Limit theorems under sublinear expectations and probabilities

Xinpeng LI Shandong University & Université Paris 1

Young Researchers' Meeting on BSDEs, Numerics and Finance

4 July, Oxford

Outline

- Introduction
- Law of large numbers
- Central limit theorem

Introduction

- Capacity and Choquet expectation
 - Marinacci, M. (1999) Limit laws for non-additive probabilities and their frequentist interpretation. J. Econom. Theory, 84, 145-195.
 - Maccheroni, F. and Marinacci, M. (2005) A strong law of large numbers for capacities. The Annals of Probability, 33, 1171-1178.
 etc.
- Sublinear expectation
 - Peng, S. (2008) A new central limit theorem under sublinear expectations. in arXiv:0803.2656v1.
 - Chen, Z. (2010) Strong laws of large numbers for capacities. in arXiv:1006.0749v1.

etc.

Let (Ω, \mathcal{F}) be a measurable space and \mathcal{M} be the set of all probabilities on Ω .

For each non-empty subsets $\mathcal{P} \subset \mathcal{M},$ we can define:

- Upper probability $V(A) := \sup_{P \in \mathcal{P}} P(A), A \in \mathcal{F}$
- Lower probability $v(A) := \inf_{P \in \mathcal{P}} P(A), A \in \mathcal{F}$
- Sublinear expectation $\hat{\mathbb{E}}[X] := \sup_{P \in \mathcal{P}} E_P[X]$, i.e.

(1)
$$\hat{\mathbb{E}}[X] \leq \hat{\mathbb{E}}[Y]$$
 if $X \leq Y$
(2) $\hat{\mathbb{E}}[c] = c$, $\forall c \in \mathbb{R}$
(3) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X] + \hat{\mathbb{E}}[Y]$
(4) $\hat{\mathbb{E}}[\lambda X] = \lambda \hat{\mathbb{E}}[X]$, $\forall \lambda \geq 0$

Definition (Independence)

• X_n is said to be independent of (X_1, \dots, X_{n-1}) , if for each $\varphi \in C_{b,Lip}(\mathbb{R}^n)$ (all bounded and Lipschitz functions on \mathbb{R}^n),

 $\hat{\mathbb{E}}[\varphi(X_1,\cdots,X_n)] = \hat{\mathbb{E}}[\hat{\mathbb{E}}[\varphi(x_1,\cdots,x_{n-1},X_n)]|_{(x_1,\cdots,x_{n-1})=(X_1,\cdots,X_n)}].$

 X_n is said to be product independent of (X₁, · · · , X_{n-1}) if for each nonnegative bounded Lipschitz function φ_k,

$$\hat{\mathbb{E}}[\prod_{k=1}^{n}\varphi_k(X_k)] = \prod_{k=1}^{n}\hat{\mathbb{E}}[\varphi_k(X_k)].$$

• X_n is said to be sum independent of (X_1, \cdots, X_{n-1}) if for each $\varphi \in C_{b,Lip}(\mathbb{R})$,

$$\hat{\mathbb{E}}[\varphi(\sum_{k=1}^{n} X_k)] = \hat{\mathbb{E}}[\hat{\mathbb{E}}[\varphi(x+X_n)]|_{x=\sum_{k=1}^{n-1} X_k}].$$

We consider \boldsymbol{X} and \boldsymbol{Y} such that

$$-\hat{\mathbb{E}}[-X] < \hat{\mathbb{E}}[X] = 0 \quad \text{and} \quad -\hat{\mathbb{E}}[-Y] < \hat{\mathbb{E}}[Y] = 0.$$

Independent case:

$$\hat{\mathbb{E}}[XY] = \hat{\mathbb{E}}[\hat{\mathbb{E}}[xY]|_{x=X}]$$

$$= \hat{\mathbb{E}}[(x^+\hat{\mathbb{E}}[Y] + x^-\hat{\mathbb{E}}[-Y])|_{x=X}]$$

$$= \hat{\mathbb{E}}[X\hat{\mathbb{E}}[Y] + X^-(\hat{\mathbb{E}}[Y] + \hat{\mathbb{E}}[-Y])]$$

$$> 0$$

6 / 25

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Definition (Identical distribution)

 X_2 is said to be identically distributed with X_1 , denoted by $X_1 \sim X_2$, if for each $\varphi \in C_{b,Lip}(\mathbb{R})$,

 $\hat{\mathbb{E}}[\varphi(X_1)] = \hat{\mathbb{E}}[\varphi(X_2)].$

Definition (G-normal distribution)

 ξ is said to be *G*-normal distributed, denoted by $\xi \sim \mathcal{N}(0, [\underline{\sigma}^2, \overline{\sigma}^2])$, where $\overline{\sigma}^2 = \hat{\mathbb{E}}[\xi^2]$ and $\underline{\sigma}^2 = -\hat{\mathbb{E}}[-\xi^2]$, if

$$\forall a, b \ge 0, a\xi + b\bar{\xi} \sim \sqrt{a^2 + b^2}\xi,$$

where
$$\bar{\xi}$$
 is independent of ξ and $\xi \sim \bar{\xi}$.

