Existence, Uniqueness and Representation of Second Order Backward SDEs With Jumps

Nabil Kazi-Tani (Ecole Polytechnique and AXA Group Risk Management) Joint work with Dylan Possamai and Chao Zhou July 3rd 2012, Oxford

Outline

- We want to define a notion of model uncertainty in a model with jumps.
- One possible solution is to define 2nd order BSDEs with jumps.
- Another possibility is to work with G-Lévy processes as defined in Hu, M. and Peng, S. (2009). G-Lévy Processes under Sublinear Expectations, preprint.

The form of the equation

A backward SDE with jumps, in the standard Lipschitz case, takes the following form:

$$
Y_{t}=\xi+\int_{t}^{T} F_{s}\left(Y_{s}, Z_{s}, U_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}^{c}-\int_{t}^{T} \int_{E} U_{s}(x)\left(\mu_{B^{d}}-\nu\right)(d s, d x), \quad \mathbb{P} \text {-a.s } .
$$

Tang S., Li X.(1994). Necessary condition for optimal control of stochastic systems with random jumps, SIAM JCO, 332:1447-1475.

The form of the equation

We shall consider the following second order backward SDE with jumps (2BSDEJ for short), for $0 \leq t \leq T$

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} F_{s}\left(Y_{s}, Z_{s}, U_{s}, \alpha, \nu\right) d s-\int_{t}^{T} Z_{s} d B_{s}^{c} \\
& -\int_{t}^{T} \int_{E} U_{s}(x)\left(\mu_{B^{d}}-\nu\right)(d s, d x)+K_{T}-K_{t}, \quad \mathbb{P} \text {-a.s }, \forall \mathbb{P} \in \mathcal{P}
\end{aligned}
$$

The form of the equation

We shall consider the following second order backward SDE with jumps (2BSDEJ for short), for $0 \leq t \leq T$

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} F_{s}\left(Y_{s}, Z_{s}, U_{s}, \alpha, \nu\right) d s-\int_{t}^{T} Z_{s} d B_{s}^{c} \\
& -\int_{t}^{T} \int_{E} U_{s}(x)\left(\mu_{B^{d}}-\nu\right)(d s, d x)+K_{T}-K_{t}, \quad \mathbb{P}-\text { a.s }, \forall \mathbb{P} \in \mathcal{P}
\end{aligned}
$$

What are the measures $\mathbb{P} \in \mathcal{P}$?

What are the measures $\mathbb{P} \in \mathcal{P}$?

B is the canonical process defined on $\Omega=\mathbb{D}\left([0, T], \mathbb{R}^{d}\right)$.
For α and ν satisfying mild integrability conditions, let $\mathbb{P}^{\alpha, \nu}$ be a probability measure on \mathbb{D} such that B is a semimartingale under $\mathbb{P}^{\alpha, \nu}$ with characteristics

$$
\left(-\int_{0} \int_{E} x \mathbf{1}_{|x|>1} \nu_{s}(d x) d s, \int_{0}^{.} \alpha_{s} d s, \nu_{s}(d x) d s\right)
$$

What are the measures $\mathbb{P} \in \mathcal{P}$?

B is the canonical process defined on $\Omega=\mathbb{D}\left([0, T], \mathbb{R}^{d}\right)$.
For α and ν satisfying mild integrability conditions, let $\mathbb{P}^{\alpha, \nu}$ be a probability measure on \mathbb{D} such that B is a semimartingale under $\mathbb{P}^{\alpha, \nu}$ with characteristics

$$
\left(-\int_{0} \int_{E} x \mathbf{1}_{|x|>1} \nu_{s}(d x) d s, \int_{0}^{\cdot} \alpha_{s} d s, \nu_{s}(d x) d s\right)
$$

$\mathbb{P}^{\alpha, \nu}$ is the solution to the martingale problem on \mathbb{D} associated to (α, ν).

