QUADRATIC 2BSDEs AND APPLICATIONS

Dylan POSSAMAÏ

Ecole Polytechnique Paris

joint work with Anis Matoussi and Chao Zhou

Young Researchers Meeting on BSDEs, Numerics and Finance

July 03, 2012

Outline

From standard to second order BSDEs Quasi-sure formulation of 2BSDEs Wellposedness results

Second-order BSDEs

- From standard to second order BSDEs
- Quasi-sure formulation of 2BSDEs
- Wellposedness results

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Standard BSDEs

 $(\Omega, \mathcal{F}, \mathbb{P})$, *W* Brownian motion, $\{\mathcal{F}_t, t \ge 0\}$ corresponding filtration. Pardoux and Peng introduced the BSDE :

$$Y_t = \xi - \int_t^T F_t(Y_t, Z_t) dt + \int_t^T Z_t dW_t$$

and proved that for

 $\xi \in \mathbb{L}^2(\mathbb{P}), \ \ F \ \text{unif. Lipschitz in } (y,z) \ \ \text{and} \ \ F_{\cdot}(0,0) \in \mathbb{H}^2$

there is a unique solution $(Y,Z)\in \mathbb{D}^2(\mathbb{P}) imes \mathbb{H}^2(\mathbb{P})$:

$$\|Y\|_{\mathbb{D}^2} := \mathbb{E}\Big[\sup_{t \in [t,T]} |Y_t|^2\Big] \quad \text{and} \quad \|Z\|_{\mathbb{H}^2} := \mathbb{E}\Big[\int_0^T |Z_t|^2 dt\Big]$$

BSDEs and semilinear PDES

The Markov case corresponds to

$$F_t(\omega,y,z) = f(t,X_t(\omega),y,z)$$
 and $\xi(\omega) = gig(X_{\mathcal{T}}(\omega)ig)$

where
$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s$$

In this context, under the same conditions as before, we have

$$Y_t = V(t, X_t)$$

Moreover, if $V \in C^{1,2}$, then V is a classical solution of the semilinear PDE

$$\partial_t V + b \cdot DV + \frac{1}{2} \operatorname{Tr} \left[\sigma \sigma^{\mathrm{T}} D^2 V \right] = f(., V, \sigma^{\mathrm{T}} DV)$$

イロト イポト イヨト イヨト

Extension to the second order

- Cheridito, Soner, Touzi and Victoir 2007
- L. Denis and C. Martini 2006 : Quasi-sure analysis
- Peng 2007 : *G*-Brownian motion
- M. Soner, N. Touzi and J. Zhang (2010a,2010b,2010c,2010d)
- Nutz 2010, Kervarec Bion-Nadal 2010, Kervarec Denis (2010), Nutz, Soner 2011, DP 2011, DP, Matoussi, Zhou 2011...

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Intuition from PDEs

Let V be a solution of

 $-\partial_t V - H(., V, DV, D^2 V) = 0$ and V(T, .) = g

and suppose

$$H(x,r,p,\gamma) = \sup_{a\geq 0} \left\{ \frac{1}{2}a\gamma - F(x,r,p,a) \right\}$$

Then $V = \sup_{a} V^{a}$ where V^{a} is a solution of

 $-\partial_t V^a - \frac{1}{2} a D^2 V + F(., V^a, DV^a, a) = 0$ and $V^a(T, .) = g$

a semilinear PDE which corresponds to a BSDE.

Link with the Quasi-sure stochastic analysis

This suggest to introduce

"
$$Y_t = \sup_a \mathcal{Y}_t^{a}$$
"
 $\mathcal{Y}_t^a = g(X_T^a) + \int_t^T f(., X_s^a, \mathcal{Y}_s^a, \mathcal{Z}_s^a, a_s) ds - \int_t^T \mathcal{Z}_s^a dX_s^a,$

where $dX_s^a = a_s^{\frac{1}{2}} dW_s$.

