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Introduction

Capacity and Choquet expectation
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their frequentist interpretation. J. Econom. Theory, 84, 145-195.
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numbers for capacities. The Annals of Probability, 33, 1171-1178.

etc.

Sublinear expectation

Peng, S. (2008) A new central limit theorem under sublinear

expectations. in arXiv:0803.2656v1.
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arXiv:1006.0749v1.
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Let (Ω,ℱ) be a measurable space and ℳ be the set of all

probabilities on Ω.

For each non-empty subsets 𝒫 ⊂ ℳ, we can define:

Upper probability 𝑉 (𝐴) := sup𝑃∈𝒫 𝑃 (𝐴), 𝐴 ∈ ℱ

Lower probability 𝑣(𝐴) := inf𝑃∈𝒫 𝑃 (𝐴), 𝐴 ∈ ℱ

Sublinear expectation Ê[𝑋] := sup𝑃∈𝒫 𝐸𝑃 [𝑋], i.e.

(1) Ê[𝑋] ≤ Ê[𝑌 ] if 𝑋 ≤ 𝑌

(2) Ê[𝑐] = 𝑐, ∀𝑐 ∈ R
(3) Ê[𝑋 + 𝑌 ] ≤ Ê[𝑋] + Ê[𝑌 ]

(4) Ê[𝜆𝑋] = 𝜆Ê[𝑋], ∀𝜆 ≥ 0
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Definition (Independence)

𝑋𝑛 is said to be independent of (𝑋1, · · · , 𝑋𝑛−1), if for each

𝜙 ∈ 𝐶𝑏,𝐿𝑖𝑝(R𝑛) (all bounded and Lipschitz functions on R𝑛),

Ê[𝜙(𝑋1, · · · , 𝑋𝑛)] = Ê[Ê[𝜙(𝑥1, · · · , 𝑥𝑛−1, 𝑋𝑛)]|(𝑥1,··· ,𝑥𝑛−1)=(𝑋1,··· ,𝑋𝑛)].

𝑋𝑛 is said to be product independent of (𝑋1, · · · , 𝑋𝑛−1) if for each

nonnegative bounded Lipschitz function 𝜙𝑘,

Ê[
𝑛∏︁

𝑘=1

𝜙𝑘(𝑋𝑘)] =

𝑛∏︁
𝑘=1

Ê[𝜙𝑘(𝑋𝑘)].

𝑋𝑛 is said to be sum independent of (𝑋1, · · · , 𝑋𝑛−1) if for each

𝜙 ∈ 𝐶𝑏,𝐿𝑖𝑝(R),

Ê[𝜙(
𝑛∑︁

𝑘=1

𝑋𝑘)] = Ê[Ê[𝜙(𝑥+𝑋𝑛)]|𝑥=∑︀𝑛−1
𝑘=1 𝑋𝑘

].
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Example:

We consider 𝑋 and 𝑌 such that

−Ê[−𝑋] < Ê[𝑋] = 0 and − Ê[−𝑌 ] < Ê[𝑌 ] = 0.

Independent case:

Ê[𝑋𝑌 ] = Ê[Ê[𝑥𝑌 ]|𝑥=𝑋 ]

= Ê[(𝑥+Ê[𝑌 ] + 𝑥−Ê[−𝑌 ])|𝑥=𝑋 ]

= Ê[𝑋Ê[𝑌 ] +𝑋−(Ê[𝑌 ] + Ê[−𝑌 ])]

> 0
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Definition (Identical distribution)

𝑋2 is said to be identically distributed with 𝑋1, denoted by 𝑋1 ∼ 𝑋2, if

for each 𝜙 ∈ 𝐶𝑏,𝐿𝑖𝑝(R),

Ê[𝜙(𝑋1)] = Ê[𝜙(𝑋2)].
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Definition (𝐺-normal distribution)

𝜉 is said to be 𝐺-normal distributed, denoted by 𝜉 ∼ 𝒩 (0, [𝜎2, 𝜎2]), where

𝜎2 = Ê[𝜉2] and 𝜎2 = −Ê[−𝜉2], if

∀𝑎, 𝑏 ≥ 0, 𝑎𝜉 + 𝑏𝜉 ∼
√︀
𝑎2 + 𝑏2𝜉,

where 𝜉 is independent of 𝜉 and 𝜉 ∼ 𝜉.

