Backward SDEs Driven by G-Brownian Motion

Yongsheng Song Chinese Academy of Sciences, Beijing, China

Based on a joint work with M. Hu, S. Ji and S. Peng. $July,\ 2012$

(日) (四) (포) (포) (포) (포)

G-normal distribution

 \diamond Normal distribution D^{σ} with variance σ : By Feynman-Kac formula, we know that $D^{\sigma}[\varphi] = v(1,0)$. Here v is the solution of the heat equation:

$$\partial_t v - \frac{\sigma^2}{2} \partial_{xx} v = 0, v(0, x) = \varphi(x).$$

◊ G-Normal distribution:

$$\partial_t u - G(\partial_{xx} u) = 0, u(0, x) = \varphi(x),$$

where $G(a) = \frac{1}{2} \sup_{\sigma \in [\underline{\sigma}, \overline{\sigma}]} (\sigma^2 a)$. Define $D^{\mathcal{G}}(\varphi) = u(1, 0)$. Then

$$D^G: C_{b,Lip}(R) \to R$$

is called G-Normal distribution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\diamond D^{G}[\varphi] = D^{\overline{\sigma}}[\varphi]$, if φ is convex; $D^{G}[\varphi] = D^{\underline{\sigma}}[\varphi]$, if φ is concave. \diamond Assume X is G-normally distributed and \overline{X} is an independent copy of X, i.e., $\overline{X} \stackrel{d}{=} X$ and $\overline{X} \perp X$. Then we have, for each $a, b \ge 0$,

$$aX + b\bar{X} \stackrel{d}{=} \sqrt{a^2 + b^2}X.$$
 (1)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

G-expectation

Definition 1 $\Omega_T = C_0([0, T]; \mathbb{R})$, the space of real valued continuous functions on [0, T] with $\omega_0 = 0$; $B_t(\omega) = \omega_t$: the canonical process; Set $L_{in}(\Omega_T) := \{ \varphi(B_{t_1}, ..., B_{t_n}) : n \ge 1, t_1, ..., t_n \in [0, T], \varphi \in \mathbb{N} \}$ $C_{b,Lip}(\mathbb{R}^n)$. G-expectation is a sublinear expectation defined by $\hat{\mathbb{E}}[X] = \tilde{\mathbb{E}}[\varphi(\sqrt{t_1 - t_0}\xi_1, \cdots, \sqrt{t_m - t_{m-1}}\xi_m)],$ for all $X = \varphi(B_{t_1} - B_{t_2}, B_{t_2} - B_{t_1}, \dots, B_{t_m} - B_{t_{m-1}})$, where ξ_1, \dots, ξ_n are i.i.d G-normally distributed random variables in a sublinear expectation space $(\tilde{\Omega}, \tilde{\mathcal{H}}, \tilde{\mathbb{E}})$.

Conditional G-expectation

Definition 2

Let us define the conditional *G*-expectation $\hat{\mathbb{E}}_t$ of $\xi \in \mathcal{H}_T^0$ knowing \mathcal{H}_t^0 , for $t \in [0, T]$. Without loss of generality we can assume that ξ has the representation $\xi = \varphi(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \cdots, B_{t_m} - B_{t_{m-1}})$ with $t = t_i$, for some $1 \leq i \leq m$, and we put

$$\hat{\mathbb{E}}_{t_i}[arphi(B_{t_1}-B_{t_0},B_{t_2}-B_{t_1},\cdot\cdot\cdot,B_{t_m}-B_{t_{m-1}})]$$

$$= \tilde{\varphi}(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \cdots, B_{t_i} - B_{t_{i-1}}),$$

where

$$\widetilde{\varphi}(x_1, \cdots, x_i) = \widehat{\mathbb{E}}[\varphi(x_1, \cdots, x_i, B_{t_{i+1}} - B_{t_i}, \cdots, B_{t_m} - B_{t_{m-1}})].$$

