Mean-Variance Hedging on uncertain time horizon in a market with a jump

Thomas LIM

ENSIIE and Laboratoire Analyse et Probabilités d’Evry

Young Researchers Meeting on BSDEs, Numerics and Finance, Oxford 2012

Joint work with Idris Kharroubi and Armand Ngoupeyou

1Supported by the “Chaire Risque de Crédit”, Fédération Bancaire Française.
• Progressive enlargement of filtrations and BSDEs with jumps (with I. Kharroubi), forthcoming in Journal of Theoretical Probability.

• A decomposition approach for the discrete-time approximation of FBSDEs with a jump I: the Lipschitz case (with I. Kharroubi).

• A decomposition approach for the discrete-time approximation of FBSDEs with a jump II: the quadratic case (with I. Kharroubi).

• Mean-Variance Hedging on uncertain time horizon in a market with a jump (with I. Kharroubi and A. Ngoupeyou).
Mean-variance hedging in literature

\[\inf_{\pi} \mathbb{E} \left[\left(x + \int_{0}^{T} \pi_s dS_s - \xi \right)^2 \right] . \]

There exist two approaches to solve mean-variance hedging problem with a deterministic finite horizon:

- martingale theory and projection arguments: Delbaen-Schachermayer, Gouriéroux-Laurent-Pham, Schweizer, ... for the continuous case, and Arai for the semimartingale case,

- quadratic stochastic control and BSDE: Lim-Zhou, Lim, ... for the continuous case and the discontinuous case (driven by a Brownian motion and a Poisson process).

Jeanblanc-Mania-Santacroce-Schweizer combine tools from both approaches which allows them to work in a general semimartingale model.
Mean-variance hedging with random horizon

For some financial products (e.g. insurance, credit-risk) the horizon of the problem is not deterministic

\[
\inf_{\pi} \mathbb{E} \left[\left(x + \int_0^{T \wedge \tau} \pi_s dS_s - \xi \right)^2 \right].
\]

We use a BSDE approach as in Lim and provide a solution to the mean-variance hedging problem with

- random horizon,
- dependent jump and continuous parts.

Theoretical issue: no result for our BSDEs in this framework.
Outline

1. Preliminaries and market model
 - The probability space
 - Financial model
 - Mean-variance hedging

2. Solution of the mean-variance problem by BSDEs
 - Martingale optimality principle
 - Related BSDEs
 - A verification Theorem

3. How to solve the BSDEs
Outline

1. Preliminaries and market model
 - The probability space
 - Financial model
 - Mean-variance hedging

2. Solution of the mean-variance problem by BSDEs
 - Martingale optimality principle
 - Related BSDEs
 - A verification Theorem

3. How to solve the BSDEs
Settings

Let \((\Omega, \mathcal{G}, \mathbb{P})\) be a complete probability space equipped with

- \(W\) a standard Brownian motion with its natural filtration
 \(\mathbb{F} := (\mathcal{F}_t)_{t \geq 0}\),
- \(\tau\) a random time (we define the process \(H\) by \(H_t := 1_{\tau \leq t}\)).

\(\tau\) not always an \(\mathbb{F}\)-stopping time.

\(\Rightarrow\) \(\mathbb{G}\) smallest right continuous extension of \(\mathbb{F}\) that turns \(\tau\) into a \(\mathbb{G}\)-stopping time: \(\mathbb{G} := (\mathcal{G}_t)_{t \geq 0}\) where

\[
\mathcal{G}_t := \bigcap_{\varepsilon > 0} \tilde{\mathcal{G}}_{t+\varepsilon},
\]

for all \(t \geq 0\), with \(\tilde{\mathcal{G}}_s := \mathcal{F}_s \vee \sigma(1_{\tau \leq u}, u \in [0, s])\), for all \(s \geq 0\).
Assumption on W and τ

(\textbf{H}) The process W remains a \mathcal{G}-Brownian motion.

(\textbf{H}_\tau) The process H admits an \mathcal{F}-compensator of the form $\int_{0}^{\cdot\wedge\tau} \lambda_s ds$, i.e. $H - \int_{0}^{\cdot\wedge\tau} \lambda_s ds$ is a \mathcal{G}-martingale, where λ is a bounded $\mathcal{P}(\mathcal{F})$-measurable process. We then denote by M the \mathcal{G}-martingale defined by

$$M_t := H_t - \int_{0}^{t\wedge\tau} \lambda_s ds = H_t - \int_{0}^{t} \lambda_s^G ds,$$

for all $t \geq 0$, with $\lambda_t^G := (1 - H_t)\lambda_t$.
Financial market

Financial market is composed by

- a riskless bond B with zero interest rate: $B_t = 1$,
- a risky asset S modeled by the stochastic differential equation

$$S_t = S_0 + \int_0^t S_u \left(\mu_u du + \sigma_u dW_u + \beta_u dM_u \right), \quad t \geq 0,$$

where μ, σ and β are $\mathcal{P}(\mathbb{G})$-measurable processes satisfying (HS)

(i) μ, σ and β are bounded,

(ii) there exists a constant $c > 0$ s.t.

$$\sigma_t \geq c, \quad \forall t \in [0, T], \quad \mathbb{P} - a.s.$$

(iii) $-1 \leq \beta_t, \quad \forall t \in [0, T], \quad \mathbb{P} - a.s.$
Admissible strategies

We consider the set \mathcal{A} of investment strategies which are $\mathcal{P}(\mathbb{G})$-measurable processes π such that

$$
\mathbb{E} \left[\int_0^{T \wedge \tau} |\pi_t|^2 dt \right] < \infty.
$$

We then define for an initial amount $x \in \mathbb{R}$ and a strategy π, the wealth $V^{x,\pi}$ associated with (x, π) by the process

$$
V_t^{x,\pi} = x + \int_0^t \frac{\pi_r}{S_r} dS_r, \quad t \in [0, T \wedge \tau].
$$
Problem

