Optimal Simulation Schemes for Lévy driven SDEs

Salvador Ortiz-Latorre Imperial College London

(joint work with A. Kohatsu-Higa and P. Tankov)

BSDEs, Numerics and Finance

Oxford, 2-4 July, 2012

Outline

- 1 Introduction and preliminaries
- Main result
- Optimal compound Poisson approximation
- Mumerical experiments

Outline

- Introduction and preliminaries
- 2 Main result
- 3 Optimal compound Poisson approximation
- 4 Numerical experiments

Problem

We are interested in the numerical approximation of $\mathbb{E}[f(X_1)]$, where

$$X_{t}=x+\int_{0}^{t}b\left(X_{s}\right)ds+\int_{0}^{t}\sigma\left(X_{s}\right)dB_{s}+\int_{0}^{t}h\left(X_{s-}\right)dZ_{s}.$$

- $b: \mathbb{R}^d \to \mathbb{R}^d$, $h: \mathbb{R}^d \to \mathbb{R}^d$ and $\sigma: \mathbb{R}^d \to \mathbb{R}^{d \times k}$ are C^1 with bounded derivatives.
- $B = \{B_t\}_{t \in [0,1]}$ is a k-dimensional Brownian motion.
- $Z = \{Z_t\}_{t \in [0,1]}$ is a **one dimensional** Lévy process (independent of B) with the following representation

$$\begin{split} Z_t &= \int_0^t \int_{|y| \leq 1} y \widetilde{N} \left(\mathit{d}y, \mathit{d}s \right) + \int_0^t \int_{|y| > 1} y N \left(\mathit{d}y, \mathit{d}s \right), \\ \widetilde{N} \left(\mathit{d}y, \mathit{d}s \right) &= N \left(\mathit{d}y, \mathit{d}s \right) - \nu \left(\mathit{d}y \right) \mathit{d}s, \end{split}$$

where ν is an infinite activity Lévy measure, that is $\nu\left(\mathbb{R}\right)=+\infty$, and N is a Poisson random measure on $\mathbb{R}\times[0,\infty)$ with intensity $\nu\left(dy\right)\times dt$.

Previous works.

Case $b \equiv \sigma \equiv 0$, that is,

$$X_t = x + \int_0^t h(X_{s-}) dZ_s.$$

- Euler scheme: Protter and Talay (1997). Two difficulties:
 - ▶ No available algorithm to simulate the increments of Z.
 - A large jump between discretization times can lead a large discretization error.
- Approximated Euler scheme: Jacod et al. (2005).
- Jump adapted schemes:
 - Rubenthaler (2003). Replace Z with a compound Poisson approximation and place the discretization points at its jump times.
 - ► Kohatsu-Higa and Tankov (2010). Replace Z with a compound Poisson process plus a Brownian motion (similar to Asmussen-Rosinski (2001) approach).
 - ► Tankov (2011). Replace Z with Z_{ε} a finite intensity Lévy process incorporating all the jumps bigger than ε and an additional compound Poisson term matching a given number of moments of Z.

Definitions

• Let $\bar{X}=\{\bar{X}_t\}_{t\in[0,1]}$ be the family of approximating processes, which is the solution of the family of SDEs

$$ar{X}_t = x + \int_0^t b(ar{X}_s) ds + \int_0^t \sigma(ar{X}_s) dB_s + \int_0^t h(ar{X}_{s-}) dar{Z}_s,$$

where $\bar{Z}=\{\bar{Z}_t\}_{t\in[0,1]}$ is a family of Lévy processes (independent of B) with the following representation

$$ar{Z}_t = ar{\mu}t + ar{\sigma}W_t + \int_0^t \int_{|y| \leq 1} y \widetilde{\tilde{N}}\left(dy, ds
ight) + \int_0^t \int_{|y| > 1} y \bar{N}\left(dy, ds
ight),$$

