Representation of Dynamic Time-Consistent Convex Risk Measures with Jumps

Wenning Wei

School of Mathematical Sciences, Fudan University, Shanghai, China 071018033@fudan.edu.cn

Joint work with Prof. Shanjian Tang (Fudan)

July 2, 2012

э

Outlines

- Risk measures (VaR,...); Dynamic time-consistent convex risk measures
- Backward Stochastic Differential Equations and *g*-expectation with jumps
- Relation between *g*-expectation and dynamic time-consistent convex risk measure
- Integral representation of the minimal penalty term
- An example

Risk Measures in the Literature

 (Ω, \mathscr{F}, P) : Probability space X: R.V.

- Standard Deviation: R(X) := E[(X E[X])²]
 e.g. Markowitz, Portfolio Selection, 1952;
- Value at Risk (J.P. Morgan): $\forall \alpha \in (0,1)$

$$VaR(\alpha) := \inf\{x : P(X - X_0 \le x) \ge \alpha\},\$$

$$CVaR(\alpha) := E[X - X_0 \mid X - X_0 \le VaR(\alpha)];$$

• Stone Family of risk measures (1970s)

$$R(k, \bar{X}, X^*) := \left(E[|X - X^*|^k \mathbb{I}_{X \le \bar{X}}] \right)^{\frac{1}{k}};$$

• • • • • •

Coherent risk measures

Artzner, Delbaen, Eber and Heath, Math. Finance, 1999

 $\rho(\cdot): \mathbb{L}^{\infty}(\Omega, \mathscr{F}, P) \to \mathbb{R},$

satisfies four axioms:

- $\rho(X) \leq 0$, $\forall X \geq 0$,
- Subadditivity: $\rho(X+Y) \leq \rho(X) + \rho(Y)$,
- Translation invariance: $\rho(X + c) = \rho(X) c$,
- Positive homogeneity: $\rho(\lambda X) = \lambda \rho(X)$, $\forall \lambda \ge 0$,
- If ρ satisfies Fatou Property: $\rho(X) \leq \lim_n \rho(X_n)$, $\forall X_n \to X$,

$$\rho(X) = \sup_{Q \in \mathcal{P}_0} \{ E_Q[-X] \},$$

 \mathcal{P}_0 is a closed and convex set of probabilities.

Convex risk measures

Föllmer and Schied, Finance and Stochastics, 2002

• Replace "positive homogenity" by the convexity:

$$\rho(\lambda X + (1-\lambda)Y) \le \lambda \rho(X) + (1-\lambda)\rho(Y), \ \forall \lambda \in [0,1].$$

Then

$$\rho(X) = \sup_{Q \in \mathcal{P}} \{ E_Q[-X] - C(Q) \},$$

 ${\mathcal P}$ contains all the probabilities, and

$$C(Q) := \sup_{X \in \mathbb{L}^{\infty}} \{ E_Q[-X] - \rho(X) \}$$

is called the minimal penalty term.

Dynamic Time-Consistent Convex Risk Measures

Detlefsen and Scandolo, Finance and Stochastics, 2005 $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \in [0,T]}, P)$: filtered probability space. A family of mappings

$$\rho_{t,s}(\cdot): \mathbb{L}^2(\mathscr{F}_s) \to \mathbb{L}^2(\mathscr{F}_t), \quad 0 \le t \le s \le T$$

(A1) Monotonicity: $\forall X, Y \in \mathbb{L}^2(\mathscr{F}_s), X \geq Y, \ \rho_{t,s}(X) \leq \rho_{t,s}(Y);$ (A2) Translation invariance: $\forall Z \in \mathbb{L}^2(\mathscr{F}_t),$

$$\rho_{t,s}(X+Z) = \rho_{t,s}(X) - Z;$$

(A3) Convexity: for all $\beta \in [0,1]$, $X, Y \in \mathbb{L}^2(\mathscr{F}_s)$,

$$\rho_{t,s}(\beta X + (1-\beta)Y) \le \beta \rho_{t,s}(X) + (1-\beta)\rho_{t,s}(Y);$$

Dynamic Time-Consistent Convex Risk Measures

(A4) Normalization: $\rho_{t,s}(0) = 0$.

(A5) Time consistency: $\rho_{t,s}(X) = \rho_{t,r}(-\rho_{r,s}(X)), \quad \forall r \in [t,s].$

Definition

 $(\rho_{t,s}(\cdot))_{0 \le t \le s \le T}$ satisfying (A1)-(A5) is called a dynamic time-consistent convex risk measure (DTC risk measure).

