Limit theorems under sublinear expectations and

probabilities

Xinpeng LI

Shandong University \& Université Paris 1

Young Researchers' Meeting on BSDEs, Numerics and Finance

4 July, Oxford

Outline

- Introduction
- Law of large numbers
- Central limit theorem

Introduction

－Capacity and Choquet expectation
國 Marinacci，M．（1999）Limit laws for non－additive probabilities and their frequentist interpretation．J．Econom．Theory，84，145－195．

國 Maccheroni，F．and Marinacci，M．（2005）A strong law of large numbers for capacities．The Annals of Probability，33，1171－1178． etc．
－Sublinear expectation
击 Peng，S．（2008）A new central limit theorem under sublinear expectations．in arXiv：0803．2656v1．

囯 Chen，Z．（2010）Strong laws of large numbers for capacities．in arXiv：1006．0749v1．
etc．

Let (Ω, \mathcal{F}) be a measurable space and \mathcal{M} be the set of all probabilities on Ω.

For each non-empty subsets $\mathcal{P} \subset \mathcal{M}$, we can define:

- Upper probability $V(A):=\sup _{P \in \mathcal{P}} P(A), A \in \mathcal{F}$
- Lower probability $v(A):=\inf _{P \in \mathcal{P}} P(A), A \in \mathcal{F}$
- Sublinear expectation $\hat{\mathbb{E}}[X]:=\sup _{P \in \mathcal{P}} E_{P}[X]$, i.e.
(1) $\hat{\mathbb{E}}[X] \leq \hat{\mathbb{E}}[Y]$ if $X \leq Y$
(2) $\hat{\mathbb{E}}[c]=c, \forall c \in \mathbb{R}$
(3) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y]$
(4) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \forall \lambda \geq 0$

Definition (Independence)

- X_{n} is said to be independent of $\left(X_{1}, \cdots, X_{n-1}\right)$, if for each $\varphi \in C_{b, \text { Lip }}\left(\mathbb{R}^{n}\right)$ (all bounded and Lipschitz functions on \mathbb{R}^{n}), $\hat{\mathbb{E}}\left[\varphi\left(X_{1}, \cdots, X_{n}\right)\right]=\hat{\mathbb{E}}\left[\left.\hat{\mathbb{E}}\left[\varphi\left(x_{1}, \cdots, x_{n-1}, X_{n}\right)\right]\right|_{\left(x_{1}, \cdots, x_{n-1}\right)=\left(X_{1}, \cdots, X_{n}\right)}\right]$.
- X_{n} is said to be product independent of $\left(X_{1}, \cdots, X_{n-1}\right)$ if for each nonnegative bounded Lipschitz function φ_{k},

$$
\hat{\mathbb{E}}\left[\prod_{k=1}^{n} \varphi_{k}\left(X_{k}\right)\right]=\prod_{k=1}^{n} \hat{\mathbb{E}}\left[\varphi_{k}\left(X_{k}\right)\right] .
$$

- X_{n} is said to be sum independent of $\left(X_{1}, \cdots, X_{n-1}\right)$ if for each $\varphi \in C_{b, L i p}(\mathbb{R})$,

$$
\hat{\mathbb{E}}\left[\varphi\left(\sum_{k=1}^{n} X_{k}\right)\right]=\hat{\mathbb{E}}\left[\left.\hat{\mathbb{E}}\left[\varphi\left(x+X_{n}\right)\right]\right|_{x=\sum_{k=1}^{n-1} X_{k}}\right]
$$

Example:

We consider X and Y such that

$$
-\hat{\mathbb{E}}[-X]<\hat{\mathbb{E}}[X]=0 \quad \text { and } \quad-\hat{\mathbb{E}}[-Y]<\hat{\mathbb{E}}[Y]=0 .
$$

Independent case:

$$
\begin{aligned}
\hat{\mathbb{E}}[X Y] & =\hat{\mathbb{E}}\left[\left.\hat{\mathbb{E}}[x Y]\right|_{x=X}\right] \\
& =\hat{\mathbb{E}}\left[\left.\left(x^{+} \hat{\mathbb{E}}[Y]+x^{-} \hat{\mathbb{E}}[-Y]\right)\right|_{x=X}\right] \\
& =\hat{\mathbb{E}}\left[X \hat{\mathbb{E}}[Y]+X^{-}(\hat{\mathbb{E}}[Y]+\hat{\mathbb{E}}[-Y])\right] \\
& >0
\end{aligned}
$$

