BSDEs and Strict Local Martingales

Hao Xing
London School of Economics

BSDEs, Numerics, and Finance, Oxford, July 4, 2012

Goal

Given parameters $g: \mathbb{R}_{+}^{d} \rightarrow \mathbb{R}$ and $f:[0, T] \times \mathbb{R}_{+}^{d} \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}, \quad 0 \leq t \leq T, \quad \text { (BSDE) }
$$

where each component of X is a nonnegative local martingale.

Question: Can we find multiple solutions?

Main results (roughly)

- g has linear growth,
- f is bounded in $z+$ some additional assumptions,
- X is a strict local martingale,

Then there exist two (sometimes infinite many) solutions in $\left(\mathcal{S}^{p}, \mathcal{M}^{p}\right)$, $0<p<1$,

- in one solution $(\bar{Y}, \bar{Z}), \bar{Y}$ is of class D,
- in another solution $(Y, Z), Y$ is not of class D,
- $Y_{0}>\bar{Y}_{0}$.

When X is a diffusion,

- multiple viscosity solutions to quasi-linear PDE,
- sufficient condition for uniqueness (comparison).

Thank you very much!

A motivational example

$$
d X_{t}=-X_{t}^{2} d B_{t}, \quad X_{0}=x>0
$$

X is the reciprocal 3 -dim Bessel process.
X is a strict local martingale with $\mathbb{E}\left[X_{T}^{2}\right]<\infty$.

A motivational example

$$
d X_{t}=-X_{t}^{2} d B_{t}, \quad X_{0}=x>0 .
$$

X is the reciprocal 3 -dim Bessel process.
X is a strict local martingale with $\mathbb{E}\left[X_{T}^{2}\right]<\infty$.
Consider the following BSDE:

$$
Y_{t}=X_{T}-\int_{t}^{T} Z_{s} d B_{s}, \quad 0 \leq t \leq T .
$$

One solution: $\bar{Y} .=\mathbb{E}\left[X_{T} \mid \mathcal{F}\right.$. $]$ and its associated integrand \bar{Z}.
$\mathbb{E}\left[\sup _{0 \leq t \leq T} \bar{Y}_{t}^{2}\right]<\infty$ and $\mathbb{E}\left[\int_{0}^{T} \bar{Z}_{s}^{2} d s\right]<\infty$.

A motivational example

$$
d X_{t}=-X_{t}^{2} d B_{t}, \quad X_{0}=x>0
$$

X is the reciprocal 3-dim Bessel process.
X is a strict local martingale with $\mathbb{E}\left[X_{T}^{2}\right]<\infty$.
Consider the following BSDE:

$$
Y_{t}=X_{T}-\int_{t}^{T} Z_{s} d B_{s}, \quad 0 \leq t \leq T
$$

One solution: $\bar{Y} .=\mathbb{E}\left[X_{T} \mid \mathcal{F}\right.$. $]$ and its associated integrand \bar{Z}.

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T} \bar{Y}_{t}^{2}\right]<\infty \text { and } \mathbb{E}\left[\int_{0}^{T} \bar{Z}_{s}^{2} d s\right]<\infty
$$

Another solution: $(Y, Z)=\left(X,-X^{2}\right)$.

- $\mathbb{E}\left[\int_{0}^{T} Z_{s}^{2} d s\right]=\mathbb{E}\left[\int_{0}^{T}\left(X_{s}^{2}\right)^{2} d s\right]=\infty$.
- $Y=X$ is not of class D and $\mathbb{E}\left[\sup _{0 \leq t \leq T} Y_{t}\right]=\infty$.
- $Y_{0}=X_{0}>\mathbb{E}\left[X_{T}\right]=\bar{Y}_{0}$.

A motivational example

$$
d X_{t}=-X_{t}^{2} d B_{t}, \quad X_{0}=x>0
$$

X is the reciprocal 3-dim Bessel process.
X is a strict local martingale with $\mathbb{E}\left[X_{T}^{2}\right]<\infty$.
Consider the following BSDE:

$$
Y_{t}=X_{T}-\int_{t}^{T} Z_{s} d B_{s}, \quad 0 \leq t \leq T
$$

One solution: $\bar{Y} .=\mathbb{E}\left[X_{T} \mid \mathcal{F}\right.$. $]$ and its associated integrand \bar{Z}.

