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FBSDE

A forward-backward stochastic di�erential equation (FBSDE) is a
system of the form

dXt = a(t,Xt ,Yt ,Zt)dt + σ(t,Xt ,Yt)dWt

−dYt = f (t,Xt ,Yt ,Zt)dt − Z ∗t dWt

X0 = x0,YT = g(XT )

(1.1)

on a (complete) �ltered probability space (Ω, F , F, P), where the
coe�cients a, σ, f and g are appropriate deterministic functions.

X and Y are adapted and continuous processes with

E

[
supt∈[0,T ] |Xt |2 + supt∈[0,T ] |Yt |2

]
<∞.

Z is an adapted process with E

[(� T

0
|Zt |2dt

)]
<∞.
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Properties

1 Existence and uniqueness (Pardoux and Tang [5]) under
Lipschitz and monotonicity conditions.

2 Stability (Pardoux and Tang [5]) allows numerical methods.

3 Relationship to quasi-linear parabolic PDE (Pardoux and Peng
[4] and Pardoux and Tang [5]) leads to PDE methods.

4 Path regularity in the decoupled case for the control process Z
(Zhang [8]) leads to an error bound for time discretization
schemes (Spatial discretization and Monte Carlo methods).
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The Euler scheme

Given a solution of the forward process {X π
ti
}ni=0 on the time mesh

π = {t0 = 0 < t1 < ... < tn = T}, the explicit Euler scheme is
de�ned as (Zhang [8], Bouchard and Touzi [1])

Zπtn = 0, Y π
tn

= ξπ

Zπti = 1
∆i
E

[
Y π
ti+1

∆Wi |Fti
]

Y π
ti

= E

[
Y π
ti+1

+ f (ti ,X
π
ti
,Y π

ti+1
,Zπti )∆i |Fti

] (1.2)

where ∆i = ti+1 − ti . Alternatively, one can take

Y π
ti

= E

[
Y π
ti+1
|Fti
]

+ f (ti ,X
π
ti
,E
[
Y π
ti+1
|Fti
]
,Zπti )∆i . (1.3)

The Euler scheme yields a half (1
2

) order error (in time).
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The solution to the BSDE

Yt = g(WT ) +

� T

t

f (s,Ys ,Zs)ds −
� T

t

Z ∗s dWs (2.1)

with W ∈ Rd , f : [0,T ]× R× Rd → R and g : Rd → R, is given
by (Pardoux and Peng [4])

Yt = u(t,Wt) (2.2)

Zt = ∇u(t,Wt). (2.3)

where u : [0,T ]× Rd → R solves{
∂u
∂t + 1

2

∑d
i=1

∂2u
∂x2

i

+ f (t, u,∇u) = 0, (t, x) ∈ [0,T )× Rd

u(T , x) = g(x).

(2.4)
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In the simple case of BSDEs:

PDE and Monte Carlo based methods are time consuming.
PDE based methods are mainly built for coupled problems and
may be inaccurate for non-smooth drivers.
The binomial method (Pend and Xu [6]) simulates the BSDE
with an approximation of the Wiener process and gives a
partial solution to the PDE. There is a contraction of the
space grid through time steps!!

The convolution method, and the FFT algorithm solves some of
those problems:

FFT algorithm is e�cient with O(n log(n)) operations given n

interpolation points.
Resolution on a equidistant and �exible space grid that suits
simulation.
The underlying trigonometric interpolation works well for
non-smooth functions.
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From the explicit Euler scheme
Zπtn = 0, Y π

tn
= ξπ

Zπti = 1
∆i
E

[
Y π
ti+1

∆Wi |Fti
]

Y π
ti

= E

[
Y π
ti+1
|Fti
]

+ f (ti ,E
[
Y π
ti+1
|Fti
]
,Zπti )∆i

(2.5)

on the time mesh π = {t0 = 0 < t1 < ... < tn = T}, we de�ne the
approximate solution ui and the approximate gradient u̇i as

ui (x) = ũi (x) + ∆i f (ti , ũi (x), u̇i (x)) (2.6)

u̇i (x) =
1

∆i

� ∞
−∞

(y − x)ui+1(y)h(y − x)dy (2.7)

for i = 0, 1, ..., n − 1, where

ũi (x) =

� ∞
−∞

ui+1(y)h(y − x)dy (2.8)

and un(x) = g(x). The function h is the Gaussian density.
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For any α ∈ R and any real function η
1 we de�ne ηα(x) = e−αxη(x).
2 F[η](ν) =

�∞
−∞ e−iνxη(x)dx is the Fourier transform of η and

F−1 is the inverse Fourier operator.

