Backward SDEs Driven by G-Brownian Motion

Yongsheng Song

Chinese Academy of Sciences, Beijing, China

Based on a joint work with M. Hu, S. Ji and S. Peng.

$$
\text { July, } 2012
$$

G-normal distribution

\diamond Normal distribution D^{σ} with variance σ : By Feynman-Kac formula, we know that $D^{\sigma}[\varphi]=v(1,0)$. Here v is the solution of the heat equation:

$$
\partial_{t} v-\frac{\sigma^{2}}{2} \partial_{x x} v=0, v(0, x)=\varphi(x)
$$

\diamond G-Normal distribution:

$$
\partial_{t} u-G\left(\partial_{x x} u\right)=0, u(0, x)=\varphi(x),
$$

where $G(a)=\frac{1}{2} \sup _{\sigma \in[\sigma, \bar{\sigma}]}\left(\sigma^{2} a\right)$.
Define $D^{G}(\varphi)=u(1,0)$. Then

$$
D^{G}: C_{b, L i p}(R) \rightarrow R
$$

is called G-Normal distribution.

Properties of G－normal distribution

$\diamond D^{G}[\varphi]=D^{\bar{\sigma}}[\varphi]$ ，if φ is convex；$D^{G}[\varphi]=D^{\sigma}[\varphi]$ ，if φ is concave．
\diamond Assume X is G－normally distributed and \bar{X} is an independent copy of X ，i．e．， $\bar{X} \stackrel{d}{=} X$ and $\bar{X} \perp X$ ．Then we have，for each $a, b \geq 0$ ，

$$
\begin{equation*}
a X+b \bar{X} \stackrel{d}{=} \sqrt{a^{2}+b^{2}} X . \tag{1}
\end{equation*}
$$

G-expectation

Definition $1 \Omega_{T}=C_{0}([0, T] ; \mathbb{R})$, the space of real valued continuous functions on $[0, T]$ with $\omega_{0}=0$;
$B_{t}(\omega)=\omega_{t}$: the canonical process;
Set $L_{i p}\left(\Omega_{T}\right):=\left\{\varphi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right): n \geq 1, t_{1}, \ldots, t_{n} \in[0, T], \varphi \in\right.$
$\left.C_{b, L i p}\left(\mathbb{R}^{n}\right)\right\}$. G-expectation is a sublinear expectation defined by

$$
\hat{\mathbb{E}}[X]=\tilde{\mathbb{E}}\left[\varphi\left(\sqrt{t_{1}-t_{0}} \xi_{1}, \cdots, \sqrt{t_{m}-t_{m-1}} \xi_{m}\right)\right]
$$

for all $X=\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)$, where ξ_{1}, \cdots, ξ_{n}
are i.i.d G-normally distributed random variables in a sublinear expectation space $(\tilde{\Omega}, \tilde{\mathcal{H}}, \tilde{\mathbb{E}})$.

Conditional G-expectation

Definition 2

Let us define the conditional G-expectation $\hat{\mathbb{E}}_{t}$ of $\xi \in \mathcal{H}_{T}^{0}$ knowing \mathcal{H}_{t}^{0}, for $t \in[0, T]$. Without loss of generality we can assume that ξ has the representation $\xi=\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)$ with $t=t_{i}$, for some $1 \leq i \leq m$, and we put

$$
\begin{aligned}
& \hat{\mathbb{E}}_{t_{i}}\left[\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)\right] \\
& \quad=\tilde{\varphi}\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{i}}-B_{t_{i-1}}\right)
\end{aligned}
$$

where

$$
\tilde{\varphi}\left(x_{1}, \cdots, x_{i}\right)=\hat{\mathbb{E}}\left[\varphi\left(x_{1}, \cdots, x_{i}, B_{t_{i+1}}-B_{t_{i}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)\right] .
$$

Representation of G-expectation

Theorem 3[DHP11] There exists a tight subset $\mathcal{P} \subset \mathcal{M}_{1}\left(\Omega_{T}\right)$, the set of probability measures on $\left(\Omega_{T}, \mathcal{B}\left(\Omega_{T}\right)\right)$, such that

$$
\hat{\mathbb{E}}[\xi]=\sup _{P \in \mathcal{P}} E_{P}[\xi] \text { for all } \xi \in L_{i p}\left(\Omega_{T}\right)
$$