Remark

If 𝜉 + 𝜉 ∼
√
2𝜉, then 𝜉 is 𝐺-normal distributed.
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Proposition

If 𝜉 is 𝐺-normal distributed with 𝜎2 = Ê[𝜉2] and 𝜎2 = −Ê[−𝜉2], for each

𝜙 ∈ 𝐶𝑏,𝐿𝑖𝑝(R), we define 𝑢(𝑡, 𝑥) = Ê[𝜙(𝑥+
√
𝑡𝜉)], (𝑡, 𝑥) ∈ [0,∞]× R, then

𝑢(𝑡, 𝑥) is the unique viscosity solution of the following 𝐺-heat PDE:

𝜕𝑡𝑢−𝐺(𝜕2
𝑥𝑥𝑢) = 0, 𝑢|𝑡=0 = 𝜙,

where 𝐺(𝛼) = 1
2(𝜎

2𝛼+ − 𝜎2𝛼−), 𝛼 ∈ R.

Proposition

Let 𝜉 ∼ 𝒩 (0, [𝜎2, 𝜎2]), if 𝜙 is a convex function, then

Ê[𝜙(𝜉)] = 𝐸𝑍 [𝜙(𝜎𝑍)], where 𝑍 ∼ 𝒩 (0, 1).
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Definition (Maximal distribution)

𝜂 is said to be maximal distributed, if

∀𝑎, 𝑏 ≥ 0, 𝑎𝜂 + 𝑏𝜂 ∼ (𝑎+ 𝑏)𝜂.

Remark

If 𝜂 + 𝜂 ∼ 2𝜂, then 𝜂 is maximal distributed.

Proposition

If 𝜂 is maximal distributed with 𝜇 = Ê[𝜂] and 𝜇 = −Ê[−𝜂], then for each

𝜙 ∈ 𝐶𝑏,𝐿𝑖𝑝(R),

Ê[𝜙(𝜂)] = max
𝜇≤𝜇≤𝜇

𝜙(𝜇).
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Law of large numbers

Weak law of large numbers (Peng)

Let {𝑋𝑛} be a sequence of i.i.d random variables with finite means

𝜇 = Ê[𝑋1] and 𝜇 = −Ê[−𝑋1]. Suppose Ê[|𝑋1|1+𝛼] < ∞ for some 𝛼 > 0,

let 𝑆𝑛 =
∑︀𝑛

𝑘=1𝑋𝑘, then

lim
𝑛→∞

Ê[𝜙(
𝑆𝑛

𝑛
)] = max

𝜇≤𝜇≤𝜇
𝜙(𝜇), ∀𝜙 ∈ 𝐶𝑏,𝐿𝑖𝑝(R).
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Strong law of large numbers (Chen)

Let {𝑋𝑛} be a sequence of i.i.d random variables with finite means

𝜇 = Ê[𝑋1] and 𝜇 = −Ê[−𝑋1]. Suppose Ê[|𝑋1|1+𝛼] < ∞ for some 𝛼 > 0,

let 𝑆𝑛 =
∑︀𝑛

𝑘=1𝑋𝑘, then

(I) 𝑣(𝜇 ≤ lim inf𝑛→∞
𝑆𝑛
𝑛 ≤ lim sup𝑛→∞

𝑆𝑛
𝑛 ≤ 𝜇) = 1.

(II) Furthermore, if 𝑉 is upper continuous, i.e., 𝑉 (𝐴𝑛) ↓ 𝑉 (𝐴), if 𝐴𝑛 ↓ 𝐴,

then 𝑉 (lim sup𝑛→∞
𝑆𝑛
𝑛 = 𝜇) = 1, 𝑉 (lim inf𝑛→∞

𝑆𝑛
𝑛 = 𝜇) = 1.

(III) Suppose that 𝑉 is upper continuous, and 𝐶({𝑥𝑛}) is the cluster set

of a sequence of {𝑥𝑛} in R, i.e.,
𝐶({𝑥𝑛}) = {𝑥| there exists a subsequence {𝑥𝑛𝑘

} of {𝑥𝑛} such that 𝑥𝑛𝑘
→ 𝑥},

then 𝑉 (𝐶({𝑆𝑛
𝑛 }) = [𝜇, 𝜇]) = 1.
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Law of large numbers

We assume 𝒫 is weakly compact. Let {𝑋𝑘}∞𝑘=1 be a sequence of random

variables satisfying: sup𝑘≥1 Ê[|𝑋𝑘|1+𝛼] < ∞, for some 𝛼 >

0, and Ê[𝑋𝑘] ≡ 𝜇,−Ê[−𝑋𝑘] ≡ 𝜇, 𝑘 = 1, 2, · · · . Set 𝑆𝑛 =
∑︀𝑛

𝑘=1𝑋𝑘.

(i) If {𝑋𝑘}∞𝑘=1 is product independent, then

𝑣(𝜇 ≤ lim inf
𝑛→∞

𝑆𝑛

𝑛
≤ lim sup

𝑛→∞

𝑆𝑛

𝑛
≤ 𝜇) = 1.

(ii) If {𝑋𝑘}∞𝑘=1 is product and sum independent, then

lim
𝑛→∞

Ê[𝜙(
𝑆𝑛

𝑛
)] = max

𝜇≤𝜇≤𝜇
𝜙(𝜇).

(iii) If {𝑋𝑘}∞𝑘=1 is sum independent, and 𝑉 (·) is upper continuous, then

∀𝜇 ∈ [𝜇, 𝜇], 𝑉 ( lim
𝑛→∞

𝑆𝑛

𝑛
= 𝜇) = 1.
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Lemma

We assume that 𝒫 is weakly compact. Let 𝑃 be a probability measures

such that for each 𝜙 ∈ 𝐶𝑏,𝐿𝑖𝑝(R𝑛),

𝐸𝑃 [𝜙(𝑋1, · · · , 𝑋𝑛)] ≤ Ê[𝜙(𝑋1, · · · , 𝑋𝑛)], (*)

Then (*) also holds for each bounded measurable function 𝜙.

Proof: (*) holds for bounded u.s.c. function 𝜙 since ∃𝜙𝑘 ∈ 𝐶𝑏,𝐿𝑖𝑝(R𝑛), s.t.

𝜙𝑘 ↓ 𝜙 (𝜙𝑘 = sup𝑦∈R𝑛{𝜙(𝑦)− 𝑘||𝑥− 𝑦||}). 𝒫 is weakly compact, we have

Ê[𝜙𝑘(𝑋1, · · · , 𝑋𝑛)] ↓ Ê[𝜙(𝑋1, · · · , 𝑋𝑛)] (Theorem 31 in Denis, Hu, Peng(2008)),

then 𝐸𝑃 [𝜙(𝑋1, · · · , 𝑋𝑛)] = lim𝑘→∞ 𝐸𝑃 [𝜙𝑘(𝑋1, · · · , 𝑋𝑛)] ≤ Ê[𝜙(𝑋1, · · · , 𝑋𝑛)].

If 𝜙 is a bounded measurable function, then

𝐸𝑃 [𝜙(𝑋1, · · · , 𝑋𝑛)]

= sup{𝐸𝑃 [𝜙(𝑋1, · · · , 𝑋𝑛)] : 𝜙 is bounded upper semi-continuous and 𝜙 ≤ 𝜙}

≤Ê[𝜙(𝑋1, · · · , 𝑋𝑛)].
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Lemma

If for each nonnegative bounded Lipschitz function 𝜙𝑖, 𝑖 = 1, · · · , 𝑛,

Ê[
𝑛∏︁

𝑖=1

𝜙𝑖(𝑋𝑖)] =

𝑛∏︁
𝑖=1

Ê[𝜙𝑖(𝑋𝑖)],

then for each nonnegative bounded measurable function 𝜙𝑖, 𝑖 = 1, · · · , 𝑛,

Ê[
𝑛∏︁

𝑖=1

𝜙𝑖(𝑋𝑖)] =
𝑛∏︁

𝑖=1

Ê[𝜙𝑖(𝑋𝑖)].
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Sketch proof of main theorem:

(i) Similar to Proof of Chen (2010)

Consider 𝑌𝑘 = 𝑋𝑘𝐼{|𝑋𝑘|≤𝑘𝛽} − Ê[𝑋𝑘𝐼{|𝑋𝑘|≤𝑘𝛽}], where
1

1+𝛼 < 𝛽 < 1.

