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G-normal distribution

¢ Normal distribution D with variance o: By Feynman-Kac
formula, we know that D?[p] = v(1,0). Here v is the solution of

the heat equation:
0.2
Orv — 78XXV =0, v(0,x) = p(x).
¢ G-Normal distribution:
Oru — G(Ou) = 0, u(0, x) = (x),

where G(a) = 3 sup,c(, 51(0%a).

Define D¢() = u(1,0). Then
DG : Cb’[_,'p(R) — R

is called G-Normal distribution



Properties of G-normal distribution

o DC[p] = D?[y], if ¢ is convex; D¢[p] = DZ[y], if ¢ is concave.
o Assume X is G-normally distributed and X is an independent
copy of X, i.e., X 2 X and X_LX. Then we have, for each
a,b>0,

aX + bX £ V3 ¥ PX. (1)



G-expectation

Definition 1 Q; = Gy([0, T]; R), the space of real valued
continuous functions on [0, T] with wy = 0;

B:(w) = w;: the canonical process;

Set Lip(Q27) :={@(By, ..., By,) :n>1t1,...,t, €0, T],p €

Ch1ip(R")}. G-expectation is a sublinear expectation defined by

EIX] = Elo(vtr = tobt, - -+ VEm — Em18m)];

for all X' = @(Btl - Bto? Bt2 - Btw ) Btm - Btm—l)’ where &, - -+, &,
are i.i.d G-normally distributed random variables in a sublinear

expectation space (Q, H, ).



Conditional G-expectation

Definition 2

Let us define the conditional G-expectation &, of & € HS knowing
HY, for t € [0, T]. Without loss of generality we can assume that ¢
has the representation £ = ¢(B;, — B;,, B, — Bty -+, B, — Bs,,_,)

with t = t;, for some 1 </ < m, and we put
I,Eti[(p(Btl - Bto? Btz - Btw ) Btm - Btm—l)]

= @(Btl - Bto7 Btz - Bt17 I} Bt' - Bt,‘ 1)7

i —



Representation of G-expectation

Theorem 3[DHP11] There exists a tight subset P C M;(27), the
set of probability measures on (27, B(27)), such that

E[¢] = sup Ep[¢] for all € € Lip(Qr).
PeP



G-martingales

Definition 4 A process {M,} with values in LL(Q7) is called a
G-martingale if E,(M,) = M, for any s < t. If {M,} and {—M,}
are both G-martingales, we call {M,} a symmetric G-martingale.
{M,} is symmetric <= E(My) + E(—M7) = 0.

e Forany Z e M%2(0, T), M, = fot Z,dB; is a symmetric
G-martingale.

¢ Problem : Does any symmetric G-martingale have the above

representation?



Representation of G-martingales

Theorem 5 ([P07]) For all £ = (B, — By, -+, B, — B, ,) € HY,
we have the following representation:

52E(E)JF/OTthBt—I—/Ode(B)t—/T2G(nt)dt.

0
where Z € M2(0, T) and n € M(0, T).
o G(a) = i[e°at — o%a7];
o Ki := [y 1sd(B)s — [; 2G(n;)ds is continuous and nonincreasing!

o K; = 0 if the G-expectation reduces to the classical linear

case(a = o).



Decomposition of G-martingales

[STZ11] and [Songll] generalized Peng's result.
Theorem 6 [Songl1]For ¢ € L%(Q7) with some § > 1,
X, = E,(€), t € [0, T] has the following decomposition:

t
X, = xo+/ Z.dB. + Ki, g.s.
0

where {Z,} € HZ(0, T) and {K.} is a continuous decreasing
G-martingale with Ko = 0, K7 € L%(Q27) forany 1 < a < f.
Theorem 7 [Songli]Let ¢ € L%(Q7) for some § > 1 with

E(¢) + E(—¢) = 0. Then there exists {Z,}iep.1] € H2(0, T) such
that

.
¢ =E@)+ /0 Z.dB..



