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Introduction

Introduction of Fully Nonlinear Parabolic PDEs

e Fully Nonlinear PDE :

us + G(t,x,u, Du, D?*u) =0, on [0, T) x RY, (1)
u(T,-) =g(-), onRY,

o G(t,x,y,2,7): [0, T] x RI x R x RY x Sy — R;

o G is parabolic : G, > 0;

og: RIS R,

e Connection with Backward SDEs :
¢ Semilinear PDE <= BSDE
¢ Quasi-linear PDE «<—= FBDSE

¢ Fully Nonlinear PDE <= Second-order BSDE



Introduction

Numerical Methods

e PDE approach : curse of dimensionality : d < 3.

e BSDES :

o Time discretization : J. Zhang (2004), Bouchard-Touzi (2004)

o Implementation : Gobet-Lemor-Warin (2005), Bender-Denk
(2006), Crisan-Manolarakis (2010), ...;

e FBSDEs : Bender-Zhang(2008),...;

e Note : there are numerous other theoretical works, including
some on non-Markovian BSDEs (path dependent PDEs). But
many of them are not efficient or feasible, especially in high-
dimensional case.
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Numerical Methods

e Fully nonlinear PDE :
o Convergence : viscosity solution approach by Barles-Souganidis ;
o Rate of convergence : Krylov's "shaking the coefficients"
method ;
< A new approach by Xiaolu Tan.
e Fahim-Touzi-Warin (2010)
o Connection with Second-order BSDEs;;
© The proof relies on PDE arguments and Krylov's "shaking the
coefficients" method.
o bound constraint : tr [(¢?)"}(5? — 0?)] <1

a2y < Gﬂ,gﬁzld => 0—2 §1+E (—1lasd— o).
g
< Note : When d is large, o = @, and thus the PDE is essentially

semilinear.
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Outline of Talk

e Our Algorithm
© generalizes the assumption imposed in FTW (2010) ;

© can be implemented with trinomial tree to solve
low-dimensional problems efficiently

© uses Monte-Carlo Simulation to solve High-Dimensional
problems (12-dimensional numerical examples will be provided)

© works for equations with G-generator(10-dimensional example
will be provided)

Jia Zhuo Numerical Method for Fully Nonlinear Parabolic PDEs



Algorithm
. Convergence Result
The Algorithm Rate of Convergence
Implementation

Outline

© The Algorithm
@ Algorithm
@ Convergence Result
@ Rate of Convergence
@ Implementation

Jia Zhuo Numerical Method for Fully Nonlinear Parabolic PDEs



Algorithm
. Convergence Result
The Algorithm Rate of Convergence
Implementation

Algorithm

e Inspiration : assuming u(t, x) is a smooth Solution of PDE(1),
and X is a symmetric random variable with bounded moments.

u(t,x) = Efu(t+ hx+ VhX)] — h(u(t,x) + %Xquu) + O(h?)

Q

E[u(t + h,x + VhX)] + h(G(t, x, u, Du, D?u) — ==

e Scheme : Partition 0 =tg < --- <ty=T, h&t; —tj_1,
up(tn, x) == g(x), up(ti,x) = Thlup](ti, x), (2)
where
Thlup)(ti,x) 2 E[up(tiss, x + VhooX)]
+hF (t;,x,Douh(t,-,x),Dluh(t,-,x),DQUh(t,-,x))

A tr[o2]
and F(t,X,y,Z,’\/)—G(t,X,y,Z,’Y)* 2
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Probability Space

o X =(Xq, -, Xg)T on (Q,F,F,P). Xq,---, Xy - Independent

1/\/ﬁa p/2
X,': 0, l—p .

e Note : EX; = EX? =0, EX? =1, EX = 1/p.
e Denote

X12 0O --- 0
S A 0 X3 -~ 0

0O --- 0 X3
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The Algorithm

Approximation of Derivatives

o DO¢(t7, x) £ E[p(tiy1,x + o0VhX)]
e First derivative approximation :
UOT)fl X

Dlo(t,x) 2 E | ¢(t + h,x + ooV hX) ( 7

< Note : assuming ¢ is smooth, then :

D'¢(t,x) = D¢+ hogD3¢/p+ O(K) = D¢+ O(h)

e Second derivative approximation :

D2p(t,x) 2 E[¢(t+h,x+aox/ﬂ><)x

<(1 —p)XXT +(3p—1)X2 - 2pld>}

oZh(1 - p)
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General Convergence Results

e Convergence of Scheme : G. Barles, P.E. Souganidis (1991)
& Monotonicity : 1, @2 € C([0, T] x R9)

