Reflected Backward SPDEs and Optimal Stopping Problems

Jinniao Qiu

Fudan University

July 2, 2012

American Option Problem

Dividend paying stock:

$$
X_{t}^{s, x}=x+\int_{s}^{t}(r-d) X_{\theta}^{s, x} d \theta+\int_{s}^{t} \sigma X_{\theta}^{s, x} d W_{\theta}, t \in[s, T] ;
$$

Arbitrage-free value of American option:

$$
V(s, x)=\sup _{s \leq \tau \leq T} E e^{-r(\tau-s)} g\left(X_{\tau}^{s, x}\right),\left(g(x)=(x-K)^{+}\right) .
$$

Reflected BSDE (El Karoui-Kapoudjian-Pardoux-Peng-Quenes, 1997,Ann. Prob.):

$$
\left\{\begin{array}{l}
Y_{t}^{s, x}=g\left(X_{T}^{s, x}\right)-\int_{t}^{T} r Y_{\theta}^{s, x} d \theta+K_{T}^{s, x}-K_{t}^{s, x}-\int_{t}^{T} Z_{\theta}^{s, x} d W_{\theta}, t \in[s, T] \\
Y_{t}^{s, x} \geq g\left(X_{t}^{s, x}\right), \quad t \in[s, T] \\
K^{s, x} \text { is continuously increasing, } K_{s}^{t, x}=0, \int_{s}^{T}\left(Y_{t}^{s, x}-g\left(X_{t}^{s, x}\right)\right) d K_{t}^{s, x}=0 .
\end{array}\right.
$$

Benth-Karlsen-Reikvam (2003), Klimsiak-Rozkosz (2010)

$$
V(s, x)=Y_{s}^{s, x}, K_{t}^{s, x}=\int_{s}^{t}\left(d X_{\theta}^{s, x}-r K\right)^{+} 1_{Y_{\theta}^{s, x}=g\left(X_{\theta}^{s, x}\right)} d \theta
$$

quasi-variational inequality:

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
\quad \begin{array}{l}
\min \left\{u(s, x)-g(x),-\mathcal{L}_{B S} u(s, x)+r u(s, x)\right\}=0 \\
u(T, x)=g(x) \\
\mathcal{L}_{B S}=\partial_{s} u+(r-d) x \partial_{x} u+\frac{1}{2} \sigma^{2} x^{2} \partial_{x x}^{2} u .
\end{array} \\
\Leftrightarrow \\
\Leftrightarrow\left\{\begin{array}{l}
\mathcal{L}_{B S} u(s, x)=r u(s, x)-\mu \\
u(T)=g, u \geq g, \int_{[0, T] \times \mathbb{R}}
\end{array}\right. \\
\mu(u-g) \varrho^{2} d \mu=0
\end{array}\right. \\
\quad\left(Y_{t}^{s, x}, Z_{t}^{s, x}\right)=\left(u\left(s, X_{t}^{s, x}\right), \sigma x \partial_{x} u\left(t, X_{t}^{s, x}\right)\right)
\end{array}\right\}
$$

- How about Non-Markovian case ?

Introduction

Starting point: quasi-linear Backward SPDE (BSPDE):

$$
\left\{\begin{aligned}
-d u(t, x)= & {\left[\frac{1}{2} \Delta u(t, x)+(f+\operatorname{div} g)(t, x, u(t, x), \nabla u(t, x), v(t, x))\right] d t } \\
& \sum_{r=1}^{m} v^{r}(t, x) d W_{t}^{r},(t, x) \in[0, T] \times \mathbb{R}^{d} ; \\
u(T, x)= & G(x), \quad x \in \mathbb{R}^{d} .
\end{aligned}\right.
$$

- $\left(\Omega, \mathscr{F},\left\{\mathscr{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ complete probability space with filtration;
- W : m-dimensional BM ;
- $G \in L^{2}\left(\Omega, \mathscr{F}_{T} ; L^{2}\left(\mathbb{R}^{d}\right)\right)$;
- f and g satisfy Lipschitz conditions.

Introduction continued

Known results:

- Existence and uniqueness of the weak solution;
- The solution satisfies Itô's formula;
- Comparison Theorem;
- Maximum principles for Backward SPDEs on bounded domains;
- ...

