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Risk Measures in the Literature

(Ω,F , P ): Probability space

X: R.V.

Standard Deviation: R(X) := E[(X − E[X])2]

e.g. Markowitz, Portfolio Selection, 1952;

Value at Risk (J.P. Morgan): ∀α ∈ (0, 1)

V aR(α) := inf{x : P (X −X0 ≤ x) ≥ α},

CV aR(α) := E[X −X0 | X −X0 ≤ V aR(α)];

Stone Family of risk measures (1970s)

R(k, X̄,X∗) :=
(
E
[
|X −X∗|kIX≤X̄

]) 1
k
;

· · · · · ·
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Coherent risk measures

Artzner, Delbaen, Eber and Heath, Math. Finance, 1999

ρ(·) : L∞(Ω,F , P )→ R,

satisfies four axioms:

ρ(X) ≤ 0, ∀X ≥ 0,

Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ),

Translation invariance: ρ(X + c) = ρ(X)− c,
Positive homogeneity: ρ(λX) = λρ(X), ∀λ ≥ 0,

If ρ satisfies Fatou Property: ρ(X) ≤ limn ρ(Xn), ∀Xn → X,

ρ(X) = sup
Q∈P0

{EQ[−X]},

P0 is a closed and convex set of probabilities.
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Convex risk measures

Föllmer and Schied, Finance and Stochastics, 2002

Replace ”positive homogenity” by the convexity:

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), ∀λ ∈ [0, 1].

Then

ρ(X) = sup
Q∈P
{EQ[−X]− C(Q)},

P contains all the probabilities, and

C(Q) := sup
X∈L∞

{EQ[−X]− ρ(X)}

is called the minimal penalty term.
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Dynamic Time-Consistent Convex Risk Measures

Detlefsen and Scandolo, Finance and Stochastics, 2005

(Ω,F , (Ft)t∈[0,T ], P ): filtered probability space.

A family of mappings

ρt,s(·) : L2(Fs)→ L2(Ft), 0 ≤ t ≤ s ≤ T

(A1) Monotonicity: ∀X,Y ∈ L2(Fs), X ≥ Y, ρt,s(X) ≤ ρt,s(Y );

(A2) Translation invariance: ∀Z ∈ L2(Ft),

ρt,s(X + Z) = ρt,s(X)− Z;

(A3) Convexity: for all β ∈ [0, 1], X, Y ∈ L2(Fs),

ρt,s(βX + (1− β)Y ) ≤ β ρt,s(X) + (1− β)ρt,s(Y );
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Dynamic Time-Consistent Convex Risk Measures

(A4) Normalization: ρt,s(0) = 0.

(A5) Time consistency: ρt,s(X) = ρt,r(−ρr,s(X)), ∀r ∈ [t, s].

Definition

(ρt,s(·))0≤t≤s≤T satisfying (A1)-(A5) is called a dynamic

time-consistent convex risk measure (DTC risk measure).

(A6) Continuity from below: Xn ↑ X, P -a.s.

lim
n→∞

ρt,s(Xn) = ρt,s(X), P -a.s.;

(A7) Ct,s(P ) = 0, where

Ct,s(Q) := ess sup
X∈L∞(Fs)

{EQ[−X|Ft]− ρt,s(X)}, ∀Q� P

is the minimal penalty term of ρt,s.
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Representation of DTC Risk Measures

Proposition (Klöpple and Schweizer (2007), Bion-Nadal (2009))

ρt,s(X) = ess sup
Q∈Pt

{EQ[−X|Ft]− Ct,s(Q)},

where Pt = {Q ∼ P | Q = P on Ft}.
Time-consistency is equivalent to

Ct,s(Q) = Ct,r(Q) + EQ[Cr,s(Q)|Ft], 0 ≤ t ≤ r ≤ s ≤ T.

Under Brownian Filtration

Rosazza Gianin (2006), Risk measure via g-expectation,

Insurance Mathematics and Economics

Delbaen, Peng and Rosazza Gianin (2010), Representation of

the penalty term of dynamic concave utilities, Finance and

Stochastics
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Backward Stochastic Differential Equation with Jumps

 dYt =− g(t, Yt, Zt, Ht) dt+ Zt dWt +

∫
E
Ht(e) µ̃(dedt);

YT =ξ.

(1)

Denote (Y,Z,H) as the solution, Eg[ξ|Ft] := Y (t) as the

g-expectation.