Then, the convolution theorem leads to

ũi (x) = eαxF−1
[
F[uαi+1](ν)φ(ν − iα)

]
(x) (2.9)

u̇i (x) = eαxF−1
[
(α + iν)F[uαi+1](ν)φ(ν − iα)

]
(x) (2.10)

where

φ(ν) = exp

(
−1
2

∆iν
2

)
. (2.11)

The expressions of equations (2.9) and (2.10) are identical in
the multidimensional setting.

Lord et al. [3] use a very similar approach in the context of
American option pricing under Lévy processes.
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The convolution method sums up in computing values of the form

θ(x) = F−1 [F[ηα](ν)ψ(ν − iα)] (x) (2.12)

for some real valued function η and some complex function ψ.

We solve on the restricted real interval [x0, xN ] with an even
number N of nodes

xj = x0 + j∆x , j = 1, ...,N and ∆x =
xN − x0

N
. (2.13)

The Fourier space is discretized on [−L
2
, L
2

] with nodes

νi = ν0 + i∆ν , j = 1, ...,N and ν0 = −L
2
. (2.14)

The Nyquist relation imposes ∆ν ·∆x = 2π
N
.

Assumptions : ηα(x0) = ηα(xN) and ∂ηα

∂x (x0) = ∂ηα

∂x (xN) .
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Applying lower Riemann sums on the inverse Fourier transform
integral and any classical quadrature rule with weights {wi}Ni=0 on
the Fourier transform integral gives

θ(xk) = (−1)kD−1

[{
ψ(νj)D

[
{(−1)i w̃iη

α(xi )}N−1i=0

]
j

}N−1

j=0

]
k

for k = 0, 1, ...,N − 1 and θ(xN) = θ(x0) (2.15)

where w̃0 = w0 + wN and w̃i = wi if i 6= 0. For any set {xj}N−1j=0 of
numbers

D[{xj}N−1j=0 ]k =
1

N

N−1∑
j=0

e−ijk 2π
N xj (2.16)

is the discrete Fourier transform (DFT) and

D−1[{xj}N−1j=0 ]k =
N−1∑
j=0

e ijk 2π
N xj . (2.17)
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If the generic function ηα does not satisfy the value and derivative
assumptions, then we consider the transformation

ηαβ,κ(x) = e−αx(η(x) + βx + κ) (2.18)

which satis�es the conditions for optimal values of α, β and κ.
The transformation leads to

θ(x) = F−1 [F[ηα](ν)ψ(ν − iα)] (x)

= F−1
[
F[ηαβ,κ](ν)ψ(ν − iα)

]
(x)− H(x , α, β, κ).

(2.19)

We have:

H(x , α, β, κ) = e−αx(βx + κ) if ψ(ν) = φ(ν).

H(x , α, β, κ) = e−αxβ if ψ(ν) = iνφ(ν).
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Error Analysis
Re�ected BSDEs

Time discretization

The Euler scheme time discretization error is known to the half
order. Zhang [8], Bouchard and Touzi [1].

Using the usual ansatz of u = e ik∆x , for a space step ∆x and
a maximal time step of |π|, stability occurs if

|π| sup
t∈[0,T ]

|f (t, 0, 0)| ≤ 1 (3.1)

when using the trapezoidal quadrature rule i.e with weights
w0 = wN = 1

2
and wi = 1, i = 1, 2, ...,N − 1.
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Space discretization

We need smoothness for the BSDE coe�cients (driver f and
terminal condition g) to develop an error bound.
Existing results (under the trapezoidal rule, see Plato [7]):

1 The DFT computes Fourier coe�cients with a second order
O(∆x2) accuracy.

2 The inverse DFT then recovers the function values with a
global error of O(∆x

3
2 ).