Definition (Identical distribution)

X_{2} is said to be identically distributed with X_{1}, denoted by $X_{1} \sim X_{2}$, if for each $\varphi \in C_{b, L i p}(\mathbb{R})$,

$$
\hat{\mathbb{E}}\left[\varphi\left(X_{1}\right)\right]=\hat{\mathbb{E}}\left[\varphi\left(X_{2}\right)\right] .
$$

Definition (G-normal distribution)

ξ is said to be G-normal distributed, denoted by $\xi \sim \mathcal{N}\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$, where $\bar{\sigma}^{2}=\hat{\mathbb{E}}\left[\xi^{2}\right]$ and $\underline{\sigma}^{2}=-\hat{\mathbb{E}}\left[-\xi^{2}\right]$, if

$$
\forall a, b \geq 0, a \xi+b \bar{\xi} \sim \sqrt{a^{2}+b^{2}} \xi
$$

where $\bar{\xi}$ is independent of ξ and $\xi \sim \bar{\xi}$.

Remark

If $\xi+\bar{\xi} \sim \sqrt{2} \xi$, then ξ is G-normal distributed.

Proposition

If ξ is G-normal distributed with $\bar{\sigma}^{2}=\hat{\mathbb{E}}\left[\xi^{2}\right]$ and $\underline{\sigma}^{2}=-\hat{\mathbb{E}}\left[-\xi^{2}\right]$, for each $\varphi \in C_{b, \operatorname{Lip}(\mathbb{R})}$, we define $u(t, x)=\hat{\mathbb{E}}[\varphi(x+\sqrt{t} \xi)],(t, x) \in[0, \infty] \times \mathbb{R}$, then $u(t, x)$ is the unique viscosity solution of the following G-heat PDE:

$$
\partial_{t} u-G\left(\partial_{x x}^{2} u\right)=0,\left.u\right|_{t=0}=\varphi
$$

where $G(\alpha)=\frac{1}{2}\left(\bar{\sigma}^{2} \alpha^{+}-\underline{\sigma}^{2} \alpha^{-}\right), \alpha \in \mathbb{R}$.

Proposition

Let $\xi \sim \mathcal{N}\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$, if φ is a convex function, then $\hat{\mathbb{E}}[\varphi(\xi)]=E_{Z}[\varphi(\bar{\sigma} Z)]$, where $Z \sim \mathcal{N}(0,1)$.

Definition (Maximal distribution)

η is said to be maximal distributed, if

$$
\forall a, b \geq 0, a \eta+b \bar{\eta} \sim(a+b) \eta
$$

Remark

If $\eta+\bar{\eta} \sim 2 \eta$, then η is maximal distributed.

Proposition

If η is maximal distributed with $\bar{\mu}=\hat{\mathbb{E}}[\eta]$ and $\underline{\mu}=-\hat{\mathbb{E}}[-\eta]$, then for each $\varphi \in C_{b, \operatorname{Lip}(\mathbb{R})}$,

$$
\hat{\mathbb{E}}[\varphi(\eta)]=\max _{\underline{\mu} \leq \mu \leq \mu} \varphi(\mu) .
$$

Law of large numbers

Weak law of large numbers (Peng)

Let $\left\{X_{n}\right\}$ be a sequence of i.i.d random variables with finite means $\bar{\mu}=\hat{\mathbb{E}}\left[X_{1}\right]$ and $\underline{\mu}=-\hat{\mathbb{E}}\left[-X_{1}\right]$. Suppose $\hat{\mathbb{E}}\left[\left|X_{1}\right|^{1+\alpha}\right]<\infty$ for some $\alpha>0$, let $S_{n}=\sum_{k=1}^{n} X_{k}$, then

$$
\lim _{n \rightarrow \infty} \hat{\mathbb{E}}\left[\varphi\left(\frac{S_{n}}{n}\right)\right]=\max _{\underline{\mu} \leq \mu \leq \bar{\mu}} \varphi(\mu), \quad \forall \varphi \in C_{b, L i p}(\mathbb{R})
$$

