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Abstract

We show that for a large class of marked point processes there exists a
random measure m with the predictable representation property such that
iterated integrals with respect to m span the space of square integrable
random variables.

1 Introduction

A fundamental result in the stochastic analysis on Wiener spaces is the Wiener-
Itō chaos representation theorem [10]. This theorem allows the representation of
any square integrable random variable as the sum of iterated stochastic integrals
with respect to the underlying Wiener process, and provides an approach to
the Malliavin calculus of variations. Such a representation is often termed a
chaos representation, and is closely linked to representations in terms of Hermite
polynomials.

For processes with jumps, it is also possible to construct a theory of chaos
expansions. This has been studied in the context of Markov chains in Kroeker
[8] (see also Biane [1]) and for the Binomial process in Privault and Schoutens
[9]. In these works, the approach is based on the principle of finding an ana-
logue to the Hermite polynomials appropriate to these spaces. Emery [7] studies
chaos representations in terms of iterated integrals, assuming that the under-
lying martingale satisfies a certain structure condition, related to the Azéma
martingale. Many authors have since expanded on these ideas.

In this paper we give a general approach to chaos decompositions for an
arbitrary marked point process, where we simply assume that the compensat-
ing measure for the underlying process is absolutely continuous (in both time
and space) with respect to some (locally finite in time) deterministic measure.
Instead of searching for a polynomial chaos interpretation, we focus on the rep-
resentation in terms of iterated stochastic integrals with respect to fundamental
martingales. For this, we use the fundamental martingales constructed in Elliott
[4] and Davis [2], which make no assumptions about independence of the incre-
ments. In such a setting, we shall show that the iterated stochastic integrals
span the entirety of L2(F).

This result complements the construction of the Malliavin calculus for Marked
Point Processes as in Decreusefond [3, Section 4]. In [3] it is simply assumed that
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the space under consideration admits a chaos decomposition. The contribution
of this paper is to show general conditions under which this is the case.

2 Martingales for Marked Point Processes

We begin by constructing an explicit martingale representation result. We do
this mainly for copleteness, in Section 4 we shall simply assume that some
martingale representation is given, which may or may not be the one constructed
here.

The setting for this analysis is taken from Elliott [4] (see also Davis [2], and
Elliott [5]), we shall state relevant results without proof or further reference.
For a simpler and more gentle introduction to this style of analysis for marked
point processes, see [6, Ch. 17].

2.1 The jump setting

Let (E, E) be a Blackwell space. Consider a right-constant jump process X
taking values in E, which is initially in the fixed position X0 = ξ0 ∈ E.

At a random time T1, X jumps to a random location ξ1 6= ξ0, at which it
stays until a random time T2, when it jumps to a random location ξ2 6= ξ1,
etc... As X is right-constant, we know that for each path, the jumps Ti are
well ordered, and there are at most countably many jumps. For simplicity, in
this paper we shall assume that there are at most finitely many jumps on any
compact, that is, limn→∞ Tn =∞ for (almost) all paths.

We then have a measurable space (Ω,F), where F = σ{Xs, s < ∞}, and
Ω ⊂ ([0,∞] × E)N is a list of all the jump times and locations of X, with
the property that X can only jump once at each time, and must jump to a
new location. We suppose a probability measure P is given on this space. We
denote by Ft the P-completed σ-algebra generated by X up to time t, that is
Ft = σ{Xs; s ≤ t} ∨ {null sets}. This space will be kept fixed throughout the
paper.

2.2 Fundamental martingales

Suppose Tα, α ∈ N is a jump time. The distribution of the pair (Tα, ξα) given
FTα−1 is described by a random measure (that is, a regular family of conditional
probability distributions) µα(ω; ·) on [0,∞] × E. Properties of µα are given in
[5]. Define

Fαt (ω;A) = µα(ω; ]t,∞]×A)

so that, omitting ω for notational convenience, Fαt (A) is the conditional proba-
bility that Tα > t and ξα ∈ A given FTα−1 . For convenience Fαt := Fαt (E) and
we write

λα(t, A) =
dFα· (A)

dFα· (E)

