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Abstract

We consider Backward Stochastic Difference Equations in discrete time
with infinitely many states. This paper shows the existence and uniquenss
of solutions to these equations in complete generality, and also derives a
comparison theorem. Using these, time-consistent nonlinear evaluations
and expectations are considered, and it is shown that every such evalua-
tion or expectation corresponds to the solution of a BSDE, without any
requirements for continuity or boundedness. The implications of these
results in a continuous time context are then considered, and possible
applications are discussed.

1 Introduction

The theory of Backward Stochastic Differential Equations (BSDEs) is an ac-
tive area of research in both Mathematical Finance and Stochastic Control. In
Mathematical Finance, BSDEs arise as the prices of assets under various as-
sumptions, (see [9]), as the basis for dynamic risk measures, (see [17], [2]), and
as a form of expected utility, (see [8], [3]). Through the work of [7] and [12],
it has also become apparent that, under some technical assumptions, BSDEs
provide the appropriate mathematical framework to describe all ‘nonlinear ex-
pectations’ (see [16]) in continuous time, where the filtration is generated by
a finite-dimensional Wiener process. These nonlinear expectations encompass
most of the above applications in a single mathematical construction. This
paper shows that, in discrete time, the analogous ‘Backward Stochastic Differ-
ence Equations’ provide this framework, without the requirements needed in
continuous time.

Beyond the world of finance, BSDEs, and the related Forward-Backward
Stochastic Differential Equations, have been used extensively in control theory

∗Robert Elliott wishes to thank the Australian Research Council for support.
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as a version of the HJB equation, (see [15], [18], [14] and [10]), and have also
been used in the study of stochastic differential games (for example, [11]). The
results of this paper are directly applicable to the discrete time versions of these
problems.

Typically, one begins by defining processes (Y,Z) through an equation of
the form

Yt(ω)−
∫

]t,T ]

F (ω, u, Yu−(ω), Zu(ω))du+
∫

]t,T ]

Zu(ω)dMu(ω) = Q(ω). (1)

Here Q is a square-integrable terminal condition, F a progressively measurable
‘driver’ function, and M an N -dimensional Brownian Motion, all defined on an
appropriate filtered probability space. The ‘solutions’ (Y, Z) are required to be
adapted to the forward filtration, and Z is required to be predictable.

When the process M is not a Brownian motion generating the filtration, a
BSDE based on M may not always have a solution. Essentially, this is because
solutions to these BSDEs depend on the Martingale representation property of
Brownian motion. In a previous paper, [5], we considered the analogous situa-
tion in discrete time, where the filtration was generated by a finite state process.
In this context a martingale representation theorem does hold, and hence, in a
broad degree of generality, one can obtain solutions to these equations.

In this paper, we shall consider the generic discrete-time BSDE (Backward
Stochastic Difference Equation), without assuming the filtration is generated by
a finite state process. We shall discuss under what conditions unique solutions
to these equations exist, and the requirements for a comparison theorem to
hold. Other authors have also considered BSDEs in discrete time, in particular
as approximations of continuous time BSDEs, (see, for example, [13] and [4]).

Using these equations, we develop a theory of nonlinear expectations. This
theory differs from previous developments in that it assumes time-consistency
only on a discrete set of points. Applications and connections with optimal
control with discrete observations are then discussed.

2 Existence and Uniqueness

Let (Ω,F , {Ft},P) be a discrete-time filtered probability space, with F = FT
for some T <∞. Let L1(RK ;Ft) denote the set of RK valued, Ft-measurable,
integrable random variables.

In this paper, the fundamental equation considered is:

Yt(ω)−
∑

t≤u<T

F (ω, u, Yu(ω), Zu+1) +
∑

t≤u<T

Zu+1(ω) = Q(ω). (2)

Here Q ∈ L1(RK ;FT ) and for each t ∈ {0, 1, 2, ..., T − 1},

F (·, t, ·, ·) : Ω× RK × L1(RK ;Ft+1)→ RK

is an extended-real valued functional. Note particularly that F takes an ar-
gument Zt+1 ∈ L1(RK ;Ft+1), that is, it considers the random variable Zt+1,
not its value Zt+1(ω) ∈ RK . A solution (Y,Z) of (2) is a pair of adapted
RK-valued processes, where Y is integrable and Z is a martingale difference
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process. We shall assume that F is adapted, that is F (ω, t, Yt(ω), Zt+1) is an Ft-
measurable random variable taking values in ]−∞,∞]K , for all Yt ∈ L1(RK ;Ft)
and Zt+1 ∈ L1(RK ;Ft+1). For simplicity, we shall henceforth omit the ω ar-
guments of Y , Z and Q, and simply remember that F takes as arguments the
realised value of Yt, but the random variable Zt+1.

Unlike in previous work, we here require Z to be a martingale difference pro-
cess. When Ft is generated by a finite-state process, we obtain a representation

Zt+1 = ztMt+1

where zt is an Ft-measurable RK×N random matrix, and M is a RN -valued
martingale difference process generated by the underlying finite-state process.
In this case, we can express F , not as a functional of Zt+1 ∈ L1(RK ,Ft+1), but
rather as a function of zt(ω) ∈ RK×N . In this case, the connection between
(2) and (1) is clear. Not making this assumption, but allowing F to be a
functional of Zt+1, allows existence results to be obtained without reference
to a martingale representation theorem, which is clearly not available in the
discrete-time infinite-state context.

