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G-normal distribution
� Normal distribution Dσ with variance σ: By Feynman-Kac

formula, we know that Dσ[ϕ] = v(1, 0). Here v is the solution of

the heat equation:

∂tv −
σ2

2
∂xxv = 0, v(0, x) = ϕ(x).

� G-Normal distribution:

∂tu − G (∂xxu) = 0, u(0, x) = ϕ(x),

where G (a) = 1
2

supσ∈[σ,σ](σ
2a).

Define DG (ϕ) = u(1, 0). Then

DG : Cb,Lip(R)→ R

is called G-Normal distribution.



Properties of G-normal distribution

� DG [ϕ] = D σ̄[ϕ], if ϕ is convex; DG [ϕ] = Dσ[ϕ], if ϕ is concave.

� Assume X is G -normally distributed and X̄ is an independent

copy of X , i.e., X̄
d
= X and X̄⊥X . Then we have, for each

a, b ≥ 0,

aX + bX̄
d
=
√
a2 + b2X . (1)



G-expectation

Definition 1 ΩT = C0([0,T ];R), the space of real valued

continuous functions on [0,T ] with ω0 = 0;

Bt(ω) = ωt : the canonical process;

Set Lip(ΩT ) := {ϕ(Bt1
, ...,Btn) : n ≥ 1, t1, ..., tn ∈ [0,T ], ϕ ∈

Cb,Lip(Rn)}. G -expectation is a sublinear expectation defined by

Ê[X ] = Ẽ[ϕ(
√
t1 − t0ξ1, · · ·,

√
tm − tm−1ξm)],

for all X = ϕ(Bt1
− Bt0

,Bt2
− Bt1

, · · ·,Btm − Btm−1
), where ξ1, · · ·, ξn

are i.i.d G -normally distributed random variables in a sublinear

expectation space (Ω̃, H̃, Ẽ).



Conditional G-expectation

Definition 2

Let us define the conditional G -expectation Êt of ξ ∈ H0
T knowing

H0
t , for t ∈ [0,T ]. Without loss of generality we can assume that ξ

has the representation ξ = ϕ(Bt1
− Bt0

,Bt2
− Bt1

, · · ·,Btm − Btm−1
)

with t = ti , for some 1 ≤ i ≤ m, and we put

Êti [ϕ(Bt1
− Bt0

,Bt2
− Bt1

, · · ·,Btm − Btm−1
)]

= ϕ̃(Bt1
− Bt0

,Bt2
− Bt1

, · · ·,Bti − Bti−1
),

where

ϕ̃(x1, · · ·, xi) = Ê[ϕ(x1, · · ·, xi ,Bti+1
− Bti , · · ·,Btm − Btm−1

)].



Representation of G-expectation

Theorem 3[DHP11] There exists a tight subset P ⊂M1(ΩT ), the

set of probability measures on (ΩT ,B(ΩT )), such that

Ê[ξ] = sup
P∈P

EP [ξ] for all ξ ∈ Lip(ΩT ).



G -martingales

Definition 4 A process {Mt} with values in L1
G (ΩT ) is called a

G -martingale if Ês(Mt) = Ms for any s ≤ t. If {Mt} and {−Mt}

are both G -martingales, we call {Mt} a symmetric G -martingale.

{Mt} is symmetric ⇐⇒ Ê (MT ) + Ê (−MT ) = 0.

• For any Z ∈ M2
G (0,T ), Mt =

∫ t

0
ZsdBs is a symmetric

G -martingale.

� Problem : Does any symmetric G -martingale have the above

representation?



Representation of G -martingales

Theorem 5 ([P07]) For all ξ = ϕ(Bt1
− Bt0

, · · ·,Btn − Btn−1
) ∈ H0

T ,

we have the following representation:

ξ = Ê (ξ) +

∫ T

0

ZtdBt +

∫ T

0

ηtd〈B〉t −
∫ T

0

2G (ηt)dt.

where Z ∈ M2
G (0,T ) and η ∈ M1

G (0,T ).

� G (a) = 1
2
[σ2a+ − σ2a−];

� Kt :=
∫ t

0
ηsd〈B〉s −

∫ t

0
2G (ηs)ds is continuous and nonincreasing!

� Kt ≡ 0 if the G -expectation reduces to the classical linear

case(σ = σ).



Decomposition of G -martingales

[STZ11] and [Song11] generalized Peng’s result.

Theorem 6 [Song11]For ξ ∈ LβG (ΩT ) with some β > 1,

Xt = Êt(ξ), t ∈ [0,T ] has the following decomposition:

Xt = X0 +

∫ t

0

ZsdBs + Kt , q.s.

where {Zt} ∈ Hα
G (0,T ) and {Kt} is a continuous decreasing

G-martingale with K0 = 0, KT ∈ LαG (ΩT ) for any 1 ≤ α < β.

Theorem 7 [Song11]Let ξ ∈ LβG (ΩT ) for some β > 1 with

Ê (ξ) + Ê (−ξ) = 0. Then there exists {Zt}t∈[0,T ] ∈ Hβ
G (0,T ) such

that

ξ = Ê (ξ) +

∫ T

0

ZsdBs .