$$\widetilde{ar{N}}\left(\mathit{dy},\mathit{ds}
ight)=ar{N}\left(\mathit{dy},\mathit{ds}
ight)-ar{v}\left(\mathit{dy}
ight)\mathit{ds},$$

where $\bar{\lambda}=\int_{\mathbb{R}}\bar{v}\left(dy\right)<\infty$, $\bar{\sigma}^{2}\geq0$ and \bar{N} is a Poisson random measure on $\mathbb{R}\times[0,\infty)$ with intensity $\bar{v}\left(dy\right)\times ds$ and $W=\{W_{t}\}_{t\in[0,1]}$ is a standard k-dimensional Brownian motion independent of all the other processes.

• We assume that $(\bar{\mu}, \bar{\nu}, \bar{\sigma})$ belongs to a set of possible approximation parameters denoted by \mathcal{A} .

Definitions

We consider the following stopping times

$$\begin{split} \bar{T}_i &\triangleq \inf\{t > \bar{T}_{i-1} : \bar{N}\left(\mathbb{R}, (\bar{T}_{i-1}, t]\right) \neq 0\}, \quad i \in \mathbb{N}, \\ \bar{T}_0 &\triangleq 0. \end{split}$$

and the associated **jump** operators

$$(\bar{S}^{i}f)(x) \triangleq \mathbb{E}[f(x+h(x)\Delta\bar{Z}_{\bar{T}_{i}})], \quad i \in \mathbb{N}$$
$$(\bar{S}^{0}f)(x) \triangleq f(x).$$

Define the process

$$\bar{Y}_s(t,x) \triangleq x + \int_t^s \bar{b}(\bar{Y}_u(t,x)) du + \int_t^s \sigma(\bar{Y}_u(t,x)) dB_u + \bar{\sigma} \int_t^s h(\bar{Y}_u(t,x)) dW_u,$$

and consider its associated semigroup $(\bar{P}_t f)(x) \triangleq \mathbb{E}[f(\bar{Y}_t(0,x))]$.

• In general, we do not know the exact solution of $\bar{Y}_s(t,x)$ and we have to use and approximation.

Assumptions

One can prove that

$$\mathbb{E}[\mathbf{1}_{\{1<\bar{\tau}_1\}}f(\bar{X}_1)] = \mathbb{E}[\mathbf{1}_{\{1<\bar{\tau}_1\}}\bar{S}^0\bar{P}_1f(x)],$$

$$\mathbb{E}[\mathbf{1}_{\{\bar{\tau}_i<1<\bar{\tau}_{i+1}\}}f(\bar{X}_1)] = \mathbb{E}[\mathbf{1}_{\{\bar{\tau}_i<1<\bar{\tau}_{i+1}\}}\bar{S}^0\bar{P}_{\bar{\tau}_1\wedge 1}\bar{S}^1\bar{P}_{\bar{\tau}_2-\bar{\tau}_1}\cdots\bar{S}^i\bar{P}_{1-\bar{\tau}_i}f(x)]$$

ullet Assumption (\mathcal{SR}) . There exists a process $\hat{X} = \{\hat{X}_t\}_{t \in [0,1]}$ satisfying

$$\mathbb{E}[\mathbf{1}_{\{1<\bar{\tau}_1\}}f(\hat{X}_1)] = \mathbb{E}[\mathbf{1}_{\{1<\bar{\tau}_1\}}\bar{S}^0\hat{P}_1f(x)],$$

$$\mathbb{E}[\mathbf{1}_{\{\bar{\tau}_i<1<\bar{\tau}_{i+1}\}}f(\hat{X}_1)] = \mathbb{E}[\mathbf{1}_{\{\bar{\tau}_i<1<\bar{\tau}_{i+1}\}}\bar{S}^0\hat{P}_{\bar{\tau}_1\wedge 1}\bar{S}^1\hat{P}_{\bar{\tau}_2-\bar{\tau}_1}\cdots\bar{S}^i\hat{P}_{1-\bar{\tau}_i}f(x)]$$

for $i \in \mathbb{N}$, where \hat{P}_t is a linear operator.