Our aims

The obstacle problem for BSPDEs leads to reflected BSPDE (RBSPDE)

$$
\left\{\begin{align*}
-d u(t, x)= & {\left[\frac{1}{2} \Delta u(t, x)+(f+\operatorname{div} g)(t, x, u, \nabla u, v)\right] d t } \\
& +\mu(d t, d x)-v^{r}(t, x) d W_{t}^{r},(t, x) \in[0, T] \times \mathbb{R}^{d} ; \\
u(t, x) \geq & \xi(t, x), \quad \mathbb{P} \otimes \text { dtdx-a.e.; } \tag{1}\\
u(T, x)= & G(x) ; \int_{0}^{T} \int_{\mathbb{R}^{d}}(\bar{u}(s, x)-\xi(s, x)) \mu(d x, d s)=0, \text { a.s.. }
\end{align*}\right.
$$

- Unique solvability of RBSPDE (1), unknown is the triple (u, v, μ);
- Its connections with optimal stopping problems.

Two existing results

- Optimal stopping problems with random coefficients :

Chang-Pang-Yong, SCION, (2008);

- Singular control problems of SPDEs:

Øksendal-Sulem-Zhang, INRIA, (2011).

- Results with $\mu(d t, d x)=k(t, x) d t$.

Notations

- Continuous Hunt process $\left(\Omega^{\prime}, B_{t}, \theta_{t}, \mathscr{F}^{0}, \mathscr{F}_{t}^{0}, \mathbb{P}^{x}\right)$:
$\Omega^{\prime}:=C\left([0, \infty) ; \mathbb{R}^{d}\right)$;
$\left(B_{t}\right)_{t \geq 0}: d$-dim Brownian motion starting from distribution $d x$;
$\mathbb{P}^{d x}:=(B .)^{-1}\left(d x \otimes \mathbb{P}^{0}\right) ;$
- $\left(L^{2}\left(\mathbb{R}^{d}\right),\langle\cdot, \cdot\rangle,\|\cdot\|_{2}\right),\left(H^{1}\left(\mathbb{R}^{d}\right),\langle\cdot, \cdot\rangle_{1},\|\cdot\|_{H^{1}}\right) ;$ For each Banach space $\left(V,\|\cdot\|_{V}\right)$,
- $\mathcal{S}^{2}(V)$: V-valued, $\left(\mathscr{F}_{t}\right)$-adapted and continuous processes $\left(X_{t}\right)_{t \in[0, T]}$, s.t.

$$
\|X\|_{\mathcal{S}^{2}(V)}:=\left(E\left[\sup _{t \in[0, T]}\left\|X_{t}\right\|_{V}^{2}\right]\right)^{1 / 2}<\infty ;
$$

- $\mathcal{L}^{2}(V):\|X\|_{\mathcal{L}^{2}(V)}:=\left(E\left[\int_{0}^{T}\left\|X_{t}\right\|_{V}^{2} d t\right]\right)^{1 / 2}<\infty$;
- $\mathcal{H}=: \mathcal{S}^{2}\left(L^{2}\left(\mathbb{R}^{d}\right)\right) \cap \mathcal{L}^{2}\left(H^{1}\left(\mathbb{R}^{d}\right)\right)$ equipped with norm

$$
\|\phi\|_{\mathcal{H}}:=\left(\|\phi\|_{\mathcal{S}^{2}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)}^{2}+\left\|\nabla \phi_{t}\right\|_{\mathcal{L}^{2}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)}^{2}\right)^{1 / 2}, \quad \phi \in \mathcal{H} .
$$

Assumptions

($\mathcal{A} 1)$ The pair of random functions

$f(\cdot, \cdot, \cdot, \vartheta, y, z): \Omega \times[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $g(\cdot, \cdot, \cdot, \vartheta, y, z): \Omega \times[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ are $\mathscr{P} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable for any $(\vartheta, y, z) \in \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{m}$. There exist positive constants $\kappa<1 / 2$ and L such that for all
$\left(\vartheta_{1}, y_{1}, z_{1}\right),\left(\vartheta_{2}, y_{2}, z_{2}\right) \in \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n \times m}, \varphi_{1}, \varphi_{2} \in L^{2}\left(\mathbb{R}^{d}\right), \phi_{1}, \phi_{2} \in\left(L^{2}\left(\mathbb{R}^{d}\right)\right)^{m}$ and $(\omega, t, x) \in \Omega \times[0, T] \times \mathbb{R}^{d}$

