Convolution Method for BSDEs

Polynice Oyono Ngou (Joint with Cody B. Hyndman)

Department of Mathematics and Statistics

Young Researchers Meeting on BSDEs, Numerics and Finance The Oxford-Man Institute, University of Oxford. July 2nd-4th, 2012

Introduction

- 2 Convolution method for BSDEs
 - Motivations
 - Convolution on the 1-D scheme
 - Numerical implementation
- 3 Error consideration and Extensions
 - Error Analysis
 - Reflected BSDEs
- Application to option pricing

5 Conclusion

Introduction

Convolution method for BSDEs Error consideration and Extensions Application to option pricing Conclusion References

1 Introduction

- 2 Convolution method for BSDEs
 - Motivations
 - Convolution on the 1-D scheme
 - Numerical implementation
- 3 Error consideration and Extensions
 - Error Analysis
 - Reflected BSDEs
- 4 Application to option pricing

5 Conclusion

FBSDE

A forward-backward stochastic differential equation (FBSDE) is a system of the form

$$\begin{cases} dX_t = a(t, X_t, Y_t, Z_t) dt + \sigma(t, X_t, Y_t) dW_t \\ -dY_t = f(t, X_t, Y_t, Z_t) dt - Z_t^* dW_t \\ X_0 = x_0, Y_T = g(X_T) \end{cases}$$
(1.1)

on a (complete) filtered probability space (Ω , \mathcal{F} , \mathbb{F} , **P**), where the coefficients *a*, σ , *f* and *g* are appropriate deterministic functions.

• X and Y are adapted and continuous processes with $\mathbf{E}\left[\sup_{t\in[0,T]}|X_t|^2 + \sup_{t\in[0,T]}|Y_t|^2\right] < \infty.$

• Z is an adapted process with $\mathbf{E}\left[\left(\int_{0}^{T}|Z_{t}|^{2}dt\right)\right]<\infty$.

Properties

- Existence and uniqueness (Pardoux and Tang [5]) under Lipschitz and monotonicity conditions.
- Stability (Pardoux and Tang [5]) allows numerical methods.
- Relationship to quasi-linear parabolic PDE (Pardoux and Peng
 [4] and Pardoux and Tang
 [5]) leads to PDE methods.
- Path regularity in the decoupled case for the control process Z (Zhang [8]) leads to an error bound for time discretization schemes (Spatial discretization and Monte Carlo methods).

• • = • • = •

Introduction ethod for BSDEs

Convolution method for BSDEs Error consideration and Extensions Application to option pricing Conclusion References

The Euler scheme

Given a solution of the forward process $\{X_{t_i}^{\pi}\}_{i=0}^n$ on the time mesh $\pi = \{t_0 = 0 < t_1 < ... < t_n = T\}$, the explicit Euler scheme is defined as (Zhang [8], Bouchard and Touzi [1])

$$\begin{cases} Z_{t_n}^{\pi} = 0, \ Y_{t_n}^{\pi} = \xi^{\pi} \\ Z_{t_i}^{\pi} = \frac{1}{\Delta_i} \mathbf{E} \left[Y_{t_{i+1}}^{\pi} \Delta W_i | \mathcal{F}_{t_i} \right] \\ Y_{t_i}^{\pi} = \mathbf{E} \left[Y_{t_{i+1}}^{\pi} + f(t_i, X_{t_i}^{\pi}, Y_{t_{i+1}}^{\pi}, Z_{t_i}^{\pi}) \Delta_i | \mathcal{F}_{t_i} \right] \end{cases}$$
(1.2)

where $\Delta_i = t_{i+1} - t_i$. Alternatively, one can take

$$Y_{t_{i}}^{\pi} = \mathsf{E}\left[Y_{t_{i+1}}^{\pi}|\mathcal{F}_{t_{i}}\right] + f(t_{i}, X_{t_{i}}^{\pi}, \mathsf{E}\left[Y_{t_{i+1}}^{\pi}|\mathcal{F}_{t_{i}}\right], Z_{t_{i}}^{\pi})\Delta_{i}.$$
 (1.3)

The Euler scheme yields a half $(\frac{1}{2})$ order error (in time).