• Assumption (\mathcal{H}_n) . $\int |y|^{2n} \nu(dy) < \infty$, $\sup_{\bar{\nu} \in \mathcal{A}} \int |y|^{2n} \bar{\nu}(dy) < \infty$ and $h, b, \sigma \in C_b^n$.

Assumptions

- For $t \in [0,1]$, let $\{\bar{P}_t^i\}_{n \in \mathbb{N}}$ and $\{Q_t^i\}_{n \in \mathbb{N}}$ be two families of linear operators from $\cup_{p \geq 0} C_p$ to $\cup_{p \geq 0} C_p$.
- Assumption (\mathcal{M}_0) . For all $i \in \mathbb{N}$, if $f \in \mathcal{C}_p$ with $p \geq 2$, then $Q_t^i f \in \mathcal{C}_p$ and

$$\sup_{t\in[0,1]}\left\|Q_t^if\right\|_{\mathcal{C}_p}\leq K\left\|f\right\|_{\mathcal{C}_p},$$

for some constant $K\left(\mathcal{A}\right)>0$. Furthermore, we assume $0\leq Q_{t}^{i}f\left(x\right)\leq Q_{t}^{i}g\left(x\right)$ whenever $0\leq f\leq g$ and $Q_{t}^{i}\mathbf{1}_{\mathbb{R}}\left(x\right)=\mathbf{1}_{\mathbb{R}}\left(x\right)$.

• **Assumption** (\mathcal{M}) . For all $i \in \mathbb{N}$, Q_t^i satisfies (\mathcal{M}_0) and for each $f_p(x) := |x|^p (p \in \mathbb{N})$,

$$Q_t^i f_p(x) \le (1 + Kt) f_p(x) + K't$$

for some positive constants K and K'.

Assumptions

• Assumption $(\mathcal{R}(m))$. For all $i \in \mathbb{N}$, define $\operatorname{Err}_t^i = \bar{P}_t^i - Q_t^i$. For each $p \geq 2$, there exists a constant q = q(m,p) such that if $f \in C_p^{m^*}$ with $m^* \geq 2m + 2$ then

$$\left\|\operatorname{Err}_t^i f\right\|_{C_q} \leq K t^{m+1} \left\|f\right\|_{C_p^{m^*}},$$

for all $t \in [0, 1]$.

• Assumption (\mathcal{M}_P) . If $f \in \mathcal{C}_p^m$ one has that for k=1,...,n-1

$$\sup_{(t_{k+1},...,t_n)\in[0,1]^{n-k}}\left\|\prod_{i=k+1}^n \bar{P}_{t_i}^i f\right\|_{C_p^m} \leq C \|f\|_{C_p^m}.$$

Outline

- Introduction and preliminaries
- Main result
- 3 Optimal compound Poisson approximation
- 4 Numerical experiments

Main result

Theorem

Assume (\mathcal{H}_{n+1}) , that $\hat{X} = \{\hat{X}_t\}_{t \in [0,1]}$ satisfies (\mathcal{SR}) , and that the operators $\bar{P}_t^i \triangleq \bar{S}^{i-1}\bar{P}_t$ and $Q_t^i \triangleq \bar{S}^{i-1}\hat{P}_t$ satisfy assumptions (\mathcal{M}) , (\mathcal{M}_P) and $(\mathcal{R}(m))$, $m \geq 2$. Then, if $f \in C_p^{2(m+1)} \cap C_b^{n+1}$, $n \geq 2$, $p \geq 2$ there exist some positive constants K and C_i , i = 1, ..., n+1 such that

$$\begin{split} &|\mathbb{E}[f(X_{1})] - \mathbb{E}[f(\hat{X}_{1})]| \\ &\leq C_{1} \left| \int_{|y|>1} y(\nu - \bar{\nu}) (dy) - \bar{\mu} \right| + C_{2} \left| \int_{\mathbb{R}} y^{2} (\nu - \bar{\nu}) (dy) - \bar{\sigma}^{2} \right| \\ &+ \sum_{i=3}^{n} C_{i} \left| \int_{\mathbb{R}} y^{i} (\nu - \bar{\nu}) (dy) \right| \\ &+ C_{n+1} \int_{\mathbb{R}} |y|^{n+1} |\nu - \bar{\nu}| (dy) + K \|f\|_{C_{p}^{2(m+1)}} \bar{\lambda}^{-m}. \end{split}$$