$$
\begin{aligned}
& \left|f\left(\omega, t, x, \vartheta_{1}, y_{1}, z_{1}\right)-f\left(\omega, t, x, \vartheta_{2}, y_{2}, z_{2}\right)\right| \leq L\left|\vartheta_{1}-\vartheta_{2}\right|+\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right| ; \\
& \left|g\left(\omega, t, x, \vartheta_{1}, y_{1}, z_{1}\right)-g\left(\omega, t, x, \vartheta_{2}, y_{2}, z_{2}\right)\right| \leq L\left(\left|\vartheta_{1}-\vartheta_{2}\right|+\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|\right) ; \\
& \quad-\left\langle\nabla\left(\varphi_{1}-\varphi_{2}\right), g\left(t, \varphi_{1}, \nabla \varphi_{1}, \phi_{1}\right)-g\left(t, \varphi_{2}, \nabla \varphi_{2}, \phi_{2}\right)\right\rangle \\
& \leq \kappa\left(\left\|\nabla\left(\varphi_{1}-\varphi_{2}\right)\right\|_{2}^{2}+\left\|\phi_{1}-\phi_{2}\right\|_{2}^{2}\right)+L\left\|\varphi_{1}-\varphi_{2}\right\|_{2}^{2} .
\end{aligned}
$$

Assumptions continued

$(\mathcal{A} 2) G \in L^{2}\left(\Omega, \mathscr{F}_{T} ; L^{2}\left(\mathbb{R}^{d}\right)\right)$.

$$
f_{0}:=f(\cdot, \cdot, \cdot, 0,0,0) \in \mathcal{L}^{2}\left(L^{2}\left(\mathbb{R}^{d}\right)\right), g_{0}:=g(\cdot, \cdot, \cdot, 0,0,0) \in \mathcal{L}^{2}\left(L^{2}\left(\mathbb{R}^{d}\right)^{m}\right)
$$

($\mathcal{A} 3)$ The obstacle process $\xi(\omega, t, x)$ is a predictable random function with respect to filtration $\left(\mathscr{F}_{t}\right)_{t \in[0, T]}$ and $t \mapsto \xi\left(\omega, t, B_{t}\right)$ is $\mathbb{P} \otimes \mathbb{P}^{d x}$-a.s. continuous on $[0, T]$ and satisfies

$$
E E^{d x}\left[\sup _{t \in[0, T]}\left|\xi^{+}\left(t, B_{t}\right)\right|^{2}\right]<\infty \text { and } \xi(T, \omega) \leq G, \mathbb{P} \otimes d x \text {-a.e.. }
$$

Definition

Random function $u: \Omega \times[0, T] \times \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is said to be stochastic quasi-continuous provided that for each $\varepsilon>0$, there exists a predictable random set $D^{\varepsilon} \subset \Omega \times[0, T] \times \mathbb{R}^{d}$ such that \mathbb{P}-a.s. the section D_{ω}^{ε} is open and $u(\omega, \cdot, \cdot)$ is continuous on its complement $\left(D_{\omega}^{\varepsilon}\right)^{c}$ and

$$
\mathbb{P} \otimes \mathbb{P}^{d x}\left(\left(\omega, \omega^{\prime}\right) \mid \exists t \in[0, T] \text { s.t. }\left(\omega, t, B_{t}\left(\omega^{\prime}\right)\right) \in D^{\varepsilon}\right) \leq \varepsilon
$$

Remark

If u is stochastic quasi-continuous, we can check that the process $u\left(t, B_{t}\right)_{t \in[0, T]}$ has continuous trajectories, $\mathbb{P} \otimes \mathbb{P}^{d x}$-a.s..

