Approximation of BSDEs using least-squares regression and Malliavin weights

Plamen Turkedjiev (turkedji@math.hu-berlin.de)

3rd July, 2012

Joint work with Prof. Emmanuel Gobet (École Polytechnique)

Berlin
Mathematical School

Mathematics for key technologies

FBSDEs

- $T>0$,
- W q-dimensional Brownian motion,
- $(\Omega, \mathscr{F}, \mathbb{P})$ filtered probability space with usual conditions, but filtration may be larger than that generated by W,
- $\xi \in \mathbf{L}^{2}\left(\mathscr{F}_{T}\right)$,

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}-\left(L_{T}-L_{t}\right)
$$

where X is d-dimensional, $(t, x, y, z) \mapsto f(t, x, y, z)$ is Borel measurable. Typically,

- X is a jump-diffusion driven by W and a Poisson random measure, L is a martingale orthogonal to W, and $\xi=\Phi\left(X_{T}\right)$
- X is a diffusion driven by $W, L \equiv 0$, and $\xi=\Phi\left(X_{t_{1}}, \ldots, X_{T}\right)$ or $\xi=\Phi\left(X_{T}, \int_{0}^{T} X_{t} d t\right)$

Local Lipschitz condition and Quadratic BSDEs

We consider time-local Lipschitz continuous driver:

$$
\left|f(t, x, y, z)-f\left(t, x^{\prime}, y^{\prime}, z^{\prime}\right)\right| \leq L_{f}\left(\left|x-x^{\prime}\right|+\frac{\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|}{(T-t)^{(1-\theta) / 2}}\right)
$$

MOTIVATION:
Assume X is a diffusion $(L \equiv 0)$ and driver satisfies quadratic growth condition

$$
\begin{aligned}
|f(t, x, y, z)| & \leq c\left(1+|y|+\mid z 2^{2}\right) \\
\left|f(t, x, y, z)-f\left(t, x, y^{\prime}, z^{\prime}\right)\right| & \leq c\left(1+|z|+\left|z^{\prime}\right|\right)\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right)
\end{aligned}
$$

and $x \mapsto \Phi(x)$ is Hölder continuous and bounded.
Then $\left|Z_{t}\right| \leq L_{f}(T-t)^{-(1-\theta) / 2}$ holds $\mathbb{P} \times d t$-a.e. for constants L_{f} and θ independent of t.

Locally Lipschitz can replace quadratic in this special problem!

Driver with exploding bound and variance reduction

For all $t>0$ and $x \in \mathbb{R}^{d}$, there exists $\alpha \in(0,1]$ and $C_{f}>0$ such that

$$
|f(t, x, 0,0)| \leq \frac{C_{f}}{(T-t)^{1-\alpha}}
$$

MOTIVATION:
$\xi=\Phi\left(X_{T}\right)$ and $x \mapsto \Phi(x)$ is α-Hölder continuous and bounded.
X is a diffusion process $(L \equiv 0)$ so that $v_{t}(x)=\mathbb{E}\left[\Phi\left(X_{T}\right) \mid X_{t}=x\right]$ is smooth. $f(t, x, y, z)$ uniformly Lipschitz continuous and unif. bounded at $(y, z)=(0,0)$.
$\left(v_{t}\left(X_{t}\right), \nabla v_{t}\left(X_{t}\right) \sigma\left(t, X_{t}\right)\right)$ solves BSDE with data $(\xi, 0)$. Suppose we can solve this BSDE! $\left|\nabla v_{t}(x)\right| \leq C(T-t)^{\alpha-1}$ standard from PDE theory.
$\left(Y_{t}-v_{t}\left(X_{t}\right), Z_{t}-\nabla v_{t}\left(X_{t}\right) \sigma\left(t, X_{t}\right)\right)$ solves a BSDE with data $\left(0, f^{0}\right)$, where $f^{0}(t, x, y, z)=f\left(t, x, y+v_{t}(x), z+\nabla v_{t}(x) \sigma(t, x)\right)$.
This BSDE may be better behaved for simulation purposes.

