Reflected Backward SPDEs and Optimal Stopping Problems

Jinniao Qiu

Fudan University

July 2, 2012

American Option Problem

Dividend paying stock:

$$X_t^{s,x} = x + \int_s^t (r - d) X_\theta^{s,x} d\theta + \int_s^t \sigma X_\theta^{s,x} dW_\theta, \ t \in [s, T];$$

Arbitrage-free value of American option:

$$V(s,x) = \sup_{s \le \tau \le T} Ee^{-r(\tau-s)} g(X_{\tau}^{s,x}), \ (g(x) = (x-K)^{+}).$$

Reflected BSDE (El Karoui-Kapoudjian-Pardoux-Peng-Quenes, 1997,Ann. Prob.):

$$\left\{ \begin{array}{l} Y_t^{s,x} = g(X_T^{s,x}) - \int_t^T \!\! r Y_\theta^{s,x} d\theta + K_T^{s,x} - K_t^{s,x} - \int_t^T \!\! Z_\theta^{s,x} dW_\theta, \ t \in [s,T], \\ Y_t^{s,x} \geq g(X_t^{s,x}), \quad t \in [s,T], \\ K^{s,x} \ \text{is continuously increasing}, \ K_s^{t,x} = 0, \int_s^T \!\! (Y_t^{s,x} - g(X_t^{s,x})) \, dK_t^{s,x} = 0. \end{array} \right.$$

Benth-Karlsen-Reikvam (2003), Klimsiak-Rozkosz (2010)

$$V(s,x) = Y_s^{s,x}, \ K_t^{s,x} = \int_s^t (dX_\theta^{s,x} - rK)^+ 1_{Y_\theta^{s,x} = g(X_\theta^{s,x})} \, d\theta$$

quasi-variational inequality:

$$\begin{cases} \min\{u(s,x) - g(x), -\mathcal{L}_{BS}u(s,x) + ru(s,x)\} = 0, \\ u(T,x) = g(x). \\ \mathcal{L}_{BS} = \partial_s u + (r - d)x\partial_x u + \frac{1}{2}\sigma^2 x^2 \partial_{xx}^2 u. \end{cases}$$

$$\Leftrightarrow \begin{cases} \mathcal{L}_{BS}u(s,x) = ru(s,x) - \mu, \\ u(T) = g, \ u \ge g, \int_{[0,T] \times \mathbb{R}} (u - g)\varrho^2 d\mu = 0. \\ (Y_t^{s,x}, Z_t^{s,x}) = (u(s, X_t^{s,x}), \sigma x \partial_x u(t, X_t^{s,x})), \end{cases}$$

$$\mu(dt, dx) = q(x, u(t,x)) dt dx, \quad q(x,y) = (dx - rK)^+ \mathbf{1}_{(-\infty, q(x)]}(y).$$

How about Non-Markovian case ?

Starting point: quasi-linear Backward SPDE (BSPDE):

$$\begin{cases} -du(t,x) = \left[\frac{1}{2}\Delta u(t,x) + \left(f + \operatorname{div} g\right)(t,x,u(t,x),\nabla u(t,x),v(t,x))\right]dt \\ \sum_{r=1}^{m} v^{r}(t,x) dW_{t}^{r}, \ (t,x) \in [0,T] \times \mathbb{R}^{d}; \\ u(T,x) = G(x), \quad x \in \mathbb{R}^{d}. \end{cases}$$

- $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t\geq 0}, \mathbb{P})$ complete probability space with filtration;
- W: m-dimensional BM;
- \bullet $G \in L^2(\Omega, \mathscr{F}_T; L^2(\mathbb{R}^d));$
- ullet f and g satisfy Lipschitz conditions.

4D> 4B> 4B> B 990

Introduction continued

Known results:

- Existence and uniqueness of the weak solution;
- The solution satisfies Itô's formula;
- Comparison Theorem;
- Maximum principles for Backward SPDEs on bounded domains;
- ...

The obstacle problem for BSPDEs leads to reflected BSPDE (RBSPDE)

$$\begin{cases}
-du(t,x) = \left[\frac{1}{2}\Delta u(t,x) + (f + \operatorname{div} g)(t,x,u,\nabla u,v)\right] dt \\
+ \mu(dt,dx) - v^r(t,x) dW_t^r, & (t,x) \in [0,T] \times \mathbb{R}^d; \\
u(t,x) \ge \xi(t,x), \quad \mathbb{P} \otimes \operatorname{dtdx-a.e.}; \\
u(T,x) = G(x); \int_0^T \int_{\mathbb{R}^d} (\bar{u}(s,x) - \xi(s,x)) \mu(dx,ds) = 0, \ a.s..
\end{cases} \tag{1}$$

- Unique solvability of RBSPDE (1), unknown is the triple (u, v, μ) ;
- Its connections with optimal stopping problems.