Classical Backward SDES

A typical classical Backward SDE is defined on a filtered
probability space (2, F,F, P) in which B,(w) = w; is a standard
BM with its natural filtration F = (F;):>0. The problem is to find
a solution consisting of a pair of F-adapted processes (Y, Z)

satisfying the following BSDE

T T
yt_§+/ e Ys,Zs)ds—/ Z.dB., 2)
t t

where g is a given function, called the generator, and £ is a given
Fr-measurable random variable called the terminal condition of
the BSDE.

Linear BSDE was introduced by Bismut(1973) . The existence and
uniqueness theorem of nonlinear BSDEs (with Lipschitz condition

of g in (y, z) was obtained in Pardoux & Peng (1990).



BSDEs driven by G-BM(GBSDE for short)

To find processes (Y, Z, K) satisfying

T T
Ye=¢ +/ f(s,Ys, Zs)ds — / Z,dB; — (Kr — K:), (3)
t t

where K is a decreasing G-martingale.

Why not consider BSDE in the following form?

T T
Yt=§+/ (s, Ys,Zs)ds—/ Z.dB.. (4)
t t

Generally, the equation above does not have a solution.

T T
YtP = 5 +/ f(57 Y5P7 Zsp)ds - / ZsPdBS7 P —a.s.. (5)
t

t

In general, there dose not exist a universal (Y, Z).



Assumptions on f

Assumptions on f:

f(t,w,y,2z): [0, T] x Qr x RZ - R

satisfies the following properties: There exists some 8 > 1 such

that
(H1) for any y,z, (-, y,2) € I\/lg(O, T);

(H2) [F(t,w,y,2) — F(t,w,y", 2)] < L{ly — y'| +]2 = 2]

for some L > 0.



What is a solution?

For simplicity, we denote by S2(0, T) the collection of processes
(Y,Z,K) such that Y € 52(0,T), Z € HZ(0,T), Kis a
decreasing G-martingale with Ko = 0 and K7 € L&(Q27).
Definition 8 Let & € L2(Q7) with 8> 1 and f satisfy (H1) and
(H2). A triplet of processes (Y, Z, K) is called a solution of

equation (3) if for some 1 < a < 3 the following properties hold:
(a) (Y,Z,K) e S0, T),

(b) Yi=¢&+ [T f(s, Yo, Z)ds — [ Z.dBs — (K7 — Ko).



Main results

Theorem 9 Assume that ¢ € L2(Q7) for some 8> 1 and f
satisfies (H1) and (H2). Then equation (3) has a unique solution
(Y, Z,K). Moreover, for any 1 < a < 3 we have Y € 5¢(0, T),
Z € H2(0, T) and Ky € L2(Q7).



Compared to 2BSDE(STZ12)

Soner, Touzi and Zhang [ 2012] have obtained an existence and
uniqueness theorem for a type of fully nonlinear BSDE, called
2BSDE. Their solution is (Y, Z, K”)peps:, which solves, for each
probability P € Pj;, the following BSDE

T T
Y, =¢ +/ F(s,Ys, Zs)ds — / Z.dB, — KY + KF, P—a.s.
t t
for which the following minimum condition is satisfied
P _ - P[P g K
K, = essplepl’?(ftﬁP)Et [K7], P-as., VPe Py, te[0,T].

In their paper the processes (Kp)pepﬁ are not able to be

"aggregated” into a "universal”’ K.



Differences from the classical BSDEs

© Since the structure of G-martingales is much more complicated
than that of the classical ones, we can not establish a contraction
mapping for equation (3).

o We apply the partition of unity theorem to construct a new type
of Galerkin approximation, in the place of the well-Known Picard
approximation and the related fixed point approach frequently used

in BSDE theory.



Main idea of the proof

o In order to prove the existence of equation (3), we start with the
simple case f(t,w,y,z) = h(y,z), £ = p(B7). Here h € C§°(R?),
¢ € Cy1ip(R?). For this case, we can obtain the solution of
equation (3) from the following nonlinear partial differential

equation:
Dot + G(O20) + h(u, du) = 0,u(T,x) = p(x). (6

© Based on some a priori estimates for equations (3) with different
generating functions, we approximate the solution of equation (3)
with more complicated f by those of equations (3) with much

simpler {f,}.