(Ω,F , (Ft)t∈[0,T ], P ), usual conditions

d-dimensional Brownian motion {Wt}t∈[0,T ]

Poisson random measure µ on [0, T ]× E, E := R\{0},

µ̃(dtde) := µ(dtde)− dtλ(de),∫
E
(1 ∧ |e|2)λ(de) < +∞.
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Assumptions on g

(H1) |g(t, y, z, h)− g(t, ŷ, ẑ, ĥ)| ≤ L(|y − ŷ|+ |z − ẑ|+ ‖h− ĥ‖);

(H2) E

[∫ T

0
|g0(t)|2 dt

]
< +∞, g0(t) := g(t, 0, 0, 0);

(H3) ∃κ1 ≥ 0, κ2 ∈ (−1, 0], such that

g(t, y, z, h)− g(t, y, z, ĥ) ≤
∫
E
(h(e)− ĥ(e))γy,z,h,ĥt (e)λ(de),

where

κ2(1 ∧ |e|) ≤ γy,z,h,ĥt (e) ≤ κ1(1 ∧ |e|),

(H4) g(t, y, 0, 0) = 0, a.e., a.s.;

(H5) g is independent of y.
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Representation of the generator

Proposition

Fixed x, p, y ∈ R, ∀ε > 0, t+ ε ≤ T . Consider the following

FBSDE

Xt,x
s =x+

∫ s

t
b(Xt,x

u )du+

∫ s

t
σ(Xt,x

u )dWu

+

∫ s

t

∫
E
η(e,Xt,x

u−)µ̃(dedu), s ∈ [t, t+ ε],

Y t,x,p,y
s =y + p(Xt,x

t+ε − x) +

∫ t+ε

s
g(u, Y t,x,p,y

u , Zt,x,p,yu , Ht,x,p,y
u )du

−
∫ t+ε

s
Zt,x,p,yu dWu −

∫ t+ε

s

∫
E
Ht,x,p,y(u, e)µ̃(dedu),

s ∈ [t, t+ ε],
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Representation of the generator (continue)

where g satisfies (H1)-(H2)

b : R→ R, σ : R→ Rd, η : E× R→ R, η(e, 0) ∈ L2(E), and

∃ L > 0 such that

|b(x1)− b(x2)|+ |σ(x1)− σ(x2)| ≤ L|x1 − x2|, ∀x1, x2 ∈ R,

|η(e, x1)− η(e, x2)| ≤ L(1 ∧ |e|)|x1 − x2|, ∀x1, x2 ∈ R,

then there exists A ⊂ [0, T ] with full Lebesgue measure, such that

∀t ∈ A, ∀q ∈ [1, 2),

Lq- lim
ε↓0

Y t,x,p,y
t − y

ε
= g(t, y, σ(x)p, η(·, x)p) + b(x)p.
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Converse Comparison Theorem

Theorem

Suppose that g1 and g2 are two generators of BSDE (1), and they

satisfy assumptions (H1), (H3) and (H4). If Eg1 [ξ|Ft] ≥ Eg2 [ξ|Ft]

for all ξ ∈ L2(FT ), then there exists a subset S ⊆ [0, T ] with

υ([0, T ]\S) = 0 (υ is the Lebesgue measure), such that for any

t ∈ S,

g1(t, y, z, h) ≥ g2(t, y, z, h), P -a.s.

for all y ∈ R, z ∈ Rd, h ∈ L2(E).
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Corollary

Corollary

Let g satisfy the assumptions (H1), (H3) and (H4). Then for all

β ∈ [0, 1], the following are equivalent,

(1) ∀ξ1, ξ2 ∈ L2(FT ),

Eg[βξ1 + (1− β)ξ2|Ft] ≤ βEg[ξ1|Ft] + (1− β)Eg[ξ2|Ft];

(2) for all y1, y2 ∈ R, z1, z2 ∈ Rd and h1, h2 ∈ L2(E),

g(t, βy1 + (1− β)y2, βz1 + (1− β)z2, βh1 + (1− β)h2)

≤βg(t, y1, z1, h1) + (1− β)g(t, y2, z2, h2);
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Relation Between DTC Risk Measure and g-expectation

Proposition

Suppose that g satisfies (H1)-(H3). Then the following are

equivalent:

(1) Eg[− · |Ft], t ∈ [0, T ] is a DTC risk measure.

(2) g satisfies (H4) and (H5), and g is jointly convex with respect

to z and h.
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Relation Between DTC Risk Measure and g-expectation

Proposition

If a DTC risk measure ρt,T (·) is strictly monotone and ρt,T (−·) is

Egκ1,κ2 -dominated for some κ1 ≥ 0 and κ2 ∈ (−1, 0], then

(1) ∃g : Ω× [0, T ]× Rd × L2(E)→ R such that

ρt,T (·) = Eg[− · |Ft];

(2) g satisfies (H1)-(H5) and is jointly convex with respect to z

and h. Moreover, κ1 is the Lipschtz coefficient on z, κ1 − κ2 on h,

and κ1 and κ2 are the two coefficient in (H2).
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Egκ1,κ2 -Domination

Definition

φ[·|Ft] : L2(FT )→ L2(Ft), ∀t ≤ T,

If for all ξ1, ξ2 ∈ L2(FT ),

φ[ξ1 + ξ2]− φ[ξ2] ≤ Egκ1,κ2 [ξ1],

where

gκ1,κ2(t, z, h) :=κ1|z|+ |κ1|
∫
E
(1 ∧ |e|)h+(e)λ(de)

− κ2

∫
E
(1 ∧ |e|)h−(e)λ(de).

Then φ is Egκ1,κ2 -dominated.
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Truncated DTC Risk Measure

ρt,s: strictly monotone, Egκ1,κ2 -dominated, BSDE

what about a general ρt,s?

