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FBSDEs

T > 0,

W q-dimensional Brownian motion,

(Ω,F ,P) filtered probability space with usual conditions, but filtration may
be larger than that generated by W ,

ξ ∈ L2(FT ),

Yt = ξ +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs − (LT − Lt)

where X is d-dimensional, (t, x, y, z) 7→ f(t, x, y, z) is Borel measurable.
Typically,

X is a jump-diffusion driven by W and a Poisson random measure, L is a
martingale orthogonal to W , and ξ = Φ(XT )

X is a diffusion driven by W , L ≡ 0, and ξ = Φ(Xt1 , . . . , XT ) or

ξ = Φ(XT ,
∫ T

0
Xtdt)
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Local Lipschitz condition and Quadratic BSDEs

We consider time-local Lipschitz continuous driver:

|f(t, x, y, z)− f(t, x′, y′, z′)| ≤ Lf (|x− x′|+ |y − y
′|+ |z − z′|

(T − t)(1−θ)/2 )

MOTIVATION:
Assume X is a diffusion (L ≡ 0) and driver satisfies quadratic growth condition

|f(t, x, y, z)| ≤ c(1 + |y|+ |z|2)
|f(t, x, y, z)− f(t, x, y′, z′)| ≤ c(1 + |z|+ |z′|)(|y − y′|+ |z − z′|)

and x 7→ Φ(x) is Hölder continuous and bounded.
Then |Zt| ≤ Lf (T − t)−(1−θ)/2 holds P× dt-a.e. for constants Lf and θ
independent of t.

Locally Lipschitz can replace quadratic in this special problem!
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Driver with exploding bound and variance reduction

For all t > 0 and x ∈ Rd, there exists α ∈ (0, 1] and Cf > 0 such that

|f(t, x, 0, 0)| ≤ Cf
(T − t)1−α

MOTIVATION:
ξ = Φ(XT ) and x 7→ Φ(x) is α-Hölder continuous and bounded.
X is a diffusion process (L ≡ 0) so that vt(x) = E[Φ(XT )|Xt = x] is smooth.
f(t, x, y, z) uniformly Lipschitz continuous and unif. bounded at (y, z) = (0, 0).

(vt(Xt),∇vt(Xt)σ(t,Xt)) solves BSDE with data (ξ, 0). Suppose we can solve
this BSDE! |∇vt(x)| ≤ C(T − t)α−1 standard from PDE theory.

(Yt − vt(Xt), Zt −∇vt(Xt)σ(t,Xt)) solves a BSDE with data (0, f0), where
f0(t, x, y, z) = f(t, x, y + vt(x), z +∇vt(x)σ(t, x)).
This BSDE may be better behaved for simulation purposes.
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Key property: discretizability of FBSDEs

Time-grid: π = (0 = t0 < . . . < tN = T ).

Paritcularly important grid: for β ∈ (0, 1], πβ for which tβi := T − T (1− 1
N )1/β .

Theorem
If α = 1, let β = 1; else let β < α. Under the given assumptions, there exists a
positive constant C, independent of N , such that

max
0≤i≤N−1

sup
tβi ≤t<t

β
i+1

E|Yt − Ytβi |
2 +

N−1∑
i=0

∫ tβi+1

tβi

E|Zt − Ztβi |
2dt ≤ CN−1

We say that O(N1/2) is the optimal rate of convergence for a discrete-time
approximation of the BSDE.
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Algorithm 1: Multistep dynamical programming

Let ∆i = ti+1 − ti and ∆Wi := Wti+1
−Wti .

Recurssively build approximation of the solution, starting at i = N − 1:
∆iZi = Ei[∆W>i (ξ +

∑N−1
k=i+1 f(tk, Xk, Yk+1, Zk)∆k)],

Yi = Ei[ξ +
∑N−1
k=i f(tk, Xk, Yk+1, Zk)∆k],

YN = ξ.

Consistency conditions for the time-grid:

sup
k<N

∆k

(T − tk)1−θ → 0 as N →∞, lim sup
N→∞

sup
k<N−1

∆k

∆k+1
≤ ∞.

Theorem
For N sufficiently large, there exists a positive constant C independent of the
time-grid such that

max
0≤k≤N−1

E|Yi − Ytβi |
2 +

N−1∑
i=0

E|Zi − Ztβi |
2∆i ≤ CN−1
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Assumptions and properties

Markov structure Let ξ = Φ(XN ) and X be a Markov chain.This ensures
(Yi, Zi) = (yi(Xi), zi(Xi)) for measurable (unknown) functions yi and zi.

