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Outline

We want to define a notion of model uncertainty in a model with jumps.

One possible solution is to define 2nd order BSDEs with jumps.

Another possibility is to work with G-Lévy processes as defined in Hu, M.
and Peng, S. (2009). G-Lévy Processes under Sublinear Expectations,
preprint.
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The form of the equation

A backward SDE with jumps, in the standard Lipschitz case, takes the
following form:

Yt = ξ +

∫ T

t

Fs(Ys ,Zs ,Us)ds −
∫ T

t

ZsdBc
s −

∫ T

t

∫
E

Us(x)(µBd − ν)(ds, dx), P-a.s .

Tang S., Li X.(1994). Necessary condition for optimal control of stochastic
systems with random jumps, SIAM JCO, 332:1447–1475.
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The form of the equation

We shall consider the following second order backward SDE with jumps
(2BSDEJ for short), for 0 ≤ t ≤ T

Yt = ξ +

∫ T

t

Fs(Ys ,Zs ,Us , α, ν)ds −
∫ T

t

ZsdBc
s

−
∫ T

t

∫
E

Us(x)(µBd − ν)(ds, dx) + KT − Kt , P-a.s , ∀P ∈ P.

What are the measures P ∈ P ?
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What are the measures P ∈ P ?

B is the canonical process defined on Ω = D([0,T ],Rd).
For α and ν satisfying mild integrability conditions, let Pα,ν be a probability
measure on D such that B is a semimartingale under Pα,ν with characteristics(

−
∫ ·
0

∫
E

x1|x|>1νs(dx)ds,

∫ ·
0

αsds, νs(dx)ds

)
.

Pα,ν is the solution to the martingale problem on D associated to (α, ν).
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The form of the equation

We shall consider the following second order backward SDE with jumps
(2BSDEJ for short), for 0 ≤ t ≤ T

Yt = ξ +

∫ T

t

Fs(Ys ,Zs ,Us , α̂, ν̂)ds −
∫ T

t

ZsdBc
s

−
∫ T

t

∫
E

Us(x)(µBd − ν̂)(ds, dx) + KT − Kt , Pα,ν-a.s , ∀Pα,ν ∈ P.

(α̂, ν̂) = (α, ν), Pα,ν-a.s ,∀Pα,ν ∈ P.
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Aggregation

Let (Ω,F ,P) be a given measurable space. Let P be a set of non necessarily
dominated probability measures and let {X P, P ∈ P} be a family of random
variables indexed by P.

Definition

An aggregator of the family {X P, P ∈ P} is a random variable X̂ such that

X̂ = X P, P− a.s, for every P ∈ P.
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Aggregation, a very simple example

Example

Let P1 be the Wiener measure, and let P2 the law of
√

2B under P1. Then∫ t

0

BsdBs = B2
t − t, P1-a.s. and∫ t

0

BsdBs = B2
t − 2t, P2-a.s.

2BSDEs with jumps



Introduction
Aggregation issues and Martingale problems

The form of the equations
Some applications

Aggregation

Cohen, S.N. (2011) Quasi-sure analysis, aggregation and dual representations
of sublinear expectations in general spaces, preprint arXiv:1110.2592v2. gave
general conditions on a set P of probability measures such that any consistent
family of processes indexed by P has an aggregator.
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Aggregation

Proposition

There exists a set P of probability measures such that

Every P in P satisfies the martingale representation property and the
Blumenthal 0− 1 law.

Every family of progressively measurable processes indexed by P, and
satisfying the consistency condition has a P-q.s unique aggregator.

P is stable by concatenation and bifurcation.
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The 2BSDEJ
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Assumptions

(i) The domains D1
Ft (y,z,u)

= D1
Ft and D2

Ft (y,z,u)
= D2

Ft are independent of
(ω, y , z , u).

(ii) For fixed (y , z , a, ν), F is F-progressively measurable in D1
Ft × D2

Ft .

(iii) The following uniform Lipschitz-type property holds. For all
(y , y ′, z , z ′, u, t, a, ν, ω)∣∣Ft(ω, y , z , u, a, ν)− Ft(ω, y

′, z ′, u, a, ν)
∣∣ ≤ C

(∣∣∣y − y
′
∣∣∣+
∣∣∣a1/2

(
z − z

′)∣∣∣) .

(iv) For all (t, ω, y , z , u1, u2, a, ν), there exist two processes γ and γ′ such that

Ft(ω, y , z , u
1, a, ν)− Ft(ω, y , z , u

2, a, ν) ≤
∫
E

(
u1(e)− u2(e)

)
γt(e)ν(de),

∫
E

(
u1(e)− u2(e)

)
γ′t(e)ν(de) ≤ Ft(ω, y , z , u

1, a, ν)− Ft(ω, y , z , u
2, a, ν) and

c1(1 ∧ |x |) ≤ γt(x) ≤ c2(1 ∧ |x |) where − 1 < c1 ≤ 0, c2 ≥ 0,

c ′1(1 ∧ |x |) ≤ γ′t(x) ≤ c ′2(1 ∧ |x |) where − 1 < c ′1 ≤ 0, c ′2 ≥ 0.

(v) F is uniformly continuous in ω for the || · ||∞ norm.
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The form of the equation

Definition

We say (Y ,Z ,U) ∈ D2,κ ×H2,κ × J2,κ is a solution to a 2BSDEJ if

• YT = ξ, P-a.s, ∀P ∈ P.

• For all P ∈ P and 0 ≤ t ≤ T , the process KP defined below is predictable
and has non-decreasing paths P− a.s.

KP
t := Y0−Yt−

∫ t

0

F̂s(Ys ,Zs ,Us)ds +

∫ t

0

ZsdBc
s +

∫ t

0

∫
E

Us(x)µ̃Bd (ds, dx).

(1)

• The family
{

KP,P ∈ P
}

satisfies the minimum condition

KP
t = ess infP

P′∈P(t+,P)
EP
′

t

[
KP
′

T

]
, 0 ≤ t ≤ T , P− a.s., ∀P ∈ PκH . (2)
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A wellposedness result

Theorem

There exists a unique solution (Y ,Z ,U) to the previously defined 2BSDE with
jumps. Moreover, for any P ∈ P and 0 ≤ t1 < t2 ≤ T ,

Yt1 = ess supP

P′∈P(t+1 ,P)
yP
′

t1 (t2,Yt2), P− a.s., (3)

where, for any P ∈ P, F+-stopping time τ , and F+
τ -measurable random

variable ξ ∈ L2(P), (yP(τ, ξ), zP(τ, ξ)) denotes the solution to the following
standard BSDE on 0 ≤ t ≤ τ

yP
t = ξ−

∫ τ

t

F̂s(yP
s , z

P
s , u

P
s )ds +

∫ τ

t

zP
s dBc

s +

∫ τ

t

∫
E

uP
s (x)µ̃Bd (ds, dx), P− a.s.

(4)
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Robust utility maximization problem

The market :

dSt

St−
= btdt + dBc

t +

∫
E

βt(x)µBd (dt, dx),P-a.s. ∀ P ∈ P. (5)

The value function V of the maximization problem can be written as

V ξ(x) : = sup
π∈C

inf
P∈P

EP [− exp (−η (Xπ
T − ξ))] .

where

C := {(πt) which are predictable and take values in C} ,

is our set of admissible strategies.
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Robust utility maximization problem

Proposition

Assume that exp(ηξ) ∈ L2,κ
H . Then the value function of the previous

optimization problem is given by

V ξ(x) = −e−ηxY0,

where Y0 is defined as the initial value of the unique solution
(Y ,Z ,U) ∈ D2,κ ×H2,κ × J2,κ of the following 2BSDEJ

Yt = eηξ +

∫ T

t

F̂s(Ys ,Zs ,Us)ds −
∫ T

t

ZsdBc
s

−
∫ T

t

∫
E

Us(x)µ̃Bd (ds, dx) + KP
T − KP

t ,

where the generator is defined as follows

F̂t(ω, y , z , u) := Ft(ω, y , z , u, ât , ν̂t), (6)
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Robust utility maximization problem

Proposition

where

Ft(y , z , u, a, ν) := inf
π∈C

{
(−ηbt +

η2

2
πa)πy − ηπaz

+

∫
E

(
e−ηπβt (x) − 1

)
(y + u(x))ν(dx)

}
.

Moreover, there exists an optimal trading strategy π∗ realizing the supremum

above.
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Probabilistic counterpart of fully non-linear PIDEs

The solution of a 2nd order BSDE with jumps, in the Markovian case, is the
natural candidate for the probabilistic interpretation of fully non-linear PIDEs
of the form

∂tv(t, x) + h
(

t, x , v(t, x),Dv(t, x),D2v(t, x), v(t, ·)
)

= 0, 0 ≤ t ≤ T ,

v(T , x) = g(x).

where h is the Fenchel-Legendre transform of the generator f in (a, ν):

h(t, x , y , z , u, γ, v) = sup
(a,ν)∈Sd×D2

{
1

2
a : γ +

∫ T

0

∫
E

ṽ(e)νs(de)ds − f (t, x , y , z , u, a, ν)

}
with

ṽ(e) := v(e + x)− v(x)− 1{|e|≤1} e.(∇v)(x).

Paper in preparation!
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Thank you for your attention !
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