1 < 2 = Thlp1] < Thleo].

o Stability : sup |up(t, x)| < C (independent of h).
(t,x)€[0, T]xRd

© Consistency : ¢ : smooth & with bounded derivatives

lim [c + ](t',x") — Thlc + ¢](t', x')
(', x') = (t, %) h
(h, c) = (0,0)
t' +h<T

= (d)t + G(t,X, d)a Dd)a D2¢)) (taX)'
© Camparison Principle for viscosity solutions holds
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Standing Assumptions

e ||G(t,x,0,0,0)|l00 < 00;
e G : Lipschtiz-continuous with respect to (y, z,) uniformly in t;
e g: R? - R is Lipschitz continuous ;

o Note :

o We may weaken slightly the Lipschitz continuity of G.
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Additional Assumptions and Remarks(1)

o Additional Key Assumptions : there exists # > 0 such that
o Gy = Gf/)(diagonal) + G%, 0Gy + nyl >0;
o 3o, >0, 0<?ly < G, < 721y,

2 e+2
d+2
e Remarks(1) :

¢ When G, is diagonal, then 6 = 0 and thus the bound
constraint is not needed

(d+2)*
8d0

IQM| q.\l)

<1424
= d

o 1+ 2 is exactly the bound in FTW (2010), so our result covers
theirs.

© g, and @ can be generalized to matrices easily.
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Additional Assumptions and Remarks(2)

e Additional Key Assumptions : there exists # > 0 such that
o Gy = GS(diagonaI) + le, 0Gy + le >0;

oJdo, 7>0,0<a%ly <G, <52y,

(d i 2 0) 1
o Remarks(2) :

o When ¢ is 0, we can truncate it to be positive definite.

5 2

2 (d+2)?
< = .
S+ o+ 2

19,

& Examples that don’t follow this assumption but can be solved
by our scheme will be provided.

© The general G-generator doesn't satisfy this assumption, but
our scheme works on it as well.
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Rate of Convergence

Theorem (Smooth Solution case)

Assume u € C;’3 is the solution of PDE, and uy, is the numerical
solution, then
|u— up| < Ch.

Theorem (Viscosity Solution case : Barles-Jakobsen (2007))

Assuming that PDE (1) is of Hamilton-Jacobi-Bellman type, and
with some slightly stronger conditions to HJB coefficients, we have

—Ch/O < y—u, < Ch'/%.
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The Algorithm

Weighted Average(Trinomial Tree)

Computing D™ up(tj, Xy,) := E [¢™( Xy, )| Xe,] . m=0,1,2.
e Fast, stable, best choice for low-dimensional problem.
e Number of Nodes : (2N + 1)¢ (N : Number of time steps)

E [¢m(Xti+1)| Xti = X Z ¢ th;:1 Xtt;'ll )

xyhamll/p
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The Algorithm

Least Square Regression

Gobet-Lemor-Warin (2005) ; Bender-Denk (2006).

e It can handle high-dimensional problems (up to 12 in my Laptop). e.g.
1.3 x 107 paths is enough to discretize a 12 dimensional PDE into
around 160 time steps by LSR, but it can only discretize the same PDE
into 2 time steps if we use finite difference method.

e The variance of the result is small if a large amount of paths are
sampled.
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Simulation

e Choose a sequence of basis functions ey (t;, x),- - , ex(t;, x) to project
the conditional expectation.

e Basic idea : E [¢(Xy,,)| Xy] = Z}\ZI ajej(ti, Xi;) (with projection
error), where {a;} are o(X¢)—measurable r.v. such that

2
A
{aj}j\:1 = argamln E Zajej ti, Xe,) — 0(Xe0 )| | X
k) 7(’Y J 1
2
R
~ ks /
~ argalmln [—Z Zajej t,,X - (X))

L
with simulation error where {{X’ }, 0}/ are L paths sampled.
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The Algorithm

Errors

e Error. total — Error, discretization + Error, projection + Error. simulation

e In most of the numerical examples below we know the true
solution, so we may choose "perfect" basis functions and focus
on Errordiscretization and Errorsimulation 0n|Y-

® Errorpy.ojection depends on the choice of basis functions. How to
find good basis functions is still unknown.

e The typical candidates of basis functions in the literature are :

Monomials, Hermite polynomials, the terminal condition g(-)
and its derivatives.
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A 3-dimensional PDE

e Example 1

Ut + 5 SUPy< o<z (a2tr [D?u] ) —f(u,Du)=0,0<t<T
u(T,x) =sin(T +x; + ... + xg), on R,

(3)
and f(u, Du) = % (27’21 g—x) — dinfyepey (o2u), d =3.

e True solution : u(t,x) =sin(t + x3 + ... + xg).

o Numerical Scheme :
un(ti, x) = E[up(tiz1, x + 0oV hX)]
1 1
—i—h{— sup (0*tr[D?u]) — Etr[a§D2u] + f(DOu,Du)}.