Quasi-continuity of the weak solutions for BSPDEs

Consider BSPDE

$$
\left\{\begin{aligned}
-d u(t, x)= & {\left[\frac{1}{2} \Delta u(t, x)+(f+\operatorname{div} g)(t, x, u(t, x), \nabla u(t, x), v(t, x))\right] d t } \\
& -\sum_{r=1}^{m} v^{r}(t, x) d W_{t}^{r},(t, x) \in[0, T] \times \mathbb{R}^{d} ; \\
u(T, x)= & G(x), \quad x \in \mathbb{R}^{d} .
\end{aligned}\right.
$$

Theorem

Let $(\mathcal{A} 1)$ and $(\mathcal{A} 2)$ hold. Then the BSPDE above admits a unique weak solution pair

$$
(u, v) \in \mathcal{H} \times \mathcal{L}^{2}\left(\left(L^{2}\left(\mathbb{R}^{6}\right)^{m}\right)\right)
$$

Moreover, u admits a stochastic quasi-continuous version.

Definition

$u \in \mathcal{H}$ is called a stochastic potential, provided that u is stochastic quasi-continuous, $\lim _{t \rightarrow T} u(t, \cdot)=0$ in $L^{2}\left(\mathbb{R}^{d}\right)$, a.s.,

$$
\begin{equation*}
E E^{d x}\left[\sup _{t \in[0, T]}\left|u\left(t, B_{t}\right)\right|^{2}\right]<\infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left[\left(\tilde{P}_{s} u\right)(t) \mid \mathscr{F}_{t}\right] \leq u(t), \forall s>0, \forall t \in[0, T], a . s . . \tag{3}
\end{equation*}
$$

where the conditional expectation is defined in the Hilbertian sense and

$$
\tilde{P}_{s} u(t, x):=\left\{\begin{aligned}
\int_{\mathbb{R}^{d}} \rho_{s}(x-y) u(t+s, y) d y, & \text { if } s+t \leq T \\
0, & \text { otherwise }
\end{aligned}\right.
$$

with $\rho_{s}(x)=(2 \pi s)^{-d / 2} \exp \left(-|x|^{2} / 2 s\right)$.

Theorem

Let $u \in \mathcal{H}$. Then u admits a version which is a stochastic potential if and only if there exist stochastic field $v \in \mathcal{L}^{2}\left(\left(L^{2}\left(\mathbb{R}^{d}\right)\right)^{m}\right)$ and a continuous increasing process $A=\left(A_{t}\right)_{t \in[0, T]}$ which is $\mathscr{F}_{t} \vee \mathscr{F}_{t}^{0}$-adapted and such that $A_{0}=0$, $E E^{d x}\left[A_{T}^{2}\right]<\infty$, and
(i)
$u\left(t, B_{t}\right)=A_{T}-A_{t}-\sum_{i=1}^{d} \int_{t}^{T} \partial_{x^{i}} u\left(s, B_{s}\right) d B_{s}^{i}-\sum_{r=1}^{m} \int_{t}^{T} v^{r}\left(s, B_{s}\right) d W_{s}^{r}, \mathbb{P} \otimes \mathbb{P}^{d x}-a . s$.
for each $t \in[0, T]$. The processes A and v are uniquely determined by those properties. Moreover, there hold the following relations:
(ii)

$$
\begin{aligned}
& E\left[\|u(t)\|_{2}^{2}+\int_{t}^{T}\left(\|\nabla u(s)\|_{2}^{2}+\|v(s)\|_{2}^{2}\right) d s\right] \\
& =E E^{d x}\left[\left(A_{T}-A_{t}\right)^{2}\right], \quad \forall t \in[0, T] ;
\end{aligned}
$$

Theorem (continued)

(iii) for any $\varphi \in \mathcal{D}_{T}$,
$\langle u(0), \varphi(0)\rangle+\int_{0}^{T}\left(\frac{1}{2}\langle\nabla u(s), \nabla \varphi(s)\rangle\right)+\left\langle u(s), \partial_{s} \varphi(s)\right\rangle d s+\sum_{r=1}^{m} \int_{0}^{T}\left\langle\varphi(s), v^{r}\left(s, B_{s}\right)\right.$
$=\mu(\varphi)=\int_{0}^{T} \int_{\mathbb{R}^{d}} \varphi(s, x) \mu(d x, d s)$,
where μ is the random measure $\mu: \Omega \rightarrow \mathcal{M}\left([0, T] \times \mathbb{R}^{d}\right)$

$$
\begin{equation*}
\mu(\varphi)=E^{d x} \int_{0}^{T} \varphi\left(t, B_{t}\right) d A_{t}, \varphi \in \mathcal{D}_{T}, \text { a.s. } \tag{iv}
\end{equation*}
$$

with $\mathcal{M}\left([0, T] \times \mathbb{R}^{d}\right)$ denoting the set of all the Radon measures on $[0, T] \times \mathbb{R}^{d}$.