For \(x \in \mathbb{R} \), the problem of mean-variance hedging consists in computing the quantity

\[
\inf_{\pi \in \mathcal{A}} \mathbb{E} \left[\left| V_{T \wedge \tau}^{x, \pi} - \xi \right|^2 \right],
\]

where \(\xi \) is a bounded \(\mathcal{G}_{T \wedge \tau} \)-measurable random variable of the form

\[
\xi = \xi^b 1_{T < \tau} + \xi^a 1_{\tau \leq T},
\]

where \(\xi^b \) is a bounded \(\mathcal{F}_T \)-measurable random variable and \(\xi^a \) is a continuous \(\mathbb{F} \)-adapted process satisfying

\[
\text{ess sup}_{t \in [0, T]} |\xi^a_t| < +\infty.
\]
Outline

1 Preliminaries and market model
 - The probability space
 - Financial model
 - Mean-variance hedging

2 Solution of the mean-variance problem by BSDEs
 - Martingale optimality principle
 - Related BSDEs
 - A verification Theorem

3 How to solve the BSDEs
Sufficient conditions for optimality

We look for a family of processes \(\{(J_t^\pi)_{t \in [0,T]} : \pi \in \mathcal{A}\} \) satisfying

(i) \(J_{T \wedge \tau}^\pi = |V_{T \wedge \tau}^{x,\pi} - \xi|^2 \), for all \(\pi \in \mathcal{A} \).

(ii) \(J_0^{\pi_1} = J_0^{\pi_2} \), for all \(\pi_1, \pi_2 \in \mathcal{A} \).

(iii) \(J^\pi \) is a \(\mathbb{G} \)-submartingale for all \(\pi \in \mathcal{A} \).

(iv) There exists some \(\pi^* \in \mathcal{A} \) such that \(J_{T \wedge \tau}^{\pi^*} \) is a \(\mathbb{G} \)-martingale.

Under these conditions, we have for any \(\pi \in \mathcal{A} \)

\[
\mathbb{E}(J_{T \wedge \tau}^{\pi^*}) = J_0^{\pi^*} = J_0^{\pi} \leq \mathbb{E}(J_{T \wedge \tau}^{\pi}) .
\]
Solution of the mean-variance problem by BSDEs

Martingale optimality principle

Sufficient conditions for optimality

We look for a family of processes \(\{(J_t^\pi)_{t\in[0,T]} : \pi \in \mathcal{A}\} \) satisfying

(i) \(J_{T\wedge \tau}^\pi = |V_{T\wedge \tau}^{x,\pi} - \xi|^2 \), for all \(\pi \in \mathcal{A} \).

(ii) \(J_0^{\pi_1} = J_0^{\pi_2} \), for all \(\pi_1, \pi_2 \in \mathcal{A} \).

(iii) \(J^\pi \) is a \(\mathbb{G} \)-submartingale for all \(\pi \in \mathcal{A} \).

(iv) There exists some \(\pi^* \in \mathcal{A} \) such that \(J^{\pi^*} \) is a \(\mathbb{G} \)-martingale.

Under these conditions, we have for any \(\pi \in \mathcal{A} \)

\[
\mathbb{E}(J_{T\wedge \tau}^{\pi^*}) = J_0^{\pi^*} = J_0^\pi \leq \mathbb{E}(J_{T\wedge \tau}^\pi).
\]

Therefore, we get

\[
J_0^{\pi^*} = \mathbb{E}[|V_{T\wedge \tau}^{x,\pi^*} - \xi|^2] = \inf_{\pi \in \mathcal{A}} \mathbb{E}[|V_{T\wedge \tau}^{x,\pi} - \xi|^2].
\]
Sufficient conditions for optimality

We look for a family of processes \(\{ (J_t^\pi)_{t \in [0, T]} : \pi \in \mathcal{A} \} \) satisfying

(i) \(J_{T\wedge \tau}^\pi = \left| V_{T\wedge \tau}^{x,\pi} - \xi \right|^2 \), for all \(\pi \in \mathcal{A} \).

(ii) \(J_0^{\pi_1} = J_0^{\pi_2} \), for all \(\pi_1, \pi_2 \in \mathcal{A} \).

(iii) \(J^\pi \) is a \(\mathcal{G} \)-submartingale for all \(\pi \in \mathcal{A} \).

(iv) There exists some \(\pi^* \in \mathcal{A} \) such that \(J^{\pi^*} \) is a \(\mathcal{G} \)-martingale.

Under these conditions, we have for any \(\pi \in \mathcal{A} \)

\[
\mathbb{E}(J_{T\wedge \tau}^{\pi^*}) = J_0^{\pi^*} = J_0^{\pi} \leq \mathbb{E}(J_{T\wedge \tau}^{\pi}).
\]