Two existing results

- Optimal stopping problems with random coefficients: Chang-Pang-Yong, SCION, (2008);
- Singular control problems of SPDEs:
 Øksendal-Sulem-Zhang, INRIA, (2011).
- Results with $\mu(dt, dx) = k(t, x)dt$.

Notations

- Continuous Hunt process $(\Omega', B_t, \theta_t, \mathscr{F}^0, \mathscr{F}^0_t, \mathbb{P}^x)$: $\Omega' := C([0, \infty); \mathbb{R}^d);$ $(B_t)_{t \geq 0}$: d-dim Brownian motion starting from distribution dx; $\mathbb{P}^{dx} := (B_t)^{-1}(dx \otimes \mathbb{P}^0);$
- $\begin{array}{l} \bullet \ (L^2(\mathbb{R}^d), \langle \cdot, \cdot \rangle, \| \cdot \|_2), \ (H^1(\mathbb{R}^d), \langle \cdot, \cdot \rangle_1, \| \cdot \|_{H^1}); \\ \text{For each Banach space} \ (V, \| \cdot \|_V), \end{array}$
- $S^2(V)$: V-valued, (\mathscr{F}_t) -adapted and continuous processes $(X_t)_{t\in[0,T]}$, s.t.

$$||X||_{\mathcal{S}^2(V)} := \left(E[\sup_{t \in [0,T]} ||X_t||_V^2] \right)^{1/2} < \infty;$$

- $\mathcal{L}^2(V)$: $||X||_{\mathcal{L}^2(V)} := \left(E[\int_0^T ||X_t||_V^2 dt] \right)^{1/2} < \infty;$
- ullet $\mathcal{H}=:\mathcal{S}^2(L^2(\mathbb{R}^d))\cap\mathcal{L}^2(H^1(\mathbb{R}^d))$ equipped with norm

$$\|\phi\|_{\mathcal{H}} := \left(\|\phi\|_{\mathcal{S}^2(L^2(\mathbb{R}^d))}^2 + \|\nabla\phi_t\|_{\mathcal{L}^2(L^2(\mathbb{R}^d))}^2\right)^{1/2}, \quad \phi \in \mathcal{H}.$$

Assumptions

(A1) The pair of random functions

$$f(\cdot,\cdot,\cdot,\vartheta,y,z):\ \Omega\times[0,T]\times\mathbb{R}^d\to\mathbb{R}\ and\ g(\cdot,\cdot,\cdot,\vartheta,y,z):\ \Omega\times[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$$
 are $\mathscr{P}\otimes\mathcal{B}(\mathbb{R}^d)$ -measurable for any $(\vartheta,y,z)\in\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^m$. There exist positive constants $\kappa<1/2$ and L such that for all $(\vartheta_1,y_1,z_1),(\vartheta_2,y_2,z_2)\in\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^n$, $\varphi_1,\varphi_2\in L^2(\mathbb{R}^d)$, $\phi_1,\phi_2\in (L^2(\mathbb{R}^d))^m$ and $(\omega,t,x)\in\Omega\times[0,T]\times\mathbb{R}^d$

$$|f(\omega, t, x, \vartheta_1, y_1, z_1) - f(\omega, t, x, \vartheta_2, y_2, z_2)| \le L|\vartheta_1 - \vartheta_2| + |y_1 - y_2| + |z_1 - z_2|;$$

$$|g(\omega, t, x, \vartheta_1, y_1, z_1) - g(\omega, t, x, \vartheta_2, y_2, z_2)| \le L(|\vartheta_1 - \vartheta_2| + |y_1 - y_2| + |z_1 - z_2|);$$

$$- \langle \nabla(\varphi_1 - \varphi_2), g(t, \varphi_1, \nabla \varphi_1, \phi_1) - g(t, \varphi_2, \nabla \varphi_2, \phi_2) \rangle$$

$$< \kappa \left(\|\nabla(\varphi_1 - \varphi_2)\|_2^2 + \|\phi_1 - \phi_2\|_2^2 \right) + L\|\varphi_1 - \varphi_2\|_2^2.$$