Lemma

Let u be a stochastic potential and $\mu: \Omega \rightarrow \mathcal{M}\left([0, T] \times \mathbb{R}^{d}\right)$ a random Radon measure such that relations (iii) holds. Then one has

$$
\begin{equation*}
\langle\phi, u(t)\rangle=E\left[\int_{t}^{T} \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \phi(x) \rho_{s-t}(x, y) d x\right) \mu(d y, d s) \mid \mathscr{F}_{t}\right], \tag{4}
\end{equation*}
$$

for each $\phi \in L^{2}\left(\mathbb{R}^{d}\right)$ and $t \in[0, T]$.

Definition

A nonnegative random Radon measure $\mu: \Omega \rightarrow \mathcal{M}\left([0, T] \times \mathbb{R}^{d}\right)$ is called regular stochastic measure provided that there exists a stochastic potential u such that the relation (iii) from the above theorem is satisfied.

Remark

As $E E^{d x}\left[A_{T}^{2}\right]<\infty$, for any random field $\phi \in \mathcal{L}^{2}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ satisfying

$$
\phi\left(t, B_{t}\right) \text { is continuous } \mathbb{P} \otimes \mathbb{P}^{d x} \text {-a.s., and } E E^{d x}\left[\sup _{t \in[0, T]}\left|\phi\left(t, B_{t}\right)\right|^{2}\right]<\infty
$$

$\mu(\phi)$ makes sense by relation (iv).

Proposition A

Let $\left\{u^{n} ; n \in \mathbb{N}\right\}$ be a sequence of stochastic potentials associated with $\left\{\left(v^{n}, \mu^{n}\right) ; n \in \mathbb{N}\right\}$ such that $u^{n} \rightarrow u$ in \mathcal{H} and $v^{n} \rightarrow v$ in $\mathcal{L}^{2}\left(\left(L^{2}\left(\mathbb{R}^{d}\right)\right)^{m}\right)$ respectively. Then for some regular stochastic measure μ, u is a stochastic potential associated with (v, μ).

Proposition B

Let $\left\{u^{n} ; n \in \mathbb{N}\right\}$ be a sequence of stochastic potential which converges up to some $u \in \mathcal{H}$. Assume moreover that u is quasi-continuous and $E E^{d x}\left[\sup _{t \in[0, T]}\left|u\left(t, B_{t}\right)\right|^{2}\right]<\infty$. Then u is a stochastic potential.

Definition

We say that a triple (u, v, μ) is a weak solution of the RBSPDE (1) associated to (G, f, g, ξ), if
(1) $u \in \mathcal{H}, u(t, x) \geq \xi(t, x), \mathbb{P} \otimes d t \otimes d x$-a.e. and $u(T, x)=G, \mathbb{P} \otimes d x$-a.e.
(2) $\mu: \Omega \rightarrow \mathcal{M}\left([0, T] \times \mathbb{R}^{d}\right)$ is a regular stochastic measure;
(3) for each $\varphi \in \mathcal{D}_{T}$ and $t \in[0, T]$

$$
\begin{aligned}
& \langle u(t), \varphi(t)\rangle+\int_{t}^{T}\left[\left\langle u(s), \partial_{s} \varphi(s)\right\rangle+\frac{1}{2}\langle\nabla u(s), \nabla \varphi(s)\rangle\right] d s \\
= & \langle G, \varphi(T)\rangle+\int_{t}^{T}[\langle f(s, u, \nabla u, v), \varphi(s)\rangle-\langle g(s, u, \nabla u, v), \nabla \varphi(s)\rangle] d s \\
& +\int_{t}^{T} \int_{\mathbb{R}^{d}} \varphi(s, x) \mu(d s, d x)-\sum_{r=1}^{m} \int_{t}^{T}\left\langle\varphi(s), v^{r}(s) d W_{s}^{r}\right\rangle
\end{aligned}
$$