∣∣∣∣
t

,
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the rate at which the αth jump is into A at time t. We can then define the
stochastic processes

pα(t, A) := It≥TαIξα∈A

p̃α(t, A) := −
∫
]0,t∧Tα]

(Fαu−)
−1dFαu (A) = −

∫
]0,t∧Tα]

λα(s,A)(Fαs−)
−1dFαs

qα(t, A) := pα(t, A)− p̃α(t, A)

so that qα(t, A) is an Ft-martingale with predictable quadratic variation

〈qα(t, A)〉 = p̃α(t, A)−
∑

0<u≤t∧Tα

λα(u,A)2(∆Fαu )
2

(Fαu−)
2

.

We shall see that these martingales provide a basis from which we can obtain a
martingale representation theorem in these spaces. Note that p̃α is simply the
compensator of the finite variation process pα, and qα is then the martingale
part of pα. Note also that if p̃α is continuous in t, then Λα(t, A)∆Fα ≡ 0, and
〈qα(t, A)〉 = p̃α(t, A).

Write Gα for the set of measurable functions {gα : Ω× [0,∞]×E → R} such
that for each (t, x) ∈ [0, T ] × E, gα is FTα−1-measurable. As for fixed α, t and
ω we know pα(t, A) and p̃α(t, A) are both countably additive in A, for suitable
gα ∈ Gα we have∫

Ω

gα(s, x)pα(ds, dx) = gα(Tα, xα)∫
Ω

gα(s, x)p̃α(ds, dx) = −
∫
]0,Tα+1]

∫
E

gα(s, x)λα(ω; s, dx)
dFαs
Fαs−

Lemma 1. For any square-integrable martingale M , we define

∆Mα :=MTα −MTα−1 .

Then for every α ∈ N, we have

MTα =
∑
β≤α

∆Mβ .

This leads to a precursor to the martingale representation result in this
context.

Theorem 1. Suppose M is a square-integrable martingale; write

Nα
t =MTα∧t −MTα−1∧t

Then for each α ∈ N, there exists a function gα ∈ Gα such that

Nα
t =

∫
]0,t]×E

gα(s, x)qα(ds, dx) a.s.

We shall say that gα represents Nα. Furthermore, gα(Tα, xα) = ∆Nα
Tα

, up to
the addition of a FTα−1

-measurable random variable.
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3 Martingale representation theorem

We now depart from the presentation of the martingale representation theorem
in [5], to present a slight variant which more naturally leads to the chaos rep-
resentation, and is of a more familiar form. Our presentation depends on the
following lemma and associated definition.

Lemma 2. For each ω, any t, any A ∈ E, pα(ω; t, A) and p̃α(ω; t, A) vary in t
only on the set t ∈]Tα−1, Tα]. In particular, the measures {dpα}α∈J on [0,∞]×E
have disjoint supports, and similarly for {dp̃α}α∈J.

Therefore, we can define the disjoint sum

p(ω; dt, dx) =
∑
α∈N

pα(ω; dt, dx),

and similarly for p̃ and hence for q = p− p̃.

Corollary 1. Let gα be as in Theorem 1. Let g̃α be defined as

g̃α(t, x) = I{t∈]Tα−1,Tα]}g
α(t, x)

Then g̃α also represents Nα

Proof. This follows as we have only modified gα off the support of qα.

We can now state our first martingale representation theorem.

Theorem 2. Let M be a square-integrable {Ft}-martingale. Then there exists
an {Ft}-predictable process g(t, x) such that

Mt =M0 +

∫
]0,t]×E

g(t, x)q(dt, dx).

Proof. Let g̃α be as in Corollary 1. By Lemma 1 and the fact g̃α represents Nα,
we have

Mt −M0 =
∑
α

Nα
t =

∑
α

∫
]0,t]×E

g̃α(s, x)q(ds, dx).

We then define g(s, x) :=
∑
α≤γ g̃

α(s, x), this again being a disjoint sum. As
there are almost surely finitely many jumps up to time t, and g̃α is zero for α
greater than the index of the next jump, for almost all ω this is a finite sum,
and so we can exchange the order of integration and summation.