Classical Backward SDES
A typical classical Backward SDE is defined on a filtered

probability space (Ω,F ,F,P) in which Bt(ω) = ωt is a standard

BM with its natural filtration F = (Ft)t≥0. The problem is to find

a solution consisting of a pair of F-adapted processes (Y ,Z )

satisfying the following BSDE

Yt = ξ +

∫ T

t

g(s,Ys ,Zs)ds −
∫ T

t

ZsdBs , (2)

where g is a given function, called the generator, and ξ is a given

FT -measurable random variable called the terminal condition of

the BSDE.

Linear BSDE was introduced by Bismut(1973) . The existence and

uniqueness theorem of nonlinear BSDEs (with Lipschitz condition

of g in (y , z) was obtained in Pardoux & Peng (1990).



BSDEs driven by G-BM(GBSDE for short)

To find processes (Y ,Z ,K ) satisfying

Yt = ξ +

∫ T

t

f (s,Ys ,Zs)ds −
∫ T

t

ZsdBs − (KT − Kt), (3)

where K is a decreasing G -martingale.

Why not consider BSDE in the following form?

Yt = ξ +

∫ T

t

f (s,Ys ,Zs)ds −
∫ T

t

ZsdBs . (4)

Generally, the equation above does not have a solution.

Y P
t = ξ +

∫ T

t

f (s,Y P
s ,Z

P
s )ds −

∫ T

t

ZP
s dBs , P − a.s.. (5)

In general, there dose not exist a universal (Y ,Z ).



Assumptions on f

Assumptions on f :

f (t, ω, y , z) : [0,T ]× ΩT × R2 → R

satisfies the following properties: There exists some β > 1 such

that

(H1) for any y , z , f (·, ·, y , z) ∈ Mβ
G (0,T );

(H2) |f (t, ω, y , z)− f (t, ω, y ′, z ′)| ≤ L(|y − y ′|+ |z − z ′|)

for some L > 0.



What is a solution?

For simplicity, we denote by SαG (0,T ) the collection of processes

(Y ,Z ,K ) such that Y ∈ SαG (0,T ), Z ∈ Hα
G (0,T ), K is a

decreasing G -martingale with K0 = 0 and KT ∈ LαG (ΩT ).

Definition 8 Let ξ ∈ LβG (ΩT ) with β > 1 and f satisfy (H1) and

(H2). A triplet of processes (Y ,Z ,K ) is called a solution of

equation (3) if for some 1 < α ≤ β the following properties hold:

(a) (Y ,Z ,K ) ∈ SαG (0,T );

(b) Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdBs − (KT − Kt).



Main results

Theorem 9 Assume that ξ ∈ LβG (ΩT ) for some β > 1 and f

satisfies (H1) and (H2). Then equation (3) has a unique solution

(Y ,Z ,K ). Moreover, for any 1 < α < β we have Y ∈ SαG (0,T ),

Z ∈ Hα
G (0,T ) and KT ∈ LαG (ΩT ).



Compared to 2BSDE(STZ12)

Soner, Touzi and Zhang [ 2012] have obtained an existence and

uniqueness theorem for a type of fully nonlinear BSDE, called

2BSDE. Their solution is (Y ,Z ,KP)P∈Pκ
H

, which solves, for each

probability P ∈ PκH , the following BSDE

Yt = ξ +

∫ T

t

F (s,Ys ,Zs)ds −
∫ T

t

ZsdBs − KP
T + KP

t , P − a.s.

for which the following minimum condition is satisfied

KP
t = ess inf

P′∈Pκ
H (t+,P)

EP′
t [KP

T ], P-a.s., ∀P ∈ PκH , t ∈ [0,T ].

In their paper the processes (KP)P∈Pκ
H

are not able to be

”aggregated” into a ”universal” K .



Differences from the classical BSDEs

� Since the structure of G-martingales is much more complicated

than that of the classical ones, we can not establish a contraction

mapping for equation (3).

� We apply the partition of unity theorem to construct a new type

of Galerkin approximation, in the place of the well-Known Picard

approximation and the related fixed point approach frequently used

in BSDE theory.



Main idea of the proof

� In order to prove the existence of equation (3), we start with the

simple case f (t, ω, y , z) = h(y , z), ξ = ϕ(BT ). Here h ∈ C∞0 (R2),

ϕ ∈ Cb.Lip(R2). For this case, we can obtain the solution of

equation (3) from the following nonlinear partial differential

equation:

∂tu + G (∂2
xxu) + h(u, ∂xu) = 0, u(T , x) = ϕ(x). (6)

� Based on some a priori estimates for equations (3) with different

generating functions, we approximate the solution of equation (3)

with more complicated f by those of equations (3) with much

simpler {fn}.



A priori estimates

� The following property for decreasing G-martingales is critical in

the proof to the a priori estimates.

Lemma 10 Let X ∈ SαG (0,T ) for some α > 1 and α∗ = α
α−1

.