Almost sure bounds Let x 7→ Φ(x) be bounded. This ensures that ∃Cy > 0 such

that,∀k, |Yk| ≤ Cy and |Zk| ≤ Cy√
∆k

P-almost surely.

Basis functions For each 0 ≤ l ≤ q and 0 ≤ k ≤ N − 1, take a finite number of
functions pl,k(·) = (pil,k)1≤i≤K such that pl,k : Rd → R is deterministic and
E[|pl,k(Xk)|2] <∞. Form basis of finite dimensional subspaces of L2(Ftk ).

Simulations Take M independent simulations of the Brownian increments ∆W and the
explanatory Markov chain X. Denote these simulations by (Xm

k )1≤m≤M and
(∆Wm

k )1≤m≤M respectively. Let pml,k := pl,k(Xm
k ).

Definition For R > 0, the truncated Brownian increment is defined by
[∆Wi]R = −R

√
∆i ∨∆Wi ∧R

√
∆i.
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Emprical regression algorithm

Set yR,MN (·) = Φ(·). Then, for i < N , compute coefficients

αMl,i = argmin
α

1

M

M∑
m=1

|
[∆Wl,i]R

∆i

(
Φ(Xm

N ) +

N−1∑
k=i+1

fi(y
R,M
k+1 (Xm

k+1), zR,Mk (Xm
k ))∆k

)
− α · pml,k|

2,

αM0,k = argmin
α

1

M

M∑
m=1

|Φ(Xm
N ) +

N−1∑
k=i+1

fi(y
R,M
k+1 (Xm

k+1), zR,Mk (Xm
k ))∆k − α · pm0,k|

2.

The coefficients are not independent of one another!
Set

yR,Mi (x) = −Cy ∨ αM0,i · p0,i(x) ∧ Cy,

zR,Ml,i (x) = − Cy√
∆i

∨ αMl,i · p0,i(x) ∧ Cy√
∆i

.
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Key ingredient: concentration of measure inequalities

Needed, amongst other things, to deal with the lack of independence between
regression coefficients. The following example comes from [Györfi et al. 2002,
Theorem 11.2]. Benefit: the estimates are distribution-free.

Theorem

Let F ⊂ {f : Rd → [−B,B]} and (Zi)1≤i≤n be i.i.d. Then, for all ε > 0.

P(∃f ∈ F : (E[|f(Z)|2])1/2 − 2(
1

n

n∑
i=1

|f(Zi)|2)1/2 > ε)

≤ E[N2(

√
2

24
ε,F , Z1:n)] exp

(
− nε2

288B2

)
Proposition

If F is in a K-dimensional vector space,

N2(ε,F , z1:n) ≤ 3

(
2eB2

ε2
log

(
3eB2

ε2

))K
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Error estimates

Norm: For function Ψ, define ‖Ψ‖2k,M := 1
M

∑M
m=1 |Ψ(Xm

k )|2.

Theorem
For N sufficiently large, there exists a possitive constant C independent of the time-grid,
M and the basis functions such that

N−1∑
k=0

{
E[‖yk − yR,Mk ‖2k,M ] + E[‖zk − zR,Mk ‖2k,M ]

}
∆k

≤ C
N−1∑
k=0

{
min
α

E|yRk (Xk)− α · p0,k|2∆k +

q∑
l=1

min
α

E|zRl,k(Xk)− α · pl,k|2∆k

}

+ C

N−1∑
k=0

{
KN∆k

M
+
KNR2

M

}
+ CN−θconv

+ CNKR23CN
N−1∑
k=0

exp

(
−
CMR−2∆k

KN1+θconv

)N−1∏
i=k

(
CKR2

N−θconv∆i∆k

)CK
+ . . .
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Complexity analysis

Aim: reduce error to O(N−2θconv ).

Assume yi ∈ Cκ+1+η
b , zi ∈ Cκ+η

b .

Local polynomials on disjoint hypercubes, degree κ+ 1 for Y and κ for Z.

Bias approximation: O(N−2θconv ) if δz = cN−
θconv
κ+η .

⇒ K = cNd θconvκ+η up to log terms.

Large deviation terms: M = cKN2+2θconv = cN2+2θconv+2d θconvκ+η up to log
terms.

Computational work C = cMN = cN3+2θconv+2d θconvκ+η up to log terms.