This is similar to stochastic control theory, since we end up with a family of processes $\{\mathcal{Y}^a\}$. Then, changing *a* amounts to changing the underlying probability measure.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Nondominated family of measures on canonical space (dimension 1 for simplification)

$$\begin{split} \Omega &:= C([0, T], \mathbb{R}), \ B : \text{coordinate process, } \mathbb{P}_0 : \text{Wiener measure} \\ \mathbb{F} &:= \{\mathcal{F}_t\}_{0 \leq t \leq T} : \text{filtration generated by } B, \ \widehat{a}_t \text{ density of } < B >_t, \\ \text{defined pathwise.} \end{split}$$

For every positive and integrable $\alpha,$ define

$$\mathbb{P}^{\alpha} := \mathbb{P}_0 \circ (X^{\alpha})^{-1} \quad \text{where} \quad X^{\alpha}_t := \int_0^t \alpha_s^{1/2} dB_s, t \in [0, T], \mathbb{P}_0 - \text{a.s.}$$

 $\overline{\mathcal{P}}_{\mathcal{S}}$: collection of all such \mathbb{P}^{α}

Then every $\mathbb{P} \in \overline{\mathcal{P}}_{S}$

- satisfies the Blumenthal zero-one law
- and the martingale representation property

ロト イポト イヨト イヨト

Generator $H_t(\omega, y, z, \gamma) : [0, T] \times \Omega \times \mathbb{R} \times \mathbb{R} \times D_H \to \mathbb{R}$

• Convex conjugate :

$$\begin{split} F_t(\omega, y, z, a) &:= \sup_{\gamma \in D_H} \left\{ \frac{1}{2} a \gamma - H_t(\omega, y, z, \gamma) \right\}, \quad a \in \mathbb{R}^*_+; \\ \hat{F}_t(y, z) &:= F_t(y, z, \hat{a}_t) \quad \text{and} \quad \hat{F}^0_t := \hat{F}_t(0, 0) \end{split}$$

Assumption : The domain of F is independent of (ω, y, z) and F is uniformly continuous in ω .

We assume for simplicity that $\hat{\mathcal{F}}^0$ is bounded, and then we consider

 $\mathcal{P}_{\mathcal{H}} = \left\{ \mathbb{P} \in \overline{\mathcal{P}}_{\mathcal{S}} : \hat{a}, \hat{a}^{-1} \; \mathsf{bdd} \; \mathsf{and} \; \hat{a} \in \mathrm{Dom}(\mathrm{F})
ight\}$

Generator $H_t(\omega, y, z, \gamma) : [0, T] \times \Omega \times \mathbb{R} \times \mathbb{R} \times D_H \to \mathbb{R}$

• Convex conjugate :

$$\begin{split} F_t(\omega, y, z, a) &:= \sup_{\gamma \in D_H} \left\{ \frac{1}{2} a \gamma - H_t(\omega, y, z, \gamma) \right\}, \quad a \in \mathbb{R}^*_+; \\ \hat{F}_t(y, z) &:= F_t(y, z, \hat{a}_t) \quad \text{and} \quad \hat{F}^0_t := \hat{F}_t(0, 0) \end{split}$$

Assumption : The domain of F is independent of (ω, y, z) and F is uniformly continuous in ω .

We assume for simplicity that \hat{F}^0 is bounded, and then we consider

 $\mathcal{P}_{\mathcal{H}} = \left\{ \mathbb{P} \in \overline{\mathcal{P}}_{\mathcal{S}} : \hat{a}, \hat{a}^{-1} \; \mathsf{bdd} \; \mathsf{and} \; \hat{a} \in \mathrm{Dom}(\mathrm{F})
ight\}$

・ロト ・四ト ・ヨト ・ヨト

Generator $H_t(\omega, y, z, \gamma) : [0, T] \times \Omega \times \mathbb{R} \times \mathbb{R} \times D_H \to \mathbb{R}$

• Convex conjugate :

$$\begin{split} F_t(\omega, y, z, a) &:= \sup_{\gamma \in D_H} \left\{ \frac{1}{2} a \gamma - H_t(\omega, y, z, \gamma) \right\}, \quad a \in \mathbb{R}^*_+; \\ \hat{F}_t(y, z) &:= F_t(y, z, \hat{a}_t) \quad \text{and} \quad \hat{F}^0_t := \hat{F}_t(0, 0) \end{split}$$

Assumption : The domain of F is independent of (ω, y, z) and F is uniformly continuous in ω .