Key property: discretizability of FBSDEs

Time-grid: $\pi=\left(0=t_{0}<\ldots<t_{N}=T\right)$.
Paritcularly important grid: for $\beta \in(0,1], \pi^{\beta}$ for which $t_{i}^{\beta}:=T-T\left(1-\frac{1}{N}\right)^{1 / \beta}$.
Theorem
If $\alpha=1$, let $\beta=1$; else let $\beta<\alpha$. Under the given assumptions, there exists a positive constant C, independent of N, such that

$$
\max _{0 \leq i \leq N-1} \sup _{t_{i}^{\beta} \leq t<t_{i+1}^{\beta}} \mathbb{E}\left|Y_{t}-Y_{t_{i}^{\beta}}\right|^{2}+\sum_{i=0}^{N-1} \int_{t_{i}^{\beta}}^{t_{i+1}^{\beta}} \mathbb{E}\left|Z_{t}-Z_{t_{i}^{\beta}}\right|^{2} d t \quad \leq \quad C N^{-1}
$$

We say that $O\left(N^{1 / 2}\right)$ is the optimal rate of convergence for a discrete-time approximation of the BSDE.

Algorithm 1: Multistep dynamical programming

Let $\Delta_{i}=t_{i+1}-t_{i}$ and $\Delta W_{i}:=W_{t_{i+1}}-W_{t_{i}}$.
Recurssively build approximation of the solution, starting at $i=N-1$:

$$
\left\{\begin{aligned}
\Delta_{i} Z_{i} & =\mathbb{E}_{i}\left[\Delta W_{i}^{\top}\left(\xi+\sum_{k=i+1}^{N-1} f\left(t_{k}, X_{k}, Y_{k+1}, Z_{k}\right) \Delta_{k}\right)\right], \\
Y_{i} & =\mathbb{E}_{i}\left[\xi+\sum_{k=i}^{N-1} f\left(t_{k}, X_{k}, Y_{k+1}, Z_{k}\right) \Delta_{k}\right] \\
Y_{N} & =\xi
\end{aligned}\right.
$$

Consistency conditions for the time-grid:

$$
\sup _{k<N} \frac{\Delta_{k}}{\left(T-t_{k}\right)^{1-\theta}} \rightarrow 0 \text { as } N \rightarrow \infty, \quad \limsup _{N \rightarrow \infty} \sup _{k<N-1} \frac{\Delta_{k}}{\Delta_{k+1}} \leq \infty .
$$

Theorem
For N sufficiently large, there exists a positive constant C independent of the time-grid such that

$$
\max _{0 \leq k \leq N-1} \mathbb{E}\left|Y_{i}-Y_{t_{i}^{s}}\right|^{2}+\sum_{i=0}^{N-1} \mathbb{E} \mid Z_{i}-Z_{t_{i}^{s}}{ }^{2} \Delta_{i} \leq C N^{-1}
$$

Assumptions and properties

Markov structure Let $\xi=\Phi\left(X_{N}\right)$ and X be a Markov chain. This ensures $\left(Y_{i}, Z_{i}\right)=\left(y_{i}\left(X_{i}\right), z_{i}\left(X_{i}\right)\right)$ for measurable (unknown) functions y_{i} and z_{i}.

Almost sure bounds Let $x \mapsto \Phi(x)$ be bounded. This ensures that $\exists C_{y}>0$ such that, $\forall k,\left|Y_{k}\right| \leq C_{y}$ and $\left|Z_{k}\right| \leq \frac{C_{y}}{\sqrt{\Delta_{k}}} \mathbb{P}$-almost surely.

Basis functions For each $0 \leq l \leq q$ and $0 \leq k \leq N-1$, take a finite number of functions $p_{l, k}(\cdot)=\left(p_{l, k}^{i}\right)_{1 \leq i \leq K}$ such that $p_{l, k}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is deterministic and $\mathbb{E}\left[\left|p_{l, k}\left(X_{k}\right)\right|^{2}\right]<\infty$. Form basis of finite dimensional subspaces of $L_{2}\left(\mathscr{F}_{t_{k}}\right)$.