Introduction Convolution method for BSDEs

Error consideration and Extensions Application to option pricing Conclusion References Motivations Convolution on the 1-D scheme Numerical implementation

Introduction

- 2 Convolution method for BSDEs
 - Motivations
 - Convolution on the 1-D scheme
 - Numerical implementation
- 3 Error consideration and Extensions
 - Error Analysis
 - Reflected BSDEs
- 4 Application to option pricing

5 Conclusion

Motivations Convolution on the 1-D scheme Numerical implementation

The solution to the BSDE

$$Y_t = g(W_T) + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s^* dW_s \qquad (2.1)$$

with $W \in \mathbb{R}^d$, $f : [0, T] \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ and $g : \mathbb{R}^d \to \mathbb{R}$, is given by (Pardoux and Peng [4])

$$Y_t = u(t, W_t) \tag{2.2}$$

$$Z_t = \nabla u(t, W_t). \qquad (2.3)$$

where $u:[0, T] \times \mathbb{R}^d \to \mathbb{R}$ solves

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{1}{2} \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2} + f(t, u, \nabla u) = 0, \ (t, x) \in [0, T) \times \mathbb{R}^d\\ u(T, x) = g(x). \end{cases}$$

Motivations Convolution on the 1-D scheme Numerical implementation

In the simple case of BSDEs:

- PDE and Monte Carlo based methods are time consuming.
- PDE based methods are mainly built for coupled problems and may be inaccurate for non-smooth drivers.
- The binomial method (Pend and Xu [6]) simulates the BSDE with an approximation of the Wiener process and gives a partial solution to the PDE. There is a contraction of the space grid through time steps!!

The convolution method, and the FFT algorithm solves some of those problems:

- FFT algorithm is efficient with $\mathcal{O}(n \log(n))$ operations given n interpolation points.
- Resolution on a equidistant and flexible space grid that suits simulation.
- The underlying trigonometric interpolation works well for non-smooth functions.

9/32 Polynice Oyono Ngou (Joint with Cody B. Hyndman)

Motivations Convolution on the 1-D scheme Numerical implementation

From the explicit Euler scheme

$$\begin{cases}
Z_{t_n}^{\pi} = 0, \ Y_{t_n}^{\pi} = \xi^{\pi} \\
Z_{t_i}^{\pi} = \frac{1}{\Delta_i} \mathbf{E} \left[Y_{t_{i+1}}^{\pi} \Delta W_i | \mathcal{F}_{t_i} \right] \\
Y_{t_i}^{\pi} = \mathbf{E} \left[Y_{t_{i+1}}^{\pi} | \mathcal{F}_{t_i} \right] + f(t_i, \mathbf{E} \left[Y_{t_{i+1}}^{\pi} | \mathcal{F}_{t_i} \right], Z_{t_i}^{\pi}) \Delta_i
\end{cases}$$
(2.5)

on the time mesh $\pi = \{t_0 = 0 < t_1 < ... < t_n = T\}$, we define the approximate solution u_i and the approximate gradient \dot{u}_i as

$$u_i(x) = \tilde{u}_i(x) + \Delta_i f(t_i, \tilde{u}_i(x), \dot{u}_i(x))$$
(2.6)

$$\dot{u}_{i}(x) = \frac{1}{\Delta_{i}} \int_{-\infty}^{\infty} (y-x) u_{i+1}(y) h(y-x) dy$$
 (2.7)

for i = 0, 1, ..., n - 1, where

$$\tilde{u}_i(x) = \int_{-\infty}^{\infty} u_{i+1}(y)h(y-x)dy \qquad (2.8)$$

and $u_n(x) = g(x)$. The function h is the Gaussian density. $A \equiv -\infty \propto 10/32$ Polynice Oyono Ngou (Joint with Cody B. Hyndman) Convolution Method for BSDEs

Motivations Convolution on the 1-D scheme Numerical implementation

For any $lpha \in \mathbb{R}$ and any real function η

we define η^α(x) = e^{-αx}η(x).
 𝔅[η](ν) = ∫[∞]_{-∞} e^{-iνx}η(x)dx is the Fourier transform of η and 𝔅⁻¹ is the inverse Fourier operator.

Then, the convolution theorem leads to

$$\widetilde{u}_{i}(x) = e^{\alpha x} \mathfrak{F}^{-1} \left[\mathfrak{F}[u_{i+1}^{\alpha}](\nu)\phi(\nu - i\alpha) \right](x)$$
(2.9)
$$\dot{u}_{i}(x) = e^{\alpha x} \mathfrak{F}^{-1} \left[(\alpha + i\nu) \mathfrak{F}[u_{i+1}^{\alpha}](\nu)\phi(\nu - i\alpha) \right](x)$$
(2.10)

where

$$\phi(\nu) = \exp\left(-\frac{1}{2}\Delta_i\nu^2\right). \tag{2.11}$$

- The expressions of equations (2.9) and (2.10) are identical in the multidimensional setting.
- Lord *et* al. [3] use a very similar approach in the context of American option pricing under Lévy processes.

The convolution method sums up in computing values of the form

$$\theta(x) = \mathfrak{F}^{-1}\left[\mathfrak{F}[\eta^{\alpha}](\nu)\psi(\nu - i\alpha)\right](x)$$
(2.12)

for some real valued function η and some complex function ψ .

• We solve on the restricted real interval [x₀, x_N] with an even number N of nodes

$$x_j = x_0 + j\Delta x$$
 , $j = 1, ..., N$ and $\Delta x = rac{x_N - x_0}{N}$. (2.13)

• The Fourier space is discretized on $\left[-\frac{L}{2},\frac{L}{2}\right]$ with nodes

$$u_i =
u_0 + i\Delta
u$$
 , $j = 1, ..., N$ and $u_0 = -\frac{L}{2}$. (2.14)

- The Nyquist relation imposes $\Delta \nu \cdot \Delta x = \frac{2\pi}{N}$.
- Assumptions : $\eta^{\alpha}(x_0) = \eta^{\alpha}(x_N)$ and $\frac{\partial \eta^{\alpha}}{\partial x}(x_0) = \frac{\partial \eta^{\alpha}}{\partial x_0}(x_N)$.

Applying lower Riemann sums on the inverse Fourier transform integral and any classical quadrature rule with weights $\{w_i\}_{i=0}^N$ on the Fourier transform integral gives

$$\theta(x_k) = (-1)^k \mathfrak{D}^{-1} \left[\left\{ \psi(\nu_j) \mathfrak{D} \left[\{ (-1)^j \tilde{w}_i \eta^\alpha(x_i) \}_{i=0}^{N-1} \right]_j \right\}_{j=0}^{N-1} \right]_k$$

for $k = 0, 1, ..., N-1$ and $\theta(x_N) = \theta(x_0)$ (2.15)

where $\tilde{w}_0 = w_0 + w_N$ and $\tilde{w}_i = w_i$ if $i \neq 0$. For any set $\{x_j\}_{j=0}^{N-1}$ of numbers

$$\mathfrak{D}[\{x_j\}_{j=0}^{N-1}]_k = \frac{1}{N} \sum_{j=0}^{N-1} e^{-\mathbf{i}jk\frac{2\pi}{N}} x_j$$
(2.16)

is the discrete Fourier transform (DFT) and

$$\mathfrak{D}^{-1}[\{x_j\}_{j=0}^{N-1}]_k = \sum_{j=0}^{N-1} e^{ijk\frac{2\pi}{N}} x_j. \tag{2.17}$$

13/32 Polynice Oyono Ngou (Joint with Cody B. Hyndman)

Convolution Method for BSDEs

If the generic function η^{α} does not satisfy the value and derivative assumptions, then we consider the transformation

$$\eta^{\alpha}_{\beta,\kappa}(x) = e^{-\alpha x} (\eta(x) + \beta x + \kappa)$$
(2.18)

which satisfies the conditions for optimal values of $\alpha,\ \beta$ and $\kappa.$ The transformation leads to

$$\theta(x) = \mathfrak{F}^{-1} \left[\mathfrak{F}[\eta^{\alpha}](\nu)\psi(\nu - i\alpha) \right](x) = \mathfrak{F}^{-1} \left[\mathfrak{F}[\eta^{\alpha}_{\beta,\kappa}](\nu)\psi(\nu - i\alpha) \right](x) - H(x,\alpha,\beta,\kappa).$$
(2.19)

We have:

Error Analysis Reflected BSDEs

Introduction

- 2 Convolution method for BSDEs
 - Motivations
 - Convolution on the 1-D scheme
 - Numerical implementation
- 3 Error consideration and Extensions
 - Error Analysis
 - Reflected BSDEs
- 4 Application to option pricing

5 Conclusion

Error Analysis Reflected BSDEs

Time discretization

- The Euler scheme time discretization error is known to the half order. Zhang [8], Bouchard and Touzi [1].
- Using the usual ansatz of $u = e^{ik\Delta x}$, for a space step Δx and a maximal time step of $|\pi|$, stability occurs if

$$|\pi| \sup_{t \in [0,T]} |f(t,0,0)| \le 1$$
(3.1)

A (1) < A (1) < A (1) < A (1) </p>

when using the trapezoidal quadrature rule i.e with weights $w_0 = w_N = \frac{1}{2}$ and $w_i = 1, i = 1, 2, ..., N - 1$.

Error Analysis Reflected BSDEs

Space discretization

We need smoothness for the BSDE coefficients (driver f and terminal condition g) to develop an error bound. Existing results (under the trapezoidal rule, see Plato [7]):

- The DFT computes Fourier coefficients with a second order $\mathcal{O}(\Delta x^2)$ accuracy.
- 2 The inverse DFT then recovers the function values with a global error of $\mathcal{O}(\Delta x^{\frac{3}{2}})$.

These rates of accuracy are improved if the quadrature rule is of a higher order and the coefficient f and g have the appropriate smoothness.

Error Analysis Reflected BSDEs

The (1-D) reflected BSDE

$$Y_{t} = g(W_{T}) + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds + A_{T} - A_{t} - \int_{t}^{T} Z_{s} dW_{s}$$
 (3.2)

admits the triple solution (Y, Z, A) where $Y_t \ge B(t, W_t)$ for a lower barrier function $B : [0, T] \times \mathbb{R} \to \mathbb{R}$ and A is a continuous and increasing process such that $\int_0^T (Y_t - B(t, W_t)) dA_t = 0$. We have that

$$Y_t = u(t, W_t) \tag{3.3}$$

$$Z_t = \nabla u(t, W_t) \tag{3.4}$$

where $u : [0, T] \times \mathbb{R} \to \mathbb{R}$ solves a parabolic PDE with obstacle.

・吊り ・ラト ・ラ

Starting from the Euler scheme, we have the numerical solution

$$u_i(x) = \tilde{u}_i(x) + \Delta_i f(t_i, \tilde{u}_i(x), \dot{u}_i(x)) + \Delta \bar{u}_i(x)$$
(3.5)

$$\dot{u}_i(x) = \frac{1}{\Delta_i} \int_{-\infty}^{\infty} (y-x) u_{i+1}(y) h(y-x) dy$$
 (3.6)

$$\Delta \bar{u}_i(x) = [\tilde{u}_i(x) + \Delta_i f(t_i, \tilde{u}_i(x), \bar{u}_i(x)) - B(t_i, x)]^- (3.7)$$

where

$$\tilde{u}_i(x) = \int_{-\infty}^{\infty} u_{i+1}(y)h(y-x)dy.$$
 (3.8)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The conditional expectations of equation (3.6) and (3.8) are computed with the convolution method.

Error Analysis Reflected BSDEs

Other extensions

- The methods can be applied given any explicit scheme for (R)BSDEs: Euler scheme or the θ-schemes of Zhao, Shen and Peng [9].
- θ -schemes allow to enhance the time discretization error.
- An arithmetic Brownian motion X_t = μt + σW_t can be considered as the forward process. One just needs to adjust for the characteristic function.

Introduction

- 2 Convolution method for BSDEs
 - Motivations
 - Convolution on the 1-D scheme
 - Numerical implementation
- 3 Error consideration and Extensions
 - Error Analysis
 - Reflected BSDEs
- Application to option pricing

5 Conclusion

We price an at-the-money American call option with one year maturity T = 1 on the stocks $S_t = e^{X_t}$ with return process X_t

$$dX_t = (\mu - \delta - \frac{1}{2}\sigma^2)dt + \sigma dW_t.$$
(4.1)

We take an initial stock value of $S_0 = K = 100$, an expected return of $\mu = 0.05$, a volatility of $\sigma = 0.2$ and a dividend rate δ . The option price solves a reflected BSDE with driver (El Karoui et al. [2])

$$f(t, y, z) = -ry - \left(\frac{\mu - r}{\sigma}\right)z + (R - r)\left(y - \frac{z}{\sigma}\right)^{-} \qquad (4.2)$$

where r = 0.01 is the lending rate and R is the borrowing rate. The terminal condition is

$$g(x) = (e^{x} - K)^{+}$$
 (4.3)

and the barrier is given by B(t,x) = g(x).

