Valuation and Optimal Decision for Perpetual American Employee Stock Options under a Constrained Viscosity Solution Framework

Quan Yuan

Joint work with Shuntai Hu, Baojun Bian

Email: candy5191@163.com

Tongji University, China

02 Jul 2012

Valuation and Optimal Decision for ESOs

Outline

Introduction

- Background and motivation
- Overview of Our Model
- 2 Problem Formulation
 - HJB equation

3 Value Function

- Value Function as the Constrained Viscosity Solution
- Comparison Principle

4 Numerical Simulation

- Employee Stock Options (ESOs)
 - Call options issued by a company
 - Based on the company's common stock
 - Granting the holder the right to buy a certain number of stocks at a predetermined price (Strike Price) during a specified period
- Extensive Use
 - Granted as compensation or reward to employees by companies
 - Employees profit from exercising ESOs

- American-style: can be exercised at any time before expiration
- Long maturity: from 5-10 years
- Job termination risk: get fired or leave the company voluntarily
- A vesting period: during which exercising is forbidden
- Transfer and hedging restrictions: transfer of ESOs and short selling the underlying stock are forbidden

Valuation and Optimal Decision for ESOs

- Companies (Valuation)
 - estimate the cost of ESOs
 - report to the Financial Accounting Standards Board(FASB)
- Employees (Optimal decision)
 - how to exercise a block of ESOs over time
 - maximize the returns

Difficulties

ESOs operate in an incomplete market.

Standard valuation methods fail.

02 Jul 2012 5 / 24

- Exercise at a single date: treat every option equally
 - J.Carpenter, *The exercise and valuation of executive stock options*, Journal of Financial Economics(1998)48, 127–158.
 - B.J.Hall, K.J.Murphy, *Stock option for undiversified executives*, Journal of Accounting and Economics(2002)33, 3–42.
- Multi-period Model: Utility Maximization
 - Ashish Jain, Ajay Subramanian, *The intertemporal exercise and valuation of employee options*, The Accounting Review(2004)Vol.79 No.3, 705–743.
 - L.C.G. Rogers, JoséScheinkman, Optimal exercise of executive stock options, Finance Stoch(2007)11, 357–372.

Assumptions

- An employee holding a block of perpetual American ESOs
- Exercise process: Continuous fluid model with a bounded exercise rate
- Method
 - Maximize the overall discounted exercise returns
 - Stochastic control approach: works well in an incomplete market
- Results
 - Value-based maximum defines the cost of ESOs
 - Determine the optimal exercise strategy

- Time horizon: $t \in [0, \infty)$ (t = 0: Grant Date)
- Stock price of the company: X_t

$$dX_t = \mu X_t dt + \sigma X_t dW_t, \quad X_0 = x$$

- μ : expected stock return rate
- σ : constant volatility
- W_t : standard Browian motion (BM)

- The employee is granted N shares of perpetual American ESOs with strike price K at grant date 0
- Exercise process:
 - the accumulated number of exercised options up to t: Y_t
 - a continuous fluid model

$$dY_t = u_t dt, \quad Y_0 = y$$

- control set $\Gamma = [0,\lambda]$
- $\{Y_t\}_{t\geq 0}$: a non-negative non-decreasing right-continuous process not exceeding N

- State variable $(X_t,Y_t)\in \bar{S}$: $S=(0,\infty)\times (0,N)$
- Admissible Control $u(\cdot)$ with initial value $(x,y)\in \bar{S}$

Definition (Admissible)

$$\ \, {\bf 0} \ \, u(\cdot) \ \, {\rm is} \ \, {\cal F}_t = \sigma\{X_s: s\leq t\} \ \, {\rm adapted} \ \,$$

- **2** $u(t) \in \Gamma$ for all $t \ge 0$
- **③** the corresponding state process $(X_t, Y_t) \in \overline{S}$ for all $t \ge 0$

Denote by $\mathcal{A} = \mathcal{A}(x, y)$ the set of all admissible controls.

• Objective function

$$J(x, y; u.) = E\left[\int_0^\infty e^{-\rho t} \left(X_t - K\right)^+ u_t dt \mid X_0 = x, Y_0 = y\right]$$

• discount rate
$$\rho \text{:}\ \rho > \mu > 0$$

• payoff function:
$$(X_t - K)^+ = \begin{cases} X_t - K, & X_t > K \\ 0, & X_t \le K \end{cases}$$

Value function

$$v(x,y) = \sup_{u(\cdot) \in \mathcal{A}(x,y)} J(x,y;u(\cdot))$$

э

- ∢ ศ⊒ ▶

• HJB equation (Stochastic analysis theory)

$$\mathcal{L}v + \max_{u \in \Gamma} (u\mathcal{B}v) = 0, \quad (x, y) \in [0, \infty) \times [0, N]$$
(1)

where

$$\mathcal{L}v = \mu x v_x + \frac{\sigma^2}{2} x^2 v_{xx} - \rho v,$$

$$\mathcal{B}v = v_y + (x - K)^+.$$

Boundary Condition

$$v(0,y) = 0, \quad 0 \le y \le N.$$

- For each $x \in [0,\infty)$, v(x,y) is non-increasing in y
- **2** For each $y \in [0, N]$, v(x, y) is non-decreasing in x
- **③** v(x,y) is Lipschitz continuous in (x,y), that is

$$|v(x_1, y_1) - v(x_2, y_2)| \leq \min\left\{\frac{\lambda}{\rho - \mu}, 2(N - y_1)\right\} |x_1 - x_2| + (2x_2 + 1)|y_1 - y_2|$$

for any $(x_i, y_i) \in [0, \infty) \times [0, N]$ (i = 1, 2).