Also note that, unlike in previous work, we do not assume that F is finite.
An assumption to this effect will be needed when we consider the existence
and uniqueness of solutions to (2); however, the case when F = ±∞ for some
values of Y will take on significance in reference to bounded expectations. This
motivates the following definition.

Definition 2.1. Let DF (ω, t, Zt+1) denote the set

{y ∈ RK : F (ω, t, y, Zt+1) ∈ RK},

that is, for each ω, t, Zt+1, the collection of values of y such that F is finite.
The function F will be called R-integrable (in ω) if the product

F (·, t, y, Zt+1)IDF (·,t,Zt+1)(y)

is integrable for all t ∈ {0, 1, ..., T − 1}, y ∈ RK and Zt+1 ∈ L1(RK ;Ft+1). For
simplicity, we shall call DF (ω, t, Zt+1) the y-domain of F .

This definition essentially implies that F is integrable, except when it takes
the values ±∞, (in at least one component).

Theorem 2.1. Let F be R-integrable. Then (2) has a unique solution (Y,Z)
for all Q ∈ L1(RK ;FT ) if the map

Φ(y) : DF (ω, t, Zt+1)→ RK , y 7→ y − F (ω, t, y, Zt+1)

has a unique inverse, P-a.s., for all martingale difference processes Z.

Proof. We prove the existence of a solution by induction. Clearly YT = Q solves
equation (2) at time T . For time t, suppose a solution Yt+1 exists for time t+1.
Supposing that there exists a solution at time t, we can then rewrite (2) in the
differenced, or one-step, form

Yt − F (ω, t, Yt, Zt+1) + Zt+1 = Yt+1 (3)
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and taking a conditional expectation gives

Yt − F (ω, t, Yt, Zt+1) = E[Yt+1|Ft]. (4)

Taking the difference of these two equations yields

Zt+1 = Yt+1 − E[Yt+1|Ft] (5)

which is the desired martingale difference process.
If there is to be a solution (Y, Z), which is required to be integrable, then

a simple rearrangement of (4) shows that F is finite. Hence, the value of Yt
must lie in DF (ω, t, Zt+1), where Zt+1 is as in (5). We know that, restricted to
DF (ω, t, Zt+1), the equation

Φ(Yt) = Yt − F (ω, t, Yt, Zt+1) = E[Yt+1|Ft]

has a unique solution, that is, there is a unique value of Yt such that (4) is
satisfied.

It is then straightforward to show that this pair (Yt, Zt) is a solution to (3),
and hence, by backward induction, the processes (Y,Z) satisfy (2).

Corollary 2.1.1. Suppose F is finite-valued, that is, DF (ω, t, Zt+1) = RK for
all ω, t and Zt+1. Then the conditions of Theorem 2.1 are necessary for unique
solutions to exist at all times.

Proof. Suppose, for some Zt+1, some y 6= ȳ ∈ RK , we had

y − F (ω, t, y, Zt+1) = Φ(y) = Φ(ȳ) = ȳ − F (ω, t, ȳ, Zt+1)

with positive probability, that is, Φ is not injective. Then, let Yt+1 = Φ(y) +
Zt+1. It is clear that the difference equation (4) will have two solutions Yt = y
and Yt = ȳ. Define the terminal condition Q = YT through the equations

Yt+1 = Φ(y) + Zt+1,

Ys = Yt+1 +
∑
t≤u<s

F (ω, u, Yu, 0). (6)

The equation with terminal condition Q = YT will have solution Yt+1 at time
t+ 1, and hence multiple solutions at time t.

Now suppose, for some Zt+1, some k ∈ RK , we had no solutions to Φ(y) = k,
that is Φ is not surjective. Let Yt+1 = k + Zt+1, and again define the terminal
condition Q = YT through (6). Then the BSDE with terminal condition Q will
either have multiple solutions at time t+1, (in which case we fail to have unique
solutions), or will have the unique solution Yt+1 at time t+ 1. In this case, the
difference equation (4) will have no solutions, and hence no solution will exist
at time t.

Therefore, it is clear that Φ must be both injective and surjective, and thus,
has a unique inverse.

Remark 2.1. The requirement, in Corollary 2.1.1, that F be finite-valued is
because, if YT = Q is a RK-valued random variable, then YT−1 will be aD(ω, T−
1, ZT )-valued random variable. Hence, it would be possible to define a set

D̃F (ω, T − 2, ZT−1) = {y ∈ RK : y − F (ω, T − 2, y, ZT−1) ∈ D(ω, T − 1, ZT )},
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and it would then follow that YT−2 ∈ D̃F (ω, T − 2, ZT−1).
For each (fixed) process Z, this would then lead, in a natural way, to a

recursive stochastic sequence of sets

D̃F (ω, t, Zt+1) = {y ∈ RK : y − F (ω, t, y, Zt+1) ∈ D̃(ω, t+ 1, Zt+2)},

where, for any terminal condition, the solution (Y,Z) satisfies Yt ∈ D̃F (ω, t, Zt+1).
For unique solutions to exist, it is then necessary and sufficient that the restric-
tion of y 7→ y−F (ω, t, y, Zt+1) to D̃F (ω, t, Zt+1) has a unique inverse, where Z
is recursively defined by (5).

