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Introduction

e Progressive enlargement of filtrations and BSDEs with jumps (with I.
Kharroubi), forthcoming in Journal of Theoritical Probability.

e A decomposition approach for the discrete-time approximation of
FBSDEs with a jump I: the Lipschitz case (with |. Kharroubi).

e A decomposition approach for the discrete-time approximation of
FBSDEs with a jump II: the quadratic case (with I. Kharroubi).

e Mean-Variance Hedging on uncertain time horizon in a market with a
jump (with I. Kharroubi and A. Ngoupeyou).
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-
Mean-variance hedging in literature

nfB[(x+ [ mas,—e)]
g 0

There exist two approaches to solve mean-variance hedging problem with a
deterministic finite horizon:

@ martingale theory and projection arguments: Delbaen-Schachermayer,
Gouriéroux-Laurent-Pham, Schweizer, ... for the continuous case, and
Arai for the semimartingale case,

@ quadratic stochastic control and BSDE: Lim-Zhou, Lim, ... for the
continuous case and the discontinuous case (driven by a Brownian
motion and a Poisson process).

Jeanblanc-Mania-Santacroce-Schweizer combine tools from both
approaches which allows them to work in a general semimartingale model.
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Mean-variance hedging with random horizon

For some financial products (e.g. insurance, credit-risk) the horizon of the
problem is not deterministic

ianE[(x—s—/TATwsts—f)T .
4 0

We use a BSDE approach as in Lim and provide a solution to the
mean-variance hedging problem with

@ random horizon,

@ dependent jump and continuous parts.

Theoretical issue: no result for our BSDEs in this framework.
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Outline

@ Preliminaries and market model
@ The probability space
@ Financial model
@ Mean-variance hedging

© Solution of the mean-variance problem by BSDEs
@ Martingale optimality principle

@ Related BSDEs
@ A verification Theorem

© How to solve the BSDEs
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@ Preliminaries and market model
@ The probability space
@ Financial model
@ Mean-variance hedging
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Settings

Let (Q2,G,P) be a complete probability space equipped with
@ W a standard Brownian motion with its natural filtration
F:= (-Ft)tZO,
e 7 a random time (we define the process H by H; := 1,<;).

T not always an F-stopping time.

= G smallest right continuous extension of I that turns 7 into a
G-stopping time: G := (G¢)¢>0 Where

G = ﬂ§t+57

e>0

for all £ >0, with G5 := Fs Vo (1<, ,u € [0,5]), for all s > 0.
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Assumption on W and 7

(H) The process W remains a G-Brownian motion.

(H7) The process H admits an F-compensator of the form fO'AT Asds, i.e.

H — fdAT Asds is a G-martingale, where )\ is a bounded P(F)-measurable
process. We then denote by M the G-martingale defined by

tAT t
M, = Ht—/ Aeds = Ht—/ ACds
0 0

for all t >0, with AP := (1 — H;)\:.
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Preliminaries and market model Financial model

Financial market

Financial market is composed by
e a riskless bond B with zero interest rate: By = 1,

e a risky asset S modeled by the stochastic differential equation

St -

t
So +/ S, (pudu + o, dW, + g,dM,), t>0,
0

where p, o and 3 are P(G)-measurable processes satisfying (HS)
(i) p, o and 3 are bounded,

(i) there exists a constant ¢ > 0 s.t.
oy > ¢, VYtel0,T], P-as.
(i) =1 < By, Vtel0,T], P-as.

Mean-Variance Hedging
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Preliminaries and market model Mean-variance hedging

Admissible strategies

We consider the set A of investment strategies which are
P(G)-measurable processes 7 such that

E{/Omhrﬁdr} < .

We then define for an initial amount x € R and a strategy m, the wealth
V*™ associated with (x, ) by the process

t
VeT o = x+/ T ds,, telo, TAT].
0 Sr*
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Problem

For x € R, the problem of mean-variance hedging consists in computing
the quantity

. X, 2
inf B[ vz~ <[] )
where £ is a bounded G1,,-measurable random variable of the form

5 = fb]lT<‘r + gf‘]]‘TST )

where £ is a bounded Fr-measurable random variable and £2 is a
continuous [F-adapted process satisfying

esssup|&f] < +oo.
te[0,T]
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Solution of the mean-variance problem by BSDEs
Outline

© Solution of the mean-variance problem by BSDEs
@ Martingale optimality principle
@ Related BSDEs
@ A verification Theorem
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Sufficient conditions for optimality

We look for a family of processes {(Jf)tcpo,7] : ™ € A} satisfying

2
T =|VEl =& forall e A

(iii

(iv) There exists some 7* € A such that J™ is a G-martingale.