Assumptions continued

$$(\mathcal{A}2)$$
 $G \in L^2(\Omega, \mathscr{F}_T; L^2(\mathbb{R}^d)).$

$$f_0 := f(\cdot, \cdot, \cdot, 0, 0, 0) \in \mathcal{L}^2(L^2(\mathbb{R}^d)), \ g_0 := g(\cdot, \cdot, \cdot, 0, 0, 0) \in \mathcal{L}^2(L^2(\mathbb{R}^d)^m).$$

 $(\mathcal{A}3)$ The obstacle process $\xi(\omega,t,x)$ is a predictable random function with respect to filtration $(\mathscr{F}_t)_{t\in[0,T]}$ and $t\mapsto \xi(\omega,t,B_t)$ is $\mathbb{P}\otimes\mathbb{P}^{dx}$ -a.s. continuous on [0,T] and satisfies

$$EE^{dx}\Big[\sup_{t\in[0,T]}|\xi^+(t,B_t)|^2\Big]<\infty \ and \ \xi(T,\omega)\leq G, \ \mathbb{P}\otimes dx\text{-a.e.}.$$

Definition

Random function $u:\Omega\times[0,T]\times\mathbb{R}^d\to\bar{\mathbb{R}}$ is said to be stochastic quasi-continuous provided that for each $\varepsilon>0$, there exists a predictable random set $D^\varepsilon\subset\Omega\times[0,T]\times\mathbb{R}^d$ such that \mathbb{P} -a.s. the section D^ε_ω is open and $u(\omega,\cdot,\cdot)$ is continuous on its complement $(D^\varepsilon_\omega)^c$ and

$$\mathbb{P} \otimes \mathbb{P}^{dx} \left((\omega, \omega') | \exists t \in [0, T] \text{ s.t. } (\omega, t, B_t(\omega')) \in D^{\varepsilon} \right) \leq \varepsilon.$$

Remark

If u is stochastic quasi-continuous, we can check that the process $u(t,B_t)_{t\in[0,T]}$ has continuous trajectories, $\mathbb{P}\otimes\mathbb{P}^{dx}$ -a.s..

Quasi-continuity of the weak solutions for BSPDEs

Consider BSPDE

$$\left\{ \begin{array}{l} -du(t,x) = \left[\frac{1}{2}\Delta u(t,x) + \left(f + \operatorname{div}g\right)(t,x,u(t,x),\nabla u(t,x),v(t,x))\right]dt \\ \\ -\sum_{r=1}^m v^r(t,x)\,dW^r_t,\ (t,x) \in [0,T] \times \mathbb{R}^d; \\ \\ u(T,x) = G(x), \quad x \in \mathbb{R}^d. \end{array} \right.$$

Theorem

Let $(\mathcal{A}1)$ and $(\mathcal{A}2)$ hold. Then the BSPDE above admits a unique weak solution pair

$$(u,v) \in \mathcal{H} \times \mathcal{L}^2((L^2(\mathbb{R}^6)^m))$$

Moreover, u admits a stochastic quasi-continuous version.

Definition

 $u\in\mathcal{H}$ is called a stochastic potential, provided that u is stochastic quasi-continuous, $\lim_{t\to T}u(t,\cdot)=0$ in $L^2(\mathbb{R}^d)$, a.s.,

$$EE^{dx} \left[\sup_{t \in [0,T]} |u(t,B_t)|^2 \right] < \infty, \tag{2}$$

and

$$E\left[\left(\tilde{P}_{s}u\right)(t)\middle|\mathscr{F}_{t}\right] \leq u(t), \ \forall s > 0, \forall t \in [0, T], a.s..$$
(3)

where the conditional expectation is defined in the Hilbertian sense and

$$\tilde{P}_{s}u(t,x) := \begin{cases} \int_{\mathbb{R}^{d}} \rho_{s}(x-y)u(t+s,y) \, dy, & \text{if } s+t \leq T; \\ 0, & \text{otherwise,} \end{cases}$$

with $\rho_s(x) = (2\pi s)^{-d/2} \exp(-|x|^2/2s)$.

←□ → ←□ → ←□ → ←□ → □ ← ○ へ ○

Theorem

Let $u\in\mathcal{H}.$ Then u admits a version which is a stochastic potential if and only if there exist stochastic field $v\in\mathcal{L}^2((L^2(\mathbb{R}^d))^m)$ and a continuous increasing process $A=(A_t)_{t\in[0,T]}$ which is $\mathscr{F}_t\vee\mathscr{F}_t^0$ -adapted and such that $A_0=0$, $EE^{dx}\left[A_T^2\right]<\infty$, and (i)

$$u(t, B_t) = A_T - A_t - \sum_{i=1}^d \int_t^T \partial_{x^i} u(s, B_s) dB_s^i - \sum_{r=1}^m \int_t^T v^r(s, B_s) dW_s^r, \ \mathbb{P} \otimes \mathbb{P}^{dx} - a.s.$$

for each $t\in[0,T].$ The processes A and v are uniquely determined by those properties. Moreover, there hold the following relations: (ii)

$$E\left[\|u(t)\|_{2}^{2} + \int_{t}^{T} (\|\nabla u(s)\|_{2}^{2} + \|v(s)\|_{2}^{2}) ds\right]$$
$$= EE^{dx} \left[(A_{T} - A_{t})^{2} \right], \quad \forall t \in [0, T];$$