A simple example

ullet Parametrize the set ${\mathcal A}$ by a parameter ${\mathcal E} \in (0,1]$ so that:

$$\begin{split} \bar{\mu} &\triangleq \mu_{\varepsilon} = \int_{|y|>1} y(\nu - \nu_{\varepsilon}) \left(dy \right), \\ \bar{\sigma}^2 &\triangleq \sigma_{\varepsilon}^2 = \int_{\mathbb{R}} y^2 (\nu - \nu_{\varepsilon}) \left(dy \right), \\ \bar{\nu}(dy) &\triangleq \nu_{\varepsilon}(dy) = \mathbf{1}_{\{|y|>\varepsilon\}} \nu(dy), \end{split}$$

- Set $\hat{P}_t \triangleq \hat{P}_t^{\varepsilon}$ as the operator associated with a one step Euler scheme.
- Then \hat{X}^{ε} is an Euler scheme between jumps and it jumps with the law of a compound Poisson process which has ν_{ε} as its associated Lévy measure.
- The above result reads

$$|\mathbb{E}[f(X_1)] - \mathbb{E}[f(\hat{X}_1^{\varepsilon})]| \le C_3 \int_{|y| \le \varepsilon} |y|^3 \, \nu(dy) + K \, \|f\|_{C_{\rho}^4} \, \lambda_{\varepsilon}^{-1}.$$

• In the particular case of α -tempered stable Lévy measures one obtains that the best convergence rate is $\lambda_{\varepsilon}^{-1}$ for $\alpha \leq 1$ and the worse case is $\lambda_{\varepsilon}^{-1/2}$ for $\alpha \to 2$.

Idea of the proof

We can expand the error as follows

$$\begin{aligned} \left| \mathbb{E}[f(X_1)] - \mathbb{E}[f(\hat{X}_1)] \right| &\leq \left| \mathbb{E}[f(X_1)] - \mathbb{E}[f(\bar{X}_1)] \right| + \left| \mathbb{E}[f(\bar{X}_1)] - \mathbb{E}[f(\hat{X}_1)] \right| \\ &\triangleq \mathcal{D}_1 + \hat{\mathcal{D}}_1. \end{aligned}$$

• Note that $\mathbb{E}[f(X_1)] - \mathbb{E}[f(\bar{X}_1)] = \mathbb{E}[u(0,x)] - \mathbb{E}[u(1,\bar{X}_1)]$, where u(t,x) satisfies

$$\frac{\partial u}{\partial t}(t,x) = -Lu(t,x),$$

$$u(1,x) = f(x)$$

and L is the generator of $P_t f(x) = \mathbb{E}[f(X_t(0,x))]$.

• To bound \mathcal{D}_1 we use the Itô formula and a Taylor expansion.

Idea of the proof

• Using Assumption (SR) we can prove that

$$\begin{split} \hat{\mathcal{D}}_{1} &= \left| \mathbb{E}[f(\bar{X}_{1})] - \mathbb{E}[f(\hat{X}_{1})] \right| \\ &\leq \sum_{i=0}^{\infty} \left| \mathbb{E}\left[\mathbf{1}_{\{\bar{T}_{i} < 1 < \bar{T}_{i+1}\}} \left(\prod_{k=1}^{i+1} \bar{P}_{\bar{T}_{k} \wedge 1 - \bar{T}_{k-1}}^{k} - \prod_{k=1}^{i+1} Q_{\bar{T}_{k} \wedge 1 - \bar{T}_{k-1}}^{k} \right) f(x) \right] \right| \\ &\leq K \left\| f \right\|_{C_{p}^{2(m+1)}} \sum_{i=0}^{\infty} \sum_{k=1}^{i+1} \mathbb{E}\left[\mathbf{1}_{\{\bar{T}_{i} < 1 < \bar{T}_{i+1}\}} \left(\bar{T}_{k} \wedge 1 - \bar{T}_{k-1} \right)^{m+1} \right], \\ &\leq K \left\| f \right\|_{C_{p}^{2(m+1)}} \bar{\lambda}^{-m} \end{split}$$