(i)

(i) Jg' = Jy?, for all mp,m € A.
) J™ is a G-submartingale for all 7 € A.
)
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Sufficient conditions for optimality

We look for a family of processes {(Jf)tcpo,7] : ™ € A} satisfying
(i) J3n, = |VET —¢f?, forall € A.
(i) Jg' = Jy?, for all mp,m € A.
(i)

(iv) There exists some 7* € A such that J™ is a G-martingale.

J™ is a G-submartingale for all m € A.

Under these conditions, we have for any m € A

Mean-Variance Hedging EYES



Sufficient conditions for optimality

We look for a family of processes {(Jf)tcpo,7] : ™ € A} satisfying
(i) J3n, = |VET —¢f?, forall € A.
(i) Jg' = Jy?, for all mp,m € A.
(i)

(iv) There exists some 7* € A such that J™ is a G-martingale.

J™ is a G-submartingale for all m € A.

Under these conditions, we have for any m € A

Therefore, we get

K= E[viL —¢] = inf B[V -]

TAT TAT

Mean-Variance Hedging EYES



Solution of the mean-variance problem by BSDEs Related BSDEs

@ 5S¢’ is the subset of R-valued cad-lag G-adapted processes (Yt)te[O,T]
essentially bounded

HY”soo =

sup | Y|
te[0,T]

< 00.
(oo}

o S7 is the subset of S of processes (Yt)¢eqo, 1) valued in (0, 00),
such that

IPle < =

o L2 is the subset of R-valued P(G)-measurable processes (Z;):eo, 7]

such that
1Z]lz = (E[/OT|Zt|2dtD% < .

o L2()) is the subset of R-valued P(G)-measurable processes
(Ut)tepo, 1) such that

e = (B[ [ Aubas])’ < o
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Construction of J™ using BSDEs

To construct such a family {(Jf)¢cpo, 77, ™ € A}, we set

Jtﬂ = Yt‘VtX/(:_th‘F ¢, t>0,
where (Y, Z,U), (Y, Z,U) and (1, =,©) are solution in
S x 12 x [2()) to
TAT TAT TAT
Y, = 1 +/ f(s, Ys, Zs, Us)ds —/ ZodW, — UdM, (2)
tAT tAT tAT
TAT TAT TAT
yt = 5"’/ Q(S,ys, ZSaus)ds - stWs - Z/{sdl\/ls 5 (3)
tAT tAT tAT
TAT TAT TAT
t = / b(57 Sy —s> s)ds - / des - / des 5 (4)
tAT tAT tAT

for all t € [0, T].
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Solution of the mean-variance problem by BSDEs Related BSDEs

We are bounded to choose three functions f, g and b for which
@ J™ is a submartingale for all 7 € A,

o there exists 7" € A such that J™ is a martingale.
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i 2012
We are bounded to choose three functions f, g and b for which
@ J™ is a submartingale for all 7 € A,

o there exists 7* € A such that J™ is a martingale.

For that we would like to write J™ as the sum of a martingale M™ and a
nondecreasing process K™ that is constant for some 7" € A.
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i 2012
We are bounded to choose three functions f, g and b for which
@ J™ is a submartingale for all 7 € A,

o there exists 7* € A such that J™ is a martingale.

For that we would like to write J™ as the sum of a martingale M™ and a
nondecreasing process K™ that is constant for some 7" € A.