Theorem (continued)

(iii) for any $\varphi \in \mathcal{D}_T$,

$$\langle u(0), \varphi(0) \rangle + \int_0^T \left(\frac{1}{2} \langle \nabla u(s), \nabla \varphi(s) \rangle \right) + \langle u(s), \partial_s \varphi(s) \rangle \, ds + \sum_{r=1}^m \int_0^T \langle \varphi(s), v^r(s, B_s) \rangle \, ds$$

$$= \mu(\varphi) = \int_0^T \int_{\mathbb{R}^d} \varphi(s, x) \mu(dx, ds),$$

where μ is the random measure $\mu: \Omega \to \mathcal{M}([0,T] \times \mathbb{R}^d)$

(iv)
$$\mu(\varphi) = E^{dx} \int_0^T \varphi(t, B_t) dA_t, \ \varphi \in \mathcal{D}_T, \ a.s.,$$

with $\mathcal{M}([0,T]\times\mathbb{R}^d)$ denoting the set of all the Radon measures on $[0,T]\times\mathbb{R}^d$.

Lemma

Let u be a stochastic potential and $\mu:\Omega\to\mathcal{M}([0,T]\times\mathbb{R}^d)$ a random Radon measure such that relations (iii) holds. Then one has

$$\langle \phi, u(t) \rangle = E\left[\int_{t}^{T} \int_{\mathbb{R}^{d}} \left(\int_{\mathbb{R}^{d}} \phi(x) \rho_{s-t}(x, y) dx \right) \mu(dy, ds) \Big| \mathscr{F}_{t} \right], \tag{4}$$

for each $\phi \in L^2(\mathbb{R}^d)$ and $t \in [0,T]$.

Definition

A nonnegative random Radon measure $\mu:\Omega\to\mathcal{M}([0,T]\times\mathbb{R}^d)$ is called regular stochastic measure provided that there exists a stochastic potential u such that the relation (iii) from the above theorem is satisfied.

Remark

As $EE^{dx}\left[A_T^2\right]<\infty$, for any random field $\phi\in\mathcal{L}^2(L^2(\mathbb{R}^d))$ satisfying

$$\phi(t, B_t)$$
 is continuous $\mathbb{P} \otimes \mathbb{P}^{dx}$ -a.s., and $EE^{dx} \left[\sup_{t \in [0,T]} |\phi(t, B_t)|^2 \right] < \infty$,

 $\mu(\phi)$ makes sense by relation (iv).

Proposition A

Let $\{u^n; n \in \mathbb{N}\}$ be a sequence of stochastic potentials associated with $\{(v^n, \mu^n); n \in \mathbb{N}\}$ such that $u^n \to u$ in \mathcal{H} and $v^n \to v$ in $\mathcal{L}^2((L^2(\mathbb{R}^d))^m)$ respectively. Then for some regular stochastic measure μ , u is a stochastic potential associated with (v, μ) .

Proposition B

Let $\{u^n; n \in \mathbb{N}\}$ be a sequence of stochastic potential which converges up to some $u \in \mathcal{H}$. Assume moreover that u is quasi-continuous and $EE^{dx}\left[\sup_{t \in [0,T]}|u(t,B_t)|^2\right] < \infty.$ Then u is a stochastic potential.

Definition

We say that a triple (u,v,μ) is a weak solution of the RBSPDE (1) associated to (G,f,g,ξ) , if