The added complexity which such a condition generates is significant, and
is of little benefit in practice. For this reason, we can view Theorem 2.1 as con-
taining sufficient and nearly necessary conditions for the existence of a solution
to (2).

3 Comparison results

A fundamental result for working with BSDEs is the comparison theorem, first
obtained by [15]. We here present a version of the comparison theorem in this
context.

Definition 3.1. For any R-valued random variable X, we define

ess infFt
{X} = inf{x : x is Ft-measurable,P(X ≤ x) > 0},

the Ft-conditional essential infimum. Note that ess infFt
X can take the value

−∞, even for X real-valued (if X is conditionally unbounded from below). We
can also define ess supFt

in a similar way.

Theorem 3.1 (Comparison Theorem). Consider two discrete time BSDEs as
in (2), corresponding to coefficients F 1, F 2 and terminal values Q1, Q2. Suppose
the conditions of Theorem 2.1 are satisfied for both equations, let (Y 1, Z1) and
(Y 2, Z2) be the associated solutions. Suppose the following conditions hold, all
vector inequalities being taken componentwise.

(i) Q1 ≥ Q2 P-a.s.

(ii) P-a.s., for all times t,

F 1(ω, t, Y 2
t , Z

2
t+1) ≥ F 2(ω, t, Y 2

t , Z
2
t+1).

(iii) for all t, for all i, the ith component of F 1, given by e∗iF
1, satisfies

e∗iF
1(ω, t, Y 2

t , Z
1
t+1)− e∗iF 1(ω, t, Y 2

t , Z
2
t+1) ≥ ess infFt{e∗i (Z1

t+1 − Z2
t+1)}.

(iv) P-a.s., for all t, if

Y 1
t − F 1(ω, t, Y 1

t , Z
1
t+1) ≥ Y 2

t − F 1(ω, t, Y 2
t , Z

1
t+1)

then Y 1
t ≥ Y 2

t .

(v) F 1(ω, t, Y 2
t , Z

2
t+1) is finite.
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It is then true that Y 1 ≥ Y 2 P-a.s.

Proof. We shall establish this theorem using backward induction. For t = T it
is clear that Y 1

t − Y 2
t = Q1 −Q2 ≥ 0 P-a.s. as desired.

Taking the one step equation, as in (3) we have

Y it − F i(ω, t, Y it , Zit+1) + Zit+1 = Y it+1

for all 0 ≤ t < T. Note that we know F 1(ω, t, Y 2
t , Z

2
t+1), F 1(ω, t, Y 1

t , Z
1
t+1) and

F 2(ω, t, Y 2
t , Z

2
t+1) are all finite, the latter two as they are part of the (finite)

solutions of the original BSDEs.
For a given t, suppose we know Y 1

t+1 − Y 2
t+1 ≥ 0 P-a.s. Then, omitting the

ω and t arguments of F 1 and F 2,

Y 1
t −Y 2

t −F 1(Y 1
t , Z

1
t+1)+F 2(Y 2

t , Z
2
t+1)+(Z1

t+1−Z2
t+1) = Y 1

t+1−Y 2
t+1 ≥ 0. (7)

It is then clear that

e∗i (Y
1
t − Y 2

t ) ≥ e∗i (F 1(Y 1
t , Z

1
t+1)− F 2(Y 2

t , Z
2
t+1))− ess infFt

{e∗i (Z1
t+1 −Z2

t+1))}.

Hence, again P-a.s., assumptions (ii) and (iii) imply

e∗i (Y
1
t − Y 2

t − F 1(Y 1
t , Z

1
t+1) + F 1(Y 2

t , Z
1
t+1))

≥ e∗i (F 1(Y 2
t , Z

2
t+1)− F 2(Y 2

t , Z
2
t+1))

+ e∗iF
1(Y 2

t+1, Z
1
t+1)− e∗iF 1(Y 2

t , Z
2
t+1)− ess infFt

{e∗i (Z1
t+1 − Z2

t+1))}
≥ 0.

(8)

That is, the inequality being taken componentwise,

Y 1
t − Y 2

t − F 1(Y 1
t , Z

1
t+1) + F 1(Y 2

t , Z
1
t+1) ≥ 0,

and hence, by Assumption (iv),

Y 1
t ≥ Y 2

t

P-a.s. as desired. The general statement follows by backward induction.

Corollary 3.1.1. Suppose Theorem 3.1 holds with the following, stronger as-
sumptions

(iii’) The inequality in assumption (iii) is strict componentwise, that is, for all
i,

e∗iF
1(Y 2

t , Z
1
t+1)− e∗iF 1(Y 2

t , Z
2
t+1) ≥ ess infFt

{e∗i (Z1
t+1 − Z2

t+1)},

with equality only if e∗iZ
1
t+1 = e∗iZ

2
t+1 almost surely.