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T} \bar{Y}_{t}^{2}\right]<\infty \text { and } \mathbb{E}\left[\int_{0}^{T} \bar{Z}_{s}^{2} d s\right]<\infty
$$

Another solution: $(Y, Z)=\left(X,-X^{2}\right)$.

- $\mathbb{E}\left[\int_{0}^{T} Z_{s}^{2} d s\right]=\mathbb{E}\left[\int_{0}^{T}\left(X_{s}^{2}\right)^{2} d s\right]=\infty$.
- $Y=X$ is not of class D and $\mathbb{E}\left[\sup _{0 \leq t \leq T} Y_{t}\right]=\infty$.
- $Y_{0}=X_{0}>\mathbb{E}\left[X_{T}\right]=\bar{Y}_{0}$.

However, both solutions are \mathbb{L}^{p} integrable with $p \in(0,1)$.
There are at least two solutions in the same class of processes!

Bubble

Let X be the price process of a risky asset under a risk neutral measure.

$$
\begin{aligned}
X_{t} & >\mathbb{E}\left[X_{T} \mid \mathcal{F}_{t}\right] \\
\text { trading price } & >\text { hedge price. }
\end{aligned}
$$

Bubble

Let X be the price process of a risky asset under a risk neutral measure.

$$
\begin{aligned}
X_{t} & >\mathbb{E}\left[X_{T} \mid \mathcal{F}_{t}\right] \\
\text { trading price } & >\text { hedge price. }
\end{aligned}
$$

European option price $\mathbb{E}\left[g\left(X_{T}\right) \mid \mathcal{F}_{t}\right]$ solves (BSDE) when $f \equiv 0$.
[Loewenstein-Willard], [Cox-Hobson], [Jarrow-Protter] ...
Other applications:

- Stochastic Portfolio Theory [Fernholz-Karatzas et al.]
- Benchmark Approach [Platen et al.]

Integrability of BSDE solutions

$g\left(X_{T}\right)$ and $\left\{f\left(t, X_{t}, 0,0\right): t \in[0, T]\right\}$ are called parameters of (BSDE).

Integrability of BSDE solutions

$g\left(X_{T}\right)$ and $\left\{f\left(t, X_{t}, 0,0\right): t \in[0, T]\right\}$ are called parameters of (BSDE).
\(\left.$$
\begin{array}{c|l}\hline \text { Parameters } & \text { Results } \\
\hline \mathbb{L}^{2} & \begin{array}{l}{[\text { Pardoux \& Peng 90] existence and uniqueness of }} \\
\mathbb{L}^{2}-\text { solution }\end{array}
$$

\hline \mathbb{L}^{p}(p \in(1,2)) \& {\left[El Karoui et al. 97] existence of \mathbb{L}^{p}-solution\right.}\end{array}\right]\)| [Peng 97] a special type of BSDE |
| :--- |
| $\mathbb{L}^{p}(p \in(1,2))$ |
| \mathbb{L}^{1} | | existence and uniqueness in [Briand et al. 03] |
| :--- |
| \mathbb{L}^{1} |\quad| [Briand et al. 03] existence and uniqueness in class $D . \equiv$ |
| :--- |

g-local martingales

BSDE solutions are considered as nonlinear martingales
(g-martingales) in [Peng 97].
In classical theory, martingales are local martingales.
necessary to extend local martingales into the framework of BSDEs.

g-local martingales

BSDE solutions are considered as nonlinear martingales
(g-martingales) in [Peng 97].
In classical theory, martingales are local martingales.
necessary to extend local martingales into the framework of BSDEs.

We regard solutions to (BSDE) as g-local martingales.
The non-class D solution can be viewed as g-strict local martingale.

Assumptions on g

Denote

$$
\underline{X}=\sum_{i=1}^{d} X^{i}
$$

Both $X^{i}, 1 \leq i \leq d$, and \underline{X} are nonnegative local martingales.