2 g<o<o

e How to choose the parameters?
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Choice of discretization parameters

Maintaining Monotonicity.

e Assuming that 0 < Jf <G, < a%, if G, is diagonal, then we
choose 09 = 207 and p = min{%, 1+sup[tr((01%)_1¢7§)]fd}

e Assuming that G, + G} > 0, then we will choose
v Y

2p+(3p—1)8

g1.
> 1

%:max{3,%+2—%} and op =

e If 02 =0, we can truncate G, from below with a positive definite
matrix ely > 0 by substituting G + ((elg — Gy) \/ 0) -y for G.

e Large 0¢ and small p generally lead to convergence, though the
monotonicity may not hold.
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Numerical Results

Taking xo = (5,6,7), T=0.5 we have the following results :

N Approx. 016
62 = 2 0.14%
20 | -0.72984
40 | -0.74028 '
60 | -0.74382
80 | -0.74667
100 | -0.74560 2 oosf
120 | -0.74738
140 | -0.74790
160 | -0.74829 P |
Ans_ _075099 O20 40 60 80 N 100 120 140 160

Figure: Results and the corresponding errors when d =3, g = 1.
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Comparison with finite difference

0.025 T T T T T T
—©— Finite Difference
0.02}

N Ours F.D.

20 -0.72984 -0.76420

40 -0.74028 -0.75785 0.015

60 -0.74382 -0.75562

80 -0.74667 -0.75447

100 -0.74560 -0.75379
120 -0.74738 -0.75332
140 -0.74790 -0.75300
160 -0.74829 -0.75274
Ans -0.75099 -0.75099

Absolute Error

0.005

. . .
20 40 60 80 100 120 140 160

Figure: Comparing our scheme and finite difference with ¢ = 1, @ = 2,
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o Truncation

If o =0 in Example 1, we will approximate Equation (3) by
Ug + 5 SUP.< o<z (O’ztl’ [D?u] ) —f(u,Du) =0, 0<t<T,
u(T,x) =sin(T +x + ... + xg4), onR?, ¢=0.01

0.2p

0151

Absolute Error

01r

0
20 40 60 80 100 120 140 160
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A 12-dimensional PDE with known solution

Example 2. We try to solve by LSR a PDE with the same setting
as Example 1 except that d = 12 .

e Choice of basis functions : {1, x, g(x), g’(x)}
e Choice of simulation parameters :

We don’'t know how to balance the variance, error and the cost
by choosing L, the amount of paths sampled, and K, the number
of tests we should conduct before taking the average.
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A 12-dimensional PDE with known solution

Fixing d =12,02 =1, 32 =2, T=02,and x = (1,2,...,12),
we test our algorithm by the LSQ method to get :

N L K Avg(Ans.) | Var(Avg.) cost (in seconds)
2 2083 160 | 0.659639 | 3.53 x 107° | 4.48 x 102

5 13021 64 | 0.562635 | 1.99 x 107° | 1.46 x 101

10 52083 32 0.546598 | 8.41 x 107 | 1.17 x 10°

20 | 208333 16 | 0.530432 | 8.04 x 10~7 | 1.08 x 10!

40 833333 8 0.521343 | 2.25 x 107 | 9.11 x 10!

80 3333333 4 0.519701 1.21 x 1077 | 7.28 x 102

160 | 13333333 | 2 0.517363 | 6.17 x 1078 | 5.86 x 103

True solution : sin(}_ xo) = 0.513978.
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A 12-dimensional PDE with known solution

10 '

Absolute Error

The absolute error is slightly greater than O(h) because of the

simulation error.
Jia Zhuo Numerical Method for Fully Nonlinear Parabolic PDEs




Low-dimensional problems

Numerical Examples High-dimensional Problems

A 12-Dimensional Isaacs Equation with viscosity solution

Example 3. Consider the following PDE :

us+ G(D?u) =0, on [0, T) x R,
u(T,)=sin(T +x1+ ...+ xq), on RY,

where

(9}
~—~~
5
N

(>

Z sup inf [%Jz(u,v)'y;,-+f(u,v)]

o<u<10Su§1

d

= 3t s Lo+ )]