Theorem 3[DHP11] There exists a tight subset $\mathcal{P} \subset \mathcal{M}_1(\Omega_T)$, the set of probability measures on $(\Omega_T, \mathcal{B}(\Omega_T))$, such that

$$\hat{\mathbb{E}}[\xi] = \sup_{P \in \mathcal{P}} E_P[\xi]$$
 for all $\xi \in L_{ip}(\Omega_T)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition 4 A process $\{M_t\}$ with values in $L^1_G(\Omega_T)$ is called a *G*-martingale if $\hat{E}_s(M_t) = M_s$ for any $s \le t$. If $\{M_t\}$ and $\{-M_t\}$ are both *G*-martingales, we call $\{M_t\}$ a symmetric *G*-martingale. $\{M_t\}$ is symmetric $\iff \hat{E}(M_T) + \hat{E}(-M_T) = 0$. • For any $Z \in M^2_G(0, T)$, $M_t = \int_0^t Z_s dB_s$ is a symmetric *G*-martingale.

◇ Problem : Does any symmetric G-martingale have the above representation?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Theorem 5 ([P07]) For all $\xi = \varphi(B_{t_1} - B_{t_0}, \dots, B_{t_n} - B_{t_{n-1}}) \in \mathcal{H}^0_T$, we have the following representation:

$$\xi = \hat{E}(\xi) + \int_0^T Z_t dB_t + \int_0^T \eta_t d\langle B \rangle_t - \int_0^T 2G(\eta_t) dt.$$

where $Z \in M_G^2(0, T)$ and $\eta \in M_G^1(0, T)$.
 $\diamond G(a) = \frac{1}{2} [\overline{\sigma}^2 a^+ - \underline{\sigma}^2 a^-];$
 $\diamond K_t := \int_0^t \eta_s d\langle B \rangle_s - \int_0^t 2G(\eta_s) ds$ is continuous and nonincreasing!
 $\diamond K_t \equiv 0$ if the *G*-expectation reduces to the classical linear case($\overline{\sigma} = \underline{\sigma}$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Decomposition of *G*-martingales

[STZ11] and [Song11] generalized Peng's result. **Theorem 6** [Song11]For $\xi \in L_G^{\beta}(\Omega_T)$ with some $\beta > 1$, $X_t = \hat{E}_t(\xi), t \in [0, T]$ has the following decomposition:

$$X_t = X_0 + \int_0^t Z_s dB_s + K_t, \ q.s.$$

where $\{Z_t\} \in H_G^{\alpha}(0, T)$ and $\{K_t\}$ is a continuous decreasing G-martingale with $K_0 = 0$, $K_T \in L_G^{\alpha}(\Omega_T)$ for any $1 \le \alpha < \beta$. **Theorem 7** [Song11]Let $\xi \in L_G^{\beta}(\Omega_T)$ for some $\beta > 1$ with $\hat{E}(\xi) + \hat{E}(-\xi) = 0$. Then there exists $\{Z_t\}_{t \in [0,T]} \in H_G^{\beta}(0,T)$ such that

$$\xi = \hat{E}(\xi) + \int_0^T Z_s dB_s.$$

Classical Backward SDES

A typical classical Backward SDE is defined on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ in which $B_t(\omega) = \omega_t$ is a standard BM with its natural filtration $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$. The problem is to find a solution consisting of a pair of \mathbb{F} -adapted processes (Y, Z)satisfying the following BSDE

$$Y_t = \xi + \int_t^T g(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \qquad (2)$$

where g is a given function, called the generator, and ξ is a given \mathcal{F}_{T} -measurable random variable called the terminal condition of the BSDE.

Linear BSDE was introduced by Bismut(1973). The existence and uniqueness theorem of nonlinear BSDEs (with Lipschitz condition of g in (y, z) was obtained in Pardoux & Peng (1990).

BSDEs driven by G-BM(GBSDE for short)

To find processes (Y, Z, K) satisfying

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds - \int_{t}^{T} Z_{s} dB_{s} - (K_{T} - K_{t}), \quad (3)$$

where K is a decreasing G-martingale.

Why not consider BSDE in the following form?