This martingale representation theorem has a simple interpretation, as it is
based purely on the compensated indicator functions of the state of the under-
lying process X. However, it has a significant flaw for our purposes, as iterated
integrals are not necessarily orthogonal. For this reason, we need to rescale q,
for which we need the following assumption. This assumption poses the only
restriction on the processes we shall consider.

Assumption 1. For all α, there exists a deterministic measure ζα on R+ ×E
such that p̃α(ω, ·, ·) is almost surely equivalent to ζα, and such that ζα([0, t] ×
E) < ∞ for all t < ∞. For simplicity, we shall assume that ζα is continuous
with respect to t.
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Lemma 3. There exists a predictable function ψ : Ω×R+×E →]0, 1] such that
for all measurable functions f , for all α ∈ J,

E

[∫
]Tα,Tα+1]×E

f(ω, s, x)ψ(ω, s, x)p̃(ω, ds, dx)

]

=

∫
R+×E

E[Is∈]Tα,Tα+1]f(ω, s, x)]ζ
α(du, dx)

Proof. Simply take

ψ(ω, t, x) =
∑
α

It∈]Tα−1,Tα]

(
dζα

dp̃α(ω, ·, ·)

∣∣∣∣
(t,x)

)
.

Definition 1. We shall denote by qψ the signed measure q rescaled by ψ, that
is,

qψ(t, A) :=

∫
]0,t]×A

ψ(ω, s, x)q(ω, ds, dx).

For simplicity, we may write ψt,x for ψ(ω, t, x).

Lemma 4. If f is q-integrable, then f ·ψ−1 is qψ-integrable and the two integrals
agree. If f is predictable, then so is f · ψ−1.

Proof. This is clear as ψ is predictable and for each ω equals the Radon-Nikodym
derivative dqψ/dq.

Using the previous lemma, we immediately see that our martingale repre-
sentation theorem can be equivalently stated in terms of qψ, rather than q. This
will be preferable, as qψ has significantly better orthogonality properties than
q, and so we shall hereafter focus on qψ.

We now seek to understand the space of integrands which yield square in-
tegrable martingales, when integrated with respect to qψ. As our martingale
representation is not given by an orthonormal set of martingales, but rather
by a random measure qψ with qψ(t, A) and qψ(t, B) correlated, we need to be
careful in our definition of the appropriate space of integrands.

Lemma 5. For all f, g such that
∫
]0,t]×E f(t, x)qψ(dt, dx) is square integrable

(and similarly for g), we have the isometry

(f, g)qψ := E
[(∫

R+×E
f(t, x)qψ(dt, dx)

)(∫
R+×E

g(t, x)qψ(dt, dx)

)]
= E

[∫
R+×E

f(t, x)g(t, x)ψ2
t,xp̃(ω, dt, dx)

]
=
∑
α

∫
R+×E

E
[
It∈]Tα,Tα+1]f(t, x)g(t, x)

]
ζα(dt, dx)

We shall write ‖f‖2qψ = (f, f)qψ .
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Proof. From [5], we know that the quadratic variation of q is given by p̃, as
we have assumed that ζα, and hence p̃α, is continuous in t. As qψ is simply a
rescaled version of q, this quickly establishes the first isometry. The second then
follows by breaking up the integral into the intervals ]Tα, Tα+1], and extracting
the sum.

From this lemma, we can see that our use of the martingale random measure
qψ is a slight generalisation of constructing a martingale representation using
‘normal’ martingales, that is, martingales with predictable quadratic variation
given by Lebesgue measure (see, for example, Emery [7]). Here we replace
Lebesgue measure with an arbitrary deterministic measure ζα, which can vary
in α, and we retain the presence of the jump space E.

4 Chaos representation property

From this point onwards, we will not restrict ourselves to this particular choice
of martingale representation. In fact, there may be cases where an alternative
martingale representation is available and more convenient. We shall simply
make the following assumption.