Strong law of large numbers (Chen)

Let $\left\{X_{n}\right\}$ be a sequence of i.i.d random variables with finite means $\bar{\mu}=\hat{\mathbb{E}}\left[X_{1}\right]$ and $\underline{\mu}=-\hat{\mathbb{E}}\left[-X_{1}\right]$. Suppose $\hat{\mathbb{E}}\left[\left|X_{1}\right|^{1+\alpha}\right]<\infty$ for some $\alpha>0$, let $S_{n}=\sum_{k=1}^{n} X_{k}$, then
(I) $v\left(\underline{\mu} \leq \liminf \operatorname{in}_{n \rightarrow \infty} \frac{S_{n}}{n} \leq \lim \sup _{n \rightarrow \infty} \frac{S_{n}}{n} \leq \bar{\mu}\right)=1$.
(II) Furthermore, if V is upper continuous, i.e., $V\left(A_{n}\right) \downarrow V(A)$, if $A_{n} \downarrow A$, then $V\left(\lim \sup _{n \rightarrow \infty} \frac{S_{n}}{n}=\bar{\mu}\right)=1, \quad V\left(\liminf _{n \rightarrow \infty} \frac{S_{n}}{n}=\underline{\mu}\right)=1$. (III) Suppose that V is upper continuous, and $C\left(\left\{x_{n}\right\}\right)$ is the cluster set of a sequence of $\left\{x_{n}\right\}$ in \mathbb{R}, i.e., $C\left(\left\{x_{n}\right\}\right)=\left\{x \mid\right.$ there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left.x_{n_{k}} \rightarrow x\right\}$, then $V\left(C\left(\left\{\frac{S_{n}}{n}\right\}\right)=[\underline{\mu}, \bar{\mu}]\right)=1$.

Law of large numbers

We assume \mathcal{P} is weakly compact. Let $\left\{X_{k}\right\}_{k=1}^{\infty}$ be a sequence of random variables satisfying: $\sup _{k \geq 1} \hat{\mathbb{E}}\left[\left|X_{k}\right|^{1+\alpha}\right]<\infty$, for some $\alpha>$
0 , and $\hat{\mathbb{E}}\left[X_{k}\right] \equiv \bar{\mu},-\hat{\mathbb{E}}\left[-X_{k}\right] \equiv \underline{\mu}, k=1,2, \cdots$. Set $S_{n}=\sum_{k=1}^{n} X_{k}$.
(i) If $\left\{X_{k}\right\}_{k=1}^{\infty}$ is product independent, then

$$
v\left(\underline{\mu} \leq \liminf _{n \rightarrow \infty} \frac{S_{n}}{n} \leq \limsup _{n \rightarrow \infty} \frac{S_{n}}{n} \leq \bar{\mu}\right)=1 .
$$

(ii) If $\left\{X_{k}\right\}_{k=1}^{\infty}$ is product and sum independent, then

$$
\lim _{n \rightarrow \infty} \hat{\mathbb{E}}\left[\varphi\left(\frac{S_{n}}{n}\right)\right]=\max _{\underline{\mu} \leq \mu \leq \mu} \varphi(\mu)
$$

(iii) If $\left\{X_{k}\right\}_{k=1}^{\infty}$ is sum independent, and $V(\cdot)$ is upper continuous, then

$$
\forall \mu \in[\underline{\mu}, \bar{\mu}], \quad V\left(\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\mu\right)=1
$$

Lemma

We assume that \mathcal{P} is weakly compact. Let P be a probability measures such that for each $\varphi \in C_{b, L i p}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
E_{P}\left[\varphi\left(X_{1}, \cdots, X_{n}\right)\right] \leq \hat{\mathbb{E}}\left[\varphi\left(X_{1}, \cdots, X_{n}\right)\right] \tag{*}
\end{equation*}
$$