(iv’) For almost all (ω, t, Zt+1), the ith component of F 1(ω, t, y, Zt+1) depends
only on the ith component of y, and, for y ∈ D(ω, t, Zt+1), the map

e∗i yi 7→ e∗iΦ(y) = e∗i y − e∗iF (ω, t, y, Zt+1)

is strictly increasing. (This implies assumption (iv) of Theorem 3.1 and
the invertibility required for the existence result of Theorem 2.1.)
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Then this comparison is strict componentwise, that is, if on some A ∈ Ft,
for some i, we have e∗i Y

1
t = e∗i Y

2
t P-a.s. on A, then e∗iQ

1 = e∗iQ
2 P-a.s.

on A, and for all s ∈ {t, ..., T − 1}, P-a.s. on A, e∗iF
1(ω, s, Y 2

s , Z
2
s+1) =

e∗iF
2(ω, s, Y 2

s , Z
2
s+1), e∗iZ

1
s+1 = e∗iZ

2
s+1 and e∗i Y

1
s = e∗i Y

2
s .

Proof. Throughout this proof we shall omit the ω and t arguments of F 1 and
F 2, and all (in-)equalities are assumed to hold P-a.s. on A.

In this case, for a given t, by the same argument as used to show (8), we can
establish the strict inequality, for each i,

e∗i (Y
1
t − Y 2

t − F 1(Y 1
t , Z

1
t+1) + F 1(Y 2

t , Z
1
t+1))

= e∗i (Y
1
t+1 − Y 2

t+1) + e∗i (F
1(Y 2

t , Z
2
t+1)− F 2(Y 2

t , Z
2
t+1))

+ e∗iF
1(Y 2

t , Z
1
t+1)− e∗iF 1(Y 2

t , Z
2
t+1)− e∗i (Z1

t+1 − Z2
t+1)

≥ e∗i (F 1(Y 2
t , Z

2
t+1)− F 2(Y 2

t , Z
2
t+1))

+ e∗iF
1(Y 2

t , Z
1
t+1)− e∗iF 1(Y 2

t , Z
2
t+1)− ess infFt

{e∗i (Z1
t+1 − Z2

t+1))}
> 0,

(9)

unless e∗iZ
1
t+1 = e∗iZ

2
t+1. Hence, if e∗i Y

1
t = e∗i Y

2
t , the first term of this inequality

is zero, which is only the case if e∗iZ
1
t+1 = e∗iZ

2
t+1.

If e∗iZ
1
t+1 = e∗iZ

2
t+1, we know that

e∗i (F
1(Y 2

t , Z
1
t )− F 1(Y 2

t , Z
2
t ))− e∗i (Z1

t+1 − Z2
t+1) = 0,

and so, from (7), and assumption (i) of Theorem 3.1,

0 ≤ e∗i (Y 1
t+1 − Y 2

t+1)

= e∗i (Y
1
t − Y 2

t − F 1(Y 1
t , Z

1
t+1) + F 2(Y 2

t , Z
2
t+1) + (Z1

t+1 − Z2
t+1))

= −e∗i (F 1(Y 2
t , Z

2
t+1)− F 2(Y 2

t , Z
2
t+1))

≤ 0

and hence e∗iF
1(Y 2

t , Z
2
t+1) = e∗iF

2(Y 2
t , Z

2
t+1). Substituting this into (7), it fol-

lows that e∗i Y
1
t+1 = e∗i Y

2
t+1. The result follows by forward induction.

Remark 3.1. It is easy to show that each of conditions (i)-(iv) of Theorem 3.1
is necessary when the other conditions hold with equality. However, in general,
these conditions are sufficient but not necessary. This is simply because each
condition, if it holds with a strict inequality, is capable of ‘compensating’ for
another condition which does not hold.
Remark 3.2. In the scalar case, the final assumption is simply that the map
Φ(y) = y−F (ω, t, y, Zt+1) is strictly increasing on its y-domain. This is clearly
true if F is small relative to y, as will occur when approximating a continuous
time BSDE on a fine mesh in the time dimension. Furthermore, this assumption
is often satisfied in applications, as we have already assumed in Theorem 2.1
that Φ is invertible. For example, in Mathematical Finance, for classical pricing
theory one obtains a driver of the form

F (ω, t, y, Zt+1) = −rtYt + Eπ[Zt+1|Ft],

where rt is the interest rate at time t, and π is the risk-neutral measure for the
market. In this case, our assumption is simply that the interest rate rt is higher
than −100%.
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Definition 3.2. A function F 1 which satisfies the assumptions of Corollary
3.1.1, for all pairs (Y, Z) with Yt ∈ D(ω, t, Zt+1) for all t, will be called balanced.

Balanced drivers are a useful concept in the analysis of solutions of BSDEs,
as they are the drivers for which a (componentwise) comparison theorem holds.
As we shall see in Theorem 4.3, the requirement that a driver is balanced arises
naturally from the assumption of monotonicity of the solutions of a BSDE.

These conditions are essentially the same as those used in [5], for the discrete-
time finite-state case, and [6], for the general continuous time case. In particular,
we have the following result, which directly links the conditions of Corollary 3.1.1
with those used in [6] in continuous time.