We assume for simplicity that \hat{F}^0 is bounded, and then we consider

 $\mathcal{P}_{\mathcal{H}} = \left\{ \mathbb{P} \in \overline{\mathcal{P}}_{\mathcal{S}} : \hat{a}, \hat{a}^{-1} \text{ bdd and } \hat{a} \in \mathrm{Dom}(\mathrm{F}) \right\}$

Definition (Denis-Martini 06)

 \mathcal{P}_{H} -q.s. means \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}_{H}$

We introduce the following norms and spaces

$$\begin{split} \|Y\|_{\mathbb{D}^{2}_{H}}^{2} &:= \sup_{\mathbb{P}\in\mathcal{P}^{H}} \mathbb{E}^{\mathbb{P}}[\sup_{0\leq t\leq T}|Y_{t}|^{2}], \ \|Z\|_{\mathbb{H}^{2}_{H}}^{2} := \sup_{\mathbb{P}\in\mathcal{P}^{H}} \mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T} \left|\hat{a}_{s}^{1/2}Z_{s}\right|^{2}ds\right] \\ \text{We also define } \mathcal{L}^{2}_{H} \text{ as the closure of } UC_{b}(\Omega) \text{ under the norm } \mathbb{L}^{2}_{H} \\ \|\xi\|_{\mathbb{L}^{2}_{H}}^{2} := \sup_{\mathbb{P}\in\mathcal{P}_{H}} \mathbb{E}^{\mathbb{P}}\left[\sup_{0\leq t\leq T} \left(\mathcal{E}^{\mathbb{P}}_{t}\left[|\xi|^{\kappa}\right]\right)^{\frac{2}{\kappa}}\right], \end{split}$$

where $\kappa \in (1,2]$ and

$$\mathcal{E}_t^{\mathbb{P}}[\xi] := \underset{\mathbb{P}' \in \mathcal{P}_{\mathcal{H}}(t,\mathbb{P})}{\operatorname{ess sup}} \mathbb{E}_t^{\mathbb{P}'}[\xi].$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition (Denis-Martini 06)

$$\mathcal{P}_H$$
-q.s. means \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}_H$

We introduce the following norms and spaces

$$\|Y\|_{\mathbb{D}^2_H}^2 := \sup_{\mathbb{P}\in\mathcal{P}^H} \mathbb{E}^{\mathbb{P}}[\sup_{0\leq t\leq T} |Y_t|^2], \ \|Z\|_{\mathbb{H}^2_H}^2 := \sup_{\mathbb{P}\in\mathcal{P}^H} \mathbb{E}^{\mathbb{P}}\left[\int_0^T \left|\hat{a}_s^{1/2} Z_s\right|^2 ds\right]$$

We also define \mathcal{L}^2_H as the closure of $UC_b(\Omega)$ under the norm \mathbb{L}^2_H

$$\left\|\xi\right\|_{\mathbb{L}^2_{H}} \coloneqq \sup_{\mathbb{P}\in\mathcal{P}_{H}} \mathbb{E}^{\mathbb{P}}\left[\sup_{0\leq t\leq T} \left(\mathcal{E}^{\mathbb{P}}_t\left[|\xi|^{\kappa}\right]\right)^{\frac{2}{\kappa}}\right],$$

where $\kappa \in (1,2]$ and

$$\mathcal{E}_t^{\mathbb{P}}[\xi] := \operatorname*{ess\,sup}_{\mathbb{P}' \in \mathcal{P}_H(t,\mathbb{P})} \mathbb{E}_t^{\mathbb{P}'}[\xi].$$

• • • • • • • • • • • • •

For
$$\mathcal{F}_T$$
-meas. ξ , consider the 2BSDE :

$$Y_t = \xi + \int_t^T \hat{F}_s(Y_s, Z_s) ds - \int_t^T Z_s dB_s + K_T^{\mathbb{P}} - K_t^{\mathbb{P}}, \ \mathcal{P}_H - q.s.$$

