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Goal

Given parameters g : Rd
+ → R and f : [0,T ]× Rd

+ × R× Rd → R,

Yt = g(XT ) +

∫ T

t

f (s,Xs ,Ys ,Zs) ds −
∫ T

t

Zs dBs , 0 ≤ t ≤ T , (BSDE)

where each component of X is a nonnegative local martingale.

Question: Can we find multiple solutions?
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Main results (roughly)

I g has linear growth,

I f is bounded in z + some additional assumptions,

I X is a strict local martingale,

Then there exist two (sometimes infinite many) solutions in (Sp,Mp),
0 < p < 1,

I in one solution (Y ,Z ), Y is of class D,

I in another solution (Y ,Z ), Y is not of class D,

I Y0 > Y 0.

When X is a diffusion,

I multiple viscosity solutions to quasi-linear PDE,

I sufficient condition for uniqueness (comparison).
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Thank you very much!
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A motivational example

dXt = −X 2
t dBt , X0 = x > 0.

X is the reciprocal 3-dim Bessel process.

X is a strict local martingale with E[X 2
T ] <∞.

Consider the following BSDE:

Yt = XT −
∫ T

t

ZsdBs , 0 ≤ t ≤ T .

One solution: Y · = E[XT |F·] and its associated integrand Z .

E[sup0≤t≤T Y
2
t ] <∞ and E[

∫ T

0
Z

2
sds] <∞.

Another solution: (Y ,Z ) = (X ,−X 2).

I E[
∫ T

0
Z 2
s ds] = E[

∫ T

0
(X 2

s )2ds] =∞.

I Y = X is not of class D and E[sup0≤t≤T Yt ] =∞.

I Y0 = X0 > E[XT ] = Y 0.

However, both solutions are Lp integrable with p ∈ (0, 1).

There are at least two solutions in the same class of processes!
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Bubble

Let X be the price process of a risky asset under a risk neutral measure.

Xt > E[XT | Ft ],

trading price > hedge price.

European option price E[g(XT ) | Ft ] solves (BSDE) when f ≡ 0.

[Loewenstein-Willard], [Cox-Hobson], [Jarrow-Protter] . . .

Other applications:

I Stochastic Portfolio Theory [Fernholz-Karatzas et al.]

I Benchmark Approach [Platen et al.]
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Integrability of BSDE solutions
g(XT ) and {f (t,Xt , 0, 0) : t ∈ [0,T ]} are called parameters of (BSDE).

Parameters Results

L2 [Pardoux & Peng 90] existence and uniqueness of

L2− solution

Lp (p ∈ (1, 2)) [El Karoui et al. 97] existence of Lp− solution

Lp (p ∈ (1, 2)) existence and uniqueness in [Briand et al. 03]

L1 [Peng 97] a special type of BSDE

L1 f has sublinear growth in z,
[Briand et al. 03] existence and uniqueness in class D .
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g -local martingales

BSDE solutions are considered as nonlinear martingales

(g -martingales) in [Peng 97].

In classical theory, martingales are local martingales.

necessary to extend local martingales into the framework of BSDEs.

We regard solutions to (BSDE) as g -local martingales.

The non-class D solution can be viewed as g -strict local martingale.
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Assumptions on g

Denote

X =
d∑

i=1

X i

Both X i , 1 ≤ i ≤ d , and X are nonnegative local martingales.

The terminal function g is continuous, nonnegative, and

K := sup

{
g(x)

1 + x
: x ∈ Rd

+

}
<∞.

Therefore, 0 ≤ g(x) ≤ K (1 + x) and g(XT ) ∈ L1.

We do not a priori assume g(XT ) ∈ Lp for some p > 1.
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Assumptions on f

f is jointly continuous in all its variables.

|f (t, x , y , z)− f (t, x , y , z ′)| ≤ ν|z − z ′|,

(y − y ′)(f (t, x , y , z)− f (t, x , y ′, z)) ≤ µ(y − y ′)2,

f (t, x , y , z) ≥ 0,

f (t, x , 0, z) ≤ H(t, x).

This implies

f (t, x , y , z) ≤ µy + H(t, x), for any y ≥ 0 and z .