These rates of accuracy are improved if the quadrature rule is of a
higher order and the coe�cient f and g have the appropriate
smoothness.
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Error Analysis
Re�ected BSDEs

The (1-D) re�ected BSDE

Yt = g(WT ) +

� T

t

f (s,Ys ,Zs)ds + AT − At −
� T

t

ZsdWs (3.2)

admits the triple solution (Y ,Z ,A) where Yt ≥ B(t,Wt) for a
lower barrier function B : [0,T ]× R→ R and A is a continuous

and increasing process such that
� T

0
(Yt − B(t,Wt))dAt = 0.

We have that

Yt = u(t,Wt) (3.3)

Zt = ∇u(t,Wt) (3.4)

where u : [0,T ]× R→ R solves a parabolic PDE with obstacle.
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Error Analysis
Re�ected BSDEs

Starting from the Euler scheme, we have the numerical solution

ui (x) = ũi (x) + ∆i f (ti , ũi (x), u̇i (x)) + ∆ūi (x) (3.5)

u̇i (x) =
1

∆i

� ∞
−∞

(y − x)ui+1(y)h(y − x)dy (3.6)

∆ūi (x) = [ũi (x) + ∆i f (ti , ũi (x), ūi (x))− B(ti , x)]− (3.7)

where

ũi (x) =

� ∞
−∞

ui+1(y)h(y − x)dy . (3.8)

The conditional expectations of equation (3.6) and (3.8) are
computed with the convolution method.
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Error Analysis
Re�ected BSDEs

Other extensions

The methods can be applied given any explicit scheme for
(R)BSDEs: Euler scheme or the θ−schemes of Zhao, Shen
and Peng [9].

θ−schemes allow to enhance the time discretization error.

An arithmetic Brownian motion Xt = µt + σWt can be
considered as the forward process. One just needs to adjust for
the characteristic function.
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We price an at-the-money American call option with one year
maturity T = 1 on the stocks St = eXt with return process Xt

dXt = (µ− δ − 1

2
σ2)dt + σdWt . (4.1)

We take an initial stock value of S0 = K = 100, an expected return
of µ = 0.05, a volatility of σ = 0.2 and a dividend rate δ.
The option price solves a re�ected BSDE with driver (El Karoui et
al. [2])

f (t, y , z) = −ry −
(
µ− r

σ

)
z + (R − r)

(
y − z

σ

)−
(4.2)

where r = 0.01 is the lending rate and R is the borrowing rate. The
terminal condition is

g(x) = (ex − K )+ (4.3)

and the barrier is given by B(t, x) = g(x).
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We set δ = 0 and R = r :

The European and American call options have the same price.

The Black-Scholes formula and the convolution method return
an option price of 8.433 and an option delta of 0.560.

We use n = 500 time steps, N = 212 space steps on the
restricted domain [x0, xN ] = X0 + [−5, 5] for the convolution
method.

Table 4.1: American call option prices.

K (Strike) n=500 n=1000 n=2000 n=5000

110 4.6097 4.6090 4.6100 4.6101
100 8.4328 8.4331 8.4332 8.4332
90 14.1925 14.1927 14.1928 14.1929
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We set δ = 0 and R = 0.03:

The European and American call options have the same price
but Black-Scholes formula doesn't apply.
The convolution method return an option price of 9.413 and
an option delta of 0.600.

Figure 4.1: Paths simulation for the American option
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We set δ = 0.035 and R = 0.03, the convolution method returns
an option price of 7.561 and an option delta of 0.521.

Figure 4.2: Path simulation for the American option on dividend paying
stock
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Figure 4.3: American option (dividend paying stock) price surface
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An explicit Euler scheme was used to develop a convolution
method for BSDEs.

The conditional expectations are computed with the FFT
algorithm.

We introduced a transformation that allows to take into
account non-periodic problem.

Re�ected BSDEs were also considered.

Error analysis and numerical examples in non-smooth and
non-linear cases shows that the method is accurate.
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Thank You!!!
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