We say $(Y,Z) \in \mathbb{D}^2_H imes \mathbb{H}^2_H$ is a solution to the 2BSDE if

•
$$Y_T = \xi$$
, $\mathcal{P}_H - q.s.$
• For each $\mathbb{P} \in \mathcal{P}_H$, $K^{\mathbb{P}}$ has nondecreasing paths, $\mathbb{P}-a.s.$:
 $K_t^{\mathbb{P}} := Y_0 - Y_t + \int_0^t \hat{F}_s(Y_s, Z_s) ds + \int_0^t Z_s dB_s$, $\mathbb{P} - a.s$

• The family of processes $\{K^{\mathbb{P}}, \mathbb{P} \in \mathcal{P}_{H}\}$ satisfies for $t \leq T$

$$\mathcal{K}^{\mathbb{P}}_t = \operatorname*{ess \ inf}_{\mathbb{P}' \in \mathcal{P}_H(t,\mathbb{P})} \mathbb{E}^{\mathbb{P}'}_t [\mathcal{K}^{\mathbb{P}'}_T], \ \ \mathbb{P}- ext{a.s. for all } \mathbb{P} \in \mathcal{P}_H$$

・ロト ・日本・ ・ ヨト・ ・ ヨト・

臣

For
$$\mathcal{F}_T$$
-meas. ξ , consider the 2BSDE :

$$Y_t = \xi + \int_t^T \hat{F}_s(Y_s, Z_s) ds - \int_t^T Z_s dB_s + K_T^{\mathbb{P}} - K_t^{\mathbb{P}}, \ \mathcal{P}_H - q.s.$$

We say $(Y,Z)\in \mathbb{D}^2_H imes \mathbb{H}^2_H$ is a solution to the 2BSDE if

• $Y_T = \xi$, \mathcal{P}_H -q.s.

• For each $\mathbb{P} \in \mathcal{P}_{H}$, $\mathcal{K}^{\mathbb{P}}$ has nondecreasing paths, \mathbb{P} -a.s. :

$$\mathcal{K}_t^{\mathbb{P}} := Y_0 - Y_t + \int_0^t \hat{F}_s(Y_s, Z_s) ds + \int_0^t Z_s dB_s, \ \mathbb{P} - \text{a.s.}$$

• The family of processes $\{K^{\mathbb{P}}, \mathbb{P} \in \mathcal{P}_{H}\}$ satisfies for $t \leq T$

$$\mathcal{K}^{\mathbb{P}}_t = \operatorname*{ess \ inf}_{\mathbb{P}'\in\mathcal{P}_H(t,\mathbb{P})} \ \mathbb{E}^{\mathbb{P}'}_t[\mathcal{K}^{\mathbb{P}'}_T], \ \ \mathbb{P}- ext{a.s. for all } \mathbb{P}\in\mathcal{P}_H$$

For
$$\mathcal{F}_T$$
-meas. ξ , consider the 2BSDE :

$$Y_t = \xi + \int_t^T \hat{F}_s(Y_s, Z_s) ds - \int_t^T Z_s dB_s + K_T^{\mathbb{P}} - K_t^{\mathbb{P}}, \ \mathcal{P}_H - q.s.$$

We say $(Y,Z)\in \mathbb{D}^2_H imes \mathbb{H}^2_H$ is a solution to the 2BSDE if

•
$$Y_T = \xi$$
, $\mathcal{P}_H - q.s.$
• For each $\mathbb{P} \in \mathcal{P}_H$, $K^{\mathbb{P}}$ has nondecreasing paths, $\mathbb{P} - a.s.$:
 $K_t^{\mathbb{P}} := Y_0 - Y_t + \int_0^t \hat{F}_s(Y_s, Z_s) ds + \int_0^t Z_s dB_s, \mathbb{P} - a.s.$