(4) u admits a stochastic quasi-continuous version \bar{u} such that

$$
\int_{0}^{T} \int_{\mathbb{R}^{d}}(\bar{u}(s, x)-\xi(s, x)) \mu(d x, d s)=0, \quad \text { a.s.. }
$$

Decomposition of the Solution

- Let (u, v, μ) be a weak solution of RBSPDE (1) and (u_{μ}, v_{μ}) corresponds to the regular stochastic measure μ with u_{μ} being the stochastic potential.
- Clearly, $\left(u_{0}, v_{0}\right):=\left(u-u_{\mu}, v-v_{\mu}\right)$ solves the following BSPDE without obstacle:

$$
\begin{aligned}
-d u(t, x)= & {\left[\frac{1}{2} \Delta u(t, x)+(f+\operatorname{div} g)(t, x, u(t, x), \nabla u(t, x), v(t, x))\right] d t } \\
& -\sum_{r=1}^{m} v^{r}(t, x) d W_{t}^{r}
\end{aligned}
$$

- $u=u_{0}+u_{\mu}$ must be stochastic quasi-continuous.

Existence and Uniqueness Theorem

Let assumptions $(\mathcal{A} 1)-(\mathcal{A} 3)$ hold. Then there exists a unique weak solution (u, v, μ) of RBSPDE (1) associated with (G, f, g, ξ).

Comparison theorem

Let $\tilde{G}, \tilde{f}, \tilde{\xi}$ satisfy the same hypothesis as G, f, ξ. And let (u, v, μ) be the weak solution of RBSPDE (1) associated with (G, f, g, ξ) and ($\tilde{u}, \tilde{v}, \tilde{\mu})$ the weak solution associated with $(\tilde{G}, \tilde{f}, g, \tilde{\xi})$. Moreover, we assume that there hold the following conditions:
(i) $G \leq \tilde{G}, \mathbb{P} \otimes d x$-a.e.;
(ii) $f(u, \nabla u, v) \leq \tilde{f}(u, \nabla u, v), \mathbb{P} \otimes d t d x$-a.e.;
(iii) $\xi \leq \tilde{\xi}, \mathbb{P} \otimes d t d x$-a.e..

Then one has $u \leq \tilde{u}, \mathbb{P} \otimes d t d x$-a.e..

RBSPDEs and optimal stopping problems

Let (u, v, μ) be the weak solution of RBSPDE (1). Denote

$$
\left(Y_{t}, Z_{t}, \tilde{Z}_{t}, \zeta_{t}\right)=(u, \nabla u, v, \xi)\left(t, B_{t}\right), \quad t \in[0, T] .
$$

$\left(K_{t}\right)_{t \in[0, T]}$ is the increasing process w.r.t. μ. Then (Y, Z, \tilde{Z}, K) solves RBSDE:

$$
\left\{\begin{array}{l}
Y_{t}=G+\int_{t}^{T} f\left(s, B_{s}, Y_{s}, Z_{s}, \tilde{Z}_{s}\right) d s+\int_{t}^{T} g\left(s, B_{s}, Y_{s}, Z_{s}, \tilde{Z}_{s}\right) * d B_{s} \\
\quad \quad-\int_{t}^{T} Z_{s} d B_{s}-\int_{t}^{T} \tilde{Z}_{s} d W_{s}, \quad t \in[0, T] \\
Y_{t} \geq \zeta_{s}, \quad t \in[0, T] ; \quad \int_{0}^{T}\left(Y_{s}-\zeta_{s}\right) d K_{s}=0
\end{array}\right.
$$

Hence,
$u\left(t, B_{t}\right)=\underset{\tau \in S_{t, T}}{\operatorname{ess} \sup } E E^{d x}\left[\int_{t}^{\tau} f_{s} d s+\int_{t}^{\tau} g_{s} * d B_{s}+\zeta_{\tau} 1_{\tau<T}+G\left(T, B_{T}\right) 1_{\tau=T} \mid \mathscr{F}_{t}\right]$.

Future work

- Analytic approach to Reflected BSPDEs;
- Reflected BSPDE on domains;
- Degenerate case;
- regularity problems;
- Applications...

Thank You!