The form of the equation

We shall consider the following second order backward SDE with jumps (2BSDEJ for short), for $0 \leq t \leq T$

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} F_{s}\left(Y_{s}, Z_{s}, U_{s}, \alpha, \nu\right) d s-\int_{t}^{T} Z_{s} d B_{s}^{c} \\
& -\int_{t}^{T} \int_{E} U_{s}(x)\left(\mu_{B^{d}}-\nu\right)(d s, d x)+K_{T}-K_{t}, \mathbb{P}^{\alpha, \nu} \text {-a.s }, \forall \mathbb{P}^{\alpha, \nu} \in \mathcal{P}
\end{aligned}
$$

The form of the equation

We shall consider the following second order backward SDE with jumps (2BSDEJ for short), for $0 \leq t \leq T$

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} F_{s}\left(Y_{s}, Z_{s}, U_{s}, \alpha, \nu\right) d s-\int_{t}^{T} Z_{s} d B_{s}^{c} \\
& -\int_{t}^{T} \int_{E} U_{s}(x)\left(\mu_{B^{d}}-\nu\right)(d s, d x)+K_{T}-K_{t}, \mathbb{P}^{\alpha, \nu} \text {-a.s }, \forall \mathbb{P}^{\alpha, \nu} \in \mathcal{P}
\end{aligned}
$$

The form of the equation

We shall consider the following second order backward SDE with jumps (2BSDEJ for short), for $0 \leq t \leq T$

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} F_{s}\left(Y_{s}, Z_{s}, U_{s}, \hat{\alpha}, \hat{\nu}\right) d s-\int_{t}^{T} Z_{s} d B_{s}^{c} \\
& -\int_{t}^{T} \int_{E} U_{s}(x)\left(\mu_{B^{d}}-\hat{\nu}\right)(d s, d x)+K_{T}-K_{t}, \mathbb{P}^{\alpha, \nu} \text {-a.s }, \forall \mathbb{P}^{\alpha, \nu} \in \mathcal{P}
\end{aligned}
$$

The form of the equation

We shall consider the following second order backward SDE with jumps (2BSDEJ for short), for $0 \leq t \leq T$

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} F_{s}\left(Y_{s}, Z_{s}, U_{s}, \hat{\alpha}, \hat{\nu}\right) d s-\int_{t}^{T} Z_{s} d B_{s}^{c} \\
& -\int_{t}^{T} \int_{E} U_{s}(x)\left(\mu_{B^{d}}-\hat{\nu}\right)(d s, d x)+K_{T}-K_{t}, \mathbb{P}^{\alpha, \nu} \text {-a.s }, \forall \mathbb{P}^{\alpha, \nu} \in \mathcal{P} \\
(\hat{\alpha}, \hat{\nu}) & =(\alpha, \nu), \mathbb{P}^{\alpha, \nu} \text {-a.s }, \forall \mathbb{P}^{\alpha, \nu} \in \mathcal{P} .
\end{aligned}
$$

Aggregation

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a given measurable space. Let \mathcal{P} be a set of non necessarily dominated probability measures and let $\left\{X^{\mathbb{P}}, \mathbb{P} \in \mathcal{P}\right\}$ be a family of random variables indexed by \mathcal{P}.

Definition

An aggregator of the family $\left\{X^{\mathbb{P}}, \mathbb{P} \in \mathcal{P}\right\}$ is a random variable \hat{X} such that

$$
\hat{X}=X^{\mathbb{P}}, \mathbb{P}-\text { a.s, for every } \mathbb{P} \in \mathcal{P}
$$

Aggregation, a very simple example

Example

Let \mathbb{P}_{1} be the Wiener measure, and let \mathbb{P}_{2} the law of $\sqrt{2} B$ under \mathbb{P}_{1}. Then

$$
\begin{aligned}
& \int_{0}^{t} B_{s} d B_{s}=B_{t}^{2}-t, \quad \mathbb{P}_{1} \text {-a.s. and } \\
& \int_{0}^{t} B_{s} d B_{s}=B_{t}^{2}-2 t, \quad \mathbb{P}_{2} \text {-a.s. }
\end{aligned}
$$

Aggregation

Cohen, S.N. (2011) Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces, preprint arXiv:1110.2592v2. gave general conditions on a set \mathbb{P} of probability measures such that any consistent family of processes indexed by \mathbb{P} has an aggregator.

Aggregation

Proposition

There exists a set \mathcal{P} of probability measures such that

- Every \mathbb{P} in \mathcal{P} satisfies the martingale representation property and the Blumenthal 0-1 law.
- Every family of progressively measurable processes indexed by \mathcal{P}, and satisfying the consistency condition has a \mathcal{P}-q.s unique aggregator.
- \mathcal{P} is stable by concatenation and bifurcation.