Theorem 3.2. The following statements are equivalent (omitting ω and t for
simplicity):

(a) For all t, for all i, the ith component of F 1, given by e∗iF
1, satisfies

e∗i (F
1(Y 2

t , Z
1
t+1)− F 1(Y 2

t , Z
2
t+1)) > ess infFt

{e∗i (Z1
t+1 − Z2

t+1)},

unless e∗iZ
1
t+1 = e∗iZ

2
t+1 almost surely.

(b) For each i, there exists a measure P̃i, equivalent to P, such that the process
defined by

e∗iXt := −
∑

0≤u<t

e∗i (F
1(Y 2

t , Z
1
t )− F 1(Y 2

t , Z
2
t ))

+
∑

0≤u<t

e∗i (Z
1
t+1 − Z2

t+1)

is a P̃i supermartingale.

Proof. To show (b) implies (a), we note that if (a) is false, then

0 > −e∗i (F 1(Y 2
t , Z

1
t )− F 1(Y 2

t , Z
2
t )) + e∗i (Z

1
t+1 − Z2

t+1)

with probability one. Hence the process e∗iXt described in (b) is almost surely
nondecreasing, and hence cannot be a supermartingale under any equivalent
measure. Hence, (b) is false, and the implication follows by contradiction.

To show (a) implies (b), we note that either the process e∗iX is non-increasing
with probability one, or there is a positive probability of it increasing. For each
t, let At be set on which e∗iXt+1 ≤ e∗iXt almost surely given Ft. Define the
random variable λt+1 = 1 on At.

On Act , there is a positive conditional probability of e∗iX increasing from t
to t+ 1, but from (a), we have the inequality

0 > −e∗i (F 1(Y 2
t , Z

1
t )− F 1(Y 2

t , Z
2
t )) + ess infFt

{e∗i (Z1
t+1 − Z2

t+1)}
= ess infFt

{e∗i (Xt+1 −Xt)},

as if e∗iZ
1
t+1 = e∗iZ

2
t+1 a.s. then e∗i (Xt+1−Xt) = 0 almost surely. Let Bt+1 be the

event e∗i (Xt+1−Xt) < 0. It follows that, on Act , E[−IBt+1e
∗
i (Xt+1−Xt)|Ft] > 0.

Now, on Act , define

λt+1 = k−1E[−IBt+1e
∗
i (Xt+1−Xt)|Ft]IBc

t+1
+k−1E[IBc

t+1
e∗i (Xt+1−Xt)|Ft]IBt+1
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where all expectations are taken under P and

k = E[−IBt+1e
∗
i (Xt+1−Xt)|Ft]E[IBc

t+1
|Ft]+E[IBc

t+1
e∗i (Xt+1−Xt)|Ft]E[IBt+1 |Ft]

is a normalising constant. Note that, by construction, each of these terms is
nonnegative, and λt+1 is strictly positive and integrable.

Combining these definitions of λt+1, we have E[λt+1|Ft] = 1 and E[λt+1e
∗
i (Xt+1−

Xt)|Ft] ≤ 0. Hence if we define

dP̃i
dP

=
∏

0≤t<T

λt+1,

we have constructed an equivalent measure under which e∗iX is a supermartin-
gale.

4 Nonlinear evaluations and expectations

A significant application of BSDEs is in the development of value functions for
stochastic optimal control problems. A useful way of expressing these functions
has been developed by [16], [7], [12] and others, in the language of nonlinear
evaluations and nonlinear expectations.

Definition 4.1. A system of operators

Es,t : L1(RK ;Ft)→ L1(RK ;Fs), 0 ≤ s ≤ t ≤ T

is called an Ft-consistent nonlinear evaluation defined on [0, T ] if it satisfies the
following properties.

1. For Q,Q′ ∈ L1(RK ;Ft), if Q ≥ Q′ P-a.s. componentwise, then

Es,t(Q) ≥ Es,t(Q′)

P-a.s. componentwise, with, for each i,

e∗i Es,t(Q) = e∗i Es,t(Q′)

only if e∗iQ = e∗iQ
′ P-a.s.

2. Et,t(Q) = Q P-a.s.

3. Er,s(Es,t(Q)) = Er,t(Q) P-a.s. for any 0 ≤ r ≤ s ≤ t ≤ T.

4. For any A ∈ Fs, IAEs,t(Q) = IAEs,t(IAQ) P-a.s.

Theorem 4.1. In the scalar, K = 1, case, if Es,t(·) is a Ft-consistent nonlinear
evaluation for all 0 ≤ s ≤ t ≤ T , then there exists a balanced driver F such that
Y ts = Es,t(Q) satisfies a BSDE

Y ts −
∑
s≤u<t

F (ω, u, Y tu , Z
t
u+1) +

∑
s≤u<t

Ztu+1 = Q.

Furthermore, F is unique.
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Proof. Leaving t fixed, and omitting it for clarity, it is sufficient to construct F
such that the one-step equation

Ys − F (ω, s, Ys, Zs+1) + Zs+1 = Ys+1.

is satisfied. Recursivity then allows this to be extended to the full BSDE.
For each Ys ∈ L1(Fs), Zs+1 ∈ L1(Fs+1) we consider the equation

Ys = Es,s+1(Ys + Zs+1 + cs)

for cs ∈ L1(Fs). By the strict monotonicity Property 1 of E , there is at most
one solution cs to this equation. Now let

F (ω, s, Ys, Zs+1) =

{
−cs if cs exists
∞ otherwise

.