Assumptions on g

Denote

$$
\underline{X}=\sum_{i=1}^{d} x^{i}
$$

Both $X^{i}, 1 \leq i \leq d$, and \underline{X} are nonnegative local martingales.

The terminal function g is continuous, nonnegative, and

$$
K:=\sup \left\{\frac{g(x)}{1+\underline{x}}: x \in \mathbb{R}_{+}^{d}\right\}<\infty .
$$

Therefore, $0 \leq g(x) \leq K(1+\underline{x})$ and $g\left(X_{T}\right) \in \mathbb{L}^{1}$.
We do not a priori assume $g\left(X_{T}\right) \in \mathbb{L}^{p}$ for some $p>1$.

Assumptions on f

f is jointly continuous in all its variables.

$$
\begin{aligned}
& \left|f(t, x, y, z)-f\left(t, x, y, z^{\prime}\right)\right| \leq \nu\left|z-z^{\prime}\right| \\
& \left(y-y^{\prime}\right)\left(f(t, x, y, z)-f\left(t, x, y^{\prime}, z\right)\right) \leq \mu\left(y-y^{\prime}\right)^{2}, \\
& f(t, x, y, z) \geq 0, \\
& f(t, x, 0, z) \leq H(t, \underline{x}) .
\end{aligned}
$$

This implies

$$
f(t, x, y, z) \leq \mu y+H(t, \underline{x}), \quad \text { for any } y \geq 0 \text { and } z .
$$

Here $H:[0, T] \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

- H is locally bounded on $[0, T] \times \mathbb{R}_{+}$.
- $\mathbb{E}\left[\int_{0}^{T} H\left(t, \underline{X}_{t}\right) d t\right]<\infty$.
- $r \mapsto H(t, r)$ is nondecreasing and concave.

The class \mathcal{C}

Look for (BSDE) solution inside the following class:

$$
\mathcal{C}:=\left\{Y: 0 \leq Y \leq C\left(K\left(1+\underline{X}_{t}\right)+\mathbb{E}\left[\int_{t}^{T} H\left(s, \underline{X}_{s}\right) d s \mid \mathcal{F}_{t}\right]\right)\right\} .
$$

The class \mathcal{C}

Look for (BSDE) solution inside the following class:

$$
\mathcal{C}:=\left\{Y: 0 \leq Y \leq C\left(K\left(1+\underline{X}_{t}\right)+\mathbb{E}\left[\int_{t}^{T} H\left(s, \underline{X}_{s}\right) d s \mid \mathcal{F}_{t}\right]\right)\right\} .
$$

Proposition

For a solution (Y, Z) to (BSDE) such that $Y \in \mathcal{C}$,

$$
\mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{p}\right]<\infty \quad \text { and } \quad \mathbb{E}\left[\left(\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right)^{p / 2}\right]<\infty,
$$

for any $p \in(0,1)$, i.e., $(Y, Z) \in\left(\mathcal{S}^{p}, \mathcal{M}^{p}\right)$.

Main results

Theorem

(i) \exists a solution (\bar{Y}, \bar{Z}) such that $\bar{Y} \in \mathcal{C}$ and \bar{Y} is of class D.
(ii) For any other solution $(\widetilde{Y}, \tilde{Z})$ such that $\widetilde{Y} \in \mathcal{C}, \widetilde{Y}_{t} \geq \bar{Y}_{t}$.

Define $\bar{g}(x):=K(1+\underline{x})-g(x)$. Assume that

$$
\begin{aligned}
& \bar{g}(X .) \text { is a supermartingale on }[0, T], \\
& \exists \text { a nondecreasing univariate } \bar{G}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \text {, } \\
& \bar{g}(x) \leq \bar{G}(\underline{x}) \quad \text { and } \quad \lim _{r \rightarrow \infty} \bar{G}(r) / r=0 .
\end{aligned}
$$

(iii) Then when X is a strict local mart, \exists another solution (Y, Z) such that $Y \in \mathcal{C}$, but Y is not of class D, moreover, $Y_{0}>\bar{Y}_{0}$.