The 2BSDEJ

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} F_{s}\left(Y_{s}, Z_{s}, U_{s}, \hat{\alpha}, \hat{\nu}\right) d s-\int_{t}^{T} Z_{s} d B_{s}^{c} \\
& -\int_{t}^{T} \int_{E} U_{s}(x)\left(\mu_{B^{d}}-\hat{\nu}\right)(d s, d x)+K_{T}-K_{t}, \mathbb{P}^{\alpha, \nu}-\text { a.s }, \forall \mathbb{P}^{\alpha, \nu} \in \mathcal{P}
\end{aligned}
$$

Assumptions

(i) The domains $D_{F_{t}(y, z, u)}^{1}=D_{F_{t}}^{1}$ and $D_{F_{t}(y, z, u)}^{2}=D_{F_{t}}^{2}$ are independent of (ω, y, z, u).
(ii) For fixed $(y, z, a, \nu), F$ is \mathbb{F}-progressively measurable in $D_{F_{t}}^{1} \times D_{F_{t}}^{2}$.
(iii) The following uniform Lipschitz-type property holds. For all

$$
\begin{aligned}
& \left(y, y^{\prime}, z, z^{\prime}, u, t, a, \nu, \omega\right) \\
& \left|F_{t}(\omega, y, z, u, a, \nu)-F_{t}\left(\omega, y^{\prime}, z^{\prime}, u, a, \nu\right)\right| \leq C\left(\left|y-y^{\prime}\right|+\left|a^{1 / 2}\left(z-z^{\prime}\right)\right|\right)
\end{aligned}
$$

Assumptions

(i) The domains $D_{F_{t}(y, z, u)}^{1}=D_{F_{t}}^{1}$ and $D_{F_{t}(y, z, u)}^{2}=D_{F_{t}}^{2}$ are independent of (ω, y, z, u).
(ii) For fixed $(y, z, a, \nu), F$ is \mathbb{F}-progressively measurable in $D_{F_{t}}^{1} \times D_{F_{t}}^{2}$.
(iii) The following uniform Lipschitz-type property holds. For all $\left(y, y^{\prime}, z, z^{\prime}, u, t, a, \nu, \omega\right)$

$$
\left|F_{t}(\omega, y, z, u, a, \nu)-F_{t}\left(\omega, y^{\prime}, z^{\prime}, u, a, \nu\right)\right| \leq C\left(\left|y-y^{\prime}\right|+\left|a^{1 / 2}\left(z-z^{\prime}\right)\right|\right)
$$

(iv) For all $\left(t, \omega, y, z, u^{1}, u^{2}, a, \nu\right)$, there exist two processes γ and γ^{\prime} such that

$$
\begin{aligned}
& F_{t}\left(\omega, y, z, u^{1}, a, \nu\right)-F_{t}\left(\omega, y, z, u^{2}, a, \nu\right) \leq \int_{E}\left(u^{1}(e)-u^{2}(e)\right) \gamma_{t}(e) \nu(d e) \\
& \int_{E}\left(u^{1}(e)-u^{2}(e)\right) \gamma_{t}^{\prime}(e) \nu(d e) \leq F_{t}\left(\omega, y, z, u^{1}, a, \nu\right)-F_{t}\left(\omega, y, z, u^{2}, a, \nu\right) \text { and } \\
& c_{1}(1 \wedge|x|) \leq \gamma_{t}(x) \leq c_{2}(1 \wedge|x|) \text { where }-1<c_{1} \leq 0, c_{2} \geq 0 \\
& c_{1}^{\prime}(1 \wedge|x|) \leq \gamma_{t}^{\prime}(x) \leq c_{2}^{\prime}(1 \wedge|x|) \text { where }-1<c_{1}^{\prime} \leq 0, c_{2}^{\prime} \geq 0 .
\end{aligned}
$$

Assumptions

(i) The domains $D_{F_{t}(y, z, u)}^{1}=D_{F_{t}}^{1}$ and $D_{F_{t}(y, z, u)}^{2}=D_{F_{t}}^{2}$ are independent of (ω, y, z, u).
(ii) For fixed $(y, z, a, \nu), F$ is \mathbb{F}-progressively measurable in $D_{F_{t}}^{1} \times D_{F_{t}}^{2}$.
(iii) The following uniform Lipschitz-type property holds. For all $\left(y, y^{\prime}, z, z^{\prime}, u, t, a, \nu, \omega\right)$

$$
\left|F_{t}(\omega, y, z, u, a, \nu)-F_{t}\left(\omega, y^{\prime}, z^{\prime}, u, a, \nu\right)\right| \leq C\left(\left|y-y^{\prime}\right|+\left|a^{1 / 2}\left(z-z^{\prime}\right)\right|\right)
$$