• Assumptions $(\mathcal{R}(m)), (\mathcal{M})$ and (\mathcal{M}_P) are used to bound

$$\begin{split} &\prod_{i=1}^{n} \bar{P}_{t_{i}-t_{i-1}}^{i} f\left(x\right) - \prod_{i=1}^{n} Q_{t_{i}-t_{i-1}}^{i} f\left(x\right) \\ &= \sum_{k=1}^{n} \left(\prod_{i=1}^{k-1} Q_{t_{i}-t_{i-1}}^{i} (\bar{P}_{t_{k}-t_{k-1}}^{k} - Q_{t_{k}-t_{k-1}}^{k}) \prod_{i=k+1}^{n} \bar{P}_{t_{i}-t_{i-1}}^{i} \right) f\left(x\right). \end{split}$$

Outline

- Introduction and preliminaries
- 2 Main result
- Optimal compound Poisson approximation
- 4 Numerical experiments

Motivation of the optimization problem

• We want to choose $(\bar{\mu}, \bar{\sigma}, \bar{\nu})$ which makes the first four terms of the error expansion small. That is, we want to minimize

$$C_{1}\left|\int_{|y|>1}y(\nu-\bar{\nu})(dy)-\bar{\mu}\right|+C_{2}\left|\int_{\mathbb{R}}y^{2}(\nu-\bar{\nu})(dy)-\bar{\sigma}^{2}\right| + \sum_{i=3}^{n}C_{i}\left|\int_{\mathbb{R}}y^{i}(\nu-\bar{\nu})(dy)\right|+C_{n+1}\int_{\mathbb{R}}|y|^{n+1}\left|\nu-\bar{\nu}\right|(dy).$$

• Our approach is to take

$$ar{\mu} = \int_{|y|>1} y(
u - ar{
u}) \left(dy
ight) \quad ext{and} \quad ar{\sigma} = 0$$

so that it becomes

$$\sum_{i=2}^{n} C_{i} \left| \int_{\mathbb{R}} y^{i} (\nu - \bar{\nu}) \left(dy \right) \right| + C_{n+1} \int_{\mathbb{R}} \left| y \right|^{n+1} \left| \nu - \bar{\nu} \right| \left(dy \right).$$

Optimization problem

Problem $(\Omega_{n,\Lambda})$

Let ν be a Lévy measure on $\mathbb R$ admitting the first n moments, where $n\geq 2$, and define $m_k=\int_{\mathbb R} y^k \nu(dy), 1\leq k\leq n$. For any $\bar{\nu}\in\mathcal M$ define the functional

$$J(\bar{\nu}) \triangleq \int_{\mathbb{R}} |y|^n |\nu - \bar{\nu}| (dy).$$

The problem $\Omega_{n,\Lambda}$, $n \geq 2$, consists in finding

$$\mathcal{E}_{n}(\Lambda) \triangleq \min_{\bar{\nu} \in \mathcal{M}} J(\bar{\nu})$$

under the constraints

$$\int_{\mathbb{R}} ar{v}(\mathit{d}y) = \Lambda$$
 and $\int_{\mathbb{R}} y^k ar{v}(\mathit{d}y) = m_k$, $k = 2, \ldots, n-1$,

where $\Lambda \geq \min_{\bar{\nu} \in M_{n-1}} \bar{\nu}(\mathbb{R})$, where we set by convention $\min_{\bar{\nu} \in M_1} \bar{\nu}(\mathbb{R}) = 0$.