Therefore, we get

\[
J_0^{\pi^*} = \mathbb{E}\left(\left| V_{T\wedge \tau}^{x,\pi^*} - \xi \right|^2\right) = \inf_{\pi \in \mathcal{A}} \mathbb{E}\left(\left| V_{T\wedge \tau}^{x,\pi} - \xi \right|^2\right).
\]
• \mathcal{S}_∞ is the subset of \mathbb{R}-valued càdlàg \mathcal{G}-adapted processes $(Y_t)_{t \in [0,T]}$ essentially bounded

$$\|Y\|_{\mathcal{S}_\infty} := \sup_{t \in [0,T]} |Y_t| < \infty.$$

• $\mathcal{S}^\infty_\infty$ is the subset of \mathcal{S}_∞ of processes $(Y_t)_{t \in [0,T]}$ valued in $(0, \infty)$, such that

$$\|\frac{1}{Y}\|_{\mathcal{S}_\infty} < \infty.$$

• $L^2_\mathcal{G}$ is the subset of \mathbb{R}-valued $\mathcal{P}(\mathcal{G})$-measurable processes $(Z_t)_{t \in [0,T]}$ such that

$$\|Z\|_{L^2} := \left(\mathbb{E}\left[\int_0^T |Z_t|^2 dt\right]\right)^{\frac{1}{2}} < \infty.$$

• $L^2(\lambda)$ is the subset of \mathbb{R}-valued $\mathcal{P}(\mathcal{G})$-measurable processes $(U_t)_{t \in [0,T]}$ such that

$$\|U\|_{L^2(\lambda)} := \left(\mathbb{E}\left[\int_0^{T \wedge \tau} \lambda_s |U_s|^2 ds\right]\right)^{\frac{1}{2}} < \infty.$$
Construction of J^π using BSDEs

To construct such a family $\{(J^\pi_t)_{t \in [0,T]}, \quad \pi \in \mathcal{A}\}$, we set

$$J^\pi_t := Y_t |V^\pi_{t \wedge \tau} - Y_t|^2 + \gamma_t, \quad t \geq 0,$$

where (Y, Z, U), $(\mathcal{Y}, \mathcal{Z}, \mathcal{U})$ and (γ, Ξ, Θ) are solutions in $S^\infty_G \times L^2_G \times L^2(\lambda)$ to

$$Y_t = 1 + \int_{t \wedge \tau}^{T \wedge \tau} f(s, Y_s, Z_s, U_s) ds - \int_{t \wedge \tau}^{T \wedge \tau} Z_s dW_s - \int_{t \wedge \tau}^{T \wedge \tau} U_s dM_s, \quad (2)$$

$$\mathcal{Y}_t = \xi + \int_{t \wedge \tau}^{T \wedge \tau} g(s, \mathcal{Y}_s, \mathcal{Z}_s, \mathcal{U}_s) ds - \int_{t \wedge \tau}^{T \wedge \tau} \mathcal{Z}_s dW_s - \int_{t \wedge \tau}^{T \wedge \tau} \mathcal{U}_s dM_s, \quad (3)$$

$$\gamma_t = \int_{t \wedge \tau}^{T \wedge \tau} h(s, \gamma_s, \Xi_s, \Theta_s) ds - \int_{t \wedge \tau}^{T \wedge \tau} \Xi_s dW_s - \int_{t \wedge \tau}^{T \wedge \tau} \Theta_s dM_s, \quad (4)$$

for all $t \in [0, T]$.
We are bounded to choose three functions f, g and h for which

- J^π is a submartingale for all $\pi \in \mathcal{A}$,
- there exists $\pi^* \in \mathcal{A}$ such that J^{π^*} is a martingale.

For that we would like to write J^π as the sum of a martingale M^π and a nondecreasing process K^π that is constant for some $\pi^* \in \mathcal{A}$.

\[dJ^\pi_t = dM^\pi_t + dK^\pi_t, \]

where M^π is a local martingale and K^π is given by

\[dK^\pi_t = K_t(\pi_t) dt = (At_t |\pi_t|^2 + B_t \pi_t + Ct_t) dt, \]

with

\[A_t := |\sigma_t|^2 Y_t + \lambda G_t |\beta_t|^2 (U_t + Y_t), \]

\[B_t := 2(V_{\pi_t} \wedge \tau - Y_t)(\mu_t Y_t + \sigma_t Z_t + \lambda G_t \beta_t U_t) - 2\sigma_t Y_t Z_t - 2\lambda G_t \beta_t U_t (Y_t + U_t), \]

\[C_t := -f(t) |V_{\pi_t} \wedge \tau - Y_t|^2 + 2X_{\pi_t} (Y_t g(t) - Z_t Z_t - \lambda G_t U_t U_t) + Y_t |Z_t|^2 + \lambda G_t |U_t|^2 (U_t + Y_t) - h(t). \]
We are bounded to choose three functions f, g and h for which

- J^π is a submartingale for all $\pi \in \mathcal{A}$,
- there exists $\pi^* \in \mathcal{A}$ such that J^{π^*} is a martingale.

For that we would like to write J^π as the sum of a martingale M^π and a nondecreasing process K^π that is constant for some $\pi^* \in \mathcal{A}$.

From Itô’s formula, we get

$$dJ^\pi_t = dM^\pi_t + dK^\pi_t,$$

where M^π is a local martingale and K^π is given by

$$dK^\pi_t := K_t(\pi_t)dt = (A_t|\pi_t|^2 + B_t \pi_t + C_t)dt,$$

with

$$A_t := |\sigma_t|^2 Y_t + \lambda_t^G |\beta_t|^2 (U_t + Y_t),$$

$$B_t := 2(V^\pi_{t\wedge \tau} - Y_t)(\mu_t Y_t + \sigma_t Z_t + \lambda_t^G \beta_t U_t) - 2\sigma_t Y_t Z_t - 2\lambda_t^G \beta_t U_t (Y_t + U_t),$$

$$C_t := -f(t)|V^\pi_{t\wedge \tau} - Y_t|^2 + 2X^\pi_t (Y_t g(t) - Z_t Z_t - \lambda_t^G U_t U_t) + Y_t |Z_t|^2$$

$$+ \lambda_t^G |U_t|^2 (U_t + Y_t) - h(t).$$
We are bounded to choose three functions f, g and h for which

- J^π is a submartingale for all $\pi \in \mathcal{A}$,
- there exists $\pi^* \in \mathcal{A}$ such that J^{π^*} is a martingale.

