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Question

Yt = ξ +

∫ T

t
f (s,Ys,Zs)ds −

∫ T

t
ZsdWs

Let W be n dimensional Brownian motion on (Ω, (Ft )0≤t≤T ,P)
where (Ft ) be the filtration generated by W . ξ is FT measurable
L2(dP) random variable. f is progressively measurable and
f (·,0,0) ∈ H2.

(Pardoux and Peng) f is globally Lipschitz in
(y , z)⇒ ∃!(Y ,Z ) ∈ S2 ×H2(Rn).
(Kobylanski) ξ is bounded and
f (t , y , z) = a0(t , y , z)y + f0(t , y , z) where a0 is bounded andf0
has growth like b + ρ(|y |)|z|2 for an increasing function
ρ⇒ ∃(Y ,Z ) ∈ H∞ ×H2

Can we assume superquadratic growth in z with/without
superlinear growth in y?
⇒ Under “regularity” condition on ξ, yes.
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Previous Works

Lipschitz Driver: Pardoux & Peng(1990)
Quadratic growth in z

Kobylanski(2000): bounded ξ
Briand & Hu(2006,2008), Delbaen et al.(2011): unbounded ξ

Superquadratic growth in z
Delbaen et al.(2010): convex driver under Markovian
framework and bdd ξ.
Cheridito & Stadje(2011): convex driver and Lipschitz ξ.
Richou(2011, preprint): Markovian framework.

Superlinear growth in y
Lepeltier & San Martin(1997): |y |

√
log|y | like growth.

Briand & Carmona(2000): monotonicity condition
Quadratic in z and Polynomial in y

Kobylanski(2000): bounded ξ
Frei & Dos Reis(2012): bounded ξ and
|f (s, y , z)| ≤ C(1 + |y |+ (1 + |y |k )|z|2)
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Main Theorem

We assume the following conditions.
(A1) ξ ∈ D1,2 with |Di

rξ| ≤ Ci dr ⊗ dP a.e.
(A2) f (·,0,0) ∈ H4

(A3) For a nondecreasing function ρ,
|f (s, y , z)− f (s, y ′, z)| ≤ B|y − y ′|
|f (s, y , z)− f (s, y , z ′)| ≤ ρ(|z| ∨ |z ′|)|z − z ′|

(A4) f (·, y , z) ∈ L1,2
a and |Dr f (s, y , z)| ≤ φi(s),dr ⊗ dP-a.e. where

φi are Borel measurable with
∫ T

0 φ2
i (t)dt <∞

(A5) |Dr f (s, y , z)− Dr f (s, y ′, z ′)| ≤ K R
r ,s (|y − y ′|+ |z − z ′|) for all

|z|, |z ′| ≤ R where for a.a r , K R
r ,. ∈ H4 such that∫ T

0

∥∥K R
r ,.
∥∥4
H4 dr <∞

Then, our BSDE has a unique solution (Y ,Z ) ∈ S4 ×H∞(Rn).
Moreover, the bound of Z i

t is
(

Ci +
∫ T

t φi(s)ds
)

eB(T−t).

(cf)If K R
r ,s is bounded, we can replace (A2) to f (·,0,0) ∈ H2 and

Y ∈ S2 instead of S4.



Main Theorem

We assume the following conditions.
(A1) ξ ∈ D1,2 with |Di

rξ| ≤ Ci dr ⊗ dP a.e.
(A2) f (·,0,0) ∈ H4

(A3) For a nondecreasing function ρ,
|f (s, y , z)− f (s, y ′, z)| ≤ B|y − y ′|
|f (s, y , z)− f (s, y , z ′)| ≤ ρ(|z| ∨ |z ′|)|z − z ′|

(A4) f (·, y , z) ∈ L1,2
a and |Dr f (s, y , z)| ≤ φi(s),dr ⊗ dP-a.e. where

φi are Borel measurable with
∫ T

0 φ2
i (t)dt <∞

(A5) |Dr f (s, y , z)− Dr f (s, y ′, z ′)| ≤ K R
r ,s (|y − y ′|+ |z − z ′|) for all

|z|, |z ′| ≤ R where for a.a r , K R
r ,. ∈ H4 such that∫ T

0

∥∥K R
r ,.
∥∥4
H4 dr <∞

Then, our BSDE has a unique solution (Y ,Z ) ∈ S4 ×H∞(Rn).
Moreover, the bound of Z i

t is
(

Ci +
∫ T

t φi(s)ds
)

eB(T−t).