G-martingales

Definition 4 A process $\left\{M_{t}\right\}$ with values in $L_{G}^{1}\left(\Omega_{T}\right)$ is called a G-martingale if $\hat{E}_{s}\left(M_{t}\right)=M_{s}$ for any $s \leq t$. If $\left\{M_{t}\right\}$ and $\left\{-M_{t}\right\}$ are both G-martingales, we call $\left\{M_{t}\right\}$ a symmetric G-martingale. $\left\{M_{t}\right\}$ is symmetric $\Longleftrightarrow \hat{E}\left(M_{T}\right)+\hat{E}\left(-M_{T}\right)=0$.

- For any $Z \in M_{G}^{2}(0, T), M_{t}=\int_{0}^{t} Z_{s} d B_{s}$ is a symmetric G-martingale.
\diamond Problem : Does any symmetric G-martingale have the above representation?

Representation of G-martingales

Theorem 5 ([P07]) For all $\xi=\varphi\left(B_{t_{1}}-B_{t_{0}}, \cdots, B_{t_{n}}-B_{t_{n-1}}\right) \in \mathcal{H}_{T}^{0}$, we have the following representation:

$$
\xi=\hat{E}(\xi)+\int_{0}^{T} Z_{t} d B_{t}+\int_{0}^{T} \eta_{t} d\langle B\rangle_{t}-\int_{0}^{T} 2 G\left(\eta_{t}\right) d t
$$

where $Z \in M_{G}^{2}(0, T)$ and $\eta \in M_{G}^{1}(0, T)$.
$\diamond G(a)=\frac{1}{2}\left[\bar{\sigma}^{2} a^{+}-\underline{\sigma}^{2} a^{-}\right] ;$
$\diamond K_{t}:=\int_{0}^{t} \eta_{s} d\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\eta_{s}\right) d s$ is continuous and nonincreasing!
$\diamond K_{t} \equiv 0$ if the G-expectation reduces to the classical linear $\operatorname{case}(\bar{\sigma}=\underline{\sigma})$.

Decomposition of G-martingales

[STZ11] and [Song11] generalized Peng's result.
Theorem 6 [Song11]For $\xi \in L_{G}^{\beta}\left(\Omega_{T}\right)$ with some $\beta>1$, $X_{t}=\hat{E}_{t}(\xi), t \in[0, T]$ has the following decomposition:

$$
X_{t}=X_{0}+\int_{0}^{t} Z_{s} d B_{s}+K_{t}, \text { q.s. }
$$

where $\left\{Z_{t}\right\} \in H_{G}^{\alpha}(0, T)$ and $\left\{K_{t}\right\}$ is a continuous decreasing G-martingale with $K_{0}=0, K_{T} \in L_{G}^{\alpha}\left(\Omega_{T}\right)$ for any $1 \leq \alpha<\beta$.
Theorem 7 [Song11]Let $\xi \in L_{G}^{\beta}\left(\Omega_{T}\right)$ for some $\beta>1$ with $\hat{E}(\xi)+\hat{E}(-\xi)=0$. Then there exists $\left\{Z_{t}\right\}_{t \in[0, T]} \in H_{G}^{\beta}(0, T)$ such that

$$
\xi=\hat{E}(\xi)+\int_{0}^{T} Z_{s} d B_{s}
$$

Classical Backward SDES

A typical classical Backward SDE is defined on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ in which $B_{t}(\omega)=\omega_{t}$ is a standard BM with its natural filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}$. The problem is to find a solution consisting of a pair of \mathbb{F}-adapted processes (Y, Z) satisfying the following BSDE

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s} \tag{2}
\end{equation*}
$$

where g is a given function, called the generator, and ξ is a given \mathcal{F}_{T}-measurable random variable called the terminal condition of the BSDE.

Linear BSDE was introduced by Bismut(1973). The existence and uniqueness theorem of nonlinear BSDEs (with Lipschitz condition of g in (y, z) was obtained in Pardoux \& Peng (1990).

BSDEs driven by G-BM(GBSDE for short)

To find processes (Y, Z, K) satisfying

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right) \tag{3}
\end{equation*}
$$

where K is a decreasing G-martingale.
Why not consider BSDE in the following form?