Optimization results

Theorem

The problem $\Omega_{n,\Lambda}$ admits a solution. The measure \bar{v} is a solution of $\Omega_{n,\Lambda}$ if and only if it satisfies the constraints, and there exist a piecewise polynomial function $P(y) = a_0 + \sum_{i=2}^{n-1} a_i y^i + |y|^n$ such that $P(y) \geq 0$ for all $y \in \mathbb{R}$, a function $\alpha : \mathbb{R} \mapsto [0,1]$ and a positive measure τ on \mathbb{R} such that

$$\bar{\nu}(dy) = \nu(dy) \mathbf{1}_{\{P(y) < 2|y|^n\}} + \alpha(y)\nu(dy) \mathbf{1}_{\{P(y) = 2|y|^n\}} + (\tau(dy) + \nu(dy)) \mathbf{1}_{\{P(y) = 0\}}.$$

Remark

If the measure ν is absolutely continuous with respect to Lebesgue's measure, the previous expression for $\bar{\nu}$ simplifies to

$$\bar{\nu}(dy) = \nu(dy) \mathbf{1}_{\{P(y) < 2|y|^n\}} + \tau(dy) \mathbf{1}_{\{P(y) = 0\}}.$$

Moreover, in the case $n=2q, q\in\mathbb{N}$, $P\left(y\right)$ is a polynomial and the measure τ may always be taken to be an atomic measure with at most q atoms.

Optimal schemes

Case n=2

An optimal solution is given by

$$\bar{\nu}_{\varepsilon}\left(dy\right)=\mathbf{1}_{\left\{ y^{2}>\varepsilon\right\} }
u\left(dy
ight)$$
 ,

where $\varepsilon = \varepsilon(\Lambda)$ solves

$$\nu(\{y^2>\varepsilon\})=\Lambda.$$

The approximation error $\mathcal{E}_2(\Lambda)$ is given by

$$\mathcal{E}_2(\Lambda) = \textit{J}(\bar{\nu}_{\epsilon(\Lambda)}) = \int_{\textit{y}^2 \leq \epsilon(\Lambda)} \textit{y}^2 \nu(\textit{d}\textit{y}),$$

which can go to zero at an arbitrarily slow rate as $\Lambda \to \infty$.

Optimal schemes

Case n = 3

An optimal solution is given by

$$ar{v}_{arepsilon}\left(\mathit{dy}
ight)=\mathbf{1}_{\left\{ \left|y
ight|>arepsilon
ight\} }v\left(\mathit{dy}
ight)+lpha_{1}\delta_{-2arepsilon}+lpha_{2}\delta_{2arepsilon},$$

where $\varepsilon = \varepsilon(\Lambda)$ solves

$$\int_{\{|y|>\epsilon\}}\nu\left(\mathit{d}y\right)+\frac{1}{4\epsilon^{2}}\int_{\{|y|\leq\epsilon\}}y^{2}\nu\left(\mathit{d}y\right)=\Lambda,$$

and

$$lpha_1+lpha_2=rac{1}{4arepsilon^2}\int_{\{|y|$$

The worst case approximation error $\mathcal{E}_3(\Lambda)$ satisfies $\mathcal{E}_3(\Lambda) = o(\Lambda^{-1/2})$ as $\Lambda \to \infty$.