Assume that K j , j = 1, 2, are two decreasing G -martingales with

K j
0 = 0 and K j

T ∈ Lα
∗

G (ΩT ). Then the process defined by∫ t

0

X+
s dK 1

s +

∫ t

0

X−s dK 2
s

is also a decreasing G -martingale.



A priori estimates

Proposition 11 Assume that (Y ,Z ,K ) ∈ SαG (0,T ) for some

1 < α < β is a solution of equation (3). Then there exists

Cα := C (α,T , σ, L) > 0 such that

‖Y ‖αSα
G

+ ‖Z‖αHα
G

+ ‖KT‖αLα
G
≤ Cα{‖f 0‖αMα

E
+ ‖ξ‖αLα

E
},

where f 0(s) = |f (s, 0, 0)|.



A priori estimates

Assume (Y i ,Z i ,K i) ∈ SαG (0,T ) for some 1 < α < β such that

Y i
t = ξi +

∫ T

t

fi(s,Y
i
s ,Z

i
s )ds −

∫ T

t

Z i
sdBs − K i

T + K i
t ,

where ξi ∈ LβG (ΩT ), fi , i = 1, 2 satisfy (H1) and (H2).

Set Ŷt = Y 1
t − Y 2

t , Ẑt = Z 1
t − Z 2

t and K̂t = K 1
t − K 2

t .



A priori estimates

Proposition 12 (i) There exists Cα := C (α,T , σ, L1) > 0 such

that

‖Ẑ‖αHα
G
≤ Cα{‖Ŷ ‖αSα

G
+ ‖Ŷ ‖α/2

Sα
G

[‖f 0
1 ‖

α/2
Mα
E

+ ‖ξ1‖α/2
Lα
E

+ ‖f 0
2 ‖

α/2
Mα
E

+ ‖ξ2‖α/2
Lα
E

]}.

(ii) There exists a constant Cα := C (α,T , σ, L1) > 0 such that

|Ŷt |α ≤ CαÊt [|ξ̂|α +

∫ T

t

|f̂s |αds], (7)

where f̂s = |f1(s,Y 2
s ,Z

2
s )− f2(s,Y 2

s ,Z
2
s )|.



A priori estimates

(iii) For any given α′ with α < α′ < β, there exists a constant

Cα,α′ depending on α, α′, T , σ, L such that

Ê[ sup
t∈[0,T ]

|Ŷt |α] ≤ Cα,α′{Ê[ sup
t∈[0,T ]

Êt [|ξ̂|α]]

+ (Ê[ sup
t∈[0,T ]

Êt [(

∫ T

0

f̂sds)α
′
]])

α
α′ + Ê[ sup

t∈[0,T ]

Êt [(

∫ T

0

f̂sds)α
′
]]}.

(8)



Sketch of the Proof to Theorem 9

By Proposition 12 we know that the solution is unique, and that

for the existence of the solution it suffices to consider ξ ∈ Lip(ΩT ).

Step 1. f (t, ω, y , z) = h(y , z) with h ∈ C∞0 (R2).

Step 2. f (t, ω, y , z) =
∑N

i=1 f
ihi(y , z) with f i ∈ M0

G (0,T ) and

hi ∈ C∞0 (R2).

Step 3. f (t, ω, y , z) =
∑N

i=1 f
ihi(y , z) with f i ∈ Mβ

G (0,T )

bounded and hi ∈ C∞0 (R2), hi ≥ 0 and
∑N

i=1 h
i ≤ 1.

Choose f in ∈ M0
G (0,T ) such that |f in | ≤ ‖f i‖∞ and∑N

i=1 ‖f in − f i‖Mβ
G
< 1/n. Set fn =

∑N
i=1 f

i
nh

i(y , z), which are

uniformly Lipschitz.



Sketch of the Proof to Theorem 9 (continued)

Step 4. f is bounded, Lipschitz. |f (t, ω, y , z)| ≤ CIB(R)(y , z) for

some C ,R > 0. Here B(R) = {(y , z)|y 2 + z2 ≤ R2}.

For any n, by the partition of unity theorem, there exists {hi
n}

Nn

i=1

such that hi
n ∈ C∞0 (R2), the radius of support r(supp(hi

n))< 1/n,

0 ≤ hi
n ≤ 1, IB(R) ≤

∑N
i=1 h

i
n ≤ 1. Then

f (t, ω, y , z) =
∑N

i=1 f (t, ω, y , z)hi
n. Choose y i

n, z
i
n such that

hi
n(y i

n, z
i
n) > 0. Set fn(t, ω, y , z) =

∑N
i=1 f (t, ω, y i

n, z
i
n)hi

n.



Sketch of the Proof to Theorem 9 (continued)

Step 5. f is bounded, Lipschitz.

For any n ∈ N, choose hn ∈ C∞0 (R2) such that IB(n) ≤ hn ≤ IB(n+1)

and {hn} are uniformly Lipschitz w.r.t. n. Set fn = fhn, which are

uniformly Lipschitz.

Step 6. For the general f .

Set fn = [f ∨ (−n)] ∧ n, which are uniformly Lipschitz.



Thank you!