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s} \tag{4}
\end{equation*}
$$

Generally, the equation above does not have a solution.

$$
\begin{equation*}
Y_{t}^{P}=\xi+\int_{t}^{T} f\left(s, Y_{s}^{P}, Z_{s}^{P}\right) d s-\int_{t}^{T} Z_{s}^{P} d B_{s}, P-\text { a.s.. } \tag{5}
\end{equation*}
$$

In general, there dose not exist a universal (Y, Z).

Assumptions on f

Assumptions on f :

$$
f(t, \omega, y, z):[0, T] \times \Omega_{T} \times \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

satisfies the following properties: There exists some $\beta>1$ such that

$$
\begin{aligned}
& \text { (H1) for any } y, z, f(\cdot, \cdot, y, z) \in M_{G}^{\beta}(0, T) \\
& \text { (H2) }\left|f(t, \omega, y, z)-f\left(t, \omega, y^{\prime}, z^{\prime}\right)\right| \leq L\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right) \\
& \text { for some } L>0
\end{aligned}
$$

What is a solution?

For simplicity, we denote by $\mathcal{S}_{G}^{\alpha}(0, T)$ the collection of processes (Y, Z, K) such that $Y \in S_{G}^{\alpha}(0, T), Z \in H_{G}^{\alpha}(0, T), K$ is a decreasing G-martingale with $K_{0}=0$ and $K_{T} \in L_{G}^{\alpha}\left(\Omega_{T}\right)$.

Definition 8 Let $\xi \in L_{G}^{\beta}\left(\Omega_{T}\right)$ with $\beta>1$ and f satisfy (H 1) and
$(\mathrm{H} 2)$. A triplet of processes (Y, Z, K) is called a solution of equation (3) if for some $1<\alpha \leq \beta$ the following properties hold:

$$
\begin{aligned}
& \text { (a) }(Y, Z, K) \in \mathcal{S}_{G}^{\alpha}(0, T) \\
& \text { (b) } Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right) .
\end{aligned}
$$

Main results

Theorem 9 Assume that $\xi \in L_{G}^{\beta}\left(\Omega_{T}\right)$ for some $\beta>1$ and f satisfies (H1) and (H2). Then equation (3) has a unique solution (Y, Z, K). Moreover, for any $1<\alpha<\beta$ we have $Y \in S_{G}^{\alpha}(0, T)$, $Z \in H_{G}^{\alpha}(0, T)$ and $K_{T} \in L_{G}^{\alpha}\left(\Omega_{T}\right)$.

Compared to 2BSDE(STZ12)

Soner, Touzi and Zhang [2012] have obtained an existence and uniqueness theorem for a type of fully nonlinear BSDE, called 2BSDE. Their solution is $\left(Y, Z, K^{P}\right)_{P \in \mathcal{P}_{H}^{k}}$, which solves, for each probability $P \in \mathcal{P}_{H}^{\kappa}$, the following BSDE

$$
Y_{t}=\xi+\int_{t}^{T} F\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-K_{T}^{P}+K_{t}^{P}, P-\text { a.s. }
$$

for which the following minimum condition is satisfied

$$
K_{t}^{\mathbb{P}}=\operatorname{ess} \inf _{\mathbb{P}^{\prime} \in \mathcal{P}_{H}^{\prime}(t+, \mathbb{P})} \mathbb{E}_{t}^{\mathbb{P}^{\prime}}\left[K_{T}^{\mathbb{P}}\right], \quad \mathbb{P} \text {-a.s., } \quad \forall \mathbb{P} \in \mathcal{P}_{H}^{\kappa}, t \in[0, T] .
$$

In their paper the processes $\left(K^{P}\right)_{P \in \mathcal{P}_{H}^{K}}$ are not able to be "aggregated" into a "universal" K.

Differences from the classical BSDEs

\diamond Since the structure of G－martingales is much more complicated than that of the classical ones，we can not establish a contraction mapping for equation（3）．
\diamond We apply the partition of unity theorem to construct a new type of Galerkin approximation，in the place of the well－Known Picard approximation and the related fixed point approach frequently used in BSDE theory．

Main idea of the proof

\diamond In order to prove the existence of equation (3), we start with the simple case $f(t, \omega, y, z)=h(y, z), \xi=\varphi\left(B_{T}\right)$. Here $h \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$,
$\varphi \in C_{b . L i p}\left(\mathbb{R}^{2}\right)$. For this case, we can obtain the solution of equation (3) from the following nonlinear partial differential equation:

$$
\begin{equation*}
\partial_{t} u+G\left(\partial_{x x}^{2} u\right)+h\left(u, \partial_{x} u\right)=0, u(T, x)=\varphi(x) \tag{6}
\end{equation*}
$$

\diamond Based on some a priori estimates for equations (3) with different generating functions, we approximate the solution of equation (3) with more complicated f by those of equations (3) with much simpler $\left\{f_{n}\right\}$.