Remark

If
$$\xi + ar{\xi} \sim \sqrt{2} \xi$$
, then ξ is G -normal distributed.

Proposition

If ξ is *G*-normal distributed with $\overline{\sigma}^2 = \hat{\mathbb{E}}[\xi^2]$ and $\underline{\sigma}^2 = -\hat{\mathbb{E}}[-\xi^2]$, for each $\varphi \in C_{b,Lip(\mathbb{R})}$, we define $u(t,x) = \hat{\mathbb{E}}[\varphi(x + \sqrt{t}\xi)], (t,x) \in [0,\infty] \times \mathbb{R}$, then u(t,x) is the unique viscosity solution of the following *G*-heat PDE:

$$\partial_t u - G(\partial_{xx}^2 u) = 0, u|_{t=0} = \varphi,$$

where
$$G(\alpha) = \frac{1}{2}(\overline{\sigma}^2 \alpha^+ - \underline{\sigma}^2 \alpha^-), \alpha \in \mathbb{R}.$$

Proposition

Let $\xi \sim \mathcal{N}(0, [\underline{\sigma}^2, \overline{\sigma}^2])$, if φ is a convex function, then $\hat{\mathbb{E}}[\varphi(\xi)] = E_Z[\varphi(\overline{\sigma}Z)]$, where $Z \sim \mathcal{N}(0, 1)$.

Definition (Maximal distribution)

 η is said to be maximal distributed, if

$$\forall a, b \ge 0, a\eta + b\bar{\eta} \sim (a+b)\eta.$$

Remark

If $\eta + \bar{\eta} \sim 2\eta$, then η is maximal distributed.

Proposition

If η is maximal distributed with $\overline{\mu} = \hat{\mathbb{E}}[\eta]$ and $\underline{\mu} = -\hat{\mathbb{E}}[-\eta]$, then for each $\varphi \in C_{b,Lip(\mathbb{R})}$,

$$\mathbb{E}[\varphi(\eta)] = \max_{\underline{\mu} \le \mu \le \overline{\mu}} \varphi(\mu).$$

Weak law of large numbers (Peng)

Let $\{X_n\}$ be a sequence of i.i.d random variables with finite means $\overline{\mu} = \hat{\mathbb{E}}[X_1]$ and $\underline{\mu} = -\hat{\mathbb{E}}[-X_1]$. Suppose $\hat{\mathbb{E}}[|X_1|^{1+\alpha}] < \infty$ for some $\alpha > 0$, let $S_n = \sum_{k=1}^n X_k$, then

$$\lim_{n \to \infty} \hat{\mathbb{E}}[\varphi(\frac{S_n}{n})] = \max_{\underline{\mu} \le \mu \le \overline{\mu}} \varphi(\mu), \quad \forall \varphi \in C_{b,Lip}(\mathbb{R}).$$

イロト 不得 トイヨト イヨト 二日

Strong law of large numbers (Chen)

Let $\{X_n\}$ be a sequence of i.i.d random variables with finite means $\overline{\mu} = \hat{\mathbb{E}}[X_1]$ and $\mu = -\hat{\mathbb{E}}[-X_1]$. Suppose $\hat{\mathbb{E}}[|X_1|^{1+\alpha}] < \infty$ for some $\alpha > 0$, let $S_n = \sum_{k=1}^n X_k$, then (I) $v(\mu \leq \liminf_{n \to \infty} \frac{S_n}{n} \leq \limsup_{n \to \infty} \frac{S_n}{n} \leq \overline{\mu}) = 1.$ (II) Furthermore, if V is upper continuous, i.e., $V(A_n) \downarrow V(A)$, if $A_n \downarrow A$, then $V(\limsup_{n\to\infty} \frac{S_n}{n} = \overline{\mu}) = 1$, $V(\liminf_{n\to\infty} \frac{S_n}{n} = \mu) = 1$. (III) Suppose that V is upper continuous, and $C(\{x_n\})$ is the cluster set of a sequence of $\{x_n\}$ in \mathbb{R} , i.e., $C(\{x_n\}) = \{x \mid \text{there exists a subsequence } \{x_{n_k}\} \text{ of } \{x_n\} \text{ such that } x_{n_k} \to x\},\$ then $V(C(\{\frac{S_n}{n}\}) = [\mu, \overline{\mu}]) = 1.$