For that we would like to write J^π as the sum of a martingale M^π and a nondecreasing process K^π that is constant for some $\pi^* \in \mathcal{A}$.

From Itô’s formula, we get

$$dJ^\pi_t = dM^\pi_t + dK^\pi_t,$$

where M^π is a local martingale and K^π is given by

$$dK^\pi_t := K_t(\pi_t)dt = \left(A_t|\pi_t|^2 + B_t\pi_t + C_t\right)dt,$$

with

$$A_t := |\sigma_t|^2 Y_t + \lambda_t^G |\beta_t|^2 (U_t + Y_t),$$

$$B_t := 2(V_{t\wedge \tau}^\pi - \mathcal{Y}_t)(\mu_t Y_t + \sigma_t Z_t + \lambda_t^G \beta_t U_t) - 2\sigma_t Y_t Z_t - 2\lambda_t^G \beta_t U_t (Y_t + U_t),$$

$$C_t := -f(t)|V_{t\wedge \tau}^\pi - \mathcal{Y}_t|^2 + 2X_t^\pi (Y_t g(t) - Z_t Z_t - \lambda_t^G U_t U_t) + Y_t |Z_t|^2 + \lambda_t^G |U_t|^2 (U_t + Y_t) - h(t).$$
In order to obtain a nondecreasing process K^π for any $\pi \in \mathcal{A}$ and that is constant for some $\pi^* \in \mathcal{A}$ it is obvious that K_t has to satisfy $\min_{\pi \in \mathbb{R}} K_t(\pi) = 0$:

$$K_t := \min_{\pi \in \mathbb{R}} K_t(\pi) = C_t - \frac{|B_t|^2}{4A_t}.$$

We then obtain from the expressions of A, B and C that

$$K_t = A_t |V_{t \wedge \tau}^\pi - Y_t|^2 + B_t (V_{t \wedge \tau}^\pi - Y_t) + C_t,$$

with

$$A_t := -f(t) - \frac{\mu_t Y_t + \sigma_t Z_t + \lambda_t^G \beta_t U_t}{|\sigma_t|^2 Y_t + \lambda_t^G |\beta_t|^2 (U_t + Y_t)}$$,

$$B_t := 2 \left\{ \frac{(\mu_t Y_t + \sigma_t Z_t + \lambda_t^G \beta_t U_t)(\lambda_t^G \beta_t U_t(Y_t + U_t) + \sigma_t Y_t Z_t)}{|\sigma_t|^2 Y_t + \lambda_t^G |\beta_t|^2 (U_t + Y_t)} + g(t) Y_t - Z_t Z_t - \lambda_t^G U_t U_t \right\},$$

$$C_t := -h(t) + |Z_t|^2 Y_t + \lambda_t^G (U_t + Y_t)|U_t|^2 - \frac{\sigma_t Y_t Z_t + \lambda_t^G \beta_t U_t(U_t + Y_t)}{|\sigma_t|^2 Y_t + \lambda_t^G |\beta_t|^2 (U_t + Y_t)}.$$
Expressions of the generators

For that the family \((J^\pi)_\pi \in \mathcal{A}\) satisfies the conditions (iii) and (iv) we choose \(f\), \(g\) and \(h\) such that

\[
\mathcal{A}_t = 0, \ \mathcal{B}_t = 0 \ \text{and} \ \mathcal{C}_t = 0,
\]

for all \(t \in [0, T]\).

\[
\begin{align*}
\mathcal{A}_t &= -\frac{(\mu_t Y + \sigma_t Z + \lambda_t \beta_t U)^2}{|\sigma_t|^2 Y + \lambda_t |\beta_t|^2 (U+Y)}, \\
\mathcal{B}_t &= \frac{1}{Y_t} \left[Z_t Z + \lambda_t U_t U - \frac{(\mu_t Y_t + \sigma_t Z_t + \lambda_t \beta_t U_t)(\sigma_t Y_t Z + \lambda_t \beta_t (U_t + Y_t) U)}{|\sigma_t|^2 Y_t + \lambda_t \beta_t^2 (U_t + Y_t)} \right], \\
\mathcal{C}_t &= |Z_t|^2 Y_t + \lambda_t (U_t + Y_t)|U_t|^2 - \frac{|\sigma_t Y_t Z_t + \lambda_t \beta_t U_t (U_t + Y_t)|^2}{|\sigma_t|^2 Y_t + \lambda_t |\beta_t|^2 (U_t + Y_t)}.
\end{align*}
\]

\[
\Rightarrow \quad \text{Nonstandard Decoupled BSDEs}
\]

Theorem

The BSDEs (2)-(3)-(4) admit solutions \((Y, Z, U), (Y, Z, U)\) and \((\Upsilon, \Xi, \Theta)\) in \(S_{G}^{\infty} \times L_{G}^{2} \times L^{2}(\lambda)\). Moreover \(Y \in S_{G}^{\infty, +}\).
Expressions of the generators

For that the family \((J^\pi)_{\pi \in \mathcal{A}}\) satisfies the conditions (iii) and (iv) we choose \(f\), \(g\) and \(h\) such that

\[
A_t = 0 \, , \, B_t = 0 \, \text{ and } \, C_t = 0 ,
\]

for all \(t \in [0, T]\).