(cf)If K R
r ,s is bounded, we can replace (A2) to f (·,0,0) ∈ H2 and

Y ∈ S2 instead of S4.



Main Corollary

If we assume stronger solution than (A1) and (A2), we can
generalize (A3).

(A1’) (A1) and |ξ| ≤ E
(A2’) |f (s, y , z)| ≤ G(1 + |y |) + ψ(|y |, |z|)|z| for nondecreasing

function ψ
(A3’) For nondecreasing functions ρ1 and ρ2,

|f (s, y , z)− f (s, y ′, z)| ≤ ρ1(|y | ∨ |y ′|)|y − y ′|
|f (s, y , z)− f (s, y , z ′)| ≤ ρ2(|y |, |z| ∨ |z ′|)|z − z ′|

(A5’) |Dr f (s, y , z)− Dr f (s, y ′, z ′)| ≤ K R
r ,s (|y − y ′|+ |z − z ′|) for all

|y |, |y ′|, |z|, |z ′| ≤ R where for a.a r , K R
r ,. ∈ H4

In addition, we assume (A4). Then, our BSDE has a unique
solution (Y ,Z ) ∈ S∞ ×H∞(Rn). Moreover,
|Yt | ≤ (E + 1)eG(T−t) − 1 := d(t) for all t a.s.
|Z i

t | ≤
(

Ci +
∫ T

t φi(s)ds
)

eρ1(d(t))(T−t) =: ei(t) for almost all t a.s.

ex)f (y , z) = |z|3 + |z|
1+|z| |y |

2
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Sketch of Proof

1 Assume that (A1-(A4) hold and (A5) holds with K independent
of R, f is differentiable in y and z,and ρ being constant. Then,

Theorem (El Karoui et al(1997))

We have a unique solution (Y ,Z ) in S4(R)×H4(Rn). Moreover,
(Y ,Z ) ∈ L1,2

a (Rn+1) and for all i = 1, . . . ,n,
(Di

r Yt ,Di
r Zt ) = (U r

t ,V
r
t ) dr ⊗ dt ⊗ dP-a.e. and Z i

t = U t
t dt ⊗ dP-a.e.

where U r
t = 0 and V r

t = 0 for 0 ≤ t < r ≤ T , and, for each fixed r ,
(U r

t ,V
r
t )r≤t≤T is the unique pair in S2(R)×H2(Rn) solving the

BSDE

U r
t = Di

rξ +

∫ T

t
[∂y f (s,Ys,Zs)U r

s + ∂z f (s,Ys,Zs)V r
s + Di

r f (s,Ys,Zs)]ds

−
∫ T

t
V r

s dWs.



Sketch of Proof

2 Using Ito formula on eBt |U r
t |2, we can bound Dr Yt and Zt .

3 Show the solution exists uniquely for small time with Z
bounded by big enough S. <= cutoff argument.

4 By comparison theorem, we get better bound for Z which is
not blowing up.

5 Iterate the procedure to time 0.
6 Using mollification, we can show the claim for Lipschitz driver.
7 Generalize to K R using the explicit bound of Z .
8 Under (A1’)-(A3’), (A4) and (A5’), by comparison theorem, we

can bound Y and prove the corollary.
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Markovian BSDEs and semilinear parabolic PDEs

For some B > 0, consider

Y t ,x
s = h(X t ,x

T ) +

∫ T

s
g(r ,X t ,x

r ,Y t ,x
r ,Z t ,x

r )dr −
∫ T

s
Z t ,x

r dWr (1)

where X t ,x
s = x +

∫ s

t
b(r ,X t ,x

r )dr +

∫ s

t
σ(r)dWr

where |b(s, x)− b(s, y)| ≤ B|x − y |, |b(s, x)| ≤ B(1 + |x |), and
|σ| ≤ B.

(B1) h : Rm → R is Lipschitz with coefficient B.
(B2)

∫ T
0 |g(s,0,0,0)|2ds <∞.