• The family of processes $\{K^{\mathbb{P}}, \mathbb{P} \in \mathcal{P}_{H}\}$ satisfies for $t \leq \mathcal{T}$

$$\mathcal{K}^{\mathbb{P}}_t = \operatorname*{ess \ inf}_{\mathbb{P}'\in\mathcal{P}_H(t,\mathbb{P})} \ \mathbb{E}^{\mathbb{P}'}_t[\mathcal{K}^{\mathbb{P}'}_T], \ \ \mathbb{P}- ext{a.s. for all } \mathbb{P}\in\mathcal{P}_H$$

イロト イヨト イヨト イヨト

For
$$\mathcal{F}_T$$
-meas. ξ , consider the 2BSDE :

$$Y_t = \xi + \int_t^T \hat{F}_s(Y_s, Z_s) ds - \int_t^T Z_s dB_s + K_T^{\mathbb{P}} - K_t^{\mathbb{P}}, \ \mathcal{P}_H - q.s.$$

We say $(Y,Z)\in \mathbb{D}^2_H imes \mathbb{H}^2_H$ is a solution to the 2BSDE if

- $Y_T = \xi$, $\mathcal{P}_H q.s.$ • For each $\mathbb{P} \in \mathcal{P}_H$, $K^{\mathbb{P}}$ has nondecreasing paths, $\mathbb{P}-a.s.$: $K_t^{\mathbb{P}} := Y_0 - Y_t + \int_0^t \hat{F}_s(Y_s, Z_s) ds + \int_0^t Z_s dB_s, \mathbb{P}-a.s.$
- The family of processes $\{K^{\mathbb{P}}, \mathbb{P} \in \mathcal{P}_{H}\}$ satisfies for $t \leq T$

$$\mathcal{K}^{\mathbb{P}}_t = \operatorname*{ess\,inf}_{\mathbb{P}'\in\mathcal{P}_H(t,\mathbb{P})} \ \mathbb{E}^{\mathbb{P}'}_t[\mathcal{K}^{\mathbb{P}'}_T], \ \ \mathbb{P}- ext{a.s. for all } \mathbb{P}\in\mathcal{P}_H$$

(D) (A) (A) (A)

2BSDEs with quadratic growth

Assumptions

• F is Lipschitz in y uniformly in (t, z, ω, a)

$$\left|F_t(y,z,a)-F_t(y',z,a)\right|\leq C\left|y-y'\right|.$$

•
$$z \longrightarrow F_t(y, z, a)$$
 is C^2 with
 $|D_z F_t(y, z, a)| \le \theta_0 + \theta_1 |a^{1/2}z|$ and $|D_{zz} F_t(y, z, a)| \le \theta_1$.

Theorem (P., Zhou 2011)

For all $\xi \in \mathcal{L}^{\infty}_{H}$, the 2BSDE has a unique solution in $\mathbb{D}^{\infty}_{H} \times \mathbb{H}^{2}_{H}$

・ロト ・回ト ・ヨト ・ヨト

2BSDEs with quadratic growth

Assumptions

• F is Lipschitz in y uniformly in (t, z, ω, a)

$$\left|F_t(y,z,a)-F_t(y',z,a)\right|\leq C\left|y-y'\right|.$$

•
$$z \longrightarrow F_t(y, z, a)$$
 is C^2 with
 $|D_z F_t(y, z, a)| \le \theta_0 + \theta_1 |a^{1/2}z|$ and $|D_{zz} F_t(y, z, a)| \le \theta_1$.

Theorem (P., Zhou 2011)

For all $\xi \in \mathcal{L}^{\infty}_{H}$, the 2BSDE has a unique solution in $\mathbb{D}^{\infty}_{H} \times \mathbb{H}^{2}_{H}$

・ロト ・回ト ・ヨト ・ヨト

2BSDEs with quadratic growth

Assumptions

• F is Lipschitz in y uniformly in
$$(t, z, \omega, a)$$

$$\left|F_t(y,z,a)-F_t(y',z,a)\right|\leq C\left|y-y'\right|.$$

•
$$z \longrightarrow F_t(y, z, a)$$
 is C^2 with
 $|D_z F_t(y, z, a)| \le \theta_0 + \theta_1 |a^{1/2}z|$ and $|D_{zz} F_t(y, z, a)| \le \theta_1$.