\[
\begin{aligned}
f(t, Y, Z, U) &= -\frac{(\mu_t Y + \sigma_t Z + \lambda_t \beta_t U)^2}{|\sigma_t|^2 Y + \lambda_t |\beta_t|^2 (U+Y)} , \\
g(t, \Upsilon, \Xi, \Theta) &= \frac{1}{Y_t} \left[Z_t \Upsilon + \lambda_t U_t U \right. - \frac{(\mu_t Y_t + \sigma_t Z_t + \lambda_t \beta_t U_t)(\sigma_t Y_t Z_t + \lambda_t \beta_t (U_t + Y_t) U_t)}{|\sigma_t|^2 Y_t + \lambda_t |\beta_t|^2 (U_t + Y_t)} \left. \right] , \\
h(t, \Upsilon, \Xi, \Theta) &= |Z_t|^2 Y_t + \lambda_t (U_t + Y_t)|U_t|^2 - \frac{|\sigma_t Y_t Z_t + \lambda_t \beta_t U_t(U_t + Y_t)|^2}{|\sigma_t|^2 Y_t + \lambda_t |\beta_t|^2 (U_t + Y_t)} .
\end{aligned}
\]

⇒ Nonstandard Decoupled BSDEs

Theorem

The BSDEs (2)-(3)-(4) admit solutions \((Y, Z, U), (\Upsilon, \Xi, U)\) and \((\Upsilon, \Xi, \Theta)\) in \(\mathcal{S}_G^\infty \times L^2_G \times L^2(\lambda)\). Moreover \(Y \in \mathcal{S}_G^\infty,^+\).
Optimal strategy-SDE of the optimal value portfolio

A candidate to be an optimal strategy is

$$\pi^*_t = \arg \min_{\pi \in \mathbb{R}} K_t(\pi),$$ \hspace{1cm} (5)

which gives the implicit equation in π^*

$$\pi^*_t = (\mathcal{Y}_t^* - V_{t-}^{x*,\pi^*})D_t + E_t,$$

with $D_t := \frac{\mu_t Y_t^* + \sigma_t Z_t + \lambda_t^G \beta_t U_t}{|\sigma|^2 Y_{t-}^* + \lambda_t^G \beta_t^2 (U_t + Y_{t-}^*)}$ and $E_t := \frac{\sigma_t Y_{t-}^* Z_t + \lambda_t^G \beta_t U_t (Y_{t-}^* + U_t)}{|\sigma|^2 Y_{t-}^* + \lambda_t^G \beta_t^2 (U_t + Y_{t-})}$.

Integrating each side of this equality w.r.t. $\frac{dS_t}{S_t}$ leads to the following SDE

$$V_t^* = x + \int_0^t (\mathcal{Y}_{r-}^* - V_{r-}^{x*})D_r \frac{dS_r}{S_r} + \int_0^t E_r \frac{dS_r}{S_r}, \quad t \in [0, T].$$ \hspace{1cm} (6)

Nonstandard SDE since D and E are not bounded.
Optimal strategy-SDE of the optimal value portfolio

Proposition

The SDE (6) admits a solution V^* which satisfies

$$
\mathbb{E} \left[\sup_{t \in [0, T \land \tau]} |V^*_t|^2 \right] < \infty.
$$
From Itô’s formula, we get

\[dJ_t^\pi = dM_t^\pi + dK_t^\pi, \]

where \(M^\pi \) is a local martingale and \(K^\pi \) is given by

\[dK_t^\pi := K_t(\pi_t)dt = (A_t|\pi_t|^2 + B_t\pi_t + C_t)dt, \]

with

\[
\begin{align*}
A_t &:= |\sigma_t|^2 Y_t + \lambda_t^G|\beta_t|^2(U_t + Y_t), \\
B_t &:= 2(V_{t\wedge \tau} - Y_t)(\mu_t Y_t + \sigma_t Z_t + \lambda_t^G \beta_t U_t) - 2\sigma_t Y_t Z_t - 2\lambda_t^G \beta_t U_t(Y_t + U_t), \\
C_t &:= -f(t)|V_{t\wedge \tau} - Y_t|^2 + 2X_t(\pi_t g(t) - Z_t Z_t - \lambda_t^G U_t U_t) + Y_t |Z_t|^2 + \lambda_t^G |U_t|^2(U_t + Y_t) - h(t).
\end{align*}
\]
Verification theorem

Theorem

The strategy π^* given by (5) belongs to the set \mathcal{A} and is optimal for the mean-variance problem (1)

$$
\mathbb{E}\left[\left| V_{T\wedge \tau}^{x, \pi^*} - \xi \right|^2 \right] = \min_{\pi \in \mathcal{A}} \mathbb{E}\left[\left| V_{T\wedge \tau}^{x, \pi} - \xi \right|^2 \right].
$$
Outline

1. Preliminaries and market model
 - The probability space
 - Financial model
 - Mean-variance hedging

2. Solution of the mean-variance problem by BSDEs
 - Martingale optimality principle
 - Related BSDEs
 - A verification Theorem

3. How to solve the BSDEs
A decomposition Approach: Data

We consider a BSDE of the form

\[Y_t = \xi + \int_{t \land \tau}^{T \land \tau} F(s, Y_s, Z_s, U_s) \, ds - \int_{t \land \tau}^{T \land \tau} Z_s \, dW_s - \int_{t \land \tau}^{T \land \tau} U_s \, dH_s , \]

(7)

- terminal condition

\[\xi = \xi^b \mathbb{1}_{T < \tau} + \xi^a \mathbb{1}_{\tau \leq T} , \]

where \(\xi^b \) is an \(\mathcal{F}_T \)-measurable bounded r.v. and \(\xi^a \in \mathcal{S}_\mathbb{F}^\infty \),

- generator: \(F \) is a \(\mathcal{P}(\mathcal{G}) \otimes \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) \)-measurable map and

\[F(t, y, z, u) \mathbb{1}_{t \leq \tau} = F^b(t, y, z, u) \mathbb{1}_{t \leq \tau} , \quad t \geq 0 , \]

where \(F^b \) is a \(\mathcal{P}(\mathcal{F}) \otimes \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) \)-measurable map.