(B3) For a nondecreasing function ρ,

|g(s, x , y , z)− g(s, x , y ′, z)| ≤ B|y − y ′|
|g(s, x , y , z)− g(s, x , y , z ′)| ≤ ρ

(
|z| ∨ |z ′|

)
|z − z ′|

(B4) |g(s, x , y , z)− g(s, x ′, y , z)| ≤ B|x − x ′|
(B5) |g(s, x , y , z)− g(s, x ′, y , z)− g(s, x , y ′, z ′) + g(s, x ′, y ′, z ′)| ≤

BR|x − x ′| (|y − y ′|+ |z − z ′|) for all |z|, |z ′| ≤ R



(B1’) (B1) with |h| ≤ B
(B2’) |g(s, x , y , z)| ≤ B(1 + |y |) + ψ(|y |, |z|)|z|.
(B3’) For nondecreasing functions ρ1 and ρ2,

|g(s, x , y , z)− g(s, x , y ′, z)| ≤ ρ1(|y | ∨ |y ′|)|y − y ′|
|g(s, x , y , z)− g(s, x , y , z ′)| ≤ ρ2

(
|y |, |z| ∨ |z ′|

)
|z − z ′|

(B5’) |g(s, x , y , z)− g(s, x ′, y , z)− g(s, x , y ′, z ′) + g(s, x ′, y ′, z ′)| ≤
BR|x − x ′| (|y − y ′|+ |z − z ′|) for all |y |, |y ′|, |z|, |z ′| ≤ R

Theorem
If (B1)-(B5) hold, then BSDE (1) has a unique solution such that
X t ,x is a square integrable strong solution and
(Y t ,x ,Z t ,x ) ∈ S4 ×H∞(Rn) .

Theorem
If (B1’)-(B3’),(B4), and (B5’) hold, then BSDE (1) has a unique
solution such that X t ,x is a square integrable strong solution,
(Y t ,x ,Z t ,x ) ∈ S∞ ×H∞(Rn).



Sketch of Proof

It is easy to check conditions of main theorem and corollary using
the following two lemmas.

Lemma
X t ,x ∈ D1,2 with |Dr X t ,x | ≤ BeBT .

Proof.
Differentiability is proved in the reference and we can use
Gronwall’s inequality to Malliavin derivative of above SDE of
X t ,x .

Lemma (Proposition 1.1.4 of Nualart(2006))

If φ is L-Lipschitz and X ∈ D1,2, then φ(X ) ∈ D1,2 and there exists
random vector R bounded by L such that Dφ(X ) = R(DX ).



Viscosity Solution

Theorem
Assume either (B1)-(B5) or (B1’)-(B3’), (B4), (B5’). Then,
u(t , x) := Y t ,x

t is a unique viscosity solution of

ut (t , x) + Ltu(t , x) + g(t , x ,u(t , x), (∇uσ)(t , x)) = 0 (2)
u(T , x) = g(x)

where
Lt =

1
2

∑
i,j

(σσT )i,j(t)∂xi∂xj +
∑

i

bi(t , x)∂xi .

Proof.
By standard result, it is known u is a viscosity solution. By Ishii and
Lions(1990), under our conditions, viscosity solution is unique.



Classical Solution

Assume either (i) or (ii) holds.
(i) Assume (B1)–(B5). Also, suppose that b(s, x),h(x), and

g(s, x , y , z) are C3 in (x , y , z) and they have bounded first
order, second order, and third order derivatives in

{(s, x , y , z) ∈ [0,T ]× Rm × R× Rn : |z| ≤ Mz}

where Mz is the bound of Z t ,x in our previous theorem.
(ii) Assume (B1’)–(B3’), (B4), (B5’). Also, suppose that

b(s, x),h(x), and g(s, x , y , z) are C3 in (x , y , z) and they have
bounded first order, second order, and third order derivatives
in {

(s, x , y , z) ∈ [0,T ]× Rm × R× Rn : |y | ≤ M ′y , |z| ≤ M ′z
}

where M ′y and M ′z are the bounds of Y t ,x and Z t ,x in our
previous theorem, respectively.



Theorem
Then, u(t , x) in previous theorem is actually of class
C1,2([0,T ]× Rm;R) which solves (2). Moreover, if (i) holds,
∇u(t , x)σ(t) is bounded for almost every t. If (ii) holds, then u(t , x)
is bounded for all t and ∇u(t , x)σ(t) is bounded for almost every t.

