Our existence Theorem reads as follows

Assume (Pos), (Conv) and either (Mon) or (Mon'). Suppose ¢~ € L}(Fr),
A# 0 and & € C(F;). Then there exists a ladlag modification £ of £, which
is the value process of the unique minimal supersolution, that is, there exists
a unique control process Z such that

(£,2) € A.

We give conditions under which the £ fulfills these assumptions (Markovian
Setting).
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Thank Youl!
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