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s.$$
(4)

Generally, the equation above does not have a solution.

$$Y_{t}^{P} = \xi + \int_{t}^{T} f(s, Y_{s}^{P}, Z_{s}^{P}) ds - \int_{t}^{T} Z_{s}^{P} dB_{s}, P - a.s..$$
(5)

In general, there dose not exist a universal (Y, Z).

Assumptions on *f*:

$$f(t, \omega, y, z) : [0, T] \times \Omega_T \times \mathbb{R}^2 \to \mathbb{R}$$

satisfies the following properties: There exists some $\beta>1$ such that

(H1) for any
$$y, z, f(\cdot, \cdot, y, z) \in M_G^{\beta}(0, T)$$
;
(H2) $|f(t, \omega, y, z) - f(t, \omega, y', z')| \le L(|y - y'| + |z - z'|)$
for some $L > 0$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

For simplicity, we denote by $S_G^{\alpha}(0, T)$ the collection of processes (Y, Z, K) such that $Y \in S_G^{\alpha}(0, T)$, $Z \in H_G^{\alpha}(0, T)$, K is a decreasing *G*-martingale with $K_0 = 0$ and $K_T \in L_G^{\alpha}(\Omega_T)$. **Definition 8** Let $\xi \in L_G^{\beta}(\Omega_T)$ with $\beta > 1$ and f satisfy (H1) and (H2). A triplet of processes (Y, Z, K) is called a solution of equation (3) if for some $1 < \alpha \leq \beta$ the following properties hold:

(a)
$$(Y, Z, K) \in S_G^{\alpha}(0, T);$$

(b) $Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s - (K_T - K_t).$

Theorem 9 Assume that $\xi \in L^{\beta}_{G}(\Omega_{T})$ for some $\beta > 1$ and f satisfies (H1) and (H2). Then equation (3) has a unique solution (Y, Z, K). Moreover, for any $1 < \alpha < \beta$ we have $Y \in S^{\alpha}_{G}(0, T)$, $Z \in H^{\alpha}_{G}(0, T)$ and $K_{T} \in L^{\alpha}_{G}(\Omega_{T})$.

Compared to 2BSDE(STZ12)

Soner, Touzi and Zhang [2012] have obtained an existence and uniqueness theorem for a type of fully nonlinear BSDE, called 2BSDE. Their solution is $(Y, Z, K^P)_{P \in \mathcal{P}_H^\kappa}$, which solves, for each probability $P \in \mathcal{P}_H^\kappa$, the following BSDE

$$Y_t = \xi + \int_t^T F(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s - K_T^P + K_t^P, \ P - a.s.$$

for which the following minimum condition is satisfied

$$\mathcal{K}^{\mathbb{P}}_{t} = \mathrm{ess}\inf_{\mathbb{P}' \in \mathcal{P}^{\kappa}_{H}(t+,\mathbb{P})} \mathbb{E}^{\mathbb{P}'}_{t}[\mathcal{K}^{\mathbb{P}}_{T}], \quad \mathbb{P}\text{-a.s.}, \quad \forall \mathbb{P} \in \mathcal{P}^{\kappa}_{H}, \ t \in [0, T].$$

In their paper the processes $(K^P)_{P \in \mathcal{P}_H^\kappa}$ are not able to be "aggregated" into a "universal" K.

- \diamond Since the structure of G-martingales is much more complicated than that of the classical ones, we can not establish a contraction mapping for equation (3).
- ◊ We apply the partition of unity theorem to construct a new type of Galerkin approximation, in the place of the well-Known Picard approximation and the related fixed point approach frequently used in BSDE theory.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Main idea of the proof

♦ In order to prove the existence of equation (3), we start with the simple case $f(t, \omega, y, z) = h(y, z)$, $\xi = \varphi(B_T)$. Here $h \in C_0^{\infty}(\mathbb{R}^2)$, $\varphi \in C_{b.Lip}(\mathbb{R}^2)$. For this case, we can obtain the solution of equation (3) from the following nonlinear partial differential equation:

$$\partial_t u + G(\partial_{xx}^2 u) + h(u, \partial_x u) = 0, u(T, x) = \varphi(x).$$
(6)

 \diamond Based on some a priori estimates for equations (3) with different generating functions, we approximate the solution of equation (3) with more complicated f by those of equations (3) with much simpler $\{f_n\}$. ◇ The following property for decreasing G-martingales is critical in the proof to the a priori estimates.

