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Introduction

Classical stochastic control problem:

Vo = supE (X%) / (XS, as ds] ,
with X% a controlled process. In the Markov case,
T
v(t,x) = supE{g(X;’x’a) +/ f(XSt’X’a,as)ds] )
« t
with Xt%% a controlled diffusion of the form

S S
xexe = e [TbxEandr+ ol aaw, s>
t t
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The function v is a solution in the viscosity sens of the PDE
—0¢v — sup {ﬁ"’v —f(., a)} = 0,
a

with £ the second order local operator associated to the diffusion
X and defined by

L3v(t,x) = b(x, a).DXV(t,X)—i—%TI’[O'O'T(X, a)D)%v(t,x)]

for all (t, x, a).
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Probabilistic representa

e Convex case: Pontriaguine maximum principle provides an
optimal strategy.

e General case: Second order BSDE Introduced by [Cheredito,
Soner, Touzi and Victoir].

Reformulation by [Soner, Touzi and Zhang] as an equation over a
family of singular probability measures, to ensure well posedness.
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Our approach

Follows the ideas of [Pardoux, Pradeilles and Rao], and [K., Ma,
Pham and Zhang].
Introduce a random measure p on R x A where A is the set of

control values.
Consider the constrained BSDE with jumps: find Y minimal s.t.
(Y,Z,U, K) solves

Y, = g(X7’—)+/Tf(Xs’,/s)dS—/Tzdes—/T/Us(a)t“(da’ ds) + Ke — Ke
U < 0 t t -
with (X’, 1) defined by

dx! = b(X/,I)dt + o(X!, I)dW,

dic = /A (2 — le—)u(da, dt)
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Our approach

Expected Markov Property = Y; = v(t, X/, I;) for some
deterministic function v.
Formally we have from 1t6's formula

o U(a) = v(t,X],a) — v(t, X!, I,-) > 0 = v not dependent on a.

e v minimal supersolution (and therefore solution) to

—0ev —sup {L7v(t,x) — f(x,a)} = 0

Interesting aspects
e Covers the general case.

e Solution of an equation under a single probability measure.

e Addition of a nonlocal term in the Bellman PDE.
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BSDEs with partially nonpositive jumps Definition
Existence of a minimal solution

Settings

(Q,G,P) complete probability space equipped with
o W Standard Brownian Motion valued in RY.

@ E is a Borelian subset of RY and 1 a Poisson random measure
on Ry x E, with compensator A\(de)dt for some o-finite

measure A on (E,B(E)) s.t.

/1/\]e]2)\(de) < 4o0.
E

We suppose that W and p are independent, and we denote by
F := (F¢)t > 0 the natural complete cad filtration of W and p.
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BSDEs with partially nonpositive jumps Definition

Existence of a minimal solution

Data of the BSDE

We then are given three objects:
@ a terminal Fy-measurable random variable &,

@ a generator functions F : Q x [0, T] x R x R x L2(\) — R,
which is P ® B(R) ® B(RY) ® B(L2(\))-measurable,
@ a borelian subset B of E such that \(B) < +oc.
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BSDEs with partially nonpositive jumps Definition

Existence of a minimal solution

Assumptions on the coeffi

Assumption (HO)

e Square integrability: E[|£[?] + E[fOT |F(t,0,0,0)[2dt] < oo,

e Lipschitz continuity: there exists a constant L such that

|F(tay727 U) - F(tay/azlv ul)| < L(|y _.y/| + IZ - Z/| + |u - u/|L2(A)) ’

forallt €[0,T], y,y' €R, z,z/ € RY and u, v’ € L2()).

e Monotonicity: there exist a predictable map
7: [0, T] x @ x E xR x RY x L2()\) x L2(\) — R, two constants
C; > G> — 1 such that

G(1LAle]) = A(t,e,y,z,u,u’) = G(LAle]), ecE,

Ft,y,2,u) = F(t,y,2,4) < /E’y(t,e,y,z, u, o' )(u(e) — o' (e))A(de) ,

forallt € [0, T), y,y' €R, and u,u’ € L2()).
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BSDEs with partially nonpositive jumps Definition

Existence of a minimal solution

BSDE with partially no

Find a (Y, Z, U, K) € S? x L32(W) x L2(11) x A2 satisfying

.
Y, = §+/ F(s, Ye, Zs, Us)ds + K1 — K, (1)

—/ ZsdWs — // u(ds,de), 0<t< T, as.
t

U(e) < 0, dP®dt® \(de) a.e.onQx[0,T]x B, (2)

with

and for any other (Y, Z, U, K) € $2 x L2(W) x L2(ji) x A2
satisfying (1)-(2), we have

Y, < Yy, 0<t<T, as.

We say that Y is the minimal solution to (1)-(2).



BSDEs with partially nonpositive jumps Definition

Existence of a minimal solution

Penalized BSDE

For each n > 1, we introduce the penalized BSDE with jumps
T
Vo= ek [ R YRZLUDds K K 3)
t
T T
—/ zgdvvs—/ /Us”(e)ﬁ(ds,de), 0<t<T,
t t E
where
t
Kr — n/ /[Ug(e)]+)\(de)ds, 0<t<T,
0 B

and [u]™ = max(u,0) is the negative part function.
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BSDEs with partially nonpositive jumps Definition

Existence of a minimal solution

Comparison results

The sequence (Y"), is nondecreasing, i.e. for all n € N, Y] <
Yt"+1, 0<t«<T,as.

For any quadruple (Y, Z, U, K) € S x L2(W) x L2(i) x A2
satisfying (1)-(2), and for all n € N, we have

Y < Y., 0<t<T,as. (4)

Provides the convergence of (Y") as soon as we have a
supersolution to the constrained BSDE.
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BSDEs with partially nonpositive jumps Definition

Existence of a minimal solution

Convergence of the penal

Assumption (H1)

There exists (Y, Z, K, U) € S2 x L2 (W) x L2(1) x A? satisfying
(1)-(2).

Theorem

Under (H1), there exists a unique minimal solution (Y,Z,U, K) €
S2 x L2(W) x L2(j1) x A% with K predictable, to (1)-(2). Y is the
increasing limit of (Y™) and also in L2(0, T) and L2(W), K is the
weak limit of (K") in L%(0, T), and for any p € [1,2),

127 = Zll o) + 1U" = U] — 0,

LP(W) LP()

as n goes to infinity.
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BSDEs with partially nonpositive jumps Definition

Existence of a minimal solution

Sketch of the proof

e From (H1) and Comparison Lemmata, Y"1 Y as n 1 oco.

Convergence of (Z",U", K"),?
e Under (H1), there exists some constant C such that

1Y+ 127y + 1V, + K7 < € ¥n>1.
e Weak convergence method initiated by [Peng 99], gives

convergence of (Z",U",K™), in LP, see also [Royer 06].

e Uniform bound on (K"), gives at the limit

E[/OT/B[Us(e)]M(de)ds} - 0.
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Markov BSDE and Bellman IPDE
s and IPDEs
IF

Nonlinear IPDE representation

Random measure

e £ = [ UA where L and A are two borelian subsets of R with
Borel o-fields B(L) and B(A) and such that LN A = 0.

e 4 is of the form p = v + 7w, where 9 and 7 are two independent
Poisson random measures defined respectively on R4 x L and

Ry x A.

e ) and 7 have respective intensity measures \y(d/)dt and

A (d0)dt where Ay and A, are two measures defined respectively
on (L,B(L)) and (A, B(A)) s.t

/(1/\\£|2))\19(d£) <o and [ A(da) < oo
L

e We denote by 0(dt, dl) = 9(dt, dl) — \g(dl)dt and 7(dt, da) =
7(dt, da) — \;(da)dt the compensated measures.
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Markov BSDE and Bellman IPDE
Penalized BSDEs and IPDEs