Law of large numbers

We assume \mathcal{P} is weakly compact. Let $\{X_k\}_{k=1}^{\infty}$ be a sequence of random variables satisfying: $\sup_{k\geq 1} \hat{\mathbb{E}}[|X_k|^{1+\alpha}] < \infty$, for some $\alpha > 0$, and $\hat{\mathbb{E}}[X_k] \equiv \overline{\mu}, -\hat{\mathbb{E}}[-X_k] \equiv \underline{\mu}, k = 1, 2, \cdots$. Set $S_n = \sum_{k=1}^n X_k$. (i) If $\{X_k\}_{k=1}^{\infty}$ is product independent, then

$$v(\underline{\mu} \le \liminf_{n \to \infty} \frac{S_n}{n} \le \limsup_{n \to \infty} \frac{S_n}{n} \le \overline{\mu}) = 1.$$

(ii) If $\{X_k\}_{k=1}^{\infty}$ is product and sum independent, then

$$\lim_{n \to \infty} \hat{\mathbb{E}}[\varphi(\frac{S_n}{n})] = \max_{\underline{\mu} \le \mu \le \overline{\mu}} \varphi(\mu).$$

(iii) If $\{X_k\}_{k=1}^{\infty}$ is sum independent, and $V(\cdot)$ is upper continuous, then

$$\forall \mu \in [\underline{\mu}, \overline{\mu}], \qquad V(\lim_{n \to \infty} \frac{S_n}{n} = \mu) = 1.$$

Lemma

We assume that \mathcal{P} is weakly compact. Let P be a probability measures such that for each $\varphi \in C_{b,Lip}(\mathbb{R}^n)$,

$$E_P[\varphi(X_1,\cdots,X_n)] \le \hat{\mathbb{E}}[\varphi(X_1,\cdots,X_n)], \qquad (*)$$

Then (*) also holds for each bounded measurable function φ .

Proof: (*) holds for bounded u.s.c. function φ since $\exists \varphi_k \in C_{b,Lip}(\mathbb{R}^n)$, s.t. $\varphi_k \downarrow \varphi \ (\varphi_k = \sup_{y \in \mathbb{R}^n} \{\varphi(y) - k | |x - y||\})$. \mathcal{P} is weakly compact, we have $\hat{\mathbb{E}}[\varphi_k(X_1, \cdots, X_n)] \downarrow \hat{\mathbb{E}}[\varphi(X_1, \cdots, X_n)]$ (Theorem 31 in Denis, Hu, Peng(2008)), then $E_P[\varphi(X_1, \cdots, X_n)] = \lim_{k \to \infty} E_P[\varphi_k(X_1, \cdots, X_n)] \leq \hat{\mathbb{E}}[\varphi(X_1, \cdots, X_n)]$.

If φ is a bounded measurable function, then

 $E_P[\varphi(X_1,\cdots,X_n)]$

 $= \sup\{E_P[\overline{\varphi}(X_1, \cdots, X_n)] : \overline{\varphi} \text{ is bounded upper semi-continuous and } \overline{\varphi} \leq \varphi\}$ $\leq \hat{\mathbb{E}}[\varphi(X_1, \cdots, X_n)].$

Lemma

If for each nonnegative bounded Lipschitz function $arphi_i,\,i=1,\cdots,n_i$

$$\hat{\mathbb{E}}[\prod_{i=1}^{n}\varphi_i(X_i)] = \prod_{i=1}^{n}\hat{\mathbb{E}}[\varphi_i(X_i)],$$

then for each nonnegative bounded measurable function φ_i , $i=1,\cdots,n$,

$$\hat{\mathbb{E}}[\prod_{i=1}^{n}\varphi_i(X_i)] = \prod_{i=1}^{n}\hat{\mathbb{E}}[\varphi_i(X_i)].$$

Sketch proof of main theorem:

(i) Similar to Proof of Chen (2010)
Consider
$$Y_k = X_k I_{\{|X_k| \le k^\beta\}} - \hat{\mathbb{E}}[X_k I_{\{|X_k| \le k^\beta\}}]$$
, where $\frac{1}{1+\alpha} < \beta < 1$.

$$\begin{split} e^x &\leq 1+x+|x|^{1+\alpha}e^{2|x|}, x \in \mathbb{R}, 0 < \alpha < 1.\\ e^{\frac{Y_k}{n^{\beta}}} &\leq 1+\frac{Y_k}{n^{\beta}}+\frac{|Y_k|^{1+\alpha}}{n^{\beta(1+\alpha)}}e^{2|\frac{Y_k}{n^{\beta}}|} \leq 1+\frac{Y_k}{n^{\beta}}+\frac{|Y_k|^{1+\alpha}}{n}e^4.\\ &\hat{\mathbb{E}}[e^{\frac{Y_k}{n^{\beta}}}] \leq 1+\frac{C}{n}.\\ &\hat{\mathbb{E}}[\prod_{k=1}^n e^{\frac{Y_k}{n^{\beta}}}] = \prod_{k=1}^n \hat{\mathbb{E}}[e^{\frac{Y_k}{n^{\beta}}}] \leq (1+\frac{C}{n})^n \leq e^C.\\ &V(\frac{\sum_{k=1}^n Y_k}{n} \geq \varepsilon) = V(e^{\frac{\sum_{k=1}^n Y_k}{n^{\beta}}} \geq e^{\varepsilon n^{1-\beta}}) \leq e^{-\varepsilon n^{1-\beta}} \hat{\mathbb{E}}[\prod_{k=1}^n e^{\frac{Y_k}{n^{\beta}}}] \leq e^{-\varepsilon n^{1-\beta}}e^C. \end{split}$$

16 / 25

k=1

Corollary

Let $\{X_n\}$ be a sequence of bounded and sum independent random variables satisfying: $\sup_{k\geq 1} \hat{\mathbb{E}}[|X_k|^{1+\alpha}] < \infty$, for some $\alpha > 0$, and $\hat{\mathbb{E}}[X_k] \equiv \overline{\mu}, -\hat{\mathbb{E}}[-X_k] \equiv \underline{\mu}, k = 1, 2, \cdots$. Set $S_n = \sum_{k=1}^n X_k$. (i) $v(\underline{\mu} \leq \liminf_{n \to \infty} \frac{S_n}{n} \leq \limsup_{n \to \infty} \frac{S_n}{n} \leq \overline{\mu}) = 1$. (ii) $\lim_{n \to \infty} \hat{\mathbb{E}}[\varphi(\frac{S_n}{n})] = \max_{\underline{\mu} \leq \underline{\mu} \leq \overline{\mu}} \varphi(\mu)$. (iii) Furthermore, if V is upper continuous, then

$$\forall \mu \in [\underline{\mu}, \overline{\mu}], \quad V(\lim_{n \to \infty} \frac{S_n}{n} = \mu) = 1.$$

イロト 不得 トイヨト イヨト 二日

Central limit theorem (Peng)

Let $\{X_n\}$ be a sequence of i.i.d. random variables such that $\hat{\mathbb{E}}[X_1] = \hat{\mathbb{E}}[-X_1] = 0$ and $\hat{\mathbb{E}}[|X_1|^q] < \infty$ for some q > 2. Let $S_n = \sum_{k=1}^n X_k$. Then for all $\varphi \in C(\mathbb{R})$ with quadratic growth condition,

$$\lim_{n \to \infty} \hat{\mathbb{E}}[\varphi(\frac{S_n}{\sqrt{n}})] = \hat{\mathbb{E}}[\varphi(\xi)],$$

where $\xi \sim \mathcal{N}(0, [\underline{\sigma}^2, \overline{\sigma}^2])$ with $\overline{\sigma}^2 = \hat{\mathbb{E}}[X_1^2]$, $\underline{\sigma}^2 = -\hat{\mathbb{E}}[-X_1^2]$.

 Let $\mathcal{M}_n^q([\underline{\sigma}^2, \overline{\sigma}^2], K)$ denote the set of *n*-stages martingale *S* with filtration \mathcal{F} , such that for all *k*, both relations hold:

•
$$E[S_k] = 0$$

• $\underline{\sigma}^2 \le E[|S_{k+1} - S_k|^2 | \mathcal{F}_k] \le \overline{\sigma}^2$
• $E[|S_{k+1} - S_k|^q | \mathcal{F}_k] \le K^q$

Let

$$V_n[\varphi] := \sup_{S \in \mathcal{M}_n^q([\underline{\sigma}^2, \overline{\sigma}^2], K)} E[\varphi(\frac{S_n}{\sqrt{n}})].$$