Define

ρnt,s(X) := ess sup
Q∈Pnt

{
EQ[−X|Ft]− Ct,s(Q)

}
,

where

Pnt :=
{
Q ∈ Pt

∣∣∣ |θ(u, ω)| ≤ n,

− (1− 1

n
)(1 ∧ |e|) ≤ ζ(u, e, ω) ≤ n(1 ∧ |e|), ∀u ∈ [t, T ]

}
with

dQ

dP
= E xp

{∫ T

0
θsdWs +

∫ T

0

∫
E
ζ(e, s)µ̃(deds

}
.
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Let

Cnt,s(Q) :=

{
Ct,s(Q), Q ∈ Pnt ;

+∞, else,

then

ρnt,s(X) := ess sup
Q∈Pt

{
EQ[−X|Ft]− Cnt,s(Q)

}
,

ρnt,s(·) is Eg
n,− 1

n

-dominated.
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Proposition

We have the following two assertions for ρnt,s:

(1) ρnt,s is also a DTC risk measure satisfying (A1)-(A7) with Cnt,s
being its minimal penalty term;

(2) ∃gn : [0, T ]× Ω× Rd × L2(E)→ R satisfying (H1)-(H5) and

jointly convex with respect to z and h, such that

ρnt,T (X) =−X +

∫ T

t
gn(s, Zs, Hs) ds−

∫ T

t
Zs dWs

−
∫ T

t

∫
E
Hs(e) µ̃(deds), t ∈ [0, T ].
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Integral Representation of Cn
t,s

Proposition

Define

fn(t, ω, a, b) := sup
(z,h)∈Rd×L2(E)

{〈a, z〉+ 〈b, h〉 − gn(t, ω, z, h)}

for all (a, b) ∈ Rn × L2(E). Here fn can take the value +∞ and

the integration here is defined to be extended. Then

Cnt,s(Q) = EQ

[∫ s

t
fn(r, θr, ζr)dr

∣∣∣ Ft

]
, ∀Q ∼ P,

and

ρnt,s(X) = ess sup
Q∈Pt

EQ

[
−X −

∫ s

t
fn(r, θr, ζr)dr

∣∣∣ Ft

]
.
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Limit function

Lemma

Define

f(t, ω, a, b) = inf
n
fn(t, ω, a, b),

then for any (t, ω, a, b), the following two are alternative:

(i) ∃n, such that fn(t, ω, a, b) < +∞, then, ∀m ≥ n,

fm(t, ω, a, b) = fn(t, ω, a, b) = f(t, ω, a, b);

(ii) ∀n, fn(t, ω, a, b) = +∞, then we define f(t, ω, a, b) = +∞.
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P̂ :=
{
Q ∼ P | ζ(u, e) > −(1 ∧ |e|)

}
.

Theorem

Let ρt,s(·) be a DTC risk measure satisfying assumption

(A1)-(A7). Then, for any Q ∈ P̂, we have

Ct,s(Q) ≤ E
[∫ s

t
f(r, θr, ζr)dr

∣∣∣ Ft

]
with the equality “=” holding for Q ∈ ∪∞n=1Pnt .
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Let E := {1}, then µ(dtde) := N(dt) is a Poisson process.

Theorem

Ct,s(Q) = EQ

[∫ s

t
f(u, θu, ζu)du

∣∣∣ Ft

]
, Q ∼ P,

and

ρt,s(X) = ess sup
Q∈Pt

EQ

[
−X −

∫ s

t
f(r, θr, ζr)dr

∣∣∣ Ft

]
.

If E is a finite set, similar equalities hold too.
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Example: Loss Function

Loss function l : R→ R, nondecreasing, convex

At,T =
{
X ∈ L∞(FT ) | EP [l(−X)|Ft] ≤ x0

}
ρA
t,T (X) := ess inf{ ξ ∈ L∞ | ξ +X ∈ A }

time-consistent ⇔ l is a linear or exponential function

l(x) := exp{x}, x0 := 1.

ρA
t,T (X) = log (EP [exp{−X}|Ft]) = ess sup

Q∈Pt

{
EQ[−X|Ft]−Ct,T (Q)

}
,

Ct,T (Q) :=EQ

[
log

dQ

dP

∣∣∣ Ft

]
=EQ

[ ∫ T

t

[ |θs|2
2

+

∫
E

(
ζ(s, e) log(1 + ζ(s, e))

+ log(1 + ζ(s, e))− ζ(s, e)
)
ν(de)

]
ds
∣∣∣ Ft

]
,
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Example (continue)

f(t, a, b) =
|a|2

2
+

∫
E

(
b(e) log(1+b(e))+log(1+b(e))−b(e)

)
ν(de).

Define

g(t, z, h) =
|z|2

2
+

∫
E
[−h(e) + exp{h(e)} − 1]λ(de),

then, f is the conjugate function of g, and vice versa.

ρA
t,T (X) =−X +

∫ T

t
g(t, Z,H) ds−

∫ T

t
Z(s) dWs

+

∫ T

t

∫
E
H(s, e) µ̃(de ds).
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Thank you!
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