Remarks and examples

Multiple solutions \Longrightarrow comparison fails in \mathcal{C}.

Remarks and examples

Multiple solutions \Longrightarrow comparison fails in \mathcal{C}.
When f is Lipschitz in y and does not depends on z, then (BSDE) admits a family of solutions

$$
\left(Y^{\alpha}, Z^{\alpha}\right)_{\alpha \in[0,1]}
$$

such that $\left(Y^{0}, Z^{0}\right)=(\bar{Y}, \bar{Z})$ and $\left(Y^{1}, Z^{1}\right)=(Y, Z)$.

Remarks and examples

Multiple solutions \Longrightarrow comparison fails in \mathcal{C}.
When f is Lipschitz in y and does not depends on z, then (BSDE) admits a family of solutions

$$
\left(Y^{\alpha}, Z^{\alpha}\right)_{\alpha \in[0,1]}
$$

such that $\left(Y^{0}, Z^{0}\right)=(\bar{Y}, \bar{Z})$ and $\left(Y^{1}, Z^{1}\right)=(Y, Z)$.

Example (Zero generator)
When $f \equiv 0$,

$$
\bar{Y} .=\mathbb{E}\left[g\left(X_{T}\right) \mid \mathcal{F} .\right] \quad \text { and } \quad Y .=K\left(\underline{X} .-\mathbb{E}\left[X_{T} \mid \mathcal{F} .\right]\right)+\mathbb{E}\left[g\left(X_{T}\right) \mid \mathcal{F} .\right] .
$$

BSDE with quadratic growth in z

Consider

$$
\begin{equation*}
P_{t}=\log \underline{X}_{T}+\int_{t}^{T}\left(\alpha+\frac{1}{2}\left|Q_{s}\right|^{2}\right) d s-\int_{t}^{T} Q_{s} d B_{s} \tag{1}
\end{equation*}
$$

Define $(Y, Z):=\left(e^{P}, e^{P} Q\right)$. It satisfies

$$
\begin{equation*}
Y_{t}=\underline{X}_{T}+\alpha \int_{t}^{T} Y_{s} d s-\int_{t}^{T} Z_{s} d B_{s} \tag{2}
\end{equation*}
$$

BSDE with quadratic growth in z

Consider

$$
\begin{equation*}
P_{t}=\log \underline{X}_{T}+\int_{t}^{T}\left(\alpha+\frac{1}{2}\left|Q_{s}\right|^{2}\right) d s-\int_{t}^{T} Q_{s} d B_{s} \tag{1}
\end{equation*}
$$

Define $(Y, Z):=\left(e^{P}, e^{P} Q\right)$. It satisfies

$$
\begin{equation*}
Y_{t}=\underline{X}_{T}+\alpha \int_{t}^{T} Y_{s} d s-\int_{t}^{T} Z_{s} d B_{s} \tag{2}
\end{equation*}
$$

When X is a strict local mart., (2) admits two different solns, so is (1).

BSDE with quadratic growth in z

Consider

$$
\begin{equation*}
P_{t}=\log \underline{X}_{T}+\int_{t}^{T}\left(\alpha+\frac{1}{2}\left|Q_{s}\right|^{2}\right) d s-\int_{t}^{T} Q_{s} d B_{s} . \tag{1}
\end{equation*}
$$

Define $(Y, Z):=\left(e^{P}, e^{P} Q\right)$. It satisfies

$$
\begin{equation*}
Y_{t}=\underline{X}_{T}+\alpha \int_{t}^{T} Y_{s} d s-\int_{t}^{T} Z_{s} d B_{s} \tag{2}
\end{equation*}
$$

When X is a strict local mart., (2) admits two different solns, so is (1).
[Delbaen \& Hu \& Richou 11]: uniqueness of solution to (1) holds

$$
\mathbb{E}\left[e^{\gamma \sup _{0 \leq t \leq T} P_{t}^{+}}+e^{\epsilon \sup _{0 \leq t \leq T} P_{t}^{-}}\right]<\infty, \quad \text { for some } \gamma>1 \text { and } \epsilon>0 .
$$

BSDE with quadratic growth in z

Consider

$$
\begin{equation*}
P_{t}=\log \underline{X}_{T}+\int_{t}^{T}\left(\alpha+\frac{1}{2}\left|Q_{s}\right|^{2}\right) d s-\int_{t}^{T} Q_{s} d B_{s} . \tag{1}
\end{equation*}
$$

Define $(Y, Z):=\left(e^{P}, e^{P} Q\right)$. It satisfies

$$
\begin{equation*}
Y_{t}=\underline{X}_{T}+\alpha \int_{t}^{T} Y_{s} d s-\int_{t}^{T} Z_{s} d B_{s} \tag{2}
\end{equation*}
$$

When X is a strict local mart., (2) admits two different solns, so is (1).
[Delbaen \& Hu \& Richou 11]: uniqueness of solution to (1) holds

$$
\mathbb{E}\left[e^{\gamma \sup _{0 \leq t \leq T} P_{t}^{+}}+e^{\epsilon \sup _{0 \leq t \leq T} P_{t}^{-}}\right]<\infty, \quad \text { for some } \gamma>1 \text { and } \epsilon>0 .
$$

The additional solution (P, Q) is outside the previous class.

Construction of multiple solutions

Let $\tau_{n}=\inf \left\{s \geq 0: X_{s} \notin \mathcal{B}_{n}^{+}\right\} \wedge T$.

Construction of multiple solutions

Let $\tau_{n}=\inf \left\{s \geq 0: X_{s} \notin \mathcal{B}_{n}^{+}\right\} \wedge T$.

Given $\left\{\xi_{n}\right\}_{n \geq 0}$ with $\xi_{n} \in \mathcal{F}_{\tau_{n}}$, we consider

$$
Y_{t}^{n}=\xi_{n}+\int_{t}^{T} \mathbb{I}_{\left\{s \leq \tau_{n}\right\}} f\left(s, X_{s}, Y_{s}^{n}, Z_{s}^{n}\right) d s-\int_{t}^{T} Z_{s}^{n} d B_{s}, \quad \text { for each } n \geq 0
$$

Construction of multiple solutions

Let $\tau_{n}=\inf \left\{s \geq 0: X_{s} \notin \mathcal{B}_{n}^{+}\right\} \wedge T$.
Given $\left\{\xi_{n}\right\}_{n \geq 0}$ with $\xi_{n} \in \mathcal{F}_{\tau_{n}}$, we consider

$$
Y_{t}^{n}=\xi_{n}+\int_{t}^{T} \mathbb{I}_{\left\{s \leq \tau_{n}\right\}} f\left(s, X_{s}, Y_{s}^{n}, Z_{s}^{n}\right) d s-\int_{t}^{T} Z_{s}^{n} d B_{s}, \quad \text { for each } n \geq 0 .
$$

Consider two sequences

$$
\xi_{n}:=g\left(X_{\tau_{n}}\right) \quad \text { and } \quad \bar{\xi}_{n}:=g_{n}\left(X_{\tau_{n}}\right) .
$$

Construction of multiple solutions

$$
\text { Let } \tau_{n}=\inf \left\{s \geq 0: X_{s} \notin \mathcal{B}_{n}^{+}\right\} \wedge T .
$$

Given $\left\{\xi_{n}\right\}_{n \geq 0}$ with $\xi_{n} \in \mathcal{F}_{\tau_{n}}$, we consider

$$
Y_{t}^{n}=\xi_{n}+\int_{t}^{T} \mathbb{I}_{\left\{s \leq \tau_{n}\right\}} f\left(s, X_{s}, Y_{s}^{n}, Z_{s}^{n}\right) d s-\int_{t}^{T} Z_{s}^{n} d B_{s}, \quad \text { for each } n \geq 0
$$

Consider two sequences

$$
\xi_{n}:=g\left(X_{\tau_{n}}\right) \quad \text { and } \quad \bar{\xi}_{n}:=g_{n}\left(X_{\tau_{n}}\right) .
$$

We have

$$
\mathbb{P}-\lim _{n \rightarrow \infty} \xi_{n}=g\left(X_{T}\right) \quad \text { and } \quad \mathbb{P}-\lim _{n \rightarrow \infty} \bar{\xi}_{n}=g\left(X_{T}\right)
$$

But the convergence may not be in \mathbb{L}^{1}.
This allows $\left\{Y_{n}\right\}_{n \geq 0}$ and $\left\{\bar{Y}_{n}\right\}_{n \geq 0}$ converge to two different solutions.

Two remarks

f is bounded in $z+$ assumptions on $H \Longrightarrow$

$$
Y_{t}^{n} \leq C\left(K\left(1+\underline{X}_{t}\right)+\int_{t}^{T} H\left(s, \underline{X}_{t}\right) d s\right), \quad t \in[0, T] .
$$

Then use the localization technique in [Briand \& Hu 06].

Two remarks

f is bounded in $z+$ assumptions on $H \Longrightarrow$

$$
Y_{t}^{n} \leq C\left(K\left(1+\underline{X}_{t}\right)+\int_{t}^{T} H\left(s, \underline{X}_{t}\right) d s\right), \quad t \in[0, T] .
$$

Then use the localization technique in [Briand \& Hu 06].
f non-neg. $+g$ linear growth \Longrightarrow

$$
Y_{t}=\lim _{n \rightarrow \infty} Y_{t}^{n} \geq K\left(\underline{X}_{t}-\mathbb{E}\left[\underline{X}_{T} \mid \mathcal{F}_{t}\right]\right)+\mathbb{E}\left[g\left(X_{T}\right) \mid \mathcal{F}_{t}\right]
$$

Then X strict local martingale $\Longrightarrow Y$ is not of class D.

The Markovian case

Given $\sigma:(0, \infty)^{d} \rightarrow \mathbb{R}^{d \times d}$ which is locally Lipschitz,

$$
d X_{s}^{\times, i}=\sum_{j=1}^{d} \sigma_{i j}\left(X_{s}^{\times}\right) d B_{s}^{j}, \quad X_{0}^{\times}=x \in(0, \infty)^{d}, \quad i=1, \cdots, d .
$$

We denote by $\mathcal{L}:=\frac{1}{2} \operatorname{Tr}\left(\sigma \sigma^{\prime} \nabla^{2}\right)$ the infinitesimal generator.

The Markovian case

Given $\sigma:(0, \infty)^{d} \rightarrow \mathbb{R}^{d \times d}$ which is locally Lipschitz,

$$
d X_{s}^{\times, i}=\sum_{j=1}^{d} \sigma_{i j}\left(X_{s}^{\times}\right) d B_{s}^{j}, \quad X_{0}^{\times}=x \in(0, \infty)^{d}, \quad i=1, \cdots, d .
$$

We denote by $\mathcal{L}:=\frac{1}{2} \operatorname{Tr}\left(\sigma \sigma^{\prime} \nabla^{2}\right)$ the infinitesimal generator.
We assume X does not hit the boundary of $(0, \infty)^{d}$ in finite time.
No boundary condition is needed. [Bao-Delbaen-Hu 10]
Consider the quasi-linear PDE

$$
\begin{array}{ll}
-\partial_{t} u-\frac{1}{2} \operatorname{Tr}\left(\sigma \sigma^{\prime} \nabla^{2} u\right)-f(t, x, u, \nabla u \sigma)=0, & (t, x) \in[0, T) \times(0, \infty)^{d} \\
u(T, x)=g(x), & x \in(0, \infty)^{d} \tag{PDE}
\end{array}
$$

[Pardoux \& Peng 92], [Barles \& Buckdahn \& Pardoux 97] ...

Existence theorem

Theorem

There are two different viscosity solutions u and \bar{u} to (PDE). Both of them are nonnegative and have at most linear growth. But

$$
u(t, x)>\bar{u}(t, x) \quad \text { for } \quad(t, x) \in[0, T) \times(0, \infty)^{d}
$$

When f vanishes, g has linear growth, X a strict local mart., multiple solution to (PDE) has been observed in

- stock price bubble [Heston et al. 07].
- stochastic portfolio theory [Fernholz \& Karatzas 08].