By the monotonicity property 1 of E , it follows that F is monotone in Ys over
its y-domain, which corresponds to those values of Ys where cs exists.

For any Ys+1, we can decompose Ys+1 as

Ys+1 = E[Ys+1|Fs] + Zs+1 = Ys + c̄s + Zs+1

for some martingale difference process Z and some adapted process c̄. Hence
we know Ys = Es,s+1(Ys+1) = Es,s+1(Ys + c̄s + Zs+1) which implies the above
constructed F satisfies −c̄s = F (ω, s, Ys, Zs+1). Finally, it follows that

Ys+1 = Ys − F (ω, s, Ys, Zs+1) + Zs+1

is satisfied. It is clear that F must satisfy these equations, if it exists, and the
strict monotonicity of Es,s+1 then guarantees uniqueness of F .

We now need to show that F is balanced. Suppose Assumption (iii’) of Corol-
lary 3.1.1 does not hold, that is, for some Z1

t+1, Z
2
t+1, some Yt ∈ D(ω, t, Z2

t+1),
we have

F (Yt, Z1
t+1)− F (Yt, Z2

t+1) < ess infFt
{Z1

t+1 − Z2
t+1}

or
F (Yt, Z1

t+1)− F (Yt, Z2
t+1) = ess infFt

{Z1
t+1 − Z2

t+1}

with Z1
t+1 6= Z2

t+1 with positive probability. (Note this implies that F (Yt, Z1
t+1)

is finite.) Then it is clear that, defining

Y it+1 = Yt − F (Yt, Zit+1) + Zit+1, i = 1, 2,

we have

ess infFt{Y 1
t+1 − Y 2

t+1} = −F (Yt, Z1
t+1) + F (Yt, Z2

t+1) + ess infFt{Z1
t+1 − Z2

t+1}

and so Y 1
t+1 ≥ Y 2

t+1 P-a.s., and Y 1
t+1 > Y 2

t+1 with positive probability, yet

Yt = Et,t+1(Y 1
t+1) = Et,t+1(Y 2

t+1)

contradicting the strict monotonicity of E . By contradiction, F must satisfy
Assumption (iii’) of Corollary 3.1.1.
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Now suppose Assumption (iv’) of Corollary 3.1.1 is not satisfied. Then, for
some Zt+1, the map

y 7→ y − F (y, Zt+1)

is not strictly increasing on D(ω, t, Zt+1). Let y1, y2 ∈ D(ω, t, Zt+1) be two real
values such that y1 > y2, but y − F (y, Zt+1) ≤ y′ − F (y′, Zt+1). Then defining
the terminal conditions Y it+1 = yi−F (Y i, Zt+1) +Zt+1 for i = 1, 2, we see that
Y 1
t+1 ≤ Y 2

t+1, yet

Et,t+1(Y 1
t+1) = y1 > y2 = Et,t+1(Y 2

t+1),

again contradicting the monotonicity of E .
Hence, it is clear that the monotonicity of E ensures that the driver it gen-

erates is balanced.

Remark 4.1. This theorem is significantly stronger than that given in [5], an
analogue of which is given as Theorem 4.3 below, as it refers to nonlinear evalu-
ations, not nonlinear expectations (Definition 4.2), and requires no assumptions
of translation invariance. In continuous time, under the assumption of transla-
tion invariance, analogous theorems have been shown in [7] and [12] for nonlinear
expectations.
Remark 4.2. Clearly, if Es,t(·) is bounded, then there will exist values of Yt
such that there is no Yt+1 satisfying the equation Yt = Et,t+1(Yt+1). In these
cases, we see that the equation Yt = Et,t=1(Yt +Zt+1 + ct) has no solutions, and
hence the driver F will be infinite for these values of Yt. This makes explicit
the motivation for allowing the driver to take non-real values, as without this
generalisation, the above representation would not be possible.

We also have the following converse result, which applies in both the scalar
and vector cases.

Theorem 4.2. Suppose F is a balanced driver, then the functional defined by
Es,t(Q) = Y ts , for Q ∈ L1(RK ;Ft), where

Y ts −
∑
s≤u<t

F (ω, u, Y tu , Z
t
u+1) +

∑
s≤u<t

Ztu+1 = Q

is a nonlinear evaluation.

Proof. We shall show that each of the properties of a nonlinear expectation is
satisfied.

1. The statement Es,t(Q1) ≥ Es,t(Q2) P-a.s. whenever Q1 ≥ Q2 P-a.s. is
the main result of Theorem 3.1, which holds as F is balanced. The strict
comparison of Corollary 3.1.1 then establishes the second statement.

2. For s = t, it is clear that the BSDE degenerates to the equation Yt = Q,
and so Yt = Et,t(Q) = Q.

3. For r ≤ s ≤ t, as Y is the solution to the relevant BSDE (with terminal
time t and terminal value Q), we can deduce

Ys = Yr −
∑
r≤u<s

F (ω, u, Yu, Zu+1) +
∑
r≤u<s

Zu+1.