(iv) For all $\left(t, \omega, y, z, u^{1}, u^{2}, a, \nu\right)$, there exist two processes γ and γ^{\prime} such that

$$
\begin{aligned}
& F_{t}\left(\omega, y, z, u^{1}, a, \nu\right)-F_{t}\left(\omega, y, z, u^{2}, a, \nu\right) \leq \int_{E}\left(u^{1}(e)-u^{2}(e)\right) \gamma_{t}(e) \nu(d e) \\
& \int_{E}\left(u^{1}(e)-u^{2}(e)\right) \gamma_{t}^{\prime}(e) \nu(d e) \leq F_{t}\left(\omega, y, z, u^{1}, a, \nu\right)-F_{t}\left(\omega, y, z, u^{2}, a, \nu\right) \text { and } \\
& c_{1}(1 \wedge|x|) \leq \gamma_{t}(x) \leq c_{2}(1 \wedge|x|) \text { where }-1<c_{1} \leq 0, c_{2} \geq 0 \\
& c_{1}^{\prime}(1 \wedge|x|) \leq \gamma_{t}^{\prime}(x) \leq c_{2}^{\prime}(1 \wedge|x|) \text { where }-1<c_{1}^{\prime} \leq 0, c_{2}^{\prime} \geq 0 .
\end{aligned}
$$

(v) F is uniformly continuous in ω for the $\|\cdot\|_{\infty}$ norm.

The form of the equation

Definition

We say $(Y, Z, U) \in \mathbb{D}^{2, \kappa} \times \mathbb{H}^{2, \kappa} \times \mathbb{J}^{2, \kappa}$ is a solution to a 2BSDEJ if

- $Y_{T}=\xi, \mathbb{P}-$ a.s, $\forall \mathbb{P} \in \mathcal{P}$.
- For all $\mathbb{P} \in \mathcal{P}$ and $0 \leq t \leq T$, the process $K^{\mathbb{P}}$ defined below is predictable and has non-decreasing paths $\mathbb{P}-$ a.s.

$$
\begin{equation*}
K_{t}^{\mathbb{P}}:=Y_{0}-Y_{t}-\int_{0}^{t} \widehat{F}_{s}\left(Y_{s}, Z_{s}, U_{s}\right) d s+\int_{0}^{t} Z_{s} d B_{s}^{c}+\int_{0}^{t} \int_{E} U_{s}(x) \tilde{\mu}_{B^{d}}(d s, d x) \tag{1}
\end{equation*}
$$

- The family $\left\{K^{\mathbb{P}}, \mathbb{P} \in \mathcal{P}\right\}$ satisfies the minimum condition

$$
\begin{equation*}
K_{t}^{\mathbb{P}}=\underset{\mathbb{P}^{\prime} \in \mathcal{P}\left(t^{+}, \mathbb{P}\right)}{\operatorname{essinf}} \mathbb{P}_{t}^{\mathbb{P}^{\mathbb{P}}}\left[K_{T}^{\mathbb{P}^{\prime}}\right], 0 \leq t \leq T, \mathbb{P} \text { - a.s., } \forall \mathbb{P} \in \mathcal{P}_{H}^{\kappa} \tag{2}
\end{equation*}
$$

A wellposedness result

Theorem

There exists a unique solution (Y, Z, U) to the previously defined 2BSDE with jumps. Moreover, for any $\mathbb{P} \in \mathcal{P}$ and $0 \leq t_{1}<t_{2} \leq T$,

$$
\begin{equation*}
Y_{t_{1}}=\underset{\mathbb{P}^{\prime} \in \mathcal{P}\left(t_{1}^{+}, \mathbb{P}\right)}{\operatorname{ess} \sup ^{\mathbb{P}}} y_{t_{1}}^{\mathbb{P}^{\prime}}\left(t_{2}, Y_{t_{2}}\right), \mathbb{P}-\text { a.s. } \tag{3}
\end{equation*}
$$

