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Introduction

@ Capacity and Choquet expectation
[§ Marinacci, M. (1999) Limit laws for non-additive probabilities and
their frequentist interpretation. J. Econom. Theory, 84, 145-195.
[§ Maccheroni, F. and Marinacci, M. (2005) A strong law of large
numbers for capacities. The Annals of Probability, 33, 1171-1178.
etc.
@ Sublinear expectation
[§ Peng, S. (2008) A new central limit theorem under sublinear
expectations. in arXiv:0803.2656v1.
[ Chen, Z. (2010) Strong laws of large numbers for capacities. in
arXiv:1006.0749v1.

etc.
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Let (€2, F) be a measurable space and M be the set of all
probabilities on €.
For each non-empty subsets P C M, we can define:
e Upper probability V(A) :=suppep P(A), A F
o Lower probability v(A) := infpep P(A), A€ F

o Sublinear expectation E[X] := suppep Ep[X], i.e.
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Definition (Independence)
e X, is said to be independent of (X, -+, X,_1), if for each

¢ € Cy,1ip(R™) (all bounded and Lipschitz functions on R"),

IAE[QO(Xl’ LX) = E[E[¢($1a T Tn—1, Xn)”(m, Tn—1)=(X1," ,Xn)]'

@ X, is said to be product independent of (Xy,---,X,_1) if for each

nonnegative bounded Lipschitz function ¢y,
n n
E[] ] ox(Xk)] HE ©r(Xk)]-
k=1 k=1

@ X, is said to be sum independent of (X, -, X,,—1) if for each
¢ € Cp Lip(R),

v
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We consider X and Y such that

~ ~ ~ ~

“R[-X]<R[X]=0 and —E[-Y]<E[Y]=0.

Independent case:

~

E[XY] = E[E[Y]|,-x]

6/25



Definition (ldentical distribution)
X5 is said to be identically distributed with X7, denoted by X; ~ Xo, if

for each ¢ € C 1ip(R),

E[p(X1)] = E[p(X2)].
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Definition (G-normal distribution)
€ is said to be G-normal distributed, denoted by ¢ ~ N(0, [o2,5?]), where
72 = E[¢?] and 02 = —E[-¢€2], if

Va,b > 0,af + b ~ v/a? + b2¢,

where £ is independent of £ and ¢ ~ €.

v

If € + € ~ V/2¢, then & is G-normal distributed.
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Proposition
If £ is G-normal distributed with 7% = E[¢2] and g% = —E[—¢2], for each
¢ € Oy Lip(r), We define u(t, z) = I@[go(x +V16)], (t, ) € [0,00] x R, then
u(t, z) is the unique viscosity solution of the following G-heat PDE:

O — G(@%xu) =0, U|t:0 =¥,

where G(a) = 1(7%at — o%a7),a € R.

Proposition

| A

Let & ~ N(0,[c2,5?]), if ¢ is a convex function, then
E[p(6)] = Exlp(aZ)], where Z ~ N(0, 1),

A,
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Definition (Maximal distribution)

7 is said to be maximal distributed, if

Va,b > 0,an + by ~ (a + b)n.

If n + 7 ~ 2n, then n is maximal distributed.

Proposition

|

If 1 is maximal distributed with 7z = E[n] and p = —E[-n], then for each

¢ € Cy Lip@®):
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Law of large numbers

Weak law of large numbers (Peng)

Let {X,,} be a sequence of i.i.d random variables with finite means

i = E[X1] and p = —E[-X1]. Suppose E[|X;]'T?] < oo for some a > 0,
let S, = > 1 Xk, then

. = Sn _
Jim Elp(—5)] = Ergggﬁw(u), Vo € C,Lip(R).
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Strong law of large numbers (Chen)

Let {X,,} be a sequence of i.i.d random variables with finite means
7 =E[X1] and p = —~E[-X1]. Suppose E[|X1['**] < oo for some a > 0,
let S, =Y 51 Xk, then

(1) v(p < liminf, o ‘?T" < lim sup,, % <m =1

(1) Furthermore, if V' is upper continuous, i.e., V(A4,) | V(A), if A, | A,
then V(limsup,,_,o, 32 =) =1, V(liminf, 0 = = p) = 1.

(111) Suppose that V' is upper continuous, and C({z,}) is the cluster set
of a sequence of {z,} in R, i.e.,

C({zn}) = {z| there exists a subsequence {z,, } of {z,} such that z,, — x},

then V(C({$}) = [ 7)) = 1
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Law of large numbers
We assume P is weakly compact. Let {X}}72, be a sequence of random
variables satisfying: sup~; E[| X5|'t?] < oo, for some o >

0, and E[X}] =7, ~E[-X4] = p, k= 1,2,--- . Set S, = S0, X

(i) If {X§}32, is product independent, then

S, S,
v(p < liminf =% < limsup — < 7) = 1.
- n—oo M n—oo I

(i) If {Xx}32, is product and sum independent, then

5 Sh,
lim E[p(22)] = m .
i Elp(SR)] = max o(u)

(iii) If {X%}32 is sum independent, and V'(-) is upper continuous, then

Vpelpm, V(lim = =p) =1
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Lemma
We assume that P is weakly compact. Let P be a probability measures

such that for each ¢ € Cp 1;p(R"™),

EP[‘P(XI’ T ?Xn)] < E[@(Xl’ T 7Xn)]? (*)

Then (x) also holds for each bounded measurable function .