Here H : [0,T ]× R+ → R+ such that

I H is locally bounded on [0,T ]× R+.

I E[
∫ T

0
H(t,X t)dt] <∞.

I r 7→ H(t, r) is nondecreasing and concave.
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The class C

Look for (BSDE) solution inside the following class:

C :=

{
Y : 0 ≤ Y ≤ C

(
K(1 + X t) + E

[∫ T

t

H(s,X s)ds

∣∣∣∣Ft

])}
.

Proposition
For a solution (Y ,Z ) to (BSDE) such that Y ∈ C,

E

[
sup

t∈[0,T ]

|Yt |p
]
<∞ and E

[(∫ T

0

|Zs |2ds
)p/2

]
<∞,

for any p ∈ (0, 1), i.e., (Y ,Z ) ∈ (Sp,Mp).
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Main results

Theorem

(i) ∃ a solution (Y ,Z ) such that Y ∈ C and Y is of class D.

(ii) For any other solution (Ỹ , Z̃ ) such that Ỹ ∈ C, Ỹt ≥ Y t .

Define g(x) := K (1 + x)− g(x). Assume that

g(X·) is a supermartingale on [0,T ],

∃ a nondecreasing univariate G : R+ → R+,

g(x) ≤ G (x) and lim
r→∞

G (r)/r = 0.

(iii) Then when X is a strict local mart, ∃ another solution (Y ,Z ) such
that Y ∈ C, but Y is not of class D, moreover, Y0 > Y 0.
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Remarks and examples

Multiple solutions =⇒ comparison fails in C.

When f is Lipschitz in y and does not depends on z ,

then (BSDE) admits a family of solutions

(Y α,Zα)α∈[0,1],

such that (Y 0,Z 0) = (Y ,Z ) and (Y 1,Z 1) = (Y ,Z ).

Example (Zero generator)
When f ≡ 0,

Y · = E[g(XT )|F·] and Y· = K(X · − E[XT |F·]) + E[g(XT )|F·].
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BSDE with quadratic growth in z

Consider

Pt = logXT +

∫ T

t

(
α +

1

2
|Qs |2

)
ds −

∫ T

t

Qs dBs . (1)

Define (Y ,Z ) := (eP , ePQ). It satisfies

Yt = XT + α

∫ T

t

Ysds −
∫ T

t

ZsdBs . (2)

When X is a strict local mart., (2) admits two different solns, so is (1).

[Delbaen & Hu & Richou 11]: uniqueness of solution to (1) holds

E
[
eγ sup0≤t≤T P+

t + eε sup0≤t≤T P−
t

]
<∞, for some γ > 1 and ε > 0.

The additional solution (P,Q) is outside the previous class.
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Construction of multiple solutions

Let τn = inf{s ≥ 0 : Xs /∈ B+
n } ∧ T .

Given {ξn}n≥0 with ξn ∈ Fτn , we consider

Y n
t = ξn +

∫ T

t

I{s≤τn}f (s,Xs ,Y
n
s ,Z

n
s )ds −

∫ T

t

Z n
s dBs , for each n ≥ 0.

Consider two sequences

ξn := g(Xτn ) and ξn := gn(Xτn ).

We have

P− lim
n→∞

ξn = g(XT ) and P− lim
n→∞

ξn = g(XT ).

But the convergence may not be in L1.

This allows {Yn}n≥0 and {Y n}n≥0 converge to two different solutions.
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Two remarks

f is bounded in z + assumptions on H =⇒

Y n
t ≤ C

(
K (1 + X t) +

∫ T

t

H(s,X t)ds

)
, t ∈ [0,T ].

Then use the localization technique in [Briand & Hu 06].

f non-neg. + g linear growth =⇒

Yt = lim
n→∞

Y n
t ≥ K (X t − E[XT | Ft ]) + E[g(XT ) | Ft ].

Then X strict local martingale =⇒ Y is not of class D.
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The Markovian case
Given σ : (0,∞)d → Rd×d which is locally Lipschitz,

dX x,i
s =

d∑
j=1

σij(X
x
s )dB j

s , X x
0 = x ∈ (0,∞)d , i = 1, · · · , d .

We denote by L := 1
2 Tr(σσ′∇2) the infinitesimal generator.

We assume X does not hit the boundary of (0,∞)d in finite time.

No boundary condition is needed. [Bao-Delbaen-Hu 10]

Consider the quasi-linear PDE

−∂tu − 1
2
Tr
(
σσ′∇2u

)
− f (t, x , u,∇u σ) = 0, (t, x) ∈ [0,T )× (0,∞)d ,

u(T , x) = g(x), x ∈ (0,∞)d .
(PDE)

[Pardoux & Peng 92], [Barles & Buckdahn & Pardoux 97] . . .
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Existence theorem

Theorem
There are two different viscosity solutions u and u to (PDE). Both of
them are nonnegative and have at most linear growth. But

u(t, x) > u(t, x) for (t, x) ∈ [0,T )× (0,∞)d .

When f vanishes, g has linear growth, X a strict local mart., multiple
solution to (PDE) has been observed in

I stock price bubble [Heston et al. 07].

I stochastic portfolio theory [Fernholz & Karatzas 08].
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Comparison (uniqueness) theorem
Assume

|f (t, x , y , z)− f (t, x , y , z ′)| ≤ b(x)|z − z ′|, for some bdd. cont. b.

Theorem (Comparison)
Suppose that there exist a positive function Ψ and a positive constant λ:

LΨ(x) ≤ λ(1 + Ψ(x)) on (0,∞)d ,

lim
x→O

Ψ(x) =∞,

∀M > 0, ∃R s.t. Ψ(x)/x ≥ M for all x ≥ R,

cΨ(x) ≥ b(x)|∇Ψ(x)σ(x)|, on (0,∞)d .

Then for any nonneg. subsolution u and supersolution v of at most
linear growth,

u(t, x) ≤ v(t, x), for (t, x) ∈ [0,T ]× (0,∞)d .

Three examples: more restrictions on σ =⇒ wider dependence of f on z .
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Examples: σ has at most linear growth

When |σ(x)| ≤ C (1 + |x |),

Ψ(x) can be chosen as 1 + |x |2, add another function s.t.
limx→O Ψ(x) =∞.

b can be any bounded function.

Actually, the comparison holds in the class of functions

lim
|x|→∞

|u(t, x)|e−A[log |x|]2 = 0.

[Barles & Buckdahn & Pardoux 97]
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Example: No growth constraint on σ

f does not depend on z (b ≡ 0).

Assumptions in the comparison theorem is sharp in 1−dimension:

If X is a 1-dim positive martingale, then Ψ exists: Ψ = Ψ1 + Ψ2,

Ψ1(x) = 2

∫ x

c

dy

∫ y

c

dz

σ2(z)
and Ψ2(x) = x +

∫ x

c

dy

∫ y

c

z

σ2(z)
dz .

I limx↓0 Ψ1(x) =∞⇐⇒ X does not hit 0 (Feller’s test).

I limx→∞
Ψ2(x)

x =∞⇐⇒
∫∞
c

x
σ2(x) dx =∞⇐⇒ X is a martingale.

[Delbaen & Shirakawa 02], [Mijatovic & Urusov 10]
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σ has super-linear growth

Consider a 1-dim SDE

dXt = σ(Xt)dBt , where σ(x) =

{
x if x ≤ e
x
√

log x if x > e
.

X is a martingale.

Consider

b(x) =

{
1 if x ≤ e

e
x
√

log x
if x > e

.

Then

Ψ(x) =
1

x
+ x +

∫ x

e

dy

∫ y

e

z

σ2(z)
dz

satisfies all assumptions.
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Conclusion

We study a BSDE whose terminal condition is a linear growth function of
a local nonnegative martingale.

I obtain multiple solutions explicitly.

I other than a class D solution, there exists a non-class D solution,
which can be viewed as g -strict local martingale.

I derive a necessary/sufficient condition for uniqueness of associated
quasi-linear PDE.

“On backward stochastic differential equations and strict local
martingales”, Stochastic Processes and their Applications, 122 (2012)
2265-2291.
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Thanks for your attention!
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