where, for any $\mathbb{P} \in \mathcal{P}, \mathbb{F}^{+}$-stopping time τ, and \mathcal{F}_{τ}^{+}-measurable random variable $\xi \in \mathbb{L}^{2}(\mathbb{P}),\left(y^{\mathbb{P}}(\tau, \xi), z^{\mathbb{P}}(\tau, \xi)\right)$ denotes the solution to the following standard BSDE on $0 \leq t \leq \tau$
$y_{t}^{\mathbb{P}}=\xi-\int_{t}^{\tau} \widehat{F}_{s}\left(y_{s}^{\mathbb{P}}, z_{s}^{\mathbb{P}}, u_{s}^{\mathbb{P}}\right) d s+\int_{t}^{\tau} z_{s}^{\mathbb{P}} d B_{s}^{c}+\int_{t}^{\tau} \int_{E} u_{s}^{\mathbb{P}}(x) \tilde{\mu}_{B^{d}}(d s, d x), \mathbb{P}-$ a.s.

Robust utility maximization problem

Robust utility maximization problem

- The market :

$$
\begin{equation*}
\frac{d S_{t}}{S_{t^{-}}}=b_{t} d t+d B_{t}^{c}+\int_{E} \beta_{t}(x) \mu_{B^{d}}(d t, d x), \mathbb{P} \text {-a.s. } \forall \mathbb{P} \in \mathcal{P} \tag{5}
\end{equation*}
$$

Robust utility maximization problem

- The market:

$$
\begin{equation*}
\frac{d S_{t}}{S_{t^{-}}}=b_{t} d t+d B_{t}^{c}+\int_{E} \beta_{t}(x) \mu_{B^{d}}(d t, d x), \mathbb{P} \text {-a.s. } \forall \mathbb{P} \in \mathcal{P} \tag{5}
\end{equation*}
$$

- The value function V of the maximization problem can be written as

$$
V^{\xi}(x):=\sup _{\pi \in \mathcal{C}} \inf _{\mathbb{P} \in \overline{\mathcal{P}}} \mathbb{E}^{\mathbb{P}}\left[-\exp \left(-\eta\left(X_{T}^{\pi}-\xi\right)\right)\right]
$$

where

$$
\mathcal{C}:=\left\{\left(\pi_{t}\right) \text { which are predictable and take values in } C\right\}
$$

is our set of admissible strategies.

Robust utility maximization problem

Proposition

Assume that $\exp (\eta \xi) \in \overline{\mathcal{L}}_{H}^{2, \kappa}$. Then the value function of the previous optimization problem is given by

$$
V^{\xi}(x)=-e^{-\eta x} Y_{0},
$$

Robust utility maximization problem

Proposition

Assume that $\exp (\eta \xi) \in \overline{\mathcal{L}}_{H}^{2, \kappa}$. Then the value function of the previous optimization problem is given by

$$
V^{\xi}(x)=-e^{-\eta x} Y_{0},
$$

where Y_{0} is defined as the initial value of the unique solution $(Y, Z, U) \in \mathbb{D}^{2, \kappa} \times \mathbb{H}^{2, \kappa} \times \mathbb{J}^{2, \kappa}$ of the following 2BSDEJ

$$
\begin{aligned}
Y_{t}= & e^{\eta \xi}+\int_{t}^{T} \widehat{F}_{s}\left(Y_{s}, Z_{s}, U_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}^{c} \\
& -\int_{t}^{T} \int_{E} U_{s}(x) \widetilde{\mu}_{B^{d}}(d s, d x)+K_{T}^{\mathbb{P}}-K_{t}^{\mathbb{P}}
\end{aligned}
$$

Robust utility maximization problem

Proposition

Assume that $\exp (\eta \xi) \in \overline{\mathcal{L}}_{H}^{2, \kappa}$. Then the value function of the previous optimization problem is given by

$$
V^{\xi}(x)=-e^{-\eta x} Y_{0},
$$

where Y_{0} is defined as the initial value of the unique solution $(Y, Z, U) \in \mathbb{D}^{2, \kappa} \times \mathbb{H}^{2, \kappa} \times \mathbb{J}^{2, \kappa}$ of the following 2BSDEJ

$$
\begin{aligned}
Y_{t}= & e^{\eta \xi}+\int_{t}^{T} \widehat{F}_{s}\left(Y_{s}, Z_{s}, U_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}^{c} \\
& -\int_{t}^{T} \int_{E} U_{s}(x) \widetilde{\mu}_{B^{d}}(d s, d x)+K_{T}^{\mathbb{P}}-K_{t}^{\mathbb{P}}
\end{aligned}
$$

where the generator is defined as follows

$$
\begin{equation*}
\widehat{F}_{t}(\omega, y, z, u):=F_{t}\left(\omega, y, z, u, \widehat{a}_{t}, \widehat{\nu}_{t}\right) \tag{6}
\end{equation*}
$$