Lemma 10 Let $X \in S_G^{\alpha}(0, T)$ for some $\alpha > 1$ and $\alpha^* = \frac{\alpha}{\alpha-1}$. Assume that K^j , j = 1, 2, are two decreasing *G*-martingales with $K_0^j = 0$ and $K_T^j \in L_G^{\alpha^*}(\Omega_T)$. Then the process defined by

$$\int_0^t X_s^+ dK_s^1 + \int_0^t X_s^- dK_s^2$$

(ロ) (部) (注) (注) (注)

is also a decreasing G-martingale.

Proposition 11 Assume that $(Y, Z, K) \in \mathcal{S}^{\alpha}_{G}(0, T)$ for some $1 < \alpha < \beta$ is a solution of equation (3). Then there exists $C_{\alpha} := C(\alpha, T, \underline{\sigma}, L) > 0$ such that

$$\|Y\|_{S_{G}^{\alpha}}^{\alpha}+\|Z\|_{H_{G}^{\alpha}}^{\alpha}+\|K_{T}\|_{L_{G}^{\alpha}}^{\alpha}\leq C_{\alpha}\{\|f^{0}\|_{M_{\mathcal{E}}^{\alpha}}^{\alpha}+\|\xi\|_{L_{\mathcal{E}}^{\alpha}}^{\alpha}\},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

where $f^{0}(s) = |f(s, 0, 0)|$.

Assume $(Y^i, Z^i, K^i) \in S^{\alpha}_{G}(0, T)$ for some $1 < \alpha < \beta$ such that

$$Y_{t}^{i} = \xi^{i} + \int_{t}^{T} f_{i}(s, Y_{s}^{i}, Z_{s}^{i}) ds - \int_{t}^{T} Z_{s}^{i} dB_{s} - K_{T}^{i} + K_{t}^{i},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

where $\xi' \in L^{\wp}_{G}(\Omega_{T})$, f_{i} , i = 1, 2 satisfy (H1) and (H2). Set $\hat{Y}_{t} = Y_{t}^{1} - Y_{t}^{2}$, $\hat{Z}_{t} = Z_{t}^{1} - Z_{t}^{2}$ and $\hat{K}_{t} = K_{t}^{1} - K_{t}^{2}$. **Proposition 12** (i) There exists $C_{\alpha} := C(\alpha, T, \underline{\sigma}, L_1) > 0$ such that

$$\|\hat{Z}\|_{\mathcal{H}^{\alpha}_{G}}^{\alpha} \leq C_{\alpha}\{\|\hat{Y}\|_{\mathcal{S}^{\alpha}_{G}}^{\alpha} + \|\hat{Y}\|_{\mathcal{S}^{\alpha}_{G}}^{\alpha/2}[\|f_{1}^{0}\|_{\mathcal{M}^{\alpha}_{\mathcal{E}}}^{\alpha/2} + \|\xi^{1}\|_{L^{\alpha}_{\mathcal{E}}}^{\alpha/2} + \|f_{2}^{0}\|_{\mathcal{M}^{\alpha}_{\mathcal{E}}}^{\alpha/2} + \|\xi^{2}\|_{L^{\alpha}_{\mathcal{E}}}^{\alpha/2}]\}.$$