From 1t6’s formula, we get

dJf = dMF +dKT
where M™ is a local martingale and K™ is given by
dKT = Ki(m)dt = (Adme]® + Bemre + G)dt
with
Ar = |odPYe + AL B (U + Ve
B: = 2V — V) (ueYe + 0:Ze + M08 Uy) — 20, Ve 2o — 2XEBU( Yy + Uy)
G = —f(O)|VE, = Vel® +2XT(Yeg(t) — ZeZe — ANEUUL) + Y| 22

NG| (Ue + Y2) = b(t)
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Relfez (BSIDIE=
In order to obtain a nondecreasing process K™ for any m € A and that is
constant for some 7 € A it is obvious that K; has to satisfy
min;cr Ke(m) = 0:

K, = minK{(m) = th|Bt‘2.
=t TER 4At

We then obtain from the expressions of A, B and C that
K, = Vi, =D+ BV, — V) + €,

with
G 2

A = —f(t) — ‘“tZYt—’_UfGZf"‘:‘tBtUH :

loe|2Ye + A7 [Be[2(Ur + Yt)
B, - 2{ (11t Ye + 0:Ze + A8 U NEBelhe (Vi + Ur) + 0 Vi Ze) )Y,
t 0cPY: + G| B R(Ue + Ye) t

_tht - A?Utut} B
YeZe + AFBelhe(Ur + Vo) P

¢ = fh(t)+|Zt|2Yt+X§(Ut+Yt)\Z/lt|2JUt eZe A felhe(Ue 1 V1)

|0e[2Ye + AF|Be2(Ur + Ye)

Mean-Variance Hedging YE



Solution of the mean-variance problem by BSDEs Related BSDEs

Expressions of the generators

For that the family (J™),c4 satisfies the conditions (iii) and (iv) we
choose f, g and b such that

Q[t:(),%t:() and thzo,
for all t € [0, T].

_ (MtY+0zZ+>\rﬁtU)2
(t,Y,2,U) = —phEvamrory)
_ 1 (e YetoeZi+ A BeUt) (ot Y e Z4+Xe Be (U4 Y )U)
ot.Y, 2.U) = v [ZfZ t AU — [T 2Y XS (UetYe) ’
_ 2 2 Y 2t A Beld (Ut Y
0 T,5,0) = |ZRYe+ AUe + YU S Al
Mean-Variance Hedging
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Solution of the mean-variance problem by BSDEs Related BSDEs

Expressions of the generators

For that the family (J™),c4 satisfies the conditions (iii) and (iv) we
choose f, g and b such that

Q[tzo,%t:() and thzo,
for all t € [0, T].

_ (e Y+ Z+ A B, U)
(6Y,2,U) = —fviadroey) -
_ 1 (e YetoeZi+ A BeUt) (ot Y e Z4+Xe Be (U4 Y )U)
ot,y,2U) = v, [Zfz AU = [T 2Y XS (UetYe) ’
_ ot YiZe+ A Bl (U4 Yt
B(£,7,5,0) = |Z2Ve+ A(Ur+ Vo)lUe[2-5iiiendimral

= Nonstandard Decoupled BSDEs
Theorem

The BSDEs (2)-(3)-(4) admit solutions (Y, Z,U), (V, Z,U) and (T,=,0)
in S x L% x [2(\). Moreover Y € SZ.
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Optimal strategy-SDE of the optimal value portfolio

A candidate to be an optimal strategy is

m = argmin Ky(m) (5)

which gives the implicit equation in 7*

o= (Ve — VD E,

. o Y- +UtZt+AF5rUt oY - Zt+)\?5tut(yt—+ut)
with De:= oy ooy A B = iy X prwv) -

Integrating each side of this equality w.r.t. g—st leads to the following SDE
o

t dr t dr
A x+/ (y,f—v,*_)D,SiJr/ E,Si, te[0,T].  (6)
0 r- 0 r—

Nonstandard SDE since D and E are not bounded.
Mean-Variance Hedging 19 / 36



Solution of the mean-variance problem by BSDEs [ANVEIGITe=YdleY, W NiT=telg<l0))

Optimal strategy-SDE of the optimal value portfolio

Proposition

The SDE (6) admits a solution V* which satisfies

IE[ sup  |V/)?| < .
te[0, TAT]
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Solution of the mean-variance problem by BSDEs [ANVEIGITe=YdleY, W NiT=telg<l0))

From It6's formula, we get

dJf = dM + dKT

where M7 is a local martingale and K™ is given by

dKT = Ki(m)dt = (Adme* + Beme + Co)dt
with
Y L 7D VAL (A AN
B: = 2(V, = V) (ueYe +0eZ + /\(E,ﬁtUt) —20: Y2 — 2/\?ﬁtut(yt + U) ,
G = —f(t)Vi, — yt‘2 +2X (Yeo(t) — Ze2: — )\(tGUtUt) + Yt|Zt|2