02 Jul 2012 13 / 24

Definition for Constrained Viscosity Solution

• Semicontinuous functions in \bar{S}

$$\begin{split} USC(\bar{S}) &= \{v: \bar{S} \to \mathbb{R} \cup \{-\infty\} \mid v \text{ is upper semicontinuous} \}, \\ LSC(\bar{S}) &= \{v: \bar{S} \to \mathbb{R} \cup \{+\infty\} \mid v \text{ is lower semicontinuous} \}. \end{split}$$

• Viscosity Supersolution $w(x,y) \in LSC(\bar{S})$ is a supersolution of (1) in \bar{S} if and only if

$$\mathcal{L}\varphi + \max_{u \in \Gamma} (u\mathcal{B}\varphi) \big|_{(x_0, y_0)} \le 0$$
⁽²⁾

whenever $\varphi(x,y) \in C^{2,1}$ and $w(x,y) - \varphi(x,y)$ has a local minimum at $(x_0,y_0) \in \overline{S}$ with $w(x_0,y_0) = \varphi(x_0,y_0)$.

• Viscosity Subsolution

 $w(x,y)\in USC(S)$ is a subsolution of (1) in S if and only if

$$\mathcal{L}\varphi + \max_{u \in \Gamma} (u\mathcal{B}\varphi) \big|_{(x_0, y_0)} \ge 0 \tag{3}$$

whenever $\varphi(x,y) \in C^{2,1}$ and $w(x,y) - \varphi(x,y)$ has a local maximum at $(x_0,y_0) \in S$ with $w(x_0,y_0) = \varphi(x_0,y_0)$.

Definition (Constrained Viscosity Solution)

A continuous function w is a constrained viscosity solution of (1) if it is both a viscosity supersolution of (1) in \overline{S} and a viscosity subsolution of (1) in S.

Theorem

Let $\underline{v} \in USC(S)$ is a subsolution of (1) in S and $\overline{v} \in LSC(\overline{S})$ is a supersolution of (1) in \overline{S} . Furthermore, $\underline{v}, -\overline{v}$ grow linearly in X, i.e. there exists a constant C > 0 such that,

$$\underline{v}(X), \ -\overline{v}(X) \leq C|X| \text{ for } X \in \overline{S},$$

and

$$\underline{v}(0) = \overline{v}(0) = 0.$$

Then if $\rho > 2\mu + \sigma^2$, we have $\underline{v} \leq \overline{v}$ in \overline{S} .

Proof by contradiction.

Theorem

The continuous value function v(x, y) growing linearly in (x, y) is the unique constrained viscosity solution of (1) in \overline{S} .

• HJB equation:

$$\mathcal{L}v + \max_{0 \le u \le \lambda} (u\mathcal{B}v) = 0, \quad (x, y) \in [0, \infty) \times [0, N]$$

• No-exercise Region(NR) and Exercise Region(ER)

$$NR := \{ (x, y) : \mathcal{B}v(x, y) \le 0 \}; \quad ER := \{ (x, y) : \mathcal{B}v(x, y) > 0 \}$$

• Optimal Exercise Rate

$$u^*(x,y) = \begin{cases} 0, & \text{if } (x,y) \in NR, \\ \lambda, & \text{if } (x,y) \in ER. \end{cases}$$

(the feedback control depending on v)

Numerical Simulation

Model Parameters:

 $\mu=0.1,\ \sigma=0.3,\ \rho=0.15,\ \lambda=1,\ K=2,\ M=5,\ N=30.$

• Value Function v(x, y):

Valuation and Optimal Decision for ESOs

NR,ER and the Threshold Boundary

• NR
$$(u^* = 0)$$
: hold and wait

- ER $(u^* = \lambda)$: exercise immediately
- Threshold-style Strategy: easy to implement in practice

Impact of Discount Rate ρ

• $\rho = 0.15, \ 0.18, \ 0.21$

- ρ : time scale
- Larger ρ encourages earlier exercise action.

Q. Yuan (Tongji University)

Valuation and Optimal Decision for ESOs

Impact of Expected Stock Return Rate μ

• $\mu = 0.15, \ 0.1, \ 0.12, \ 0.14$

- μ : increasing capacity of the stock price
- Larger μ encourages more patient waiting.

Q. Yuan (Tongji University)

Impact of Exercise Rate Restriction λ

• $\lambda = 1, 2, 3$

- λ : upper bound of exercise rate
- Larger λ encourages more patient waiting.

Thank You!

Image: A match a ma