21 / 30

Optimal schemes

Case n=4

An optimal solution is given by

$$\bar{v}_{\varepsilon}(dy) = \nu(dy)\mathbf{1}_{\{|y|>\varepsilon\sqrt{\sqrt{2}-1}\}} + \alpha_1\delta_{-\varepsilon} + \alpha_2\delta_{\varepsilon},$$

where $\varepsilon = \varepsilon(\Lambda)$ solves

$$\int_{\{|y|>\varepsilon\sqrt{\sqrt{2}-1}\}}\nu\left(dy\right)+\frac{1}{\varepsilon^2}\int_{\{|y|\leq\varepsilon\sqrt{\sqrt{2}-1}\}}y^2\nu\left(dy\right)=\Lambda,$$

and the constants α_1 and α_2 satisfy

$$\begin{split} &\alpha_{1}=\frac{1}{2\epsilon^{3}}\left(-\int_{\left\{|y|\leq\epsilon\sqrt{\sqrt{2}-1}\right\}}y^{3}\nu\left(dy\right)+\epsilon\int_{\left\{|y|\leq\epsilon\sqrt{\sqrt{2}-1}\right\}}y^{2}\nu\left(dy\right)\right),\\ &\alpha_{2}=\frac{1}{2\epsilon^{3}}\left(\int_{\left\{|y|\leq\epsilon\sqrt{\sqrt{2}-1}\right\}}y^{3}\nu\left(dy\right)+\epsilon\int_{\left\{|y|\leq\epsilon\sqrt{\sqrt{2}-1}\right\}}y^{2}\nu\left(dy\right)\right), \end{split}$$

The worst case approximation error $\mathcal{E}_4(\Lambda)$ satisfies $\mathcal{E}_4(\Lambda) = o(\Lambda^{-1})$ as $\Lambda \to \infty$.

Outline

- Introduction and preliminaries
- 2 Main result
- 3 Optimal compound Poisson approximation
- 4 Numerical experiments

Approximation between jumps

ullet The solution between jumps $ar{Y}_t(x)$ satisfies the following equation

$$\bar{Y}_t(x) = x + \int_0^t \bar{b}(\bar{Y}_s(x))ds + \int_0^t \sigma(\bar{Y}_s(x))dB_s,$$

where

$$ar{b}(x) = b(x) + ar{\gamma}h(x),$$
 $ar{\gamma} = \int_{|y|>1} y(\nu - ar{\nu}) (dy).$

- ullet One can consider different weak approximation schemes to solve $ar{Y}_t(x)$.
- We have studied the weak Taylor methods of orders: 1, 2 and 3.

Generic algorithm

Algorithm to generate a sample of \hat{X}_1

Requires:

An initial condition x_0 .

An optimal Lévy measure $\bar{\nu}$.

A weak approximation method $\bar{Y}_{t}^{WA}\left(y
ight)$, to solve $\bar{Y}_{t}\left(y
ight)$

Compute
$$\bar{\lambda} = \bar{v}(\mathbb{R})$$
 and $\bar{\gamma} = \int_{|y|>1} y(v - \bar{v}) \, (dy)$

Set
$$T_{last} = 0$$
, $x_{new} = x_0$

Simulate the next jump time $T \sim \text{Exp}(\bar{\lambda})$

While
$$(T < 1 - T_{last})$$
 do

Compute
$$\bar{Y}_T^{WA}(x_{new})$$

Simulate Δ , a jump from the Poisson random measure with Lévis measure \bar{x}

with Lévy measure
$$\bar{\nu}$$

Set
$$x_{new} = \bar{Y}_T^{WA}(x_{new}) + h(\bar{Y}_T^{WA}(x_{new}))\Delta$$

Set
$$T_{last} = T$$

Simulate *the next jump time* $T \sim \text{Exp}(\bar{\lambda})$

Compute
$$\bar{Y}_{1-T_{tot}}^{WA}(x_{new})$$

Return
$$\bar{Y}_{1-T_{last}}^{WA}(x_{new})$$

Example

ullet Let Z be a tempered stable process which has the following Lévy measure

$$\nu\left(\textit{d}y\right) = \textit{C}\left\{\frac{e^{-\lambda_{+}y}}{y^{1+\alpha}}\mathbf{1}_{\left\{y>0\right\}} + \frac{e^{-\lambda_{-}\left|y\right|}}{\left|y\right|^{1+\alpha}}\mathbf{1}_{\left\{y<0\right\}}\right\},$$

with C > 0, $\lambda_+ > 0$, $\lambda_- > 0$ and $\alpha \in (0, 2)$.