A priori estimates

\diamond The following property for decreasing G－martingales is critical in the proof to the a priori estimates．

Lemma 10 Let $X \in S_{G}^{\alpha}(0, T)$ for some $\alpha>1$ and $\alpha^{*}=\frac{\alpha}{\alpha-1}$ ．
Assume that $K^{j}, j=1,2$ ，are two decreasing G－martingales with $K_{0}^{j}=0$ and $K_{T}^{j} \in L_{G}^{\alpha^{*}}\left(\Omega_{T}\right)$ ．Then the process defined by

$$
\int_{0}^{t} X_{s}^{+} d K_{s}^{1}+\int_{0}^{t} X_{s}^{-} d K_{s}^{2}
$$

is also a decreasing G－martingale．

A priori estimates

Proposition 11 Assume that $(Y, Z, K) \in \mathcal{S}_{G}^{\alpha}(0, T)$ for some $1<\alpha<\beta$ is a solution of equation (3). Then there exists $C_{\alpha}:=C(\alpha, T, \underline{\sigma}, L)>0$ such that

$$
\|Y\|_{S_{G}^{\alpha}}^{\alpha}+\|Z\|_{H_{G}^{\alpha}}^{\alpha}+\left\|K_{T}\right\|_{L_{G}^{\alpha}}^{\alpha} \leq C_{\alpha}\left\{\left\|f^{0}\right\|_{M_{\varepsilon}^{\alpha}}^{\alpha}+\|\xi\|_{L_{\varepsilon}^{\alpha}}^{\alpha}\right\},
$$

where $f^{0}(s)=|f(s, 0,0)|$.

A priori estimates

Assume $\left(Y^{i}, Z^{i}, K^{i}\right) \in \mathcal{S}_{G}^{\alpha}(0, T)$ for some $1<\alpha<\beta$ such that

$$
Y_{t}^{i}=\xi^{i}+\int_{t}^{T} f_{i}\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d B_{s}-K_{T}^{i}+K_{t}^{i}
$$

where $\xi^{i} \in L_{G}^{\beta}\left(\Omega_{T}\right), f_{i}, i=1,2$ satisfy $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$.
Set $\hat{Y}_{t}=Y_{t}^{1}-Y_{t}^{2}, \hat{Z}_{t}=Z_{t}^{1}-Z_{t}^{2}$ and $\hat{K}_{t}=K_{t}^{1}-K_{t}^{2}$.

A priori estimates

Proposition 12 (i) There exists $C_{\alpha}:=C\left(\alpha, T, \underline{\sigma}, L_{1}\right)>0$ such that
$\|\hat{Z}\|_{H_{G}^{\alpha}}^{\alpha} \leq C_{\alpha}\left\{\|\hat{Y}\|_{S_{G}^{\alpha}}^{\alpha}+\|\hat{Y}\|_{S_{G}^{\alpha}}^{\alpha / 2}\left[\left\|f_{1}^{0}\right\|_{M_{\varepsilon}^{\alpha}}^{\alpha / 2}+\left\|\xi^{1}\right\|_{L_{\varepsilon}^{\alpha}}^{\alpha / 2}+\left\|f_{2}^{0}\right\|_{M_{\varepsilon}^{\alpha}}^{\alpha / 2}+\left\|\xi^{2}\right\|_{L_{\varepsilon}^{\alpha}}^{\alpha / 2}\right]\right\}$.
(ii) There exists a constant $C_{\alpha}:=C\left(\alpha, T, \underline{\sigma}, L_{1}\right)>0$ such that

$$
\begin{equation*}
\left|\hat{Y}_{t}\right|^{\alpha} \leq C_{\alpha} \hat{\mathbb{E}}_{t}\left[|\hat{\xi}|^{\alpha}+\int_{t}^{T}\left|\hat{f}_{s}\right|^{\alpha} d s\right] \tag{7}
\end{equation*}
$$

where $\hat{f}_{s}=\left|f_{1}\left(s, Y_{s}^{2}, Z_{s}^{2}\right)-f_{2}\left(s, Y_{s}^{2}, Z_{s}^{2}\right)\right|$.