⇒ N−2θconv ≤ cC
−1

2(1+ 3
2θconv

+ d
κ+η

) .

ODP scheme with θconv = 1/2: N−1 ≤ cC
−1

2(4+ 2d
κ+1+η

) .
⇒ if κ+ η > 1, MDP has better performance.
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BSDE numerics: Implicit vs explicit

q = 3; f(z) = 1.5|z(1)|; Φ(x) = (x(3) − 100)+; X
(j)
t = 100e(σWt)

(j)

with

σ =

 σ1

√
1− ρ2 0 σ1ρ

0 σ2

√
1− ρ2 σ2ρ

0 0 σ3

 ,


σ1

σ2

σ3

ρ

 =


0.01
0.05
0.03
0.1


N = 16; Basis

∏q
i=0 gi(ln(xi)) for gi Hermite polynomials with

∑
i deg(gi) ≤ 3.

Explicit solution:

Yt = BlackScholesCall(t,Xt;σ3, 100),

Zt = (0, 0, BlackScholesHedge(t,Xt;σ3, 100)).
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BSDE numerics
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Representation theorem due to Ma/Zhang

X is a diffusion: dXt = b(t,Xt)dt+ σ(t,Xt)dWt.
Also need gradient process and it’s inverse:

d∇Xt = bx(t,Xt)∇Xtdt+ σ(t,Xt)∇XtdWt,

d∇X−1
t = (−bx(t,Xt)− σx(t,Xt)

2)∇X−1
t dt+ σx(t,Xt)∇X−1

t dWt.

Representation theorem due to Ma/Zhang for Z:

Zt = Et[ξHt
T +

∫ T

t

f(r,Xr, Yr, Zr)H
t
rdr]

where (r − t)Ht
r = (

∫ t
r
[σ−1(s,Xs)∇Xs∇X−1

t σ(t,Xt)]
>dWs)

>.

Ht
r are the Malliavin weights; the representation formula is derived by means of

Malliavin’s calculus, but remains true in the Lipschitz case, even though the
BSDE is not Mallivin differentiable.
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Algorithm 2: Malliavin weights

Let (tk − ti)Hi
k = (

∑k−1
j=i σ

−1(tj , Xj)∇Xj∇X−1
i σ(ti, Xi)]

>∆Wj)
>.

Recursively build the approximation starting at i = N − 1:
Zi = Ei[ξHi

N +
∑N−1
k=i+1 f(tk, Xk, Yk+1, Zk)Hi

k∆k],

Yi = Ei[ξ +
∑N−1
k=i f(tk, Xk, Yk+1, Zk)∆k],

YN = ξ.

Constraint on the time-grid: lim supN→∞ supi<N
∆i+1

∆i
<∞.

Recall the special time-grid πβ :

Theorem
For sufficiently high N , there exists a positive constant C independent of the
time-grid such that

max
0≤k≤N−1

E|Yi − Ytβi |
2 +

N−1∑
i=0

E|Zi − Ztβi |
2∆i ≤ CN−1
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Projection estimates

Approximate conditional expectation Ei by projection on finite subspace of
L2(Fti):

Ẑl,i = arg minα·pl,i(Xi)
E[|Φ(XN )Hi

l,N +
∑N−1
k=i+1 f(tk, Xk, Ŷk+1, Ẑk)Hi

l,k∆k − α · pl,i(Xi)|2],

Ŷi = arg infα·p0,i(Xi)
E[|Φ(XN ) +

∑N−1
k=i f(tk, Xk, Ŷk+1, Ẑk)∆k − α · p0,i(Xi)|2],

ŶN = Φ(XN ).
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Projection estimates

Theorem
There exists positive constant C independent of the time-grid such that

E|Yi − Ŷi|2 ≤ 2E|Yi −PY
i Yi|2

+ C

N−1∑
k=i

{E|Yk+1 −PY
k+1Yk+1|2 + E|Zk −PZ

k Zk|2}∆k

(T − tk)1−θ

E|Zi − Ẑi|2 ≤ 2E|Zi −PZ
i Zi|2

+ C

N−1∑
k=i

{E|Yk+1 −PY
k+1Yk+1|2 + E|Zk −PZ

k Zk|2}∆k

(T − tk)1−θ
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Almost sure bounds

There exist positive constants Cy and Cz independent of the time-grid such that,
∀i,

|Yi| ≤ Cy and |Zi| ≤
Cz√
T − ti

P-almost surely
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Finally...

Thank You For Your Attention!
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