(A6) Continuity from below: $X_n \uparrow X$, *P*-a.s.

$$\lim_{n \to \infty} \rho_{t,s}(X_n) = \rho_{t,s}(X), \ P\text{-a.s.};$$

(A7) $C_{t,s}(P) = 0$, where

$$C_{t,s}(Q) := \underset{X \in \mathbb{L}^{\infty}(\mathscr{F}_s)}{\mathrm{ess}} \{ E_Q[-X|\mathscr{F}_t] - \rho_{t,s}(X) \}, \quad \forall Q \ll P$$

is the minimal penalty term of $\rho_{t,s}$.

Wenning Wei

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Representation of DTC Risk Measures

Proposition (Klöpple and Schweizer (2007), Bion-Nadal (2009))

$$\rho_{t,s}(X) = \underset{Q \in \mathcal{P}_t}{\operatorname{ess\,sup}} \{ E_Q[-X|\mathscr{F}_t] - C_{t,s}(Q) \},$$

where $\mathcal{P}_t = \{Q \sim P \mid Q = P \text{ on } \mathscr{F}_t\}.$

Time-consistency is equivalent to

$$C_{t,s}(Q) = C_{t,r}(Q) + E_Q[C_{r,s}(Q)|\mathscr{F}_t], \quad 0 \le t \le r \le s \le T.$$

Under Brownian Filtration

- Rosazza Gianin (2006), Risk measure via g-expectation, Insurance Mathematics and Economics
- Delbaen, Peng and Rosazza Gianin (2010), Representation of the penalty term of dynamic concave utilities, Finance and Stochastics

Backward Stochastic Differential Equation with Jumps

$$\begin{cases} dY_t = -g(t, Y_t, Z_t, H_t) dt + Z_t dW_t + \int_{\mathbb{E}} H_t(e) \widetilde{\mu}(dedt); \\ Y_T = \xi. \end{cases}$$
(1)

Denote (Y,Z,H) as the solution, $\mathcal{E}_g[\xi|\mathscr{F}_t]:=Y(t)$ as the g-expectation.

 $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \in [0,T]}, P)$, usual conditions

- d-dimensional Brownian motion $\{W_t\}_{t \in [0,T]}$
- Poisson random measure μ on $[0,T]\times \mathbb{E},\ \mathbb{E}:=\mathbb{R}\backslash \{0\},$

$$\widetilde{\mu}(dtde) := \mu(dtde) - dt\lambda(de),$$

$$\int_{\mathbb{E}} (1 \wedge |e|^2) \lambda(de) < +\infty.$$

Assumptions on g

$$\begin{array}{l} (\mathsf{H1}) \ |g(t,y,z,h) - g(t,\hat{y},\hat{z},\hat{h})| \leq L(|y - \hat{y}| + |z - \hat{z}| + \|h - \hat{h}\|); \\ (\mathsf{H2}) \ E\left[\int_{0}^{T} |g_{0}(t)|^{2} \, dt\right] < +\infty, \ g_{0}(t) := g(t,0,0,0); \\ (\mathsf{H3}) \ \exists \kappa_{1} \geq 0, \ \kappa_{2} \in (-1,0], \ \text{such that} \end{array}$$

$$g(t, y, z, h) - g(t, y, z, \hat{h}) \leq \int_{\mathbb{R}} (h(e) - \hat{h}(e)) \gamma_t^{y, z, h, \hat{h}}(e) \lambda(de),$$

where

$$\kappa_2(1 \wedge |e|) \le \gamma_t^{y,z,h,\hat{h}}(e) \le \kappa_1(1 \wedge |e|),$$

(H4) g(t, y, 0, 0) = 0, *a.e.*, *a.s.*; (H5) g is independent of y.

æ

《曰》《聞》《臣》《臣》

Representation of the generator

Proposition

Fixed $x, p, y \in \mathbb{R}$, $\forall \varepsilon > 0, t + \varepsilon \leq T$. Consider the following FBSDE

$$\begin{split} \begin{array}{l} \left(\begin{array}{c} X_s^{t,x} = & x + \int_t^s b(X_u^{t,x}) du + \int_t^s \sigma(X_u^{t,x}) dW_u \\ & + \int_t^s \int_{\mathbb{R}} \eta(e, X_{u^-}^{t,x}) \widetilde{\mu}(dedu), \quad s \in [t, t + \varepsilon], \end{array} \right) \\ Y_s^{t,x,p,y} = & y + p(X_{t+\varepsilon}^{t,x} - x) + \int_s^{t+\varepsilon} g(u, Y_u^{t,x,p,y}, Z_u^{t,x,p,y}, H_u^{t,x,p,y}) du \\ & - \int_s^{t+\varepsilon} Z_u^{t,x,p,y} dW_u - \int_s^{t+\varepsilon} \int_{\mathbb{R}} H^{t,x,p,y}(u, e) \widetilde{\mu}(dedu), \\ & s \in [t, t+\varepsilon], \end{split}$$