Comparison (uniqueness) theorem

Assume

$$
\left|f(t, x, y, z)-f\left(t, x, y, z^{\prime}\right)\right| \leq b(x)\left|z-z^{\prime}\right|, \quad \text { for some bdd. cont. } b \text {. }
$$

Theorem (Comparison)

Suppose that there exist a positive function Ψ and a positive constant λ :

$$
\begin{aligned}
& \mathcal{L} \Psi(x) \leq \lambda(1+\Psi(x)) \text { on }(0, \infty)^{d}, \\
& \lim _{x \rightarrow \mathcal{O}} \Psi(x)=\infty, \\
& \forall M>0, \exists R \text { s.t. } \Psi(x) / \underline{x} \geq M \text { for all } \underline{x} \geq R, \\
& c \Psi(x) \geq b(x)|\nabla \Psi(x) \sigma(x)|, \quad \text { on }(0, \infty)^{d} .
\end{aligned}
$$

Then for any nonneg. subsolution u and supersolution v of at most linear growth,

$$
u(t, x) \leq v(t, x), \quad \text { for }(t, x) \in[0, T] \times(0, \infty)^{d} .
$$

Three examples: more restrictions on $\sigma \Longrightarrow$ wider dependence of $\underline{\underline{\underline{f}}}$ on $\underline{\underline{\underline{z}}}$.

Examples: σ has at most linear growth

When $|\sigma(x)| \leq C(1+|x|)$,
$\Psi(x)$ can be chosen as $1+|x|^{2}$, add another function s.t. $\lim _{x \rightarrow \mathcal{O}} \Psi(x)=\infty$.
b can be any bounded function.

Actually, the comparison holds in the class of functions

$$
\lim _{|x| \rightarrow \infty}|u(t, x)| e^{-A[\log |x|]^{2}}=0
$$

[Barles \& Buckdahn \& Pardoux 97]

Example: No growth constraint on σ

f does not depend on $z(b \equiv 0)$.
Assumptions in the comparison theorem is sharp in 1-dimension:
If X is a 1 -dim positive martingale, then ψ exists: $\psi=\Psi_{1}+\Psi_{2}$,

$$
\Psi_{1}(x)=2 \int_{c}^{x} d y \int_{c}^{y} \frac{d z}{\sigma^{2}(z)} \quad \text { and } \quad \Psi_{2}(x)=x+\int_{c}^{x} d y \int_{c}^{y} \frac{z}{\sigma^{2}(z)} d z .
$$

- $\lim _{x \downarrow 0} \Psi_{1}(x)=\infty \Longleftrightarrow X$ does not hit 0 (Feller's test).
- $\lim _{x \rightarrow \infty} \frac{\psi_{2}(x)}{x}=\infty \Longleftrightarrow \int_{c}^{\infty} \frac{x}{\sigma^{2}(x)} d x=\infty \Longleftrightarrow X$ is a martingale.
[Delbaen \& Shirakawa 02], [Mijatovic \& Urusov 10]

σ has super-linear growth

Consider a 1-dim SDE

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}, \quad \text { where } \sigma(x)=\left\{\begin{array}{ll}
x & \text { if } x \leq e \\
x \sqrt{\log x} & \text { if } x>e
\end{array} .\right.
$$

X is a martingale.
Consider

$$
b(x)=\left\{\begin{array}{ll}
1 & \text { if } x \leq e \\
\frac{e}{x \sqrt{\log x}} & \text { if } x>e
\end{array} .\right.
$$

Then

$$
\Psi(x)=\frac{1}{x}+x+\int_{e}^{x} d y \int_{e}^{y} \frac{z}{\sigma^{2}(z)} d z
$$

satisfies all assumptions.

Conclusion

We study a BSDE whose terminal condition is a linear growth function of a local nonnegative martingale.

- obtain multiple solutions explicitly.
- other than a class D solution, there exists a non-class D solution, which can be viewed as g-strict local martingale.
- derive a necessary/sufficient condition for uniqueness of associated quasi-linear PDE.
"On backward stochastic differential equations and strict local martingales", Stochastic Processes and their Applications, 122 (2012) 2265-2291.

Thanks for your attention!