• We approximate $\mathbb{E}[X_t^2]$, where X_t is the solution of

$$dX_{t} = h(X_{t}) \{ \sigma dB_{t} + dZ_{t} \},$$

whith h(x) = x. The exact solution is available.

- Euler scheme difficult to implement. Poirot-Tankov (2006) approach.
- Jump times of the truncated Poisson measure are easy to simulate.

Error vs Computation Time

• Optimal comp. Poisson approx. n = 2 + Weak Taylor (order 1, 2 and 3)

• Left:
$$C = 0.5$$
, $\alpha = 0.5$, $\lambda_+ = 3.5$, $\lambda_- = 2$, $\sigma = 0.3$. $(\mathcal{E}(\Lambda) \sim \Lambda^{1-\frac{n}{\alpha}} = \Lambda^{-3})$

• **Right**:
$$C = 0.1$$
, $\alpha = 1.5$, $\lambda_{+} = 3.5$, $\lambda_{-} = 2$, $\sigma = 0.3$. $(\mathcal{E}(\Lambda) \sim \Lambda^{1-\frac{n}{\alpha}} = \Lambda^{-\frac{1}{3}})$

Error vs Computation Time

ullet Optimal comp. Poisson approx. $oldsymbol{n}=oldsymbol{3}+$ Weak Taylor (order 1, 2 and 3)

- Left: C = 0.5, $\alpha = 0.5$, $\lambda_+ = 3.5$, $\lambda_- = 2$, $\sigma = 0.3(\mathcal{E}(\Lambda) \sim \Lambda^{1-\frac{n}{\alpha}} = \Lambda^{-5})$
- Right: C = 0.1, $\alpha = 1.5$, $\lambda_+ = 3.5$, $\lambda_- = 2$, $\sigma = 0.3 (\mathcal{E}(\Lambda)) \sim \Lambda^{1-\frac{n}{\alpha}} = \Lambda^{-1}$

Error vs Computation Time

ullet Optimal comp. Poisson approx. ${f n}={f 4}+{\sf Weak}$ Taylor (order 1, 2 and 3)

- Left: $C = 0.5, \alpha = 0.5, \lambda_+ = 3.5, \lambda_- = 2, \sigma = 0.3(\mathcal{E}(\Lambda) \sim \Lambda^{1-\frac{n}{\alpha}} = \Lambda^{-7})$
- Right: C = 0.1, $\alpha = 1.5$, $\lambda_{+} = 3.5$, $\lambda_{-} = 2$, $\sigma = 0.3$ ($\mathcal{E}(\Delta) \sim \Lambda^{1-\frac{n}{\alpha}} = \Lambda^{-\frac{5}{3}}$)

References

- P. Protter and D. Talay. The Euler scheme for Lévy driven stochastic differential equations. Ann. Probab. 25(1), 393-423 (1997).
- S. Rubenthaler. Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process. Stochastic Process. Appl. 103(2), 311-349 (2003).
- S. Asmussen and J. Rosinski. *Approximation of small jumps of Lévy processes with a view towards simulation*. J. Appl Probab. **38**, 482-493 (2001).
- A. Kohatsu-Higa and P. Tankov. Jump-adapted discretization schemes for Lévy driven SDEs. Stochastic Process. Appl. 120(11), 2258-2285 (2010).
- P. Tankov. High order weak approximation schemes for Lévy-driven SDEs, in Proceedings of the 9th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Springer, 2011.
- H. Tanaka and A. Kohatsu-Higa. An Operator Approach for Markov Chain Weak Approximations with an Application to Infinite Activity Lévy Driven SDEs. Ann. of Appl. Probab. 19(3), 1026-1062 (2009).
- A. Kohatsu-Higa, S. Ortiz-Latorre and P. Tankov. *Optimal simulation schemes for Lévy driven stochastic differential equations.* Preprint.