Proof.
Apply the standard result in El Karoui et al.(1997) with appropriate
bound.

cf) When g(z) = a|z|d with d > 1, these results closely related
with Amour and Ben-Artzi(1998), Gilding et al.(2003) which deals
with classical solutions. For classical solution, Amour and
Ben-Artzi assumed bounded terminal condition with C2

b . Gilding et
al. assumed the boundedness of terminal condition and fixed
a = 1.
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Lipschitz⇒Bdd Malliavin derivative

We provide a sufficient condition for (A1).

Definition
We call a random variable ξ Lipschitz continuous in the Brownian
motion W with constants C1, . . . ,Cn ∈ R+ if ξ = ϕ(W ) for a
function ϕ : C([0,T ];Rn)→ R satisfying

|ϕ(v)− ϕ(w)| ≤ sup
0≤t≤T

n∑
i=1

Ci |v i(t)− w i(t)|.

Theorem
Let ξ be Lipschitz continuous in W with constants
C1, . . . ,Cn ∈ R+. Then ξ ∈ D1,2 and |Di

tξ| ≤ Ci dt ⊗ dP-a.e. for all
i = 1, . . . ,n. Converse is not TRUE.



Example
Assume T = n = 1. Define

g(t) :=
∞∑

k=1

(−1)k−12k1{1−21−k<t≤1−2−k}, h(t) :=

∫ t

0
g(s)ds,

and set

ξ :=

∫ 1

0
h(t)dWt .

Then Dξ = h is bounded by 1.
On the other hand, it follows from integration by parts that

ξ = − lim
k→∞

∫ 1−2−2k

0
g(t)Wtdt .
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Semilinear Parabolic PDEs with Neumann BC

Let O be a bounded open subset in Rm with smooth boundary. Let
the forward process in FBSDE (1) is changed to

X t ,x
s = x +

∫ s

t
b(X t ,x

r )dr +

∫ s

t
σ(X t ,x

r )dWr +

∫ s

t
n(X t ,x

r )dκt ,x
r

κt ,x
s =

∫ s

t
1{X t,x

r ∈∂O}
dκt ,x

r , κt ,x
· is increasing

Example
Assume O is an open bounded box, b is Lipschitz, σ is a constant.
Then, X t ,x is Lipschitz in underlying Brownian motion. Therefore,
X t ,x ∈ D1,2 and DX t ,x is bounded.

This gives a viscosity solution of semilinear parabolic PDE with
Neumann boundary condition by Pardoux and Zhang(1998).



Semilinear Parabolic PDEs with Dirichlet BC

Consider the following Markovian BSDEs which is indexed by
(t , x) ∈ [0,T ]× Rm with a random terminal time
τ := inf{s ≥ t : X t ,x

s /∈ O} ∧ T for a bounded open set O ⊂ Rp.

Y t ,x
s = h(X t ,x

τ ) +

∫ τ

s∧τ
g(r ,X t ,x

r ,Y t ,x
r ,Z t ,x

r )dr −
∫ τ

s∧τ
Z t ,x

r dWr

where X t ,x
s = x +

∫ s

t
b(r ,X t ,x

r )dr +

∫ s

t
σ(r ,X t ,x

r )dWr

Example
Assume O = (a,b) ⊂ R. Let

X t ,x
s := x + σ(Ws −Wt )

τ := inf
{

s ≥ t : X t ,x
s /∈ O

}
∧ T

where σ is a constant. Then, X t ,x
τ is Lipschitz in underlying BM.



This gives a probabilistic representation of a classical solution of
semilinear parabolic PDE.(Ladyzenskaja at al. 1968). Peng(1992)
used strong version of Ladyzenskaja’s theorem to prove this for
Lipschitz driver. We used our result to recover part of original
Ladyzenskaja’s theorem.



Summary

The regularity of the terminal condition gives the bound of Z
(and Y ) in our BSDE. Then we can apply most of standard
BSDE results.
The Lipschitzness is a sufficient, but not necessary condition
for bounded Malliavin derivative and this is often easier to
check than Malliavin boundedness.
Comparison theorem is crucial in the global existence of
solution. In multidimensional superquadratic BSDE, we have
solution only for small time if we assume the terminal
condition has bounded Malliavin derivative.
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