Assumption 2. We are in the setting described in Section 2.1, and there exists
a random measure m such that

•
∫
]0,t]×E f(t, x)m(dt, dx) is a martingale for all predictable, sufficiently bounded

functions f ,

• every square integrable martingale has a representation
∫
]0,t]×E f(t, x)m(dt, dx)

for some predictable function f ,

• for all sufficiently integrable predictable f and g,

(f, g)m := E
[(∫

R+×E
f(t, x)m(dt, dx)

)(∫
R+×E

g(t, x)m(dt, dx)

)]
=
∑
α

∫
R+×E

E
[
It∈]Tα,Tα+1]f(t, x)g(t, x)

]
ζα(dt, dx).

for some family of deterministic measures ζα. As before ‖f‖2m := (f, f)m.

Under Assumption 1, m = qψ satisfies these requirements. However, it may
be convenient to take an alternative representation, particularly in cases when
Assumption 1 does not hold. A simple example of this is when E posesses a
group structure (e.g. when E is a vector space). If E is discrete, for example,
when we consider a countable-state Markov chain, then the representation based
on p will often not satisfy Assumption 1, as the previous state ξα−1 is a null set
of the measure pα, however is stochastic, which often contradicts the equivalence
with the deterministic measure ζα. On the other hand, we could use a repre-
sentation based on the fundamental processes πα(t, A) = It≥TαIξα−ξα−1∈A (in
the place of pα), that is, we use the indicator functions of the jumps themselves,
rather than the indicator of the location after the jump. This representation
(appropriately rescaled) will satisfy our assumption as soon as the set of possible
values (occuring with rate > 0) for the αth jump is deterministic.
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Using the martingale m, we now prove the existence of the Chaos represen-
tation of a random variable.

Definition 2. For two (stopping) times T, T ′ ≤ ∞, we shall write

FTfT ′ = FT ∩ FT ′−

and ∫ TfT ′

0

(·)m(dt, dx) :=

∫
(]0,T ]∩]0,T ′[)×E

(·)m(dt, dx).

For simplicity, in place ofm(dt, dx) we may write dm, similarly dm1 form(dt1, dx1),
dm2 for m(dt2, dx2), etc. and also dζα for ζα(dt, dx), dζα1 for ζα(dt1, dx1), etc.

Note that if τ =∞, then L2(FTfτ ) = L2(FT ), as we have assumed F∞− =
F∞.

Definition 3. Let k <∞, τ ≤ ∞. Let {gi} be a family of measurable functions
gi : Ω× (R+×E)i → R. Then we define the k-fold iterated integral operator via
the recursion

Ikτ ({gi}) = g0 +

∫ Tkfτ

0

Ik−1
t ({gi−1(t, x, · · · )}ki=1)dm,

with initial value I0τ (g0) = g0. For simplicity, we write Ik({gi}) := Ik∞({gi}).

With this definition, the first few terms of our integral operator are

I∅τ ({g0}) = g0

I1τ ({g0, g1}) = g0 +

∫ T1fτ

0

g1(t, x)m(dt, dx)

I2τ ({gi}2i=0) = g0 +

∫ T2fτ

0

(
g1(t1, x1) +

∫ T1ft1

0

g2(t1, x1, t2, x2)dm2

)
dm1

I3τ ({gi}3i=0) = g0 +

∫ T3fτ

0

(
g1 +

∫ T2ft1

0

(
g2 +

∫ T1ft2

0

g3 dm3

)
dm2

)
dm1

The important point to notice is that the ‘internal’ integrals are taken only up
to the preceding jump times in our sequence.

We can now state a precursor to the chaos representation theorem, using the
iterated integrals I.

Theorem 3. Let Y ∈ L2(FTkfτ ) for k < ∞, and deterministic τ ≤ ∞. Then
there exists a sequence of deterministic functions {gi}ki=1 such that

Y = Ikτ ({gi}).

Proof. First assume τ <∞. We shall use induction, iterating in α ≤ k over the
cases where Y ∈ L2(FTαfτ ). For the initial case, suppose Y ∈ L2(F0). Then Y
is a constant, so Y = I0(g0) = g0 for some constant g0.

Suppose Y ∈ L2(FTαfτ ) and that the result holds for all Y ′ ∈ L2(FTα−1ft)
for t ≤ τ . By the martingale representation theorem, Y has a representation of
the form

Y = E[Y ] +

∫ Tαfτ

0

g̃(ω, t, x)dm
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for some predictable function g̃ with ‖g