Proof: (x) holds for bounded u.s.c. function ¢ since i € Cy 1ip(R™), s.t.
@k 4 ¢ (pr = sup,egrn{0(y) — kl|z — y||}). P is weakly compact, we have

Elor(X1,-, Xn)] 4 E[p(X1,- -+, X,)] (Theorem 31 in Denis, Hu, Peng(2008)),
then EP[SD(Xla to 7Xn)] = limy 00 EP[ka(Xla T 7Xn)] < E[QO(XD T 7Xn)}

If ¢ is a bounded measurable function, then
Eplp(X1,- -, Xn)]
=sup{Ep[@(X1, -+, Xn)] : P is bounded upper semi-continuous and @ < ¢}
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If for each nonnegative bounded Lipschitz function ¢;, i =1,--- ,n,
n n
E[H ©i(Xs)] = HE[Wz(XZ)]a
i=1 i=1
then for each nonnegative bounded measurable function ¢;, i =1,--- ,n
n n
]E[H @i (Xi)] = HE[%(XZ)]
i=1 i=1
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Sketch proof of main theorem:

(i) Similar to Proof of Chen (2010)
Consider Yk = XkI{|X |<kB} — [XkI{|X \<kf8}] where 1+ < B < 1.

e* <14+ x|tz eR0<a< 1.

Yy Yk ‘Yk‘l+a ‘ ‘ |Yk|1+a
e’ §1+n7+nﬁ(1+a) <1+ !
A Y C
E[eTE] <1+ —.
n
ST Y T e Y C o
[T = [Te1 < 1+ O <o
k=1 k=1
n TP v B L n v, B
V(&=k=L Y >e)=V(e > e ﬁ) <emen ﬂE[ eTE] <e ' 7l
n
k=1
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Corollary
Let {X,,} be a sequence of bounded and sum independent random
variables satisfying: sup~; E[| X5|'T?] < oo, for some o >
0, and E[X}] =7, ~E[-X¢] = p, k= 1,2,--- . Set S, = S0, X
(i) v(p < liminf, .o ‘?T” < lim sup,, % <m =1
(i) Jimn o0 Bl (5] = maxu<,u<i o (1)-
(iii) Furthermore, if V' is upper continuous, then
_ . Sn
Vp € [p,p),  V(lim — =p)=1

n—oo N
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Central limit theorem

Central limit theorem (Peng)

Let {X,,} be a sequence of i.i.d. random variables such that
E[X;] = E[-X;] = 0 and E[|X;]%] < oo for some ¢ > 2. Let
Sn = p_1 Xk. Then for all ¢ € C(R) with quadratic growth condition,
lim Bfo(22)] = Bfo(0)]
f )

n—00 n

where £ ~ N(0, [02,52]) with 72 = E[X?], 0% = —E[-X?].
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Let M3 ([0?,5?], K) denote the set of n-stages martingale S with
filtration F, such that for all k£, both relations hold:
e E[S;]=0
o 0% < E[|Sky1 — Skl Fi] < 72
o B[Skt — Skl Fi] < K7
Let

Valp] = sup Elp(—=)]-

SeMi([02,5%],K)

Bl

Theorem (Central limit theorem)
We assume that ¢ > 2. Then for all ¢ € C(R) with quadratic growth
condition, we have

Tim Valg] = E[p(€)],

where & ~ N (0, [¢2,7?]).
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Maximal LP variation problem

Let M, () be the set of n-stage martingales whose terminal
distribution is y. We define the LP-variation of length n of the martingale

(Lik)k=1, n as

n

= B (El|L — Ly P|(Liyi < k — 1)])7).
k=1

The value function is denoted by

V() = —  sup VpL
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Theorem
For p € [1,2) and p € A(K), where K is a compact subset of R. We have

Jim Vi) = E[f,(2)Z)

where Z ~ N(0,1) and f, : R — R is a increasing function such that
fu(Z) ~ p,ie, fu(z) = F ' (Fa(z)) with F 1 = inf{s : F,(s) > y}.
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Sketch Proof of Theorem:

Sh Sn
sup E[L—=] < Vp(p) < sup E[L .
Lew,Sems, /0 Lo SeMi(01]2) VN
Sn . S?’L
sup FE[L——] = inf  Elp(L) + " (—)],
s [ \/ﬁ] et [p(L) +¢ (\/ﬁ)]
sup E[L Sn | = sup inf  Elp(L) + <p*(&)]
Lo SeM([0,1,2) VI semi([o,1],2) ¥EConV(K) Vi
S,
= inf Elp(L) + su E[p* (=2
e [p(L) SeM%(Blm) L™ (=]
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Since ¢* is a convex function, we have

S
im s Blet (S = Ble*(2)], Z~ N(O,1).
n0 e M ([0,1],2) Vn
lim V,(p) = inf  Elp(L)+ lim sup E[go*(i)]]
= inf  Elo(L (Z2)] = E[f.(2)Z].
_nt - Ble(D) + (7)) = Bl(2)2]

24/25



Thank you for your attention!
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