A priori estimates

（iii）For any given α^{\prime} with $\alpha<\alpha^{\prime}<\beta$ ，there exists a constant
$C_{\alpha, \alpha^{\prime}}$ depending on $\alpha, \alpha^{\prime}, T, \underline{\sigma}, L$ such that

$$
\begin{align*}
\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|\hat{Y}_{t}\right|^{\alpha}\right] & \leq C_{\alpha, \alpha^{\prime}}\left\{\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[|\hat{\xi}|^{\alpha}\right]\right]\right. \\
& \left.+\left(\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T} \hat{f}_{s} d s\right)^{\alpha^{\prime}}\right]\right]\right)^{\frac{\alpha}{\alpha^{\prime}}}+\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T} \hat{f}_{s} d s\right)^{\alpha^{\prime}}\right]\right]\right\}
\end{align*}
$$

Sketch of the Proof to Theorem 9

By Proposition 12 we know that the solution is unique, and that for the existence of the solution it suffices to consider $\xi \in L_{i p}\left(\Omega_{T}\right)$.

Step 1. $f(t, \omega, y, z)=h(y, z)$ with $h \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$.
Step 2. $f(t, \omega, y, z)=\sum_{i=1}^{N} f^{i} h^{i}(y, z)$ with $f^{i} \in M_{G}^{0}(0, T)$ and $h^{i} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$.
Step 3. $f(t, \omega, y, z)=\sum_{i=1}^{N} f^{i} h^{i}(y, z)$ with $f^{i} \in M_{G}^{\beta}(0, T)$ bounded and $h^{i} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right), h^{i} \geq 0$ and $\sum_{i=1}^{N} h^{i} \leq 1$.
Choose $f_{n}^{i} \in M_{G}^{0}(0, T)$ such that $\left|f_{n}^{i}\right| \leq\left\|f^{i}\right\|_{\infty}$ and $\sum_{i=1}^{N}\left\|f_{n}^{i}-f^{i}\right\|_{M_{G}^{\beta}}<1 / n$. Set $f_{n}=\sum_{i=1}^{N} f_{n}^{i} h^{i}(y, z)$, which are uniformly Lipschitz.

Sketch of the Proof to Theorem 9 (continued)

Step 4. f is bounded, Lipschitz. $|f(t, \omega, y, z)| \leq C I_{B(R)}(y, z)$ for some $C, R>0$. Here $B(R)=\left\{(y, z) \mid y^{2}+z^{2} \leq R^{2}\right\}$.
For any n, by the partition of unity theorem, there exists $\left\{h_{n}^{i}\right\}_{i=1}^{N_{n}}$ such that $h_{n}^{i} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$, the radius of support $\mathrm{r}\left(\operatorname{supp}\left(h_{n}^{i}\right)\right)<1 / n$, $0 \leq h_{n}^{i} \leq 1, I_{B(R)} \leq \sum_{i=1}^{N} h_{n}^{i} \leq 1$. Then $f(t, \omega, y, z)=\sum_{i=1}^{N} f(t, \omega, y, z) h_{n}^{i}$. Choose y_{n}^{i}, z_{n}^{i} such that $h_{n}^{i}\left(y_{n}^{i}, z_{n}^{i}\right)>0$. Set $f_{n}(t, \omega, y, z)=\sum_{i=1}^{N} f\left(t, \omega, y_{n}^{i}, z_{n}^{i}\right) h_{n}^{i}$.

Sketch of the Proof to Theorem 9 （continued）

Step 5．f is bounded，Lipschitz．
For any $n \in \mathbb{N}$ ，choose $h^{n} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ such that $I_{B(n)} \leq h^{n} \leq I_{B(n+1)}$ and $\left\{h^{n}\right\}$ are uniformly Lipschitz w．r．t．n ．Set $f_{n}=f h^{n}$ ，which are uniformly Lipschitz．

Step 6．For the general f ．
Set $f_{n}=[f \vee(-n)] \wedge n$ ，which are uniformly Lipschitz．

Thank you!