An inte y IPDE for v
Bellman IF[ for v

Nonlinear IPDE representation

Studied FBSDE

e Forward equation:

dXs

b(Xs, Is)ds + o(Xs, Is)dW: + / Y(Xo—, I, €)0(ds, db),
L

dls = /(aflsf)w(ds,da).

e Backward equation:

e = g(Xr,Ir)+/ (Xs,/s, Ys,Zs,/U E)B(XS,IS,Z)Aﬂ(dz))dS
T T
+Kr — Ke — /Zs.dst//Us(ﬂ) (dt, de) — // Vi(a)7(dt, da),
t t t JA
with
Vife) < 0, dP®dt® A(de) a.e.onQx[0,T]xA,
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Markov BSDE and Bellman IPDE
Penalized BSDEs and IPDEs

An intermediary IPDE for v
Bellman IPDE for v

Nonlinear IPDE representation

Assumption on forward cc

Assumption (HFC)

(i) There exists a constant C such that
|b(x,a) — b(x',a)| + |o(x,a) —o(x',d)] < C(x—xX|+]a=4),

for all x,x' € R? and a,a € A.

(ii) There exists a constant C such that

[7(x,a, )]
|7(X7 a, 6) - ’Y(XI7 a, €)|

for all x,x' e RY, ac Aand ¢ € L.

c(1nle),

<
< C(lx=xX|+]a=2)(1nl),

Idris Kharroubi



Markov BSDE and Bellman IPDE
Penalized BSDEs and IPDEs

An intermediary IPDE for v
Bellman IPDE for v

Nonlinear IPDE representation

Assumption on backward

Assumption (HBC)

; lg(x.a)|+f(x.2,0,0,0)|
(1) SUPxeRe aca TFix] < 0.

(ii) r — f(x,y, z,r) is nondecreasing for all (x,y,z) € R? x R x R9.
(i) There exists some constant C s.t.

l8(x,2) — 8, 3)| + F(x,3,,2,7) = £, &/, 20 <
Clbe =1 +1a=d1+1y =y +lz =21+ |r =),

forall x,x' €R?, y,y' €R,z,zZ € R, r,r €R and a,a’ € A.
(iv) There exists a constant C such that

0 < Blx,a,0) < C(AA),
1B(x,2,6) — B(x,a,0)] < C(x—xX|+]a—=a]) (1A,

forall x,x’ € RY, ac Aand l € L.
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Markov BSDE and Bellman IPDE
Penalized BSDEs and IPDEs

An intermediary IPDE for v
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Nonlinear IPDE representation

Markov property

Assumption

For any initial condition (t, x, a) for the processes (X, ), the
constrained FBSDE admits a solution (Y13, Ztxa \/txa Ktx.a)
€ S2 x L2(W) x L2(J) x A2 with

|?t,x,a|
sup

(t.x,a)e]0, T]xre 1+ [x]

we get from Section 1 the existence of a unique minimal solution
(Y,Z,V,K) € 82 x L2(W) x L%(9)) x A2

Markov property: Y: = v(t, Xt, It), for some deterministic function
v:[0, T] x RY x A — R defined by:

v(t,x,a) = Y (t,x,a) €[0, T xRYx A, (5)
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Markov BSDE and Bellman IPDE
Penalized BSDEs and IPDEs
PDE for v

Nonlinear IPDE representation

Bellman IPDE

,%7322 [ﬁaerf(.,a, v,aT(.,a)DXv,Mav)} = 0, on [0,T)xR
WT.x) = supg(xa), xeRY
acE
where
Lv(tx) = b(x,a).DXv(t,x)Jr%tr(aaT(X,a)va(t,x))
[ [vleox+2602,0) = v(Ex) = (2,0 Dev(e. )] M)
L
Mov(tx) = /(v(t,x—i—fy(x,a,f))—v(t,x))ﬁ(x,a,é))\g(df),
L

for (t,x) € [0, T] x RY.
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DE and Bellman IPDE
SDEs and IPDEs
/ diary IPDE for v
Bellman IPDE for v

Nonlinear IPDE representation

Functions associated to

We define the function
Vn(t,X, a) = Ytn7t’X7a7 (t,X, a) € [07 T] X Rd X A7 (6)

where {(Y/502 ZPt2 yPtA(), t < r < T} is the unique
solution to the Markov penallzed BSDE:

Y! = g(XT,IT)—i—/T f(Xs, b5, Y7, 22, UL )ds+n/ /[v (a)]* \(da)ds

—/r Z!.dW; — / /U 6)19(dt de) — / / (a)7(dt, da).

with (X, I,) = (X%, 15?), for r € [t, T].
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DE and Bellman IPDE
SDEs and IPDEs
diary IPDE for v

Bellman IPDE for v

We then introduce the IPDE associated to the penalized BSDEs:

_8v,,
ot

— Ly —f(,a, v,o ' (.,a)Dev, M°V)

—/A[v,,(.,a') —va(e, @) An ()

—n/[v,,(.7 a') = va(., @)t Ax(da") 0, on [0,T)xR?xA,

vo(T,x,a) = g(x,a), (x,a)eR?xA.

Theorem (Barles, Buckdahn and Pardoux)

The function v, is a continuous (viscosity) solution of the
penalized IPDE.
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JE and Bellman IPDE
SDEs and IPDEs

Nonlinear IPDE representation

Bellman IPDE for v

Stability arguments leads to the variational IPDE
min { — % — L7 —f(,a, v,o ' (.,a)Dxv, M°V)
_/A[v(.,a') — (., a)|Ax(dd) ,
,/ [v(,a) - v(,,a)]+)\7,(da/)} = 0,
A

on [0, T)xRY x Aand v(T,.) = g(.).

Proposition

The function v is the unique (viscosity) solution to the variational
IPDE. v is therefore continuous.

Uniqueness based on Ishii's Lemma for nonlocal IPDE proved in
[Barles and Imbert].
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SDE and Bellman IPDE
DEs and IPDEs
ary IPDE for v
Bellman IPDE for v

Nonlinear IPDE representation

The nondependence of

The function v does not depend on the variable a € A on
[0, T) x RY.

Based on:
e the identification

VE®a(d) = v(s,Xst’_X’a, a)— v(s,Xst’_X’a, l-)
e the constraint satisfied by v
/
veed 0, a.e.

e the continuity of the function v
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JE and Bellman IPDE
alize DEs and IPDEs
interm y IPDE for v

Nonlinear IPDE representation /
Bellman IPDE for v

Supersolution Property

Recall Bellman nonlocal IPDE

_ov sup [Cav + (., a, v,o' (., a)DXv,Mav)} = 0, on [0,T)xRY
ot acA
v(T ,x) = supg(x,a), xE€ Rd,
ackE

Proposition

The function v is a viscosity supersolution of the Bellman nonlocal
IPDE.

Direct consequence of the viscosity property for the intermediary
IPDE and the nondependence of v in a € A.
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Markov BSDE and Bellman IPDE
Penalized BSDEs and IPDEs

An intermediary IPDE for v
Bellman IPDE for v

Nonlinear IPDE representation

Subsolution Property

Proposition
The function v is a viscosity subsolution of the Bellman nonlocal
IPDE.

Based on the following dynamic characterization of the function v.

Lemma

For any stopping time 6 valued in [t, T],
(YEX, ZE5°, Ub™, Kst’x)se[tﬂ] is also a minimal solution to :

Yo = v(0,X)+ / F(OX:, 1y, Y,,Z,,/U,ﬁ,d/\,g)errK” K&~

_ / Z.dW, — / / U (€)3(dr, de) — / / V,(a)7(dr, da)

Vi(a) < 0 dP®dt® A:(da) a.e. onQ x [t, 0] x A.
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Conclusion

Summary

e Define a new class of BSDE with a constraint on a part of the
jump component.
e Link it with nonlinear IPDE of HJB type and with nonlocal terms.

Perpectives

e Speed of convergence of the penalized BSDEs
e Numerical approximation of the function v by BSDE
discretization methods.
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