- (1) $u \in \mathcal{H}$, $u(t,x) \ge \xi(t,x)$, $\mathbb{P} \otimes dt \otimes dx$ -a.e. and u(T,x) = G, $\mathbb{P} \otimes dx$ -a.e.
- (2) $\mu: \Omega \to \mathcal{M}([0,T] \times \mathbb{R}^d)$ is a regular stochastic measure;
- (3) for each $\varphi \in \mathcal{D}_T$ and $t \in [0,T]$

$$\begin{split} \langle u(t),\, \varphi(t)\rangle + \int_t^T \left[\langle u(s),\, \partial_s \varphi(s)\rangle + \frac{1}{2} \langle \nabla u(s),\, \nabla \varphi(s)\rangle \right] \, ds \\ = \langle G, \varphi(T)\rangle + \int_t^T \left[\langle f(s,u,\nabla u,v),\, \varphi(s)\rangle - \langle g(s,u,\nabla u,v),\, \nabla \varphi(s)\rangle \right] \, ds \\ + \int_t^T \!\! \int_{\mathbb{R}^d} \varphi(s,x) \mu(ds,dx) - \sum_{r=1}^m \int_t^T \langle \varphi(s),\, v^r(s) \, dW^r_s \rangle; \end{split}$$

(4) u admits a stochastic quasi-continuous version \bar{u} such that

$$\int_0^T \int_{\mathbb{R}^d} \left(\bar{u}(s,x) - \xi(s,x) \right) \mu(dx,ds) = 0, \quad a.s..$$

Decomposition of the Solution

- Let (u,v,μ) be a weak solution of RBSPDE (1) and (u_{μ},v_{μ}) corresponds to the regular stochastic measure μ with u_{μ} being the stochastic potential.
- Clearly, $(u_0,v_0):=(u-u_\mu,v-v_\mu)$ solves the following BSPDE without obstacle:

$$-du(t,x) = \left[\frac{1}{2}\Delta u(t,x) + \left(f + \operatorname{div} g\right)(t,x,u(t,x),\nabla u(t,x),v(t,x))\right]dt$$
$$-\sum_{r=1}^{m} v^{r}(t,x) dW_{t}^{r};$$

• $u=u_0+u_\mu$ must be stochastic quasi-continuous.

→□▶→□▶→重▶→重 りへ⊙

Existence and Uniqueness Theorem

Let assumptions $(\mathcal{A}1)-(\mathcal{A}3)$ hold. Then there exists a unique weak solution (u,v,μ) of RBSPDE (1) associated with (G,f,g,ξ) .

Comparison theorem

Let $\tilde{G}, \tilde{f}, \tilde{\xi}$ satisfy the same hypothesis as G, f, ξ . And let (u, v, μ) be the weak solution of RBSPDE (1) associated with (G, f, g, ξ) and $(\tilde{u}, \tilde{v}, \tilde{\mu})$ the weak solution associated with $(\tilde{G}, \tilde{f}, g, \tilde{\xi})$. Moreover, we assume that there hold the following conditions:

- (i) $G \leq \tilde{G}$, $\mathbb{P} \otimes dx$ -a.e.;
- (ii) $f(u, \nabla u, v) \leq \widetilde{f}(u, \nabla u, v)$, $\mathbb{P} \otimes dt dx$ -a.e.;
- (iii) $\xi \leq \tilde{\xi}$, $\mathbb{P} \otimes dtdx$ -a.e..

Then one has $u \leq \tilde{u}$, $\mathbb{P} \otimes dtdx$ -a.e..

RBSPDEs and optimal stopping problems

Let (u,v,μ) be the weak solution of RBSPDE (1). Denote

$$(Y_t, Z_t, \tilde{Z}_t, \zeta_t) = (u, \nabla u, v, \xi)(t, B_t), \quad t \in [0, T].$$

 $(K_t)_{t\in[0,T]}$ is the increasing process w.r.t. μ . Then (Y,Z,\tilde{Z},K) solves RBSDE:

$$\left\{ \begin{array}{l} Y_t = G + \int_t^T f(s,B_s,Y_s,Z_s,\tilde{Z}_s) \, ds + \int_t^T g(s,B_s,Y_s,Z_s,\tilde{Z}_s) * dB_s \\ \\ - \int_t^T Z_s \, dB_s - \int_t^T \tilde{Z}_s \, dW_s, \quad t \in [0,T]; \\ \\ Y_t \geq \zeta_s, \quad t \in [0,T]; \quad \int_0^T (Y_s - \zeta_s) \, dK_s = 0. \end{array} \right.$$

Hence,

$$u(t,B_t) = \operatorname*{ess\,sup}_{\tau \in S_{t,T}} E E^{dx} \Big[\int_t^\tau \!\! f_s \, ds + \int_t^\tau g_s * dB_s + \zeta_\tau \mathbf{1}_{\tau < T} + G(T,B_T) \mathbf{1}_{\tau = T} \big| \mathscr{F}_t \Big].$$

Future work

- Analytic approach to Reflected BSPDEs;
- Reflected BSPDE on domains;
- Degenerate case;
- regularity problems;
- Applications · · ·

Thank You!