Simulations Take M independent simulations of the Brownian increments ΔW and the explanatory Markov chain X. Denote these simulations by $\left(X_{k}^{m}\right)_{1 \leq m \leq M}$ and $\left(\Delta W_{k}^{m}\right)_{1 \leq m \leq M}$ respectively. Let $p_{l, k}^{m}:=p_{l, k}\left(X_{k}^{m}\right)$.

Definition For $R>0$, the truncated Brownian increment is defined by $\left[\Delta W_{i}\right]_{R}=-R \sqrt{\Delta_{i}} \vee \Delta W_{i} \wedge R \sqrt{\Delta_{i}}$.

Emprical regression algorithm

Set $y_{N}^{R, M}(\cdot)=\Phi(\cdot)$. Then, for $i<N$, compute coefficients

$$
\begin{aligned}
& \alpha_{l, i}^{M}=\arg \min _{\alpha} \frac{1}{M} \sum_{m=1}^{M}\left|\frac{\left[\Delta W_{l, i}\right]_{R}}{\Delta_{i}}\left(\Phi\left(X_{N}^{m}\right)+\sum_{k=i+1}^{N-1} f_{i}\left(y_{k+1}^{R, M}\left(X_{k+1}^{m}\right), z_{k}^{R, M}\left(X_{k}^{m}\right)\right) \Delta_{k}\right)-\alpha \cdot p_{l, k}^{m}\right|^{2} \\
& \alpha_{0, k}^{M}=\arg \min _{\alpha} \frac{1}{M} \sum_{m=1}^{M}\left|\Phi\left(X_{N}^{m}\right)+\sum_{k=i+1}^{N-1} f_{i}\left(y_{k+1}^{R, M}\left(X_{k+1}^{m}\right), z_{k}^{R, M}\left(X_{k}^{m}\right)\right) \Delta_{k}-\alpha \cdot p_{0, k}^{m}\right|^{2} .
\end{aligned}
$$

The coefficients are not independent of one another!
Set

$$
\begin{aligned}
y_{i}^{R, M}(x) & =-C_{y} \vee \alpha_{0, i}^{M} \cdot p_{0, i}(x) \wedge C_{y}, \\
z_{l, i}^{R, M}(x) & =-\frac{C_{y}}{\sqrt{\Delta_{i}}} \vee \alpha_{l, i}^{M} \cdot p_{0, i}(x) \wedge \frac{C_{y}}{\sqrt{\Delta_{i}}}
\end{aligned}
$$

Key ingredient: concentration of measure inequalities

Needed, amongst other things, to deal with the lack of independence between regression coefficients. The following example comes from [Györfi et al. 2002, Theorem 11.2]. Benefit: the estimates are distribution-free.

Theorem
Let $\mathscr{F} \subset\left\{f: \mathbb{R}^{d} \rightarrow[-B, B]\right\}$ and $\left(Z_{i}\right)_{1 \leq i \leq n}$ be i.i.d. Then, for all $\varepsilon>0$.

$$
\begin{aligned}
\mathbb{P}(\exists f \in \mathscr{F} & \left.:\left(\mathbb{E}\left[|f(Z)|^{2}\right]\right)^{1 / 2}-2\left(\frac{1}{n} \sum_{i=1}^{n}\left|f\left(Z_{i}\right)\right|^{2}\right)^{1 / 2}>\varepsilon\right) \\
& \leq \mathbb{E}\left[\mathscr{N}_{2}\left(\frac{\sqrt{2}}{24} \varepsilon, \mathscr{F}, Z_{1: n}\right)\right] \exp \left(-\frac{n \varepsilon^{2}}{288 B^{2}}\right)
\end{aligned}
$$

Proposition

If \mathscr{F} is in a K-dimensional vector space,

$$
\mathscr{N}_{2}\left(\varepsilon, \mathscr{F}, z_{1: n}\right) \leq 3\left(\frac{2 e B^{2}}{\varepsilon^{2}} \log \left(\frac{3 e B^{2}}{\varepsilon^{2}}\right)\right)^{K}
$$

Error estimates

Norm: For function Ψ, define $\|\Psi\|_{k, M}^{2}:=\frac{1}{M} \sum_{m=1}^{M}\left|\Psi\left(X_{k}^{m}\right)\right|^{2}$.