7 0suslo<u<i

|_\

=

P(u,v) = (1+u+v), fluv)=-%+%

e It can be shown that this PDE has a unique viscosity solution.
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A 12-Dimensional Isaacs Equation with viscosity solution

0.265
R ozs! 1| NRs — NR» -0.019953
€ passl. I'| NRig— NRs | -0.005390
|| NRy — NRyp | -0.003752
%OM\L NRso — NRyy | -0.002893
2 NRSO — NR40 -0.001213
U w 1| NRiso — NRgo | -0.000426
02, 2 20 ) 8;(‘) ;oo - ;‘207 - 1107 ;eo

Figure: Numerical results and their differences
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A 12-Dimensional Coupled FBSDE

e Coupled FBSDE : W, X, Z are d-dimensional, Y is 1-dimensional

Xe=Xo+ [ b( ys,z )ds + [f o Xs,Y)dWS,
Ye = g(X7) + [T (5, X6, Vs, Zs)ds — [.] ZodW.

e Quasilinear PDE : u(T,x) = g(x), and
us + b(u, Duo) - Du + %tr (JTJ(X, u)D? u) + f(t, x, u, Duo(x, u)) = 0.
e Nonlinear Feynman-Kac formula :

Yy =u(t,X¢),  Zi =[Duo](t, Xt).

e Note : the generator of the above PDE is not Lipschitz continuous
w.r.t. u or Du. We use truncations to make it Lip. continuous.
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A 12-Dimensional Coupled FBSDE

e Example 4 : o is diagonal with
. d
bi(Y,Z) £ cos(Y + Z7), oi(X,Y) 21+ Lsin (Z +Y)
g(X) Zsin(T+ X7, X), f(txy,2) S
T2£02, X2(23,..,13)
e True solution : Y: =sin(t + Z,‘.le X{) and Y, = 0.893997

e Numerical approximation of Yp :

N L K Avg(Ans.) | Var(Avg.) cost (in seconds)
2 2083 160 | 1.462543 | 3.35 x 107° | 1.56 x 1072

5 13021 64 | 1.111675 | 2.30 x 107° | 2.36 x 107 *

10 | 52083 32 | 1.014295 | 248 x 1075 | 2.43 x 10°

20 | 208333 6 | 0.925712 | 8.10 x 107° | 2.29 x 10!

1
40 | 833333 8 0.912373 | 2.46 x 107 | 1.94 x 102
80 | 3333333 | 4 0.908013 | 2.89 x 10~7 | 1.56 x 103
160 | 13333333 | 2 0.888747 | 1.62 x 1078 | 3.42 x 10*

Jia Zhuo Numerical Method for Fully Nonlinear Parabolic PDEs



Low-dimensional problems
High-dimensional Problems

Numerical Examples

A 12-Dimensional Coupled FBSDE

Absolute Error
*/

10°F

10 10

Figure: Errors for approximating the 12 dimensional FBSDE at Xy
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A 10-dimensional PDE with G-generator

Example 5.
e We consider the following 10-dimensional PDE :

0 1
@,z sup tr [02D2u] +f(t,x) =0, on [0, T) x RY,

ot 2 0<0<7

u(T,x) =sin(T +x + 2.+ %), onRH,

(4)

where d = 10, ¢ and & are positive-definite matrices, and f(t, x)
is a function such that the true solution is

: X2 X10
t = t — + .+ =)
u(t,x) =sin(t + x3 + > +..+ 10)

¢ This generator doesn't satisfy our key assumption.
© Our scheme works.
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A 10-dimensional PDE with G-generator

We pick xp and @2 > o2 > 0 arbitrarily :
Xo = (2.99, 3.05, 1.54, 1.89, 2.52, 1.10, 3.21, 1.64, 1.02, 1.80),

so the true solution is 0.75805.

N | L K | Avg(Ans.) | Var(Avg.) cost (in seconds)
5 | 10000 | 40 | 0.78385 5.22 x 1078 13
10 | 10000 | 20 | 0.77542 | 4.28 x 107 57
15 | 10000 | 13 | 0.77202 3.80 x 10~ 135
20 | 10000 | 10 | 0.76997 | 4.45 x 10~ 248
25 | 10000 | 8 | 0.76930 | 2.28 x 10 395
30 | 10000 | 6 | 0.76696 | 3.25 x 10~° 573
35 | 10000 | 5 | 0.76683 | 3.08 x 10~° 784
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A 10-dimensional PDE with G-generator

0.028

0.026 - N

0.024 - B

0.022 1

0.018 1

0.016 1

Numerical Results(NR)

0.014 N

0.012 4

0.008 . . . . . . .
0
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