Representation of the generator (continue)

where g satisfies (H1)-(H2) $b: \mathbb{R} \to \mathbb{R}, \ \sigma: \mathbb{R} \to \mathbb{R}^d, \ \eta: \mathbb{E} \times \mathbb{R} \to \mathbb{R}, \ \eta(e, 0) \in L^2(\mathbb{E}), \text{ and} \exists L > 0 \text{ such that}$

$$|b(x_1) - b(x_2)| + |\sigma(x_1) - \sigma(x_2)| \le L|x_1 - x_2|, \quad \forall x_1, x_2 \in \mathbb{R},$$

$$|\eta(e, x_1) - \eta(e, x_2)| \le L(1 \land |e|)|x_1 - x_2|, \quad \forall x_1, x_2 \in \mathbb{R},$$

then there exists $A \subset [0,T]$ with full Lebesgue measure, such that $\forall t \in A, \, \forall q \in [1,2),$

$$L^{q} - \lim_{\varepsilon \downarrow 0} \frac{Y_{t}^{t,x,p,y} - y}{\varepsilon} = g(t,y,\sigma(x)p,\eta(\cdot,x)p) + b(x)p.$$

Converse Comparison Theorem

Theorem

Suppose that g_1 and g_2 are two generators of BSDE (1), and they satisfy assumptions (H1), (H3) and (H4). If $\mathcal{E}_{g_1}[\xi|\mathscr{F}_t] \geq \mathcal{E}_{g_2}[\xi|\mathscr{F}_t]$ for all $\xi \in \mathbb{L}^2(\mathscr{F}_T)$, then there exists a subset $S \subseteq [0,T]$ with $v([0,T] \setminus S) = 0$ (v is the Lebesgue measure), such that for any $t \in S$,

$$g_1(t, y, z, h) \ge g_2(t, y, z, h), \quad P\text{-a.s.}$$

for all $y \in \mathbb{R}$, $z \in \mathbb{R}^d$, $h \in \mathbb{L}^2(\mathbb{E})$.

Corollary

Corollary

Let g satisfy the assumptions (H1), (H3) and (H4). Then for all $\beta \in [0, 1]$, the following are equivalent, (1) $\forall \xi_1, \ \xi_2 \in \mathbb{L}^2(\mathscr{F}_T)$,

$$\mathcal{E}_g[\beta\xi_1 + (1-\beta)\xi_2|\mathscr{F}_t] \le \beta\mathcal{E}_g[\xi_1|\mathscr{F}_t] + (1-\beta)\mathcal{E}_g[\xi_2|\mathscr{F}_t];$$

(2) for all $y_1, y_2 \in \mathbb{R}$, $z_1, z_2 \in \mathbb{R}^d$ and $h_1, h_2 \in \mathbb{L}^2(\mathbb{E})$,

$$g(t, \beta y_1 + (1 - \beta)y_2, \beta z_1 + (1 - \beta)z_2, \beta h_1 + (1 - \beta)h_2)$$

$$\leq \beta g(t, y_1, z_1, h_1) + (1 - \beta)g(t, y_2, z_2, h_2);$$

Relation Between DTC Risk Measure and g-expectation

Proposition

Suppose that g satisfies (H1)-(H3). Then the following are equivalent: (1) $\mathcal{E}_g[-\cdot |\mathscr{F}_t], t \in [0,T]$ is a DTC risk measure. (2) g satisfies (H4) and (H5), and g is jointly convex with respect to z and h.

Relation Between DTC Risk Measure and g-expectation

Proposition

If a DTC risk measure $\rho_{t,T}(\cdot)$ is strictly monotone and $\rho_{t,T}(-\cdot)$ is $\mathcal{E}_{g_{\kappa_1,\kappa_2}}$ -dominated for some $\kappa_1 \geq 0$ and $\kappa_2 \in (-1,0]$, then (1) $\exists g: \Omega \times [0,T] \times \mathbb{R}^d \times \mathbb{L}^2(\mathbb{E}) \to \mathbb{R}$ such that

$$\rho_{t,T}(\cdot) = \mathcal{E}_g[-\cdot |\mathscr{F}_t];$$

(2) g satisfies (H1)-(H5) and is jointly convex with respect to z and h. Moreover, κ_1 is the Lipschtz coefficient on z, $\kappa_1 - \kappa_2$ on h, and κ_1 and κ_2 are the two coefficient in (H2).