We then introduce the following BSDE

\[Y^b_t = \xi^b + \int_{t}^{T} F^b(s, Y^b_s, Z^b_s, \xi^a_s - Y^b_s) \, ds - \int_{t}^{T} Z^b_s \, dW_s . \]

(8)
A decomposition Approach: Theorem

Theorem

Assume that BSDE (8) admits a solution \((Y^b, Z^b) \in S^{\infty}_F \times L^2_F\). Then BSDE

\[
Y_t = \xi + \int_{t \wedge \tau}^{T \wedge \tau} F(s, Y_s, Z_s, U_s) - \int_{t \wedge \tau}^{T \wedge \tau} Z_s dW_s - \int_{t \wedge \tau}^{T \wedge \tau} U_s dH_s ,
\]

\(t \in [0, T]\), admits a solution \((Y, Z, U) \in S^{\infty}_G \times L^2_G \times L^2(\lambda)\) given by

\[
Y_t = Y^b_t 1_{t < \tau} + \xi^a_t 1_{t \geq \tau} ,
\]

\[
Z_t = Z^b_t 1_{t \leq \tau} ,
\]

\[
U_t = (\xi^a_t - Y^b_t) 1_{t \leq \tau} ,
\]

for all \(t \in [0, T]\).
Expressions of the generators

\[
\begin{align*}
 f(t, Y, Z, U) &= -\frac{(\mu_t Y + \sigma_t Z + \lambda_t \beta_t U)^2}{|\sigma_t|^2 Y + \lambda_t |\beta_t|^2 (U + Y)}, \\
g(t, Y, Z, U) &= \frac{1}{Y_t} \left[Z_t Z + \lambda_t U_t U - \frac{(\mu_t Y_t + \sigma_t Z_t + \lambda_t \beta_t U_t)(\sigma_t Y_t Z + \lambda_t \beta_t (U_t + Y_t) U)}{|\sigma_t|^2 Y_t + \lambda_t |\beta_t|^2 (U_t + Y_t)} \right], \\
h(t, \gamma, \Xi, \Theta) &= |Z_t|^2 Y_t + \lambda_t (U_t + Y_t)|U_t|^2 - \frac{|\sigma_t Y_t Z_t + \lambda_t \beta_t U_t (U_t + Y_t)|^2}{|\sigma_t|^2 Y_t + \lambda_t |\beta_t|^2 (U_t + Y_t)}.
\end{align*}
\]
Solution to BSDE \((f, 1)\)

According to the general existence Theorem, we consider for coefficients \((f, 1)\) the BSDE in \(\mathbb{F}\): find \((Y^b, Z^b) \in S^\infty \times L^2\) such that

\[
\begin{aligned}
 dY^b_t &= \left\{ \frac{|(\mu_t - \lambda_t \beta_t)Y^b_t + \sigma_t Z^b_t + \lambda_t \beta_t|^2}{|\sigma_t|^2 Y^b_t + \lambda_t \beta_t^2} - \lambda_t + \lambda_t Y^b_t \right\} dt \\
 &+ Z^b_t \, dW_t , \\
 Y^b_T &= 1 .
\end{aligned}
\]

The generator of this BSDE can be written under the form

\[
\left\{ \frac{|\mu_t - \lambda_t \beta_t|^2}{|\sigma_t|^2} Y^b_t - \frac{\lambda_t |\beta_t|^2}{|\sigma_t|^4} |\mu_t - \lambda_t \beta_t|^2 - \lambda_t + \lambda_t Y^b_t + \frac{2(\mu_t - \lambda_t \beta_t)}{|\sigma_t|^2} (\sigma_t Z^b_t + \lambda_t \beta_t) \\
 + \frac{|\sigma_t Z^b_t + \lambda_t \beta_t + (\lambda_t \beta_t - \mu_t) \lambda_t |\beta_t|^2}{|\sigma_t|^2 Y^b_t + \lambda_t |\beta_t|^2} \right\} .
\]
How to solve the BSDEs

Introduction of a modified BSDE

Let \((Y^\varepsilon, Z^\varepsilon)\) be the solution in $S^\infty_{\mathcal{F}} \times L^2_{\mathcal{F}}$ to the BSDE

\[
\begin{align*}
 dY^\varepsilon_t &= \left\{ \frac{|\mu_t - \lambda_t \beta_t|^2}{|\sigma_t|^2} Y^\varepsilon_t - \frac{\lambda_t |\beta_t|^2}{|\sigma_t|^4} |\mu_t - \lambda_t \beta_t|^2 + \frac{2(\mu_t - \lambda_t \beta_t)}{|\sigma_t|^2} (\sigma_t Z^\varepsilon_t + \lambda_t \beta_t) \\
 & \quad - \lambda_t + \lambda_t Y^\varepsilon_t + \frac{|\sigma_t Z^\varepsilon_t + \lambda_t \beta_t + (\lambda_t \beta_t - \mu_t) \lambda_t |\beta_t|^2}{|\sigma_t|^2 (Y^\varepsilon_t \vee \varepsilon) + \lambda_t |\beta_t|^2} \right\} dt + Z^\varepsilon_t dW_t, \\
 Y^\varepsilon_T &= 1,
\end{align*}
\]

where \(\varepsilon\) is a positive constant such that

\[
\exp\left(-\int_0^T \left(\lambda_t + \frac{|\mu_t - \lambda_t \beta_t|^2}{|\sigma_t|^2} \right) dt \right) \geq \varepsilon, \quad \mathbb{P} - a.s.
\]