Theorem

For N sufficiently large, there exists a possitive constant C independent of the time-grid, M and the basis functions such that

$$
\begin{aligned}
& \sum_{k=0}^{N-1}\left\{\mathbb{E}\left[\left\|y_{k}-y_{k}^{R, M}\right\|_{k, M}^{2}\right]+\mathbb{E}\left[\left\|z_{k}-z_{k}^{R, M}\right\|_{k, M}^{2}\right]\right\} \Delta_{k} \\
& \leq
\end{aligned}
$$

Complexity analysis

- Aim: reduce error to $O\left(N^{-2 \theta_{\text {conv }}}\right)$.
- Assume $y_{i} \in C_{b}^{\kappa+1+\eta}, z_{i} \in C_{b}^{\kappa+\eta}$.
- Local polynomials on disjoint hypercubes, degree $\kappa+1$ for Y and κ for Z. Bias approximation: $O\left(N^{-2 \theta_{c o n v}}\right)$ if $\delta_{z}=c N^{-\frac{\theta_{c o n v}}{\kappa+\eta}}$. $\Rightarrow K=c N^{\frac{\theta_{c o n v}}{\kappa+\eta}}$ up to log terms.
- Large deviation terms: $M=c K N^{2+2 \theta_{c o n v}}=c N^{2+2 \theta_{c o n v}+2 d \frac{\theta_{c o n v}}{\kappa+\eta}}$ up to log terms.
- Computational work $\mathscr{C}=c M N=c N^{3+2 \theta_{c o n v}+2 d \frac{\theta_{\text {conv }}^{\kappa+\eta}}{\kappa+\eta}}$ up to log terms.
$\Rightarrow N^{-2 \theta_{\text {conv }}} \leq c \mathscr{C}^{\frac{-1}{2\left(1+\frac{3}{\left.2 \theta_{\text {conv }}+\frac{d}{\kappa+\eta}\right)}\right.}}$.
- ODP scheme with $\theta_{\text {conv }}=1 / 2: N^{-1} \leq c \mathscr{C}^{\frac{-1}{2\left(4+\frac{2 d}{k+1+\eta)}\right.}}$.
\Rightarrow if $\kappa+\eta>1$, MDP has better performance.

BSDE numerics: Implicit vs explicit

$$
\begin{aligned}
q=3 ; f(z) & =1.5\left|z^{(1)}\right| ; \Phi(x)=\left(x^{(3)}-100\right)^{+} ; X_{t}^{(j)}=100 e^{\left(\sigma W_{t}\right)^{(j)}} \text { with } \\
\sigma & =\left(\begin{array}{ccc}
\sigma_{1} \sqrt{1-\rho^{2}} & 0 & \sigma_{1} \rho \\
0 & \sigma_{2} \sqrt{1-\rho^{2}} & \sigma_{2} \rho \\
0 & 0 & \sigma_{3}
\end{array}\right), \quad\left(\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\rho
\end{array}\right)=\left(\begin{array}{c}
0.01 \\
0.05 \\
0.03 \\
0.1
\end{array}\right)
\end{aligned}
$$

$N=16$; Basis $\prod_{i=0}^{q} g_{i}\left(\ln \left(x_{i}\right)\right)$ for g_{i} Hermite polynomials with $\sum_{i} \operatorname{deg}\left(g_{i}\right) \leq 3$. Explicit solution:

$$
\begin{aligned}
& Y_{t}=\text { BlackScholesCall }\left(t, X_{t} ; \sigma_{3}, 100\right) \\
& Z_{t}=\left(0,0, \text { BlackScholesHedge }\left(t, X_{t} ; \sigma_{3}, 100\right)\right)
\end{aligned}
$$