Then $(*)$ also holds for each bounded measurable function φ.
Proof: (*) holds for bounded u.s.c. function φ since $\exists \varphi_{k} \in C_{b, L i p}\left(\mathbb{R}^{n}\right)$, s.t. $\varphi_{k} \downarrow \varphi\left(\varphi_{k}=\sup _{y \in \mathbb{R}^{n}}\{\varphi(y)-k\|x-y\|\}\right)$. \mathcal{P} is weakly compact, we have $\hat{\mathbb{E}}\left[\varphi_{k}\left(X_{1}, \cdots, X_{n}\right)\right] \downarrow \hat{\mathbb{E}}\left[\varphi\left(X_{1}, \cdots, X_{n}\right)\right]$ (Theorem 31 in Denis, Hu, Peng(2008)), then $E_{P}\left[\varphi\left(X_{1}, \cdots, X_{n}\right)\right]=\lim _{k \rightarrow \infty} E_{P}\left[\varphi_{k}\left(X_{1}, \cdots, X_{n}\right)\right] \leq \hat{\mathbb{E}}\left[\varphi\left(X_{1}, \cdots, X_{n}\right)\right]$.

If φ is a bounded measurable function, then

$$
\begin{aligned}
& E_{P}\left[\varphi\left(X_{1}, \cdots, X_{n}\right)\right] \\
= & \sup \left\{E_{P}\left[\bar{\varphi}\left(X_{1}, \cdots, X_{n}\right)\right]: \bar{\varphi} \text { is bounded upper semi-continuous and } \bar{\varphi} \leq \varphi\right\} \\
\leq & \hat{\mathbb{E}}\left[\varphi\left(X_{1}, \cdots, X_{n}\right)\right] .
\end{aligned}
$$

Lemma

If for each nonnegative bounded Lipschitz function $\varphi_{i}, i=1, \cdots, n$,

$$
\hat{\mathbb{E}}\left[\prod_{i=1}^{n} \varphi_{i}\left(X_{i}\right)\right]=\prod_{i=1}^{n} \hat{\mathbb{E}}\left[\varphi_{i}\left(X_{i}\right)\right]
$$

then for each nonnegative bounded measurable function $\varphi_{i}, i=1, \cdots, n$,

$$
\hat{\mathbb{E}}\left[\prod_{i=1}^{n} \varphi_{i}\left(X_{i}\right)\right]=\prod_{i=1}^{n} \hat{\mathbb{E}}\left[\varphi_{i}\left(X_{i}\right)\right]
$$

Sketch proof of main theorem:

(i) Similar to Proof of Chen (2010)

Consider $Y_{k}=X_{k} I_{\left\{\left|X_{k}\right| \leq k^{\beta}\right\}}-\hat{\mathbb{E}}\left[X_{k} I_{\left\{\left|X_{k}\right| \leq k^{\beta}\right\}}\right]$, where $\frac{1}{1+\alpha}<\beta<1$.

$$
\begin{gathered}
e^{x} \leq 1+x+|x|^{1+\alpha} e^{2|x|}, x \in \mathbb{R}, 0<\alpha<1 . \\
e^{\frac{Y_{k}}{n^{\beta}}} \leq 1+\frac{Y_{k}}{n^{\beta}}+\frac{\left|Y_{k}\right|^{1+\alpha}}{n^{\beta(1+\alpha)}} e^{2\left|\frac{Y_{k}}{n^{\beta}}\right|} \leq 1+\frac{Y_{k}}{n^{\beta}}+\frac{\left|Y_{k}\right|^{1+\alpha}}{n} e^{4} . \\
\hat{\mathbb{E}}\left[e^{\frac{Y_{k}}{n^{\beta}}}\right] \leq 1+\frac{C}{n} . \\
\hat{\mathbb{E}}\left[\prod_{k=1}^{n} e^{\frac{Y_{k}}{n^{\beta}}}\right]=\prod_{k=1}^{n} \hat{\mathbb{E}}\left[e^{\frac{Y_{k}}{n^{\beta}}}\right] \leq\left(1+\frac{C}{n}\right)^{n} \leq e^{C} .
\end{gathered}
$$

$V\left(\frac{\sum_{k=1}^{n} Y_{k}}{n} \geq \varepsilon\right)=V\left(e^{\frac{\sum_{k=1}^{n} Y_{k}}{n^{\beta}}} \geq e^{\varepsilon n^{1-\beta}}\right) \leq e^{-\varepsilon n^{1-\beta}} \hat{\mathbb{E}}\left[\prod_{k=1}^{n} e^{\frac{Y_{k}}{n^{\beta}}}\right] \leq e^{-\varepsilon n^{1-\beta}} e^{C}$.

Corollary

Let $\left\{X_{n}\right\}$ be a sequence of bounded and sum independent random variables satisfying: $\sup _{k \geq 1} \hat{\mathbb{E}}\left[\left|X_{k}\right|^{1+\alpha}\right]<\infty$, for some $\alpha>$ 0 , and $\hat{\mathbb{E}}\left[X_{k}\right] \equiv \bar{\mu},-\hat{\mathbb{E}}\left[-X_{k}\right] \equiv \underline{\mu}, k=1,2, \cdots$. Set $S_{n}=\sum_{k=1}^{n} X_{k}$.
(i) $v\left(\underline{\mu} \leq \liminf _{n \rightarrow \infty} \frac{S_{n}}{n} \leq \lim \sup _{n \rightarrow \infty} \frac{S_{n}}{n} \leq \bar{\mu}\right)=1$.
(ii) $\lim _{n \rightarrow \infty} \hat{\mathbb{E}}\left[\varphi\left(\frac{S_{n}}{n}\right)\right]=\max _{\underline{\mu} \leq \mu \leq \bar{\mu}} \varphi(\mu)$.
(iii) Furthermore, if V is upper continuous, then

$$
\forall \mu \in[\underline{\mu}, \bar{\mu}], \quad V\left(\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\mu\right)=1
$$

Central limit theorem

Central limit theorem (Peng)

Let $\left\{X_{n}\right\}$ be a sequence of i.i.d. random variables such that $\hat{\mathbb{E}}\left[X_{1}\right]=\hat{\mathbb{E}}\left[-X_{1}\right]=0$ and $\hat{\mathbb{E}}\left[\left|X_{1}\right|^{q}\right]<\infty$ for some $q>2$. Let $S_{n}=\sum_{k=1}^{n} X_{k}$. Then for all $\varphi \in C(\mathbb{R})$ with quadratic growth condition,

$$
\lim _{n \rightarrow \infty} \hat{\mathbb{E}}\left[\varphi\left(\frac{S_{n}}{\sqrt{n}}\right)\right]=\hat{\mathbb{E}}[\varphi(\xi)],
$$

where $\xi \sim \mathcal{N}\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$ with $\bar{\sigma}^{2}=\hat{\mathbb{E}}\left[X_{1}^{2}\right], \underline{\sigma}^{2}=-\hat{\mathbb{E}}\left[-X_{1}^{2}\right]$.

Let $\mathcal{M}_{n}^{q}\left(\left[\underline{\underline{2}}^{2}, \bar{\sigma}^{2}\right], K\right)$ denote the set of n-stages martingale S with filtration \mathcal{F}, such that for all k, both relations hold:

- $E\left[S_{k}\right]=0$
- $\underline{\sigma}^{2} \leq E\left[\left|S_{k+1}-S_{k}\right|^{2} \mid \mathcal{F}_{k}\right] \leq \bar{\sigma}^{2}$
- $E\left[\left|S_{k+1}-S_{k}\right|^{q} \mid \mathcal{F}_{k}\right] \leq K^{q}$

Let

$$
V_{n}[\varphi]:=\sup _{S \in \mathcal{M}_{n}^{q}\left(\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right], K\right)} E\left[\varphi\left(\frac{S_{n}}{\sqrt{n}}\right)\right] .
$$

Theorem (Central limit theorem)

We assume that $q>2$. Then for all $\varphi \in C(\mathbb{R})$ with quadratic growth condition, we have

$$
\lim _{n \rightarrow \infty} V_{n}[\varphi]=\hat{\mathbb{E}}[\varphi(\xi)]
$$

where $\xi \sim \mathcal{N}\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$.