Theorem (P., Zhou 2011)

For all $\xi \in \mathcal{L}^{\infty}_{H}$, the 2BSDE has a unique solution in $\mathbb{D}^{\infty}_{H} \times \mathbb{H}^{2}_{H}$.

イロト 不得下 イヨト イヨト

Outline

- From standard to second order BSDEs.
- Quasi-sure formulation of 2BSDEs
- Wellposedness results

2 Utility maximization under volatility uncertainty

The problem

A financial market consists of one bond with interest rate zero and 1 stock. The price process is :

$$dS_t = S_t(b_t dt + dB_t)$$

The wealth process of a trading strategy π with initial capital x satisfies the following equation :

$$X_t^{\pi} = x + \int_0^t \pi_s (dB_s + b_s ds) \ 0 \leq t \leq T,$$

The problem of the investor is then

$$V(x) := \sup_{\pi \in \tilde{\mathcal{B}}} \inf_{\mathbb{Q} \in \mathcal{P}_H} \mathbb{E}^{\mathbb{Q}}[U(X_T^{\pi} - F)],$$

where \widetilde{B} is some closed set.

< 🗇 > < 🖻

$$U(x) = -\exp(-\beta x), \ x \in \mathbb{R} \text{ for } \beta > 0.$$

In order to solve the problem, we follow the general martingale approach introduced by El Karoui and Rouge and generalized by Hu, Imkeller and Müller. We want to construct a family of processes R^{π} which satisfies

$$\ \, {\sf B} \ \, {\sf R}^{\pi}_{T} = \exp(-\beta(X^{\pi}_{T}-{\sf F})) \ \, {\sf for \ \, all \ } \pi\in \tilde{{\cal B}} \ \,$$

2 $R_0^{\pi} = R_0$ is constant for all $\pi \in \tilde{\mathcal{B}}$

 $\begin{array}{l} \bullet \quad R_t^{\pi^*} = \operatorname{ess\,sup}^{\mathbb{P}} \mathbb{E}_t^{\mathbb{P}'}[R_T^{\pi^*}] \text{ for some } \pi^* \in \tilde{\mathcal{B}}, \mathbb{P}\text{-a.s. for all} \\ \mathbb{P} \in \mathcal{P}_H^{(t^+,\mathbb{P})} \\ \mathbb{P} \in \mathcal{P}_H \end{array}$

イロト 不得下 イヨト イヨト

$$U(x) = -\exp(-\beta x), \ x \in \mathbb{R} \text{ for } \beta > 0.$$

In order to solve the problem, we follow the general martingale approach introduced by El Karoui and Rouge and generalized by Hu, Imkeller and Müller. We want to construct a family of processes R^{π} which satisfies

- $R^{\pi}_T = \exp(-eta(X^{\pi}_T F))$ for all $\pi \in \tilde{\mathcal{B}}$
- 2 $R_0^{\pi} = R_0$ is constant for all $\pi \in \widetilde{\mathcal{B}}$

Image Set in the set of the s

$$U(x) = -\exp(-\beta x), \ x \in \mathbb{R} \text{ for } \beta > 0.$$

In order to solve the problem, we follow the general martingale approach introduced by El Karoui and Rouge and generalized by Hu, Imkeller and Müller. We want to construct a family of processes R^{π} which satisfies

$$\ \, {\sf B}^{\pi}_T = \exp(-\beta(X^{\pi}_T-{\sf F})) \ \, {\sf for \ \, all \ } \pi\in \tilde{{\cal B}}$$