BSDE numerics

Representation theorem due to $\mathrm{Ma} /$ Zhang

X is a diffusion: $d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}$. Also need gradient process and it's inverse:

$$
\begin{aligned}
d \nabla X_{t} & =b_{x}\left(t, X_{t}\right) \nabla X_{t} d t+\sigma\left(t, X_{t}\right) \nabla X_{t} d W_{t}, \\
d \nabla X_{t}^{-1} & =\left(-b_{x}\left(t, X_{t}\right)-\sigma_{x}\left(t, X_{t}\right)^{2}\right) \nabla X_{t}^{-1} d t+\sigma_{x}\left(t, X_{t}\right) \nabla X_{t}^{-1} d W_{t} .
\end{aligned}
$$

Representation theorem due to $\mathrm{Ma} /$ Zhang for Z :

$$
Z_{t}=\mathbb{E}_{t}\left[\xi H_{T}^{t}+\int_{t}^{T} f\left(r, X_{r}, Y_{r}, Z_{r}\right) H_{r}^{t} d r\right]
$$

where $(r-t) H_{r}^{t}=\left(\int_{r}^{t}\left[\sigma^{-1}\left(s, X_{s}\right) \nabla X_{s} \nabla X_{t}^{-1} \sigma\left(t, X_{t}\right)\right]^{\top} d W_{s}\right)^{\top}$.
H_{r}^{t} are the Malliavin weights; the representation formula is derived by means of Malliavin's calculus, but remains true in the Lipschitz case, even though the BSDE is not Mallivin differentiable.

Algorithm 2: Malliavin weights

Let $\left.\left(t_{k}-t_{i}\right) H_{k}^{i}=\left(\sum_{j=i}^{k-1} \sigma^{-1}\left(t_{j}, X_{j}\right) \nabla X_{j} \nabla X_{i}^{-1} \sigma\left(t_{i}, X_{i}\right)\right]^{\top} \Delta W_{j}\right)^{\top}$. Recursively build the approximation starting at $i=N-1$:

$$
\left\{\begin{aligned}
Z_{i} & =\mathbb{E}_{i}\left[\xi H_{N}^{i}+\sum_{k=1+1}^{N-1} f\left(t_{k}, X_{k}, Y_{k+1}, Z_{k}\right) H_{k}^{i} \Delta_{k}\right], \\
Y_{i} & =\mathbb{E}_{i}\left[\xi+\sum_{k=i}^{N-1} f\left(t_{k}, X_{k}, Y_{k+1}, Z_{k}\right) \Delta_{k}\right], \\
Y_{N} & =\xi .
\end{aligned}\right.
$$

Constraint on the time-grid: $\lim \sup _{N \rightarrow \infty} \sup _{i<N} \frac{\Delta_{i+1}}{\Delta_{i}}<\infty$. Recall the special time-grid π^{β} :

Theorem
For sufficiently high N, there exists a positive constant C independent of the time-grid such that

$$
\max _{0 \leq k \leq N-1} \mathbb{E}\left|Y_{i}-Y_{t_{i}^{\beta}}\right|^{2}+\sum_{i=0}^{N-1} \mathbb{E}\left|Z_{i}-Z_{t_{i}^{\beta}}\right|^{2} \Delta_{i} \leq C N^{-1}
$$

Projection estimates

Approximate conditional expectation \mathbb{E}_{i} by projection on finite subspace of $L_{2}\left(\mathscr{F}_{t_{i}}\right):$

$$
\left\{\begin{aligned}
\hat{Z}_{l, i}= & \arg \min _{\alpha \cdot p_{l, i}\left(X_{i}\right)} \\
& \mathbb{E}\left[\left|\Phi\left(X_{N}\right) H_{l, N}^{i}+\sum_{k=i+1}^{N-1} f\left(t_{k}, X_{k}, \hat{Y}_{k+1}, \hat{Z}_{k}\right) H_{l, k}^{i} \Delta_{k}-\alpha \cdot p_{l, i}\left(X_{i}\right)\right|^{2}\right], \\
\hat{Y}_{i}= & \left.\arg \inf _{\alpha \cdot p_{0, i}\left(X_{i}\right)}^{N-1} f\left(t_{k}, X_{k}, \hat{Y}_{k+1}, \hat{Z}_{k}\right) \Delta_{k}-\left.\alpha \cdot p_{0, i}\left(X_{i}\right)\right|^{2}\right], \\
& \mathbb{E}\left[\mid \Phi\left(X_{N}\right)+\sum_{k=i}^{N},\right. \\
\hat{Y}_{N}= & \Phi\left(X_{N}\right) .
\end{aligned}\right.
$$