281U P(Ue + Ye) — b(t) .
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Solution of the mean-variance problem by BSDEs [ANVEIGITe=YdleY, W NiT=telg<l0))

Verification theorem

Theorem

The strategy * given by (5) belongs to the set A and is optimal for the
mean-variance problem (1)

2fviz -] = mnvir -]
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Outline

© How to solve the BSDEs
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A decomposition Approach: Data
We consider a BSDE of the form

TAT TAT TAT
Y, - g+/ F(s. Y. Z, Us)—/ stWS—/ UsdH, . (7)
tAT t tAT

AT

e terminal condition
£ = gb]lT<‘r +€j]lTST )
where ¢P is an Fr-measurable bounded r.v. and £? € S2°,

e generator: F is a P(G) ® B(R) ® B(R) ® B(R)-measurable map and
F(t7y727 u)ﬂtf‘r - Fb(t5y7z7 u)ﬂtST 9 t207
where F? is a P(F) ® B(R) ® B(R) ® B(R)-measurable map.
We then introduce the following BSDE
T T
Vo= e [P i Zh - vias - [Zbaw.. ©®)
t t
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A decomposition Approach: Theorem

Theorem

Assume that BSDE (8) admits a solution (Y?, Zb) € S2° x L2. Then
BSDE

TAT TAT TAT
Y: = £+/ F(S» Ys, Zs, Us) - / ZsdWs — UsdH; |
t t

AT AT tAT

t € [0, T], admits a solution (Y, Z,U) € S x L2 x L?(\) given by

Yi = Ytb]lt<7 =+ €i1t27 )
Zy = thIltST ;
Ut = (5? - Ytb)]ltg'r y

for all t € [0, T].
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Expressions of the generators

_ (e Y+0:Z+\feU)?
(Y. 2,U) = —gEvamrom -
_ 1 (1Y t40e Ze4AeBe Ue) (0 Y e Z+Ae Be (Ue + Y )U)
oty 2U) = v, [Zfz tAUdd = |7 PY XS (Ut Ye) ’
_ ot Y Ze+ e BeUs (U + Y
h(t7T7:7e) = |Zt‘2yt+>\t(Ut+ Yf)|ut|2_‘ |0’t\2Yt_:)\tht|2((Utth))l :
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Solution to BSDE (f, 1)

According to the general existence Theorem, we consider for coefficients
(f,1) the BSDE in F: find (Y?, Z?) € S x L2 such that

dyb — {‘ te — Aefe) Yt +0tZt +)\tﬂt‘
' |Ur|2Yb+>\ |Be[?
+Zt )
Yt = 1.

—)\t—i—)\thb}dt

The generator of this BSDE can be written under the form

{ e — Aefe]? vy Ae|Be]?

EAE ot e

2(pe — )\tﬂt)(

|02

- Atﬁtlz — At + A Ytb + O'tth + )\tﬁt)

|Utzf+)\t5t+(/\t¢8t* Mt A‘t(f‘gl ‘ }
loe[2YE + Ae| Be[?
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Introduction of a modified BSDE

Let (Y#, Z%) be the solution in S x L2 to the BSDE

_ 2 2
dve = {|Mt AeBe| ye At| Bt

|oe|? oe|*

}Utzts + AeBe + (AeBe — pe)

At + A YE +

2(pe — A .
|/Lt - /\t5t|2 + M(Utzt + Atﬁt)

oe|?
AelBe|?

|t [2(YEVE) + AelBel?

Yr = 1,

where € is a positive constant such that

exp(—/OT ()\t-l-%)dt)

Mean-Variance Hedging
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Introduction of a modified BSDE

Let (Y#, Z%) be the solution in S x L2 to the BSDE

“ABeP . A 2 2(pe — A <
daye = {|Mt £5t| Yi - t|ﬁi‘| |ur*/\t/3t|2+ (e ztﬂt)(atzt WA
|oe| |o| \(2:\2
N }Uths +)\t5t+()\t6t_ut)>‘lta\?lt2‘ | }d -z aw,
_ t )
kA s [ P(YEVE) + AelBel T
Yr = 1,
where € is a positive constant such that
T 2
e — Ae B
_ 1Bt = AtPe] > —a.s.
exp( /0 (At—l— EAE )dt) > e, P—as

Question: Y€ > €7

Mean-Variance Hedging
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Change of probability

Define the process L¢ by

2
(,th - /\tﬂt) 4 Ot (Atﬂt + A|t(|7€\t2‘ ()‘tﬂf - ,U,t)) ‘Ut|QZtE

L = 2 + )
‘ o loe|2(YE Ve) + AelBe|? loeP(YE Ve) + el Be?