②
$$R_0^{\pi}=R_0$$
 is constant for all $\pi\in ilde{\mathcal{B}}$

 $\begin{array}{l} \bullet \quad R_t^{\pi^*} = \operatorname{ess\,sup}^{\mathbb{P}} \mathbb{E}_t^{\mathbb{P}'}[R_T^{\pi^*}] \text{ for some } \pi^* \in \tilde{\mathcal{B}}, \mathbb{P}\text{-a.s. for all} \\ \mathbb{P} \in \mathcal{P}_H^{(t^+,\mathbb{P})} \end{array} \\ \end{array}$

$$U(x) = -\exp(-\beta x), \ x \in \mathbb{R} \text{ for } \beta > 0.$$

In order to solve the problem, we follow the general martingale approach introduced by El Karoui and Rouge and generalized by Hu, Imkeller and Müller. We want to construct a family of processes R^{π} which satisfies

$$\ \ \, {\sf B} \ \ \, {\sf R}^\pi_T = \exp(-\beta(X^\pi_T-F)) \ \, {\sf for \ all } \ \pi\in \tilde{\mathcal B} \ \ \,$$

②
$${\it R}_0^{\pi}={\it R}_0$$
 is constant for all $\pi\in ilde{{\cal B}}$

•
$$R_t^{\pi^*} = \underset{\mathbb{P}' \in \mathcal{P}_H(t^+, \mathbb{P})}{\operatorname{ess sup}} \mathbb{E}_t^{\mathbb{P}'}[R_T^{\pi^*}]$$
 for some $\pi^* \in \tilde{\mathcal{B}}$, \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}_H$

イロト イポト イヨト イヨト

Definition

A strategy π is admissible if and only if $\pi = (\pi_t)_{0 \le t \le T}$ and $\pi_t \in \tilde{B}, \ \lambda \otimes \mathbb{P} - p.s.$ and $\int_0^T \pi_s dB_s$ is in $\mathbb{B}MO(\mathcal{P}_H)$.

Then, we show that we can define

$$R_t^{\pi} = exp(-eta(X_t^{\pi} - Y_t)) \ t \in [0, T], \ \pi \in \tilde{\mathcal{B}}.$$

where $(Y, Z) \in \mathbb{D}_{H}^{\infty} \times \mathbb{H}_{H}^{2}$ the unique solution of the following 2BSDE with quadratic generator :

$$Y_t = F - \int_t^T Z_s dB_s - \int_t^T f(s, Z_s) ds + K_T^{\mathbb{P}} - K_t^{\mathbb{P}}, \mathcal{P}_H - a.s.$$

where

$$f(\cdot,z) = -\frac{\beta}{2} dist^{2} (\hat{a}^{1/2}z + \frac{1}{\beta}\hat{\theta}, \bar{B}(\omega)) + z'\hat{a}^{1/2}\hat{\theta} + \frac{1}{2\beta} \left|\hat{\theta}\right|^{2}$$

Explicit calculations and examples

When the set of trading strategies is no longer constrained, the 2BSDEs can be solved explicitly, since their generators are linear in y and quadratic in z.

 Power utility and no constraints —> value function of the Merton problem with constant volatility equal to the upper bound of the volatility interval. Intuition from the PDE

$$-\frac{\partial \mathbf{v}}{\partial t} - \sup_{\delta \in \tilde{\mathbf{A}}} \inf_{\alpha \in [\underline{a}, \overline{a}]} \left[x \delta b \frac{\partial \mathbf{v}}{\partial x} + \frac{1}{2} x^2 \delta^2 \alpha \frac{\partial^2 \mathbf{v}}{\partial x^2} \right] = \mathbf{0}$$

together with the terminal condition $v(T, x) = U(x), x \in \mathbb{R}_+.$

Explicit calculations and examples

- The optimal probability measure is not always of bang-bang type. With exponential utility, no constraints and a liability $\xi = -B_T^2$, depending on *b*, the optimal probability changes continuously with *t* in the volatility interval.
- This is a major difference between superreplication and indifference pricing under volatility uncertainty.

Explicit calculations and examples

- The optimal probability measure is not always of bang-bang type. With exponential utility, no constraints and a liability $\xi = -B_T^2$, depending on *b*, the optimal probability changes continuously with *t* in the volatility interval.
- This is a major difference between superreplication and indifference pricing under volatility uncertainty.

(人間) (人) (人) (人) (人)

THANK YOU FOR YOUR ATTENTION

Dylan POSSAMAÏ Quadratic 2BSDEs and applications

・ロト ・聞 ト ・ ヨト ・ ヨトー

æ