A priori estimates

o The following property for decreasing G-martingales is critical in
the proof to the a priori estimates.
Lemma 10 Let X € 5¢(0, T) for some o > 1 and o* = 5.

Assume that K/, j = 1,2, are two decreasing G-martingales with

Kj =0 and K, € LY (7). Then the process defined by

t t
/ X dK? + / X dK?
0 0

is also a decreasing G-martingale.



A priori estimates

Proposition 11 Assume that (Y, Z,K) € S&(0, T) for some
1 < a < B is a solution of equation (3). Then there exists

C,:=C(a, T,a,L) > 0 such that
VIS + 12117 + I1Krl2: < Ca{llfllne + €2},

where °(s) = |f(s,0,0)].



A priori estimates

Assume (Y, Z' K') € 8§2(0, T) for some 1 < o < 3 such that

=&+ /sts’, sc/s—/ ZidB, — Ki + Ki,

where £ € L2(Qr), f,,i = 1,2 satisfy (H1) and (H2).
Set YV, = Y} — Y2, 2, = Z! — 72 and K, = K} — K2.



A priori estimates

Proposition 12 (i) There exists C, := C(«, T, g, L;) > 0 such

that
12115 < CaflIVISe + IV ISEIAR NS + €M1 + RN + 1€21E4°T)-
(ii) There exists a constant C, := C(a, T, o, L;) > 0 such that
A ~ ~ T A
Vil < CRIG + [ [Epos Y
t

where £, = |fi(s, Y2, Z2) — fi(s, Y2, Z2)|.

s7%s s) s



A priori estimates

(iii) For any given o’ with av < o/ < f3, there exists a constant

Ca.or depending on a, o/, T, g, L such that
B[ sup |Vi°] < Coo{B[ sup E.[I€|]]
te[o,T] te[0,T]
T L A T ,
+ Bl sup B([ Eds) I)F + Bl sup BI([ Es)"I)
0 te[0,T] 0

tel0,T]
(8)



Sketch of the Proof to Theorem 9

By Proposition 12 we know that the solution is unique, and that
for the existence of the solution it suffices to consider £ € L;,(27).
Step 1. f(t,w,y,z) = h(y,z) with h € C5°(R?).

Step 2. f(t,w,y,z) =Y., fihi(y,z) with f € M2(0, T) and

h' e C5°(R?).

Step 3. f(t,w,y,z) =Y., fihi(y,z) with f € M2(0, T)
bounded and h' € C3°(R?), h >0and SN, b < 1.

Choose ' € M2(0, T) such that |f/| < |||« and

Sy Il = Fillyg < 1/n. Set f, = 3L, £1h(y, 2), which are

uniformly Lipschitz.



Sketch of the Proof to Theorem 9 (continued)

Step 4. f is bounded, Lipschitz. |f(t,w,y,z)| < Clgr)(y,z) for
some C,R > 0. Here B(R) = {(y, 2)|y* + 22 < R?*}.

For any n, by the partition of unity theorem, there exists {h } ",
such that hi € C5°(R?), the radius of support r(supp(h))< 1/n,
0<h <1, /B(R <Z, L hi < 1. Then

f(t,w,y,z) =S, f(t,w,y,z)hi. Choose y!, zi such that
hl(ym )>O Setf(twyv )_Z f(twyna )hl



Sketch of the Proof to Theorem 9 (continued)

Step 5. f is bounded, Lipschitz.

For any n € N, choose h” € Cs°(R?) such that lg,y < h" < Ig(nyi1)
and {h"} are uniformly Lipschitz w.r.t. n. Set f, = fh", which are
uniformly Lipschitz.

Step 6. For the general f.

Set f, = [f V (—n)] A n, which are uniformly Lipschitz.



Thank you!