𝑒𝑥 ≤ 1 + 𝑥+ |𝑥|1+𝛼𝑒2|𝑥|, 𝑥 ∈ R, 0 < 𝛼 < 1.

𝑒
𝑌𝑘
𝑛𝛽 ≤ 1 +

𝑌𝑘

𝑛𝛽
+

|𝑌𝑘|1+𝛼

𝑛𝛽(1+𝛼)
𝑒2|

𝑌𝑘
𝑛𝛽 | ≤ 1 +

𝑌𝑘

𝑛𝛽
+

|𝑌𝑘|1+𝛼

𝑛
𝑒4.

Ê[𝑒
𝑌𝑘
𝑛𝛽 ] ≤ 1 +

𝐶

𝑛
.

Ê[
𝑛∏︁

𝑘=1

𝑒
𝑌𝑘
𝑛𝛽 ] =

𝑛∏︁
𝑘=1

Ê[𝑒
𝑌𝑘
𝑛𝛽 ] ≤ (1 +

𝐶

𝑛
)𝑛 ≤ 𝑒𝐶 .

𝑉 (

∑︀𝑛
𝑘=1 𝑌𝑘

𝑛
≥ 𝜀) = 𝑉 (𝑒

∑︀𝑛
𝑘=1 𝑌𝑘

𝑛𝛽 ≥ 𝑒𝜀𝑛
1−𝛽

) ≤ 𝑒−𝜀𝑛1−𝛽

Ê[
𝑛∏︁

𝑘=1

𝑒
𝑌𝑘
𝑛𝛽 ] ≤ 𝑒−𝜀𝑛1−𝛽

𝑒𝐶 .
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Corollary

Let {𝑋𝑛} be a sequence of bounded and sum independent random

variables satisfying: sup𝑘≥1 Ê[|𝑋𝑘|1+𝛼] < ∞, for some 𝛼 >

0, and Ê[𝑋𝑘] ≡ 𝜇,−Ê[−𝑋𝑘] ≡ 𝜇, 𝑘 = 1, 2, · · · . Set 𝑆𝑛 =
∑︀𝑛

𝑘=1𝑋𝑘.

(i) 𝑣(𝜇 ≤ lim inf𝑛→∞
𝑆𝑛
𝑛 ≤ lim sup𝑛→∞

𝑆𝑛
𝑛 ≤ 𝜇) = 1.

(ii) lim𝑛→∞ Ê[𝜙(𝑆𝑛
𝑛 )] = max𝜇≤𝜇≤𝜇 𝜙(𝜇).

(iii) Furthermore, if 𝑉 is upper continuous, then

∀𝜇 ∈ [𝜇, 𝜇], 𝑉 ( lim
𝑛→∞

𝑆𝑛

𝑛
= 𝜇) = 1.
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Central limit theorem

Central limit theorem (Peng)

Let {𝑋𝑛} be a sequence of i.i.d. random variables such that

Ê[𝑋1] = Ê[−𝑋1] = 0 and Ê[|𝑋1|𝑞] < ∞ for some 𝑞 > 2. Let

𝑆𝑛 =
∑︀𝑛

𝑘=1𝑋𝑘. Then for all 𝜙 ∈ 𝐶(R) with quadratic growth condition,

lim
𝑛→∞

Ê[𝜙(
𝑆𝑛√
𝑛
)] = Ê[𝜙(𝜉)],

where 𝜉 ∼ 𝒩 (0, [𝜎2, 𝜎2]) with 𝜎2 = Ê[𝑋2
1 ], 𝜎

2 = −Ê[−𝑋2
1 ].
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Let ℳ𝑞
𝑛([𝜎2, 𝜎2],𝐾) denote the set of 𝑛-stages martingale 𝑆 with

filtration ℱ , such that for all 𝑘, both relations hold:

𝐸[𝑆𝑘] = 0

𝜎2 ≤ 𝐸[|𝑆𝑘+1 − 𝑆𝑘|2|ℱ𝑘] ≤ 𝜎2

𝐸[|𝑆𝑘+1 − 𝑆𝑘|𝑞|ℱ𝑘] ≤ 𝐾𝑞

Let

𝑉𝑛[𝜙] := sup
𝑆∈ℳ𝑞

𝑛([𝜎2,𝜎2],𝐾)

𝐸[𝜙(
𝑆𝑛√
𝑛
)].