Maximal L^{p} variation problem

Let $\mathcal{M}_{n}(\mu)$ be the set of n-stage martingales whose terminal distribution is μ. We define the L^{p}-variation of length n of the martingale $\left(L_{k}\right)_{k=1, \cdots, n}$ as

$$
\mathcal{V}_{n}^{p}(L)=E\left[\sum_{k=1}^{n}\left(E\left[\left|L_{k}-L_{k-1}\right|^{p} \mid\left(L_{i}, i \leq k-1\right)\right]\right)^{\frac{1}{p}}\right]
$$

The value function is denoted by

$$
V_{n}(\mu)=\frac{1}{\sqrt{n}} \sup _{L \in \mathcal{M}_{n}(\mu)} \mathcal{V}_{n}^{p}(L)
$$

Theorem

For $p \in[1,2)$ and $\mu \in \Delta(K)$, where K is a compact subset of \mathbb{R}. We have

$$
\lim _{n \rightarrow \infty} V_{n}(\mu)=E\left[f_{\mu}(Z) Z\right]
$$

where $Z \sim N(0,1)$ and $f_{\mu}: \mathbb{R} \rightarrow \mathbb{R}$ is a increasing function such that $f_{\mu}(Z) \sim \mu$, i.e., $f_{\mu}(x)=F_{\mu}^{-1}\left(F_{\mathcal{N}}(x)\right)$ with $F_{\mu}^{-1}=\inf \left\{s: F_{\mu}(s)>y\right\}$.
(1) Mertens, J.F. and Zamir, S. The normal distribution and repeated games. International Journal of Game Theory, 5, 187-197, 1976.
(Mertens, J.F. and Zamir, S. The maximal variation of a bounded martingale. Israel Journal of Mathematics, 27, 252-276, 1977.
(in De Meyer, B. The maximal variation of a bounded martingale and the central limit theorem. Ann. Inst. Henri Poincaré, 34, 49-59, 1998.

囲 De Meyer, B. Price dynamics on a stock market with asymmetric information. Games and Economic Behavior, 69, 42-71, 2010.

目 Gensbittel, F. Covariance contral problems over martingales with fixed terminal distribution arising from game theory. Preprint.

Sketch Proof of Theorem:

$$
\begin{aligned}
& \sup _{L \sim \mu, S \in \mathcal{M}_{n}^{\prime}} E\left[L \frac{S_{n}}{\sqrt{n}}\right] \leq V_{n}(\mu) \leq \sup _{L \sim \mu, S \in \mathcal{M}_{n}^{q}([0,1], 2)} E\left[L \frac{S_{n}}{\sqrt{n}}\right] \\
& \sup _{L \sim \mu, S_{n}} E\left[L \frac{S_{n}}{\sqrt{n}}\right]=\inf _{\varphi \in \operatorname{Conv}(K)} E\left[\varphi(L)+\varphi^{*}\left(\frac{S_{n}}{\sqrt{n}}\right)\right] \\
& L \sim \mu, S \in \mathcal{M}_{n}^{q}([0,1], 2) \\
& \sup _{L \sim} E\left[L \frac{S_{n}}{\sqrt{n}}\right]=\sup _{S \in \mathcal{M}_{n}^{q}([0,1], 2)} \inf \varphi \in \operatorname{Conv(K)} E\left[\varphi(L)+\varphi^{*}\left(\frac{S_{n}}{\sqrt{n}}\right)\right] \\
&=\inf _{\varphi \in \operatorname{Conv}(K)} E\left[\varphi(L)+\sup _{S \in \mathcal{M}_{n}^{q}([0,1], 2)} E\left[\varphi^{*}\left(\frac{S_{n}}{\sqrt{n}}\right)\right]\right] .
\end{aligned}
$$

Since φ^{*} is a convex function, we have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sup _{S \in \mathcal{M}_{n}^{q}([0,1], 2)} E\left[\varphi^{*}\left(\frac{S_{n}}{\sqrt{n}}\right)\right]=E\left[\varphi^{*}(Z)\right], Z \sim N(0,1) \\
\lim _{n \rightarrow \infty} V_{n}(\mu)=\inf _{\varphi \in \operatorname{Conv}(K)} E\left[\varphi(L)+\lim _{n \rightarrow \infty} \sup _{S \in \mathcal{M}_{n}^{q}([0,1], 2)} E\left[\varphi^{*}\left(\frac{S_{n}}{\sqrt{n}}\right)\right]\right] \\
=\inf _{\varphi \in \operatorname{Conv}(K)} E\left[\varphi(L)+\varphi^{*}(Z)\right]=E\left[f_{\mu}(Z) Z\right]
\end{gathered}
$$

Thank you for your attention!