$\mathcal{E}_{g_{\kappa_1,\kappa_2}}$ -Domination

Definition

$$\phi[\cdot|\mathscr{F}_t]: \mathbb{L}^2(\mathscr{F}_T) \to \mathbb{L}^2(\mathscr{F}_t), \quad \forall t \le T,$$

If for all $\xi_1, \xi_2 \in \mathbb{L}^2(\mathscr{F}_T)$,

$$\phi[\xi_1 + \xi_2] - \phi[\xi_2] \le \mathcal{E}_{g_{\kappa_1,\kappa_2}}[\xi_1],$$

where

$$g_{\kappa_1,\kappa_2}(t,z,h) := \kappa_1 |z| + |\kappa_1| \int_{\mathbb{E}} (1 \wedge |e|) h^+(e) \lambda(de) - \kappa_2 \int_{\mathbb{E}} (1 \wedge |e|) h^-(e) \lambda(de).$$

Then ϕ is $\mathcal{E}_{g_{\kappa_1,\kappa_2}}$ -dominated.

Truncated DTC Risk Measure

- $\rho_{t,s}$: strictly monotone, $\mathcal{E}_{g_{\kappa_1,\kappa_2}}$ -dominated, BSDE
- what about a general $\rho_{t,s}$?

Define

$$\rho_{t,s}^n(X) := \underset{Q \in \mathcal{P}_t^n}{\operatorname{ess\,sup}} \big\{ E_Q[-X|\mathscr{F}_t] - C_{t,s}(Q) \big\},$$

where

$$\begin{split} \mathcal{P}_t^n := & \Big\{ Q \in \mathcal{P}_t \ \Big| \ |\theta(u,\omega)| \le n, \\ & - (1 - \frac{1}{n})(1 \wedge |e|) \le \zeta(u,e,\omega) \le n(1 \wedge |e|), \ \forall u \in [t,T] \Big\} \end{split}$$

with

$$\frac{dQ}{dP} = \mathscr{E}xp\left\{\int_0^T \theta_s dW_s + \int_0^T \int_{\mathbb{E}} \zeta(e,s)\widetilde{\mu}(deds\right\}.$$

э

▶ 《 문 ▶ 《 문 ▶ …

Let

$$C_{t,s}^{n}(Q) := \begin{cases} C_{t,s}(Q), & Q \in \mathcal{P}_{t}^{n}; \\ +\infty, & else, \end{cases}$$

then

$$\rho_{t,s}^n(X) := \operatorname{ess\,sup}_{Q \in \mathcal{P}_t} \{ E_Q[-X|\mathscr{F}_t] - C_{t,s}^n(Q) \},\$$

 $\rho_{t,s}^n(\cdot)$ is $\mathcal{E}_{g_{n,-\frac{1}{n}}}\text{-dominated}.$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 -

Proposition

We have the following two assertions for $\rho_{t,s}^n$: (1) $\rho_{t,s}^n$ is also a DTC risk measure satisfying (A1)-(A7) with $C_{t,s}^n$ being its minimal penalty term; (2) $\exists g_n : [0,T] \times \Omega \times \mathbb{R}^d \times \mathbb{L}^2(\mathbb{E}) \to \mathbb{R}$ satisfying (H1)-(H5) and jointly convex with respect to z and h, such that

$$\rho_{t,T}^{n}(X) = -X + \int_{t}^{T} g_{n}(s, Z_{s}, H_{s}) \, ds - \int_{t}^{T} Z_{s} \, dW_{s}$$
$$- \int_{t}^{T} \int_{\mathbb{E}} H_{s}(e) \, \widetilde{\mu}(deds), \quad t \in [0, T].$$

Integral Representation of $C_{t,s}^n$

Proposition

Define

$$f_n(t,\omega,a,b) := \sup_{(z,h) \in \mathbb{R}^d \times \mathbb{L}^2(\mathbb{E})} \{ \langle a, z \rangle + \langle b, h \rangle - g_n(t,\omega,z,h) \}$$

for all $(a,b) \in \mathbb{R}^n \times \mathbb{L}^2(\mathbb{E})$. Here f_n can take the value $+\infty$ and the integration here is defined to be extended. Then

$$C_{t,s}^{n}(Q) = E_{Q}\left[\int_{t}^{s} f_{n}(r,\theta_{r},\zeta_{r})dr \mid \mathscr{F}_{t}\right], \quad \forall Q \sim P,$$

and

$$\rho_{t,s}^n(X) = \operatorname{ess\,sup}_{Q \in \mathcal{P}_t} E_Q \left[-X - \int_t^s f_n(r,\theta_r,\zeta_r) dr \mid \mathscr{F}_t \right]$$