Hence Yr is also the time r value of a solution to the BSDE with terminal
time s and value Ys. Hence Er,s(Es,t(Q)) = Er,t(Q) P-a.s. as desired.
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4. We know that

IAQ = IAYt −
∑

t≤u<T

IAF (ω, u, Yu, Zu) +
∑

t≤u<T

IAZuMu+1

and clearly

IAF (ω, u, Yu, Zu) = IAF (ω, u, IAYu, IAZu).

Hence (IAY, IAZ) is the solution to a BSDE with driver IAF and terminal
condition IAQ, and hence, again premultiplying by IA,

IAE(Q|Ft) = IAYt = IAE(IAQ|Ft)

as desired.

In many applications, we require these functionals to obey further rules, in
particular, we wish to have Es,t not depend on the terminal time t, and we wish
to have the translation invariance property Es,t(Q + q) = Es,t(Q) + q for all
q ∈ L1(RK ;Fs). This motivates the following definition.

Definition 4.2. A system of operators

E(·|Ft) : L1(RK ;FT )→ L1(RK ;Ft), 0 ≤ t ≤ T

is called an Ft-consistent, translation-invariant, nonlinear expectation if it sat-
isfies the following properties:

1. For Q,Q′ ∈ L1(RK ;FT ), if Q ≥ Q′ P-a.s. componentwise, then

E(Q|Ft) ≥ E(Q′|Ft)

P-a.s. componentwise, with, for each i,

e∗i E(Q|Ft) = e∗i E(Q′|Ft)

only if e∗iQ = e∗iQ
′ P-a.s.

2. E(Q|Ft) = Q P-a.s. for any Ft-measurable Q.

3. E(E(Q|Ft)|Fs) = E(Q|Fs) P-a.s. for any s ≤ t

4. For any A ∈ Ft, IAE(Q|Ft) = E(IAQ|Ft) P-a.s.

5. For any Ft-measurable q with values in RK , any Q ∈ L1(RK ;FT ), then

E(Q+ q|Ft) = E(Q|Ft) + q.

Remark 4.3. Property 5 is not usually included in the requirements for a non-
linear expectation. However, it will prove very useful here. There is a slight
abuse of notation as we have assumed that Property 5 holds without assuming
q is integrable. This can be formally dealt with by defining E(·|Ft) on the set
{Q : E[‖Q‖ |Ft] < +∞P-a.s.}, which is slightly larger than the set L1(RK ;Ft).
This involves very slight modifications throughout the existence and uniqueness
results for BSDEs, however is on benefit when proving Theorem 4.3. We will
take such modifications as implicit.
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Remark 4.4. In [5] we have given results, in the finite state case, for a variant of
these operators, where monotonicity is only assumed to hold in some subset of
L1(RK ;Ft). This discussion carries over directly to the infinite state case, and
will not be repeated here.

In this situation, we can give the following version of a theorem, proven in
the finite-state case in [5].

Theorem 4.3. The following statements are equivalent.

1. E(·|Ft) is an Ft-consistent, translation invariant, nonlinear expectation.

2. There exists a balanced driver F , which is independent of Y , and satisfies
the normalisation condition F (ω, t, Yt, 0) = 0, such that, for all Q, Yt =
E(Q|Ft) is the solution to a BSDE with terminal condition Q and driver
F .

Furthermore, these two statements are related by the equation

F (ω, t, Yt, Zt+1) = E(Zt+1|Ft).

Proof. (2. implies 1.) As every nonlinear expectation is also a nonlinear evalua-
tion, with Es,t(·) := E(·|Fs), we need only show properties 2, 4 and 5. For prop-
erty 2, by the normalisation of F , the solution to the BSDE with Ft-measurable
terminal condition Q will be (Yu, Zu) = (Q, 0) for u ≥ t. By the uniqueness
result of Theorem 2.1 this is then the value of E(Q|Ft). For property 4, we note
that by normalisation, IAF (ω, u, Yu, Zu) = F (ω, u, IAYu, IAZu), and the result
follows as for nonlinear evaluations. Property 5 follows as F (ω, t, Yt+q, Zt+1) =
F (ω, t, Yt, Zt+1), and so, if Yt solves the BSDE with terminal condition Q, Yt+q
solves the BSDE with terminal condition Q+ q.

(1. implies 2.) We define

F (ω, t, Yt, Zt+1) := E(Zt+1|Ft),

and note that this does not depend on Yt, satisfies F (ω, t, Yt, 0) = 0 and, in
the scalar case, is equal (by translation invariance) to the value of F defined
for nonlinear evaluations in Theorem 4.1. It follows that, for any Yt+1, we can
write

Yt = E(Yt+1|Ft) = E(Yt+1 − E[Yt+1|Ft]|Ft) + E[Yt+1|Ft].

and hence, for Zt+1 = Yt+1 − E[Yt+1|Ft],

E[Yt+1|Ft] = Yt − E(Zt+1|Ft)

from which the one-step equation

Yt+1 = Yt − F (ω, t, Yt, Zt+1) + Zt+1

follows directly. Recursivity then extends this directly to the full BSDE.
We need only to show that the driver F is balanced. As F is independent

of Y and E(·|Ft) takes only finite values, the only relevant requirement for F to
be balanced is that, for each component i, for any Z1

t+1, Z
2
t+1,

e∗iF (ω, t, Y 2
t , Z

1
t+1)− e∗iF (ω, t, Y 2

t , Z
2
t+1) ≥ ess infFt{e∗i (Z1

t+1 − Z2
t+1)},
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with equality only if e∗iZ
1
t+1 = e∗iZ

2
t+1 P-a.s.

