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Position of the problem

The financial market:

Fix T > 0. Let W := (Wt)t∈[0,T ] and W o := (W o
t )t∈[0,T ] be two independent

Brownian motions defined on a probability space (Ω,F ,P). And let (Ft)t∈[0,T ]

be the filtration generated by (W ,W o).

Market:

a risk less bond B with interest rate 0,

A risky process S := (St)t∈[0,T ] with dynamics dSt = St(dWt + θtdt) on
which the agent can invest,

A risky process So := (So
t )t∈[0,T ] with dynamics

dSo
t = So

t (β(t, St)dW
o
t + γ(t, St)dWt + δ(t, St)dt) which the agent has

not access to.

Example:

S : heating oil, So : jet fuel

W o is an exogenous source of risk like a temperature process.
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Position of the problem

The investment problem:

Consider:
V (0, x) := sup

π∈A
IE[U(Xπ

T + H)]

where:

U : R+ → R is a general utility function,

Xπ
t := x +

∫ t

0

πrX
π
r
dSr

Sr

denotes the wealth process associated to a (Ft)t∈[0,T ] self-financing
trading strategy π := (πt)t∈[0,T ],

H is an FT -measurable liability.

Usually one is interested in showing that:

1) ∃π∗ admissible such that V (0, x) = IE[U(Xπ∗
T + H)],

2) simulate the optimal strategy π∗,

3) simulate the value function

V (t, x) := esssupπ IE

[
U
(
x +

∫ T

t
πrX

π
r dSr + H

) ∣∣∣∣∣Ft

]
,
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Anthony Réveillac FBSDEs for expected utility maximization



Existence of the solution: Convex duality methods

These methods have been introduced and studied by Bismut, Cvitanić,
Hugonnier, Karatzas, Kramkov, Schachermayer, Wang,....

Introduce a dual problem:

v(y) := infYT∈Y IE[U(yYT )], y > 0

where U(y) := supx>0{U(x)− xy}, y > 0.

Under some kind of ”growth type” condition on U, one can find a solution to
the dual problem, namely

∃Y ∗T , v(y) = IE[V (yY ∗T )].

What about 2) and 3)? To simulate π∗ and V (t, x) we need an equation.
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(F)BSDE techniques

We would like to mimic the method of Hu, Imkeller and Müller or of El Karoui
and Rouge for a general utility function with a general endowment.

The idea: combine martingale optimality principle with BSDEs to reduce the
optimization problem to solving a BSDE of the form:

Yt = ξ −
∫ T

t

ZsdWs −
∫ T

t

f (s,Zs)ds, t ∈ [0,T ].

Then:

f ∼ z2,

V (t, x) is given as φ(x ,Yt),

π∗ is completely characterized by Z ,

But: this is restricted to the case U(x) := xγ and H = 0.

As an example what can we do for:

U(x) := xγ1 + xγ2 and H = 0? or for

U(x) := xγ and H 6= 0?
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BSPDES (Mania and Tevzadze)

Mania and Tevzadze have derived a verification theorem for H = 0.

They have obtained a BSPDE

V (t, x) = U(x)−
∫ T

t

ϕ(s, x)dWs −
∫ T

t

|ϕx(s, x)|2

Vxx(s, x)
ds, t ∈ [0,T ]

for the value function.
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Approach with FBSDEs

Let U be smooth enough and H > 0.

Theorem (HHIRZ)

Let (X ,Y ,Z) be an adapted solution of the FBSDE
Xt = x −

∫ t

0
U′(Xs )
U′′(Xs )

(Zs + θs)dWs −
∫ t

0
U′(Xs )
U′′(Xs )

(Zs + θs)θsds,

Yt = log
(

U′(XT+H)
U′(XT )

)
−
∫ T

t

[
(|Zs + θs |2)

(
1− 1

2
U(3)(Xs )U

′(Xs )

|U′′(Xs )|2

)
− 1

2
|Zs + Z o

s |2
]
ds

−
∫ T

t
ZsdWs −

∫ T

t
Z o
s dW

o
s

(1)
such that (Z ,Z o) is an element of H2(R2) and the positive local martingale
XU ′(X ) exp(Y ) is a true martingale. Then

π∗t := − U ′(Xt)

XtU ′′(Xt)
(Zt + θt), t ∈ [0,T ]

is an optimal solution to the original optimization problem.

Main ingredients: variational approach + the fact that
Xπ∗U ′(Xπ∗) exp(Y ) is a martingale.
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Link with the duality theory

What is the role of the process Y ?

Let (X ,Y ,Z) be an adapted solution of the FBSDE above. Then
Xπ∗U ′(Xπ∗) exp(Y ) is a martingale and the process Dt := U ′(Xπ∗

t ) exp(Yt) is
given by

D = cst.× E
(
−
∫ ·
0

θrdWr +

∫ ·
0

Z o
r dW

o
r

)
.

So basically D = Y ∗.
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The power case with general endowment

Let U(x) := xγ , γ ∈ (0, 1), H > 0 be a bounded FT -measurable random
variable.

Theorem (HHIRZ)

There exists x0 > 0, such that for every x > x0, the system
Xt = x −

∫ t

0
Xs (Zs+θs )

1−γ dWs −
∫ t

0
Xs (Zs+θs )

1−γ θsds,

Yt = (γ − 1) log
(

1 + H
XT

)
−
∫ T

t

[
γ

2(γ−1)
|Zs + θs |2 − |Zs |2+|Zo

s |
2

2

]
ds

−
∫ T

t
ZsdWs −

∫ T

t
Z o
s dW

o
s

(2)

admits a solution. If in addition, Z belongs to H2(R) then

π∗ :=
1

1− γ (Z + θ)

is the optimal solution to the maximization problem.
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