Theorem (Central limit theorem)

We assume that q>2. Then for all $\varphi\in C(\mathbb{R})$ with quadratic growth condition, we have

$$\lim_{n \to \infty} V_n[\varphi] = \hat{\mathbb{E}}[\varphi(\xi)],$$

where $\xi \sim \mathcal{N}(0, [\underline{\sigma}^2, \overline{\sigma}^2]).$

Let $\mathcal{M}_n(\mu)$ be the set of *n*-stage martingales whose terminal distribution is μ . We define the L^p -variation of length *n* of the martingale $(L_k)_{k=1,\dots,n}$ as

$$\mathcal{V}_{n}^{p}(L) = E[\sum_{k=1}^{n} (E[|L_{k} - L_{k-1}|^{p}|(L_{i}, i \leq k-1)])^{\frac{1}{p}}].$$

The value function is denoted by

$$V_n(\mu) = \frac{1}{\sqrt{n}} \sup_{L \in \mathcal{M}_n(\mu)} \mathcal{V}_n^p(L).$$

Theorem

For $p \in [1,2)$ and $\mu \in \Delta(K)$, where K is a compact subset of \mathbb{R} . We have

$$\lim_{n \to \infty} V_n(\mu) = E[f_\mu(Z)Z],$$

where $Z \sim N(0,1)$ and $f_{\mu} : \mathbb{R} \to \mathbb{R}$ is a increasing function such that $f_{\mu}(Z) \sim \mu$, i.e., $f_{\mu}(x) = F_{\mu}^{-1}(F_{\mathcal{N}}(x))$ with $F_{\mu}^{-1} = \inf\{s : F_{\mu}(s) > y\}$.

- Mertens, J.F. and Zamir, S. The normal distribution and repeated games. International Journal of Game Theory, 5, 187-197, 1976.
- Mertens, J.F. and Zamir, S. The maximal variation of a bounded martingale. Israel Journal of Mathematics, 27, 252-276, 1977.
- De Meyer, B. The maximal variation of a bounded martingale and the central limit theorem. Ann. Inst. Henri Poincaré, 34, 49-59, 1998.
- De Meyer, B. Price dynamics on a stock market with asymmetric information. Games and Economic Behavior, 69, 42-71, 2010.
- Gensbittel, F. Covariance contral problems over martingales with fixed terminal distribution arising from game theory. Preprint.

Sketch Proof of Theorem:

$$\begin{split} \sup_{L \sim \mu, S \in \mathcal{M}'_n} E[L\frac{S_n}{\sqrt{n}}] &\leq V_n(\mu) \leq \sup_{L \sim \mu, S \in \mathcal{M}^q_n([0,1],2)} E[L\frac{S_n}{\sqrt{n}}].\\ \sup_{L \sim \mu, S_n} E[L\frac{S_n}{\sqrt{n}}] &= \inf_{\varphi \in Conv(K)} E[\varphi(L) + \varphi^*(\frac{S_n}{\sqrt{n}})],\\ \\ \sup_{L \sim \mu, S \in \mathcal{M}^q_n([0,1],2)} E[L\frac{S_n}{\sqrt{n}}] &= \sup_{S \in \mathcal{M}^q_n([0,1],2)} \inf_{\varphi \in Conv(K)} E[\varphi(L) + \varphi^*(\frac{S_n}{\sqrt{n}})]\\ \\ &= \inf_{\varphi \in Conv(K)} E[\varphi(L) + \sup_{S \in \mathcal{M}^q_n([0,1],2)} E[\varphi^*(\frac{S_n}{\sqrt{n}})]]. \end{split}$$

Since φ^* is a convex function, we have

$$\lim_{n \to \infty} \sup_{S \in \mathcal{M}_n^q([0,1],2)} E[\varphi^*(\frac{S_n}{\sqrt{n}})] = E[\varphi^*(Z)], \ Z \sim N(0,1).$$

$$\lim_{n \to \infty} V_n(\mu) = \inf_{\varphi \in Conv(K)} E[\varphi(L) + \lim_{n \to \infty} \sup_{S \in \mathcal{M}_n^q([0,1],2)} E[\varphi^*(\frac{S_n}{\sqrt{n}})]]$$
$$= \inf_{\varphi \in Conv(K)} E[\varphi(L) + \varphi^*(Z)] = E[f_\mu(Z)Z].$$

Thank you for your attention!

<ロト < 部 > < 言 > < 言 > 言 の < 3 25 / 25