Projection estimates

Theorem

There exists positive constant C independent of the time-grid such that

$$
\begin{aligned}
\mathbb{E}\left|Y_{i}-\hat{Y}_{i}\right|^{2} \leq & 2 \mathbb{E}\left|Y_{i}-\mathscr{P}_{i}^{Y} Y_{i}\right|^{2} \\
& +C \sum_{k=i}^{N-1} \frac{\left\{\mathbb{E}\left|Y_{k+1}-\mathscr{P}_{k+1}^{Y} Y_{k+1}\right|^{2}+\mathbb{E}\left|Z_{k}-\mathscr{P}_{k}^{Z} Z_{k}\right|^{2}\right\} \Delta_{k}}{\left(T-t_{k}\right)^{1-\theta}} \\
\mathbb{E}\left|Z_{i}-\hat{Z}_{i}\right|^{2} \leq & 2 \mathbb{E}\left|Z_{i}-\mathscr{P}_{i}^{Z} Z_{i}\right|^{2} \\
& +C \sum_{k=i}^{N-1} \frac{\left\{\mathbb{E}\left|Y_{k+1}-\mathscr{P}_{k+1}^{Y} Y_{k+1}\right|^{2}+\mathbb{E}\left|Z_{k}-\mathscr{P}_{k}^{Z} Z_{k}\right|^{2}\right\} \Delta_{k}}{\left(T-t_{k}\right)^{1-\theta}}
\end{aligned}
$$

Almost sure bounds

There exist positive constants C_{y} and C_{z} independent of the time-grid such that, $\forall i$,

$$
\left|Y_{i}\right| \leq C_{y} \text { and }\left|Z_{i}\right| \leq \frac{C_{z}}{\sqrt{T-t_{i}}} \quad \mathbb{P} \text {-almost surely }
$$

Finally...

Thank You For Your Attention!

References

[GT11] E. Gobet, T.
Approximation for discrete BSDE using least-squares regression. http://hal.archives-ouvertes.fr/aut/turkedjiev/
[BD07] C. Bender and R. Denk.
A forward scheme for backward SDEs.
Stochastic Processes and their Applications, 117(12):1793-1823, 2007.
[CD11] D. Crisan, F. Delarue.
Sharp gradient bounds for solutions of semi-linear PDEs.
http://hal.archive-ouvert.fr/hal-00599543/fr, 2011.
[DG06] F. Delarue, G. Guatteri.
Weak existence and uniqueness for forward-backward SDEs.
Stochastic processes and their applications, 116(12):1712-1742, 2006.
[GGG11] C. Geiss, S. Geiss, and E. Gobet.
Generalized fractional smoothness and L_{p}-variation of BSDEs with non-Lipschitz terminal condition.
To appear in Stochastic Processes and their Applications, 2011.

References

[GLW05] E. Gobet, J.P. Lemor, and X. Warin.
A regression-based Monte Carlo method to solve backward stochastic differential equations.
Annals of Applied Probability, 15(3):2172-2202, 2005.
[LGW06] J.P. Lemor, E. Gobet, and X. Warin.
Rate of convergence of an empirical regression method for solving generalized BSDEs.
Bernoulli, 12(5):889-916, 2006.
[GM10] E. Gobet and A. Makhlouf.
L_{2}-time regularity of BSDEs with irregular terminal functions.
Stochastic Processes and their Applications, 120:1105-1132, 2010.
[GKKW02] L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk.
A distribution-free theory of nonparametric regression. Springer Series in Statistics, 2002.

References

[MZ02] J. Ma, J. Zhang.
Representation theorems for BSDEs.
Annals of Applied Probability, 12(4):1390-1418, 2002.
[Mo10] T. Moseler.
A Picard-type iteration for BSDEs: Convergence and importance sampling.
PhD thesis.