Question: \(Y^\varepsilon \geq \varepsilon\)?
Introduction of a modified BSDE

Let \((Y^\varepsilon, Z^\varepsilon)\) be the solution in \(S^\infty \times L^2\) to the BSDE

\[
\begin{align*}
\begin{cases}
 dY^\varepsilon_t &= \left\{ \frac{|\mu_t - \lambda_t \beta_t|^2}{|\sigma_t|^2} Y^\varepsilon_t - \frac{\lambda_t |\beta_t|^2}{|\sigma_t|^4} |\mu_t - \lambda_t \beta_t|^2 + \frac{2(\mu_t - \lambda_t \beta_t)}{|\sigma_t|^2} (\sigma_t Z^\varepsilon_t + \lambda_t \beta_t) \right. \\
 &\quad - \lambda_t + \lambda_t Y^\varepsilon_t + \frac{\sigma_t Z^\varepsilon_t + \lambda_t \beta_t + (\lambda_t \beta_t - \mu_t) \frac{\lambda_t |\beta_t|^2}{|\sigma_t|^2}^2}{|\sigma_t|^2 (Y^\varepsilon_t \vee \varepsilon) + \lambda_t |\beta_t|^2} \left. \right\} dt + Z^\varepsilon_t dW_t,
 \\
 Y^\varepsilon_T &= 1.,
\end{cases}
\end{align*}
\]

where \(\varepsilon\) is a positive constant such that

\[
\exp \left(- \int_0^T \left(\lambda_t + \frac{|\mu_t - \lambda_t \beta_t|^2}{|\sigma_t|^2} \right) dt \right) \geq \varepsilon, \quad \mathbb{P} - a.s.
\]

Question: \(Y^\varepsilon \geq \varepsilon\)?
Change of probability

Define the process L^ε by

$$L_t^\varepsilon := 2 \left(\frac{\mu_t - \lambda_t \beta_t}{\sigma_t} \right) + 2 \frac{\sigma_t (\lambda_t \beta_t + \frac{\lambda_t |\beta_t|^2}{|\sigma_t|^2} (\lambda_t \beta_t - \mu_t))}{|\sigma_t|^2 (Y_t^\varepsilon \vee \varepsilon) + \lambda_t |\beta_t|^2} + \frac{|\sigma_t|^2 Z_t^\varepsilon}{|\sigma_t|^2 (Y_t^\varepsilon \vee \varepsilon) + \lambda_t |\beta_t|^2}.$$

Since $L^\varepsilon \in BMO(\mathbb{P})$, we can apply Girsanov theorem:

$$\tilde{W}_t := W_t + \int_0^t L_s^\varepsilon ds,$$

is a Brownian motion under the probability \mathbb{Q} defined by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} \bigg|_{\mathcal{F}_T} := \mathcal{E} \left(\int_0^T L_t^\varepsilon dW_t \right).$$
Comparison under Q

\[
\begin{cases}
-dY^\varepsilon_t &= \left\{ \frac{\lambda_t|\beta_t|^2}{|\sigma_t|^4} \left| \mu_t - \lambda_t \beta_t \right|^2 - \frac{|\mu_t - \lambda_t \beta_t|^2}{|\sigma_t|^2} Y^\varepsilon_t - 2\lambda_t \beta_t \frac{(|\mu_t - \lambda_t \beta_t)|^2}{|\sigma_t|^2} \\
&\quad+ \lambda_t - \lambda_t Y^\varepsilon_t - \frac{|\lambda_t \beta_t + (\lambda_t \beta_t - \mu_t) \frac{\lambda_t |\beta_t|^2}{|\sigma_t|^2}|^2}{|\sigma_t|^2 (Y^\varepsilon_t \vee \varepsilon) + \lambda_t |\beta_t|^2} \right\} dt - Z^\varepsilon_t d\tilde{W}_t,
\end{cases}
\]

\[Y^\varepsilon_T = 1.\]

We remark that

\[
\text{generator} \geq -\lambda_t y - \frac{|\mu_t - \lambda_t \beta_t|^2}{|\sigma_t|^2} y.
\]

Therefore, we get from a comparison theorem that

\[
Y^\varepsilon_t \geq \mathbb{E}_Q \left[\exp \left(- \int_t^T (\lambda_s + \frac{|\mu_s - \lambda_s \beta_s|^2}{|\sigma_s|^2}) ds \right) \big| \mathcal{F}_t \right] \geq \epsilon.
\]

Moreover $Z^\varepsilon \in BMO(\mathbb{P})$.
Expressions of the generators

\[
\begin{align*}
 f(t, Y, Z, U) &= - \frac{(\mu_t Y + \sigma_t Z + \lambda_t \beta_t U)^2}{|\sigma_t|^2 Y + \lambda_t |\beta_t|^2 (U + Y)}, \\
 g(t, Y, Z, U) &= \frac{1}{Y_t} \left[Z_t Z + \lambda_t U_t U - \frac{(\mu_t Y_t + \sigma_t Z_t + \lambda_t \beta_t U_t)(\sigma_t Y_t Z_t + \lambda_t \beta_t (U_t + Y_t) U_t)}{|\sigma_t|^2 Y_t + \lambda_t |\beta_t|^2 (U_t + Y_t)} \right], \\
 h(t, \gamma, \Xi, \Theta) &= |Z_t|^2 Y_t + \lambda_t (U_t + Y_t)|U_t|^2 - \frac{|\sigma_t Y_t Z_t + \lambda_t \beta_t U_t (U_t + Y_t)|^2}{|\sigma_t|^2 Y_t + \lambda_t |\beta_t|^2 (U_t + Y_t)}.
\end{align*}
\]
Solution to BSDE \((g, \xi)\)

We consider the associated decomposed BSDE in \(\mathbb{F}\): find
\((Y^b, Z^b) \in S^\infty_{\mathbb{F}} \times L^2_{\mathbb{F}}\) such that

\[
\begin{align*}
\frac{dY^b_t}{Y^b_t} &= \left\{ \left(\left(\mu_t - \lambda_t \beta_t \right) Y^b_t + \sigma_t Z^b_t + \lambda_t \beta_t \right) \left(\sigma_t Y^b_t Z^b_t + \lambda_t \beta_t \xi^a_t - \lambda_t \beta_t Y^b_t \right) \right. \\
&\quad \left. Y^b_t \left(|\sigma_t|^2 Y^b_t + \lambda_t |\beta_t|^2 \right) \\
&\quad - \frac{Z^b_t}{Y^b_t} Z^b_t - \frac{\lambda_t}{Y^b_t} \xi^a_t + \frac{\lambda_t}{Y^b_t} Y^b_t \right\} dt + Z^b_t dW_t, \\
Y^b_T &= \xi^b.
\end{align*}
\]
Change of probability

Define the process ρ by $\rho_t := \frac{Z_t^b}{Y_t^b} - \frac{\sigma_t ((\mu_t - \lambda_t \beta_t) Y_t^b + \sigma_t Z_t^b + \lambda_t \beta_t)}{|\sigma_t|^2 Y_t^b + \lambda_t |\beta_t|^2}$. Since $\rho \in BMO(\mathbb{P})$, we can apply Girsanov theorem

$$W_t := W_t - \int_0^t \rho_s ds$$

is a \tilde{Q}-Brownian motion, where $\frac{d\tilde{Q}}{d\mathbb{P}} |_{\mathcal{F}_T} := \mathcal{E} \left(\int_0^T \rho_t dW_t \right)$.

Hence, BSDE can be written

$$\begin{cases}
 dY_t^b &= a_t (Y_t^b - \xi^a_t) dt + Z_t^b d\tilde{W}_t, \\
 Y_{t \wedge \tau}^b &= \xi^b,
\end{cases}$$

with $a_t := \frac{\lambda_t |\sigma_t|^2 Y_t^b - \lambda_t \beta_t ((\mu_t - \lambda_t \beta_t) Y_t^b + \sigma_t Z_t^b)}{Y_t^b (|\sigma_t|^2 Y_t^b + \lambda_t |\beta_t|^2)}$.

We can prove that Y^b defined by

$$Y_t^b := \mathbb{E}_{\tilde{Q}} \left[\exp \left(- \int_t^T a_u du \right) \xi^b + \int_t^T \exp \left(- \int_t^s a_u du \right) a_s \xi^a_s ds \mid \mathcal{F}_t \right]$$

is solution of this BSDE.
Expressions of the generators

\[\begin{align*}
 f(t, Y, Z, U) &= -\frac{(\mu_t Y + \sigma_t Z + \lambda_t \beta_t U)^2}{|\sigma_t|^2 Y + \lambda_t |\beta_t|^2 (U+Y)}, \\
 g(t, Y, Z, U) &= \frac{1}{Y_t} \left[Z_t Z + \lambda_t U_t U - \frac{(\mu_t Y_t + \sigma_t Z_t + \lambda_t \beta_t U_t)(\sigma_t Y_t Z_t + \lambda_t \beta_t (U_t + Y_t) U_t)}{|\sigma_t|^2 Y_t + \lambda_t |\beta_t|^2 (U_t + Y_t)} \right], \\
 h(t, \gamma, \Xi, \Theta) &= |Z_t|^2 Y_t + \lambda_t (U_t + Y_t)|U_t|^2 - \frac{|\sigma_t Y_t Z_t + \lambda_t \beta_t U_t (U_t + Y_t)|^2}{|\sigma_t|^2 Y_t + \lambda_t |\beta_t|^2 (U_t + Y_t)}.
\end{align*} \]
Solution to BSDE \((\mathfrak{h}, 0)\)

We consider the associated decomposed BSDE in \(\mathbb{F}\): find \((\Upsilon^b, \Theta^b) \in \mathcal{S}_\infty^\infty \times L_\mathbb{F}^2\) such that

\[
\Upsilon^b_t = \int_t^T \left(|Z^b_t|^2 Y^b_t + \lambda_t |\xi^a_t - \Upsilon^b_t|^2 - \frac{\sigma_t Y^b_t Z^b_t + \lambda_t \beta_t (\xi^a_t - \Upsilon^b_t)^2}{|\sigma_t|^2 Y^b_t + \lambda_t |\beta_t|^2} - \lambda_s \Upsilon_s \right) ds
- \int_{t \wedge \tau}^{T \wedge \tau} \Xi^b_s dW_s.
\]

We can prove that \(\Upsilon^b\) defined by

\[
\Upsilon^b_t := \mathbb{E} \left[\int_t^T \exp \left(- \int_t^s \lambda_u du \right) R_s ds \left| \mathcal{F}_t \right. \right],
\]

where \(R_t := |Z^b_t|^2 Y^b_t + \lambda_t |\xi^a_t - \Upsilon^b_t|^2 - \frac{\sigma_t Y^b_t Z^b_t + \lambda_t \beta_t (\xi^a_t - \Upsilon^b_t)^2}{|\sigma_t|^2 Y^b_t + \lambda_t |\beta_t|^2}\), is solution of this BSDE.
Thanks!