Robust utility maximization problem

Proposition

where

$$
\begin{aligned}
F_{t}(y, z, u, a, \nu) & :=\inf _{\pi \in C}\left\{\left(-\eta b_{t}+\frac{\eta^{2}}{2} \pi a\right) \pi y-\eta \pi a z\right. \\
& \left.+\int_{E}\left(e^{-\eta \pi \beta_{t}(x)}-1\right)(y+u(x)) \nu(d x)\right\}
\end{aligned}
$$

Robust utility maximization problem

Proposition

where

$$
\begin{aligned}
F_{t}(y, z, u, a, \nu) & :=\inf _{\pi \in C}\left\{\left(-\eta b_{t}+\frac{\eta^{2}}{2} \pi a\right) \pi y-\eta \pi a z\right. \\
& \left.+\int_{E}\left(e^{-\eta \pi \beta_{t}(x)}-1\right)(y+u(x)) \nu(d x)\right\}
\end{aligned}
$$

Moreover, there exists an optimal trading strategy π^{*} realizing the supremum above.

Probabilistic counterpart of fully non-linear PIDEs

The solution of a 2 nd order BSDE with jumps, in the Markovian case, is the natural candidate for the probabilistic interpretation of fully non-linear PIDEs of the form

Probabilistic counterpart of fully non-linear PIDEs

The solution of a 2 nd order BSDE with jumps, in the Markovian case, is the natural candidate for the probabilistic interpretation of fully non-linear PIDEs of the form

$$
\begin{aligned}
& \partial_{t} v(t, x)+h\left(t, x, v(t, x), D v(t, x), D^{2} v(t, x), v(t, \cdot)\right)=0,0 \leq t \leq T \\
& v(T, x)=g(x)
\end{aligned}
$$

Probabilistic counterpart of fully non-linear PIDEs

The solution of a 2 nd order BSDE with jumps, in the Markovian case, is the natural candidate for the probabilistic interpretation of fully non-linear PIDEs of the form

$$
\begin{aligned}
& \partial_{t} v(t, x)+h\left(t, x, v(t, x), D v(t, x), D^{2} v(t, x), v(t, \cdot)\right)=0,0 \leq t \leq T \\
& v(T, x)=g(x)
\end{aligned}
$$

where h is the Fenchel-Legendre transform of the generator f in (a, ν) :
$h(t, x, y, z, u, \gamma, v)=\sup _{(a, \nu) \in \mathbb{S}_{d} \times D_{2}}\left\{\frac{1}{2} a: \gamma+\int_{0}^{T} \int_{E} \tilde{v}(e) \nu_{s}(d e) d s-f(t, x, y, z, u, a, \nu)\right\}$

Probabilistic counterpart of fully non-linear PIDEs

The solution of a 2 nd order BSDE with jumps, in the Markovian case, is the natural candidate for the probabilistic interpretation of fully non-linear PIDEs of the form

$$
\begin{aligned}
& \partial_{t} v(t, x)+h\left(t, x, v(t, x), D v(t, x), D^{2} v(t, x), v(t, \cdot)\right)=0,0 \leq t \leq T \\
& v(T, x)=g(x)
\end{aligned}
$$

where h is the Fenchel-Legendre transform of the generator f in (a, ν) :

$$
h(t, x, y, z, u, \gamma, v)=\sup _{(a, \nu) \in \mathbb{S}_{d} \times D_{2}}\left\{\frac{1}{2} a: \gamma+\int_{0}^{T} \int_{E} \tilde{v}(e) \nu_{s}(d e) d s-f(t, x, y, z, u, a, \nu)\right\}
$$

with

$$
\tilde{v}(e):=v(e+x)-v(x)-\mathbf{1}_{\{|e| \leq 1\}} e .(\nabla v)(x) .
$$

Paper in preparation!

Thank you for your attention!