Since L € BMO(PP), we can apply Girsanov theorem:

t
Wt = Wt +/ Lids 5
0

is a Brownian motion under the probability Q defined by

dQ

.
= 5(/O LSdW,)

Fr

Mean-Variance Hedging G



Comparison under Q

2
—ave = [ e M R o L)

S o

r/3r+()\t/3r fit) Atcl,it‘ -
[0 POYEVE) T e Be P }dt —ZidW,,

Ae — AeYE —
ye = 1.

We remark that

|Mr - )\tﬁt|2

generator > — Aty —
o[

Therefore, we get from a comparison theorem that
T ‘ s sﬂs
2 mfen(- [ O A ) o
t o]

Moreover Z¢ € BMO(P).
Mean-Variance Hedging 30 /36



Expressions of the generators

_ (e Y+0:Z+\feU)?
(Y. 2,U) = —gEvamrom -
_ 1 (1Y t40e Ze4AeBe Ue) (0 Y e Z+Ae Be (Ue + Y )U)
oty 2U) = v, [Zfz tAUdd = |7 PY XS (Ut Ye) ’
_ ot Y Ze+ e BeUs (U + Y
h(t7T7:7e) = |Zt‘2yt+>\t(Ut+ Yf)|ut|2_‘ |0’t\2Yt_:)\tht|2((Utth))l :

Mean-Variance Hedging e



Solution to BSDE (g, &)

We consider the associated decomposed BSDE in F: find
(Vb,2P) € 8g° x L2 such that

dyb _ { ((,Ut - )\tﬁt) Ytb + Utztb + )\tﬁt)(Ut Ythf + )\tﬁtgf - )\tﬁtyl?)
t NG EREREE
Zb
~HEt - e ngf}dt + ZPdW;
Veo= ¢b.
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Change of probability
: b o ((me=AeBe) Yo ZPH A
Define the process p by p. := ib =l ‘Gt\zv)ﬂ;\ml; )
p € BMO(P), we can apply Girsanov theorem

. Since

__ t
W, = W, —/ psds
0
is a @—Brownian motion, where %MT = fo prdW;).
Hence, BSDE can be written
{ dyt = a(VP-&)dt+ ZEdW.,
y'll)'/\‘r = gb I

Aelod 2 Y= NeBe((me=AeBo) YP+0iZP)
Yo(loe|2YP+Ne| Be[?)

We can prove that V? defined by

yho= E@[exp(— /Taudu>£b—|—/Texp ( — /ts audu)asﬁgds’}'t]

t t

Wlth atr .=

is solution of this BSDE.
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Expressions of the generators

_ (e Y+0:Z+\feU)?
(Y. 2,U) = —gEvamrom -
_ 1 (1Y t40e Ze4AeBe Ue) (0 Y e Z+Ae Be (Ue + Y )U)
oty 2U) = v, [Zfz tAUdd = |7 PY XS (Ut Ye) ’
_ ot Y Ze+ e BeUs (U + Y
h(t7T7:7e) = |Zt‘2yt+>\t(Ut+ Yf)|ut|2_‘ |0’t\2Yt_:)\tht|2((Utth))l :
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Solution to BSDE (b, 0)

We consider the associated decomposed BSDE in F: find
(TP, ©P) € Sg° x L2 such that

T b =b a by |2
a YeZ0 + Aefe(€8 = V7))
Tb _ / ZbZYbJrA . b27|0't t £t — AT d
t . (| t| t t‘é‘t yt| |Ut|2ytb+>\t|6t|2 )
TAT
7/ =Law; .
tAT
We can prove that T? defined by
T s
Tho— E[/ exp(—/ )\udu)des‘]:t],
t t
YPZP + AeBel87 — V)P
where R; := |ZPPYE + N\|¢2 — bp_loeYe 2 + ABi(& — Ve ,
. .t | t.‘ Cr ey e[V + e[ Be[?
is solution of this BSDE.
Mean-Variance Hedging
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How to solve the BSDEs

Thanks!
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