We set $\delta = 0$ and R = r:

- The European and American call options have the same price.
- The Black-Scholes formula and the convolution method return an option price of 8.433 and an option delta of 0.560.
- We use n = 500 time steps, $N = 2^{12}$ space steps on the restricted domain $[x_0, x_N] = X_0 + [-5, 5]$ for the convolution method.

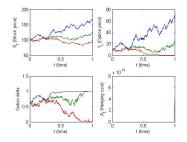
Table 4.1: American call option prices.

K (Strike)	n=500	n = 1000	n=2000	n=5000
110	4.6097	4.6090	4.6100	4.6101
100	8.4328	8.4331	8.4332	8.4332
90	14.1925	14.1927	14.1928	14.1929

We set $\delta = 0$ and R = 0.03:

- The European and American call options have the same price but Black-Scholes formula doesn't apply.
- The convolution method return an option price of 9.413 and an option delta of 0.600.

Figure 4.1: Paths simulation for the American option



We set $\delta = 0.035$ and R = 0.03, the convolution method returns an option price of 7.561 and an option delta of 0.521.

Figure 4.2: Path simulation for the American option on dividend paying stock

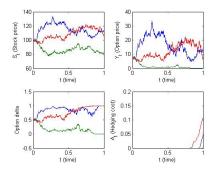
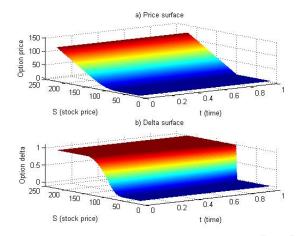


Figure 4.3: American option (dividend paying stock) price surface



Introduction

- 2 Convolution method for BSDEs
 - Motivations
 - Convolution on the 1-D scheme
 - Numerical implementation
- 3 Error consideration and Extensions
 - Error Analysis
 - Reflected BSDEs
- 4 Application to option pricing

5 Conclusion

- An explicit Euler scheme was used to develop a convolution method for BSDEs.
- The conditional expectations are computed with the FFT algorithm.
- We introduced a transformation that allows to take into account non-periodic problem.
- Reflected BSDEs were also considered.
- Error analysis and numerical examples in non-smooth and non-linear cases shows that the method is accurate.

Bruno Bouchard and Nizar Touzi.

Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations.

Stochastic Processes and their Applications, 111:175–206, 2004.

- N. El Karoui, S. Peng, and M.-C. Quenez.
 Backward stochastic differential equations in finance. Math. Finance, 7 (1):1–71, 1997.
- R. Lord, F. Fang, F. Bervoets, and C. Osterlee. A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes. *SIAM J. Sci. Comput.*, 30(4):1678–1705, 2008.

🔋 E. Pardoux and S. Peng.

Backward stochastic differential equations and quasilinear parabolic partial differential equations.

Lecture Notes in Control and Inform. Sci., 176:200–217, 1992.

🔋 E. Pardoux and S. Tang.

Forward-backward stochastic differential equations and quasilinear parabolic pdes.

Probab. Theory Relat. Fields, 114:123-150, 1999.

📄 Shige Peng and Mingyu Xu.

Numerical algorithms for backward stochastic differential equations with 1-d Brownian motion: Convergence and simulations.

ESAIM: Mathematical Modelling and Numerical Analysis, 45:335–360, 2011.

Robert Plato.

Concise Numerical Mathematics.

Graduate Studies in Mathematics (57). American Mathematical Society, Providence, Rhode Island, 2003.

Jianfeng Zhang.

A numerical scheme for BSDEs. The Annals of Applied Probability, 14:459–488, 2004.

Weidong Zhao, Liefeng Chen, and Shige Peng. A new kind of accurate numerical method for backward stochastic differential equations.

Siam J. Sci. Comput., 28(4):1563-1581, 2006.

Thank You!!!

32/32 Polynice Oyono Ngou (Joint with Cody B. Hyndman) C

Convolution Method for BSDEs

æ