Limit function

Lemma

Define

$$f(t, \omega, a, b) = \inf_{n} f_n(t, \omega, a, b),$$

then for any (t, ω, a, b) , the following two are alternative: (i) $\exists n$, such that $f_n(t, \omega, a, b) < +\infty$, then, $\forall m \ge n$, $f_m(t, \omega, a, b) = f_n(t, \omega, a, b) = f(t, \omega, a, b)$; (ii) $\forall n$, $f_n(t, \omega, a, b) = +\infty$, then we define $f(t, \omega, a, b) = +\infty$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

$$\widehat{\mathcal{P}} := \Big\{ Q \sim P \mid \zeta(u, e) > -(1 \wedge |e|) \Big\}.$$

Theorem

Let $\rho_{t,s}(\cdot)$ be a DTC risk measure satisfying assumption (A1)-(A7). Then, for any $Q \in \widehat{\mathcal{P}}$, we have

$$C_{t,s}(Q) \le E\left[\int_t^s f(r,\theta_r,\zeta_r)dr \mid \mathscr{F}_t\right]$$

with the equality "=" holding for $Q \in \bigcup_{n=1}^{\infty} \mathcal{P}_t^n$.

・ロト ・部 ト ・ ヨト ・ ヨト … ヨ

Let $\mathbb{E} := \{1\}$, then $\mu(dtde) := N(dt)$ is a Poisson process.

Theorem $C_{t,s}(Q) = E_Q \left[\int_t^s f(u, \theta_u, \zeta_u) du \mid \mathscr{F}_t \right], \ Q \sim P,$ and $\rho_{t,s}(X) = \operatorname{ess\,sup}_{Q \in \mathcal{P}_t} E_Q \left[-X - \int_t^s f(r, \theta_r, \zeta_r) dr \mid \mathscr{F}_t \right].$

• If \mathbb{E} is a finite set, similar equalities hold too.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Example: Loss Function

Loss function $l: \mathbb{R} \to \mathbb{R}$, nondecreasing, convex

$$\mathscr{A}_{t,T} = \left\{ X \in L^{\infty}(\mathscr{F}_{T}) \mid E_{P}[l(-X)|\mathscr{F}_{t}] \le x_{0} \right\}$$

$$\rho_{t,T}^{\mathscr{A}}(X) := \operatorname{ess\,inf}\{ \xi \in L^{\infty} \mid \xi + X \in \mathscr{A} \}$$

time-consistent $\Leftrightarrow l$ is a linear or exponential function

$$l(x):=\exp\{x\},\qquad x_0:=1.$$

 $\rho_{t,T}^{\mathscr{A}}(X) = \log\left(E_P[exp\{-X\}|\mathscr{F}_t]\right) = \underset{Q\in\mathcal{P}_t}{\mathrm{ess}} \sup_{Q\in\mathcal{P}_t} \Big\{E_Q[-X|\mathscr{F}_t] - C_{t,T}(Q)\Big\},$

$$\begin{split} C_{t,T}(Q) &:= E_Q \left[\log \frac{dQ}{dP} \mid \mathscr{F}_t \right] \\ &= E_Q \left[\int_t^T \left[\frac{|\theta_s|^2}{2} + \int_{\mathbb{E}} \left(\zeta(s,e) \log(1+\zeta(s,e)) \right) \right] \right] \end{split}$$

25 / 27

Wenning Wei

Dynamic Convex Risk Measures

Example (continue)

$$f(t,a,b) = \frac{|a|^2}{2} + \int_{\mathbb{E}} \Bigl(b(e) \log(1+b(e)) + \log(1+b(e)) - b(e) \Bigr) \nu(de).$$

Define

$$g(t,z,h) = \frac{|z|^2}{2} + \int_{\mathbb{E}} [-h(e) + exp\{h(e)\} - 1] \,\lambda(de),$$

then, f is the conjugate function of g, and vice versa.

$$\begin{split} \rho_{t,T}^{\mathscr{A}}(X) &= -X + \int_{t}^{T} g(t,Z,H) \, ds - \int_{t}^{T} Z(s) \, dW_s \\ &+ \int_{t}^{T} \int_{\mathbb{E}} H(s,e) \, \widetilde{\mu}(de \, ds). \end{split}$$

э

Thank you!

æ

・ロン ・雪と ・ヨと ・