Theorem (Central limit theorem)

We assume that 𝑞 > 2. Then for all 𝜙 ∈ 𝐶(R) with quadratic growth

condition, we have

lim
𝑛→∞

𝑉𝑛[𝜙] = Ê[𝜙(𝜉)],

where 𝜉 ∼ 𝒩 (0, [𝜎2, 𝜎2]).
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Maximal 𝐿𝑝 variation problem

Let ℳ𝑛(𝜇) be the set of 𝑛-stage martingales whose terminal

distribution is 𝜇. We define the 𝐿𝑝-variation of length 𝑛 of the martingale

(𝐿𝑘)𝑘=1,··· ,𝑛 as

𝒱𝑝
𝑛(𝐿) = 𝐸[

𝑛∑︁
𝑘=1

(𝐸[|𝐿𝑘 − 𝐿𝑘−1|𝑝|(𝐿𝑖, 𝑖 ≤ 𝑘 − 1)])
1
𝑝 ].

The value function is denoted by

𝑉𝑛(𝜇) =
1√
𝑛

sup
𝐿∈ℳ𝑛(𝜇)

𝒱𝑝
𝑛(𝐿).
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Theorem

For 𝑝 ∈ [1, 2) and 𝜇 ∈ Δ(𝐾), where 𝐾 is a compact subset of R. We have

lim
𝑛→∞

𝑉𝑛(𝜇) = 𝐸[𝑓𝜇(𝑍)𝑍],

where 𝑍 ∼ 𝑁(0, 1) and 𝑓𝜇 : R → R is a increasing function such that

𝑓𝜇(𝑍) ∼ 𝜇, i.e., 𝑓𝜇(𝑥) = 𝐹−1
𝜇 (𝐹𝒩 (𝑥)) with 𝐹−1

𝜇 = inf{𝑠 : 𝐹𝜇(𝑠) > 𝑦}.
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Sketch Proof of Theorem:

sup
𝐿∼𝜇,𝑆∈ℳ′

𝑛

𝐸[𝐿
𝑆𝑛√
𝑛
] ≤ 𝑉𝑛(𝜇) ≤ sup

𝐿∼𝜇,𝑆∈ℳ𝑞
𝑛([0,1],2)

𝐸[𝐿
𝑆𝑛√
𝑛
].

sup
𝐿∼𝜇,𝑆𝑛

𝐸[𝐿
𝑆𝑛√
𝑛
] = inf

𝜙∈𝐶𝑜𝑛𝑣(𝐾)
𝐸[𝜙(𝐿) + 𝜙*(

𝑆𝑛√
𝑛
)],

sup
𝐿∼𝜇,𝑆∈ℳ𝑞

𝑛([0,1],2)

𝐸[𝐿
𝑆𝑛√
𝑛
] = sup

𝑆∈ℳ𝑞
𝑛([0,1],2)

inf
𝜙∈𝐶𝑜𝑛𝑣(𝐾)

𝐸[𝜙(𝐿) + 𝜙*(
𝑆𝑛√
𝑛
)]

= inf
𝜙∈𝐶𝑜𝑛𝑣(𝐾)

𝐸[𝜙(𝐿) + sup
𝑆∈ℳ𝑞

𝑛([0,1],2)

𝐸[𝜙*(
𝑆𝑛√
𝑛
)]].

23 / 25



Since 𝜙* is a convex function, we have

lim
𝑛→∞

sup
𝑆∈ℳ𝑞

𝑛([0,1],2)

𝐸[𝜙*(
𝑆𝑛√
𝑛
)] = 𝐸[𝜙*(𝑍)], 𝑍 ∼ 𝑁(0, 1).

lim
𝑛→∞

𝑉𝑛(𝜇) = inf
𝜙∈𝐶𝑜𝑛𝑣(𝐾)

𝐸[𝜙(𝐿) + lim
𝑛→∞

sup
𝑆∈ℳ𝑞

𝑛([0,1],2)

𝐸[𝜙*(
𝑆𝑛√
𝑛
)]]

= inf
𝜙∈𝐶𝑜𝑛𝑣(𝐾)

𝐸[𝜙(𝐿) + 𝜙*(𝑍)] = 𝐸[𝑓𝜇(𝑍)𝑍].
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Thank you for your attention!
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