(ii) There exists a constant $\mathcal{C}_{lpha}:=\mathcal{C}(lpha,\mathcal{T},\underline{\sigma},\mathcal{L}_1)>0$ such that

$$|\hat{Y}_t|^{\alpha} \le C_{\alpha} \hat{\mathbb{E}}_t[|\hat{\xi}|^{\alpha} + \int_t^T |\hat{f}_s|^{\alpha} ds],$$
(7)

where $\hat{f}_s = |f_1(s, Y_s^2, Z_s^2) - f_2(s, Y_s^2, Z_s^2)|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(iii) For any given α' with $\alpha < \alpha' < \beta$, there exists a constant $C_{\alpha,\alpha'}$ depending on α , α' , T, $\underline{\sigma}$, L such that

$$\hat{\mathbb{E}}\begin{bmatrix}\sup_{t\in[0,T]}|\hat{Y}_{t}|^{\alpha}\end{bmatrix} \leq C_{\alpha,\alpha'}\{\hat{\mathbb{E}}[\sup_{t\in[0,T]}\hat{\mathbb{E}}_{t}[|\hat{\xi}|^{\alpha}]] \\
+ (\hat{\mathbb{E}}[\sup_{t\in[0,T]}\hat{\mathbb{E}}_{t}[(\int_{0}^{T}\hat{f}_{s}ds)^{\alpha'}]])^{\frac{\alpha}{\alpha'}} + \hat{\mathbb{E}}[\sup_{t\in[0,T]}\hat{\mathbb{E}}_{t}[(\int_{0}^{T}\hat{f}_{s}ds)^{\alpha'}]]\}$$
(8)

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

By Proposition 12 we know that the solution is unique, and that for the existence of the solution it suffices to consider $\xi \in L_{ip}(\Omega_T)$. Step 1. $f(t, \omega, y, z) = h(y, z)$ with $h \in C_0^{\infty}(\mathbb{R}^2)$. Step 2. $f(t, \omega, y, z) = \sum_{i=1}^{N} f^i h^i(y, z)$ with $f^i \in M^0_G(0, T)$ and $h^i \in C_0^\infty(\mathbb{R}^2).$ Step 3. $f(t, \omega, y, z) = \sum_{i=1}^{N} f^{i} h^{i}(y, z)$ with $f^{i} \in M_{G}^{\beta}(0, T)$ bounded and $h^i \in C_0^{\infty}(\mathbb{R}^2)$, $h^i > 0$ and $\sum_{i=1}^N h^i < 1$. Choose $f_n^i \in M_G^0(0,T)$ such that $|f_n^i| \leq ||f^i||_{\infty}$ and $\sum_{i=1}^{N} \|f_n^i - f^i\|_{M^{\beta}} < 1/n$. Set $f_n = \sum_{i=1}^{N} f_n^i h^i(y, z)$, which are uniformly Lipschitz.

Step 4. f is bounded, Lipschitz. $|f(t, \omega, y, z)| \leq Cl_{B(R)}(y, z)$ for some C, R > 0. Here $B(R) = \{(y, z)|y^2 + z^2 \leq R^2\}$. For any n, by the partition of unity theorem, there exists $\{h_n^i\}_{i=1}^{N_n}$ such that $h_n^i \in C_0^{\infty}(\mathbb{R}^2)$, the radius of support $r(\operatorname{supp}(h_n^i)) < 1/n$, $0 \leq h_n^i \leq 1$, $I_{B(R)} \leq \sum_{i=1}^N h_n^i \leq 1$. Then $f(t, \omega, y, z) = \sum_{i=1}^N f(t, \omega, y, z)h_n^i$. Choose y_n^i, z_n^i such that $h_n^i(y_n^i, z_n^i) > 0$. Set $f_n(t, \omega, y, z) = \sum_{i=1}^N f(t, \omega, y_n^i, z_n^i)h_n^i$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Step 5. f is bounded, Lipschitz.

For any $n \in \mathbb{N}$, choose $h^n \in C_0^{\infty}(\mathbb{R}^2)$ such that $I_{B(n)} \leq h^n \leq I_{B(n+1)}$ and $\{h^n\}$ are uniformly Lipschitz w.r.t. n. Set $f_n = fh^n$, which are uniformly Lipschitz.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Step 6. For the general f.

Set $f_n = [f \lor (-n)] \land n$, which are uniformly Lipschitz.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで