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Introduction

• Progressive enlargement of filtrations and BSDEs with jumps (with I.
Kharroubi), forthcoming in Journal of Theoritical Probability.

• A decomposition approach for the discrete-time approximation of
FBSDEs with a jump I: the Lipschitz case (with I. Kharroubi).

• A decomposition approach for the discrete-time approximation of
FBSDEs with a jump II: the quadratic case (with I. Kharroubi).

• Mean-Variance Hedging on uncertain time horizon in a market with a
jump (with I. Kharroubi and A. Ngoupeyou).
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Mean-variance hedging in literature

inf
π
E
[(

x +

∫ T

0

πsdSs − ξ
)2]

.

There exist two approaches to solve mean-variance hedging problem with a
deterministic finite horizon:

martingale theory and projection arguments: Delbaen-Schachermayer,
Gouriéroux-Laurent-Pham, Schweizer, ... for the continuous case, and
Arai for the semimartingale case,

quadratic stochastic control and BSDE: Lim-Zhou, Lim, ... for the
continuous case and the discontinuous case (driven by a Brownian
motion and a Poisson process).

Jeanblanc-Mania-Santacroce-Schweizer combine tools from both
approaches which allows them to work in a general semimartingale model.
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Mean-variance hedging with random horizon

For some financial products (e.g. insurance, credit-risk) the horizon of the
problem is not deterministic

inf
π
E
[(

x +

∫ T∧τ

0

πsdSs − ξ
)2]

.

We use a BSDE approach as in Lim and provide a solution to the
mean-variance hedging problem with

random horizon,

dependent jump and continuous parts.

Theoretical issue: no result for our BSDEs in this framework.
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Preliminaries and market model The probability space

Settings

Let (Ω,G,P) be a complete probability space equipped with

W a standard Brownian motion with its natural filtration
F := (Ft)t≥0,

τ a random time (we define the process H by Ht := 1τ≤t).

τ not always an F-stopping time.

⇒ G smallest right continuous extension of F that turns τ into a
G-stopping time: G := (Gt)t≥0 where

Gt :=
⋂
ε>0

G̃t+ε ,

for all t ≥ 0, with G̃s := Fs ∨ σ
(
1τ≤u , u ∈ [0, s]

)
, for all s ≥ 0.
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Preliminaries and market model The probability space

Assumption on W and τ

(H) The process W remains a G-Brownian motion.

(Hτ) The process H admits an F-compensator of the form
∫ .∧τ

0 λsds, i.e.

H −
∫ .∧τ

0 λsds is a G-martingale, where λ is a bounded P(F)-measurable
process. We then denote by M the G-martingale defined by

Mt := Ht −
∫ t∧τ

0

λsds = Ht −
∫ t

0

λGs ds ,

for all t ≥ 0, with λGt := (1− Ht)λt .
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Preliminaries and market model Financial model

Financial market

Financial market is composed by

• a riskless bond B with zero interest rate: Bt = 1,

• a risky asset S modeled by the stochastic differential equation

St = S0 +

∫ t

0

Su−(µudu + σudWu + βudMu) , t ≥ 0 ,

where µ, σ and β are P(G)-measurable processes satisfying (HS)

(i) µ, σ and β are bounded,

(ii) there exists a constant c > 0 s.t.

σt ≥ c , ∀t ∈ [0,T ] , P− a.s.

(iii) −1 ≤ βt , ∀t ∈ [0,T ] , P− a.s.
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Preliminaries and market model Mean-variance hedging

Admissible strategies

We consider the set A of investment strategies which are
P(G)-measurable processes π such that

E
[ ∫ T∧τ

0

|πt |2dt
]

< ∞ .

We then define for an initial amount x ∈ R and a strategy π, the wealth
V x ,π associated with (x , π) by the process

V x,π
t = x +

∫ t

0

πr
Sr−

dSr , t ∈ [0,T ∧ τ ] .
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Preliminaries and market model Mean-variance hedging

Problem

For x ∈ R, the problem of mean-variance hedging consists in computing
the quantity

inf
π∈A

E
[∣∣∣V x,π

T∧τ − ξ
∣∣∣2] , (1)

where ξ is a bounded GT∧τ -measurable random variable of the form

ξ = ξb1T<τ + ξaτ1τ≤T ,

where ξb is a bounded FT -measurable random variable and ξa is a
continuous F-adapted process satisfying

ess sup
t∈[0,T ]

|ξat | < +∞ .
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Solution of the mean-variance problem by BSDEs Martingale optimality principle

Sufficient conditions for optimality

We look for a family of processes {(Jπt )t∈[0,T ] : π ∈ A} satisfying

(i) JπT∧τ =
∣∣V x ,π

T∧τ − ξ
∣∣2, for all π ∈ A.

(ii) Jπ1
0 = Jπ2

0 , for all π1, π2 ∈ A.

(iii) Jπ is a G-submartingale for all π ∈ A.

(iv) There exists some π∗ ∈ A such that Jπ
∗

is a G-martingale.

Under these conditions, we have for any π ∈ A

E(Jπ
∗

T∧τ ) = Jπ
∗

0 = Jπ0 ≤ E(JπT∧τ ) .

Therefore, we get

Jπ
∗

0 = E
[∣∣V x,π∗

T∧τ − ξ
∣∣2] = inf

π∈A
E
[∣∣V x,π

T∧τ − ξ
∣∣2] .
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Solution of the mean-variance problem by BSDEs Related BSDEs

S∞G is the subset of R-valued càd-làg G-adapted processes (Yt)t∈[0,T ]
essentially bounded

‖Y ‖S∞ :=
∥∥∥ sup

t∈[0,T ]

|Yt |
∥∥∥
∞

< ∞ .

S∞,+G is the subset of S∞G of processes (Yt)t∈[0,T ] valued in (0,∞),
such that ∥∥∥ 1

Y

∥∥∥
S∞

< ∞ .

L2
G is the subset of R-valued P(G)-measurable processes (Zt)t∈[0,T ]

such that

‖Z‖L2 :=
(
E
[ ∫ T

0

|Zt |2dt
]) 1

2

< ∞ .

L2(λ) is the subset of R-valued P(G)-measurable processes
(Ut)t∈[0,T ] such that

‖U‖L2(λ) :=
(
E
[ ∫ T∧τ

0

λs |Us |2ds
]) 1

2

< ∞ .
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Solution of the mean-variance problem by BSDEs Related BSDEs

Construction of Jπ using BSDEs

To construct such a family {(Jπt )t∈[0,T ], π ∈ A} , we set

Jπt := Y t |V x,π
t∧τ − Y t |2 + Υt , t ≥ 0 ,

where (Y ,Z ,U), (Y,Z,U) and (Υ,Ξ,Θ) are solution in
S∞G × L2

G × L2(λ) to

Y t = 1 +

∫ T∧τ

t∧τ
f(s,Y s ,Z s ,Us)ds −

∫ T∧τ

t∧τ
Z sdWs −

∫ T∧τ

t∧τ
UsdMs , (2)

Y t = ξ +

∫ T∧τ

t∧τ
g(s,Ys ,Zs ,U s)ds −

∫ T∧τ

t∧τ
ZsdWs −

∫ T∧τ

t∧τ
U sdMs , (3)

Υt =

∫ T∧τ

t∧τ
h(s,Υs ,Ξs ,Θs)ds −

∫ T∧τ

t∧τ
ΞsdWs −

∫ T∧τ

t∧τ
ΘsdMs , (4)

for all t ∈ [0,T ].
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Solution of the mean-variance problem by BSDEs Related BSDEs

We are bounded to choose three functions f, g and h for which

Jπ is a submartingale for all π ∈ A,

there exists π∗ ∈ A such that Jπ
∗

is a martingale.

For that we would like to write Jπ as the sum of a martingale Mπ and a
nondecreasing process Kπ that is constant for some π∗ ∈ A.

From Itô’s formula, we get

dJπt = dMπ
t + dKπ

t ,

where Mπ is a local martingale and Kπ is given by

dKπ
t := Kt(πt)dt =

(
At |πt |2 + Btπt + Ct

)
dt ,

with

At := |σt |2Yt + λGt |βt |2(Ut + Yt) ,

Bt := 2(V π
t∧τ − Yt)(µtYt + σtZt + λGt βtUt)− 2σtYtZt − 2λGt βtUt(Yt + Ut) ,

Ct := −f(t)|V π
t∧τ − Yt |2 + 2Xπ

t (Ytg(t)− ZtZt − λGt UtUt) + Yt |Zt |2

+λGt |Ut |2(Ut + Yt)− h(t) .
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Solution of the mean-variance problem by BSDEs Related BSDEs

In order to obtain a nondecreasing process Kπ for any π ∈ A and that is
constant for some π∗ ∈ A it is obvious that Kt has to satisfy
minπ∈R Kt(π) = 0:

K t := min
π∈R

Kt(π) = Ct −
|Bt |2

4At
.

We then obtain from the expressions of A, B and C that

K t = At |V π
t∧τ − Yt |2 + Bt(V π

t∧τ − Yt) + Ct ,

with

At := −f(t)− |µtYt + σtZt + λGt βtUt |2

|σt |2Yt + λGt |βt |2(Ut + Yt)
,

Bt := 2
{ (µtYt + σtZt + λGt βtUt)(λGt βtUt(Yt + Ut) + σtYtZt)

|σt |2Yt + λGt |βt |2(Ut + Yt)
+ g(t)Yt

−ZtZt − λGt UtUt
}
,

Ct := −h(t) + |Zt |2Yt + λGt (Ut + Yt)|Ut |2−
|σtYtZt + λGt βtUt(Ut + Yt)|2

|σt |2Yt + λGt |βt |2(Ut + Yt)
.

Thomas Lim Mean-Variance Hedging 17 / 36



Solution of the mean-variance problem by BSDEs Related BSDEs

Expressions of the generators

For that the family (Jπ)π∈A satisfies the conditions (iii) and (iv) we
choose f, g and h such that

At = 0 , Bt = 0 and Ct = 0 ,

for all t ∈ [0,T ].
f(t,Y ,Z ,U) = − (µtY+σtZ+λtβtU)2

|σt |2Y+λt |βt |2(U+Y ) ,

g(t,Y,Z,U) = 1
Y t

[
Z tZ + λtU tU − (µtY t+σtZ t+λtβtUt)(σtY tZ+λtβt(Ut+Y t)U)

|σt |2Y t+λtβ2
t (Ut+Y t)

]
,

h(t,Υ,Ξ,Θ) = |Zt |2Y t + λt(U t + Y t)|U t |2− |σtY tZt+λtβtU t(Ut+Y t)|2
|σt |2Y t+λt |βt |2(Ut+Y t)

.

⇒ Nonstandard Decoupled BSDEs

Theorem

The BSDEs (2)-(3)-(4) admit solutions (Y ,Z ,U), (Y,Z,U) and (Υ,Ξ,Θ)
in S∞G × L2

G × L2(λ). Moreover Y ∈ S∞,+G .
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Solution of the mean-variance problem by BSDEs A verification Theorem

Optimal strategy-SDE of the optimal value portfolio

A candidate to be an optimal strategy is

π∗t = arg min
π∈R

Kt(π) , (5)

which gives the implicit equation in π∗

π∗t =
(
Yt− − V x,π∗

t−

)
Dt + Et ,

with Dt :=
µtYt−+σtZt+λ

G
t βtUt

|σt |2Yt−+λG
t |βt |2(Ut+Yt− )

and Et :=
σtYt−Zt+λ

G
t βtUt(Yt−+Ut)

|σt |2Yt−+λG
t |βt |2(Ut+Yt− )

.

Integrating each side of this equality w.r.t. dSt
St−

leads to the following SDE

V ∗t = x +

∫ t

0

(
Yr− − V ∗r−

)
Dr

dSr

Sr−
+

∫ t

0

Er
dSr

Sr−
, t ∈ [0,T ] . (6)

Nonstandard SDE since D and E are not bounded.
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Solution of the mean-variance problem by BSDEs A verification Theorem

Optimal strategy-SDE of the optimal value portfolio

Proposition

The SDE (6) admits a solution V ∗ which satisfies

E
[

sup
t∈[0,T∧τ ]

|V ∗t |2
]

< ∞ .
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Solution of the mean-variance problem by BSDEs A verification Theorem

From Itô’s formula, we get

dJπt = dMπ
t + dKπ

t ,

where Mπ is a local martingale and Kπ is given by

dKπ
t := Kt(πt)dt =

(
At |πt |2 + Btπt + Ct

)
dt ,

with

At := |σt |2Yt + λGt |βt |2(Ut + Yt) ,

Bt := 2(V π
t∧τ − Yt)(µtYt + σtZt + λGt βtUt)− 2σtYtZt − 2λGt βtUt(Yt + Ut) ,

Ct := −f(t)|V π
t∧τ − Yt |2 + 2Xπ

t (Ytg(t)− ZtZt − λGt UtUt) + Yt |Zt |2

+λGt |Ut |2(Ut + Yt)− h(t) .
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Solution of the mean-variance problem by BSDEs A verification Theorem

Verification theorem

Theorem

The strategy π∗ given by (5) belongs to the set A and is optimal for the
mean-variance problem (1)

E
[∣∣∣V x,π∗

T∧τ − ξ
∣∣∣2] = min

π∈A
E
[∣∣∣V x,π

T∧τ − ξ
∣∣∣2] .
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How to solve the BSDEs
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How to solve the BSDEs

A decomposition Approach: Data

We consider a BSDE of the form

Yt = ξ +

∫ T∧τ

t∧τ
F (s,Ys ,Zs ,Us)−

∫ T∧τ

t∧τ
ZsdWs −

∫ T∧τ

t∧τ
UsdHs , (7)

• terminal condition

ξ = ξb1T<τ + ξaτ1τ≤T ,

where ξb is an FT -measurable bounded r.v. and ξa ∈ S∞F ,

• generator: F is a P(G)⊗ B(R)⊗ B(R)⊗ B(R)-measurable map and

F (t, y , z , u)1t≤τ = F b(t, y , z , u)1t≤τ , t ≥ 0 ,

where F b is a P(F)⊗ B(R)⊗ B(R)⊗ B(R)-measurable map.
We then introduce the following BSDE

Y b
t = ξb +

∫ T

t

F b(s,Y b
s ,Z

b
s , ξ

a
s − Y b

s )ds −
∫ T

t

Z b
s dWs . (8)
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How to solve the BSDEs

A decomposition Approach: Theorem

Theorem

Assume that BSDE (8) admits a solution (Y b,Zb) ∈ S∞F × L2
F. Then

BSDE

Yt = ξ +

∫ T∧τ

t∧τ
F (s,Ys ,Zs ,Us)−

∫ T∧τ

t∧τ
ZsdWs −

∫ T∧τ

t∧τ
UsdHs ,

t ∈ [0,T ], admits a solution (Y ,Z ,U) ∈ S∞G × L2
G × L2(λ) given by

Yt = Y b
t 1t<τ + ξaτ1t≥τ ,

Zt = Z b
t 1t≤τ ,

Ut =
(
ξat − Y b

t

)
1t≤τ ,

for all t ∈ [0,T ].
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How to solve the BSDEs

Expressions of the generators


f(t,Y ,Z ,U) = − (µtY+σtZ+λtβtU)2

|σt |2Y+λt |βt |2(U+Y ) ,

g(t,Y,Z,U) = 1
Y t

[
Z tZ + λtU tU − (µtY t+σtZ t+λtβtUt)(σtY tZ+λtβt(Ut+Y t)U)

|σt |2Y t+λtβ2
t (Ut+Y t)

]
,

h(t,Υ,Ξ,Θ) = |Zt |2Y t + λt(U t + Y t)|U t |2− |σtY tZt+λtβtU t(Ut+Y t)|2
|σt |2Y t+λt |βt |2(Ut+Y t)

.
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How to solve the BSDEs

Solution to BSDE (f, 1)

According to the general existence Theorem, we consider for coefficients
(f, 1) the BSDE in F: find (Y b,Zb) ∈ S∞F × L2

F such that
dY b

t =
{ |(µt − λtβt)Y

b
t + σtZ

b
t + λtβt |2

|σt |2Y b
t + λt |βt |2

− λt + λtY
b
t

}
dt

+Z b
t dWt ,

Y b
T = 1 .

The generator of this BSDE can be written under the form

{ |µt − λtβt |2

|σt |2
Y b

t −
λt |βt |2

|σt |4
|µt − λtβt |2 − λt + λtY

b
t +

2(µt − λtβt)

|σt |2
(σtZ

b
t + λtβt)

+

∣∣σtZ
b
t + λtβt + (λtβt − µt)

λt |βt |2
|σt |2

∣∣2
|σt |2Y b

t + λt |βt |2
}
.
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Introduction of a modified BSDE

Let (Y ε,Z ε) be the solution in S∞F × L2
F to the BSDE

dY ε
t =

{ |µt − λtβt |2

|σt |2
Y ε

t −
λt |βt |2

|σt |4
|µt − λtβt |2 +

2(µt − λtβt)

|σt |2
(σtZ

ε
t + λtβt)

−λt + λtY
ε
t +

∣∣σtZ
ε
t + λtβt + (λtβt − µt)

λt |βt |2
|σt |2

∣∣2
|σt |2(Y ε

t ∨ε) + λt |βt |2
}
dt + Z εt dWt ,

Y ε
T = 1 ,

where ε is a positive constant such that

exp
(
−
∫ T

0

(
λt +

|µt − λtβt |2

|σt |2
)
dt
)
≥ ε , P− a.s.

Question: Y ε ≥ ε?
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Change of probability

Define the process Lε by

Lεt := 2
(µt − λtβt)

σt
+ 2

σt

(
λtβt + λt |βt |2

|σt |2
(λtβt − µt)

)
|σt |2(Y ε

t ∨ ε) + λt |βt |2
+

|σt |2Z εt
|σt |2(Y ε

t ∨ ε) + λt |βt |2
.

Since Lε ∈ BMO(P), we can apply Girsanov theorem:

W̄t := Wt +

∫ t

0
Lεsds ,

is a Brownian motion under the probability Q defined by

dQ
dP

∣∣∣
FT

:= E(

∫ T

0
LεtdWt) .
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Comparison under Q

−dY ε

t =
{
λt |βt |2
|σt |4 |µt − λtβt |2 − |µt−λtβt |2

|σt |2 Y ε
t − 2λtβt

(µt−λtβt)
|σt |2

+λt − λtY ε
t −

∣∣λtβt+(λtβt−µt)
λt |βt |2

|σt |2

∣∣2
|σt |2(Y εt ∨ε)+λt |βt |2

}
dt − Z ε

t dW̄t ,

Y ε
T = 1 .

We remark that

generator ≥ −λty −
|µt − λtβt |2

|σt |2
y .

Therefore, we get from a comparison theorem that

Y ε
t ≥ EQ

[
exp

(
−
∫ T

t

(
λs +

|µs − λsβs |2

|σs |2
)
ds
)∣∣∣Ft

]
≥ ε .

Moreover Z ε ∈ BMO(P).
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Expressions of the generators


f(t,Y ,Z ,U) = − (µtY+σtZ+λtβtU)2

|σt |2Y+λt |βt |2(U+Y ) ,

g(t,Y,Z,U) = 1
Y t

[
Z tZ + λtU tU − (µtY t+σtZ t+λtβtUt)(σtY tZ+λtβt(Ut+Y t)U)

|σt |2Y t+λtβ2
t (Ut+Y t)

]
,

h(t,Υ,Ξ,Θ) = |Zt |2Y t + λt(U t + Y t)|U t |2− |σtY tZt+λtβtU t(Ut+Y t)|2
|σt |2Y t+λt |βt |2(Ut+Y t)

.
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Solution to BSDE (g, ξ)

We consider the associated decomposed BSDE in F: find
(Yb,Zb) ∈ S∞F × L2

F such that
dYb

t =
{ ((µt − λtβt)Y b

t + σtZ
b
t + λtβt)(σtY

b
t Zb

t + λtβtξ
a
t − λtβtYb

t )

Y b
t (|σt |2Y b

t + λt |βt |2)

− Z b
t

Y b
t
Zb

t −
λt
Y b
t

ξat +
λt
Y b
t

Yb
t

}
dt + Zb

t dWt ,

Yb
T = ξb .
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Change of probability

Define the process ρ by ρt :=
Zb
t

Y b
t
− σt

(
(µt−λtβt )Y b

t +σtZ
b
t +λtβt

)
|σt |2Y b

t +λt |βt |2
. Since

ρ ∈ BMO(P), we can apply Girsanov theorem

W̃t := Wt −
∫ t

0

ρsds

is a Q̃-Brownian motion, where dQ̃
dP |FT

:= E(
∫ T

0 ρtdWt).
Hence, BSDE can be written{

dYb
t = at(Yb

t − ξat )dt + Zb
t dW̃t ,

Yb
T∧τ = ξb ,

with at :=
λt |σt |2Y b

t −λtβt ((µt−λtβt )Y b
t +σtZ

b
t )

Y b
t (|σt |2Y b

t +λt |βt |2)
.

We can prove that Yb defined by

Yb
t := EQ̃

[
exp

(
−
∫ T

t

audu
)
ξb +

∫ T

t

exp
(
−
∫ s

t

audu
)
asξ

a
s ds
∣∣∣Ft

]
is solution of this BSDE.
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Expressions of the generators


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Y t
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|σt |2Y t+λtβ2
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]
,

h(t,Υ,Ξ,Θ) = |Zt |2Y t + λt(U t + Y t)|U t |2− |σtY tZt+λtβtU t(Ut+Y t)|2
|σt |2Y t+λt |βt |2(Ut+Y t)

.
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Solution to BSDE (h, 0)

We consider the associated decomposed BSDE in F: find
(Υb,Θb) ∈ S∞F × L2

F such that

Υb
t =

∫ T

t

(
|Zb

t |2Y b
t + λt |ξat − Yb

t |2−
|σtY

b
t Zb

t + λtβt(ξ
a
t − Yb

t )|2

|σt |2Y b
t + λt |βt |2

− λsΥs

)
ds

−
∫ T∧τ

t∧τ
Ξb

s dWs .

We can prove that Υb defined by

Υb
t := E

[ ∫ T

t

exp
(
−
∫ s

t

λudu
)
Rsds

∣∣∣Ft

]
,

where Rt := |Zb
t |2Y b

t + λt |ξat − Yb
t |2−

|σtY
b
t Zb

t + λtβt(ξ
a
t − Yb

t )|2

|σt |2Y b
t + λt |βt |2

,

is solution of this BSDE.
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Thanks!
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