Define an Ft-measurable random variable q by

e∗i q = ess infFt{e∗i (Z1
t+1 − Z2

t+1)}

Then Z1
t+1 − q ≥ Z2

t+1 componentwise, and hence we know

E(Z1
t+1 − q|Ft) ≥ E(Z2

t+1|Ft)

By translation invariance of E , we then have,

e∗i E(Z1
t+1|Ft)− e∗i E(Z2

t+1|Ft) ≥ e∗i q

and hence,

e∗iF (ω, t, Y 2
t , Z

1
t+1)− e∗iF (ω, t, Y 2

t , Z
2
t+1) ≥ ess infFt

{e∗i (Z1
t+1 − Z2

t+1)}.

To show the strict inequality, note that, for each i, if

e∗i E(Z1
t+1 − q|Ft) = e∗i E(Z2

t+1|Ft)

then e∗iZ
1
t+1 − e∗i q = e∗iZ

2
t+1 P-a.s. by the strict monotonicity of E . It follows

that
e∗i (Z

1
t+1 − Z2

t+1) = e∗i q = ess infFt{e∗i (Z1
t+1 − Z2

t+1)}

and so, as Z1
t+1 − Z2

t+1 is a martingale difference process, e∗i (Z
1
t+1 − Z2

t+1) = 0
P-a.s.

Corollary 4.3.1. For E an Ft consistent nonlinear expectation and F the cor-
responding BSDE driver, the following statements hold.

• F is independent of Y

• F is concave with respect to Z if and only if E is concave.

• F is (Lipschitz) continuous in L1 norm with respect to Z if and only if E
is (Lipschitz) continuous in L1 norm.

• F is linear if and only if E is linear.

• F is positively homogenous (that is F (ω, t, λYt, λZt+1) = λF (ω, t, Yt, Zt)
for all t, all λ ≥ 0) if and only if E is positively homogenous.

Proof. Each of these statements, and many others, is trivial once one realises
that F (ω, t, Yt, Zt) = E(Zt+1|Ft).

5 Nearly-time-consistent nonlinear expectations

We shall now consider the BSDE (2) as being a discrete equation in a continu-
ous time-setting. By this we mean that there exists a continuous time filtered
probability space (Ω,F , {Ft}t∈[0,T ],P), where T is finite. We wish to consider
the solutions, for t ∈ {0 = t0, t1, t2, ..., tN = T} = T , of the equation

Yt −
∑

u∈T ∩{t≤u<T}

F (ω, u, Yu, Zu+) +
∑

u∈T ∩{t≤u<T}

Zu+ = Q
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where u+ denotes the element of T following u. Note that we could equivalently
take the sum over i from 0 to N , where the sums are taken of the values
F (ω, ti, Yti , Zti+1) and Zti+1 respectively.

For a fixed mesh T , for t ∈ [ti, ti+1[, we can define Ȳt = Yti . Under this
definition, Ȳ is a right-continuous step function, which changes only at times in
T . It follows easily that, if F is balanced, Ȳt = E(·|Ft) defines a nearly-time-
consistent nonlinear expectation in the following sense.

Definition 5.1. For a fixed set of dates T ⊂ [0, t], a family of operators

E(·|Ft) : L1(RK ;FT )→ L1(RK ;Ft); t ∈ [0, T ]

is called a nearly-time-consistent nonlinear expectation if for t ∈ T , E is a
nonlinear expectation.

Clearly every Ft-consistent nonlinear expectation in continuous time is a
nearly-time-consistent nonlinear expectation. However, the converse is not true.

A nearly-time-consistent nonlinear expectation is then recursive, but only at
the points in T . It satisfies the Zero-One law, ( E(IAQ|Ft) = IAE(Q|Ft) for all
A ∈ Ft), only for t ∈ T . Overall, each of the properties of nonlinear expectations
holds, but is only guaranteed to do so on the mesh T . These properties, as
discussed in [1], form an appropriate description of time-consistency, and can
be shown to be equivalent to Bellman’s principle, (under some conditions).

This type of consistency arises naturally in many situations where, even
though time may be continuous, decisions can only be made at a discrete set of
points. In these circumstances, there is no reason to require the optimal value
function to be consistent between decision times. On the other hand, we do
require consistency in decision making, and hence, we require time-consistency
on those dates where decisions can be made.

Another example where a discrete-time-consistency requirement is natural
is when decisions are being made on the basis of time-series data. Typically,
new data is only available at discrete time-points and, therefore, it is only at
these time-points that new decisions need to be made. Therefore, the natural
type of time-consistency that is needed is only to be considered at a discrete set
of points, and hence a nearly-time-consistent nonlinear evaluation arises.

Overall, these nearly-time-consistent nonlinear expectations and evaluations
have various natural applications. We have shown that the theory of BSDEs
is an appropriate tool to use to study these functionals, as we have given rep-
resentation theorems in this context. These results are very suggestive of the
existence of analogous results in continuous time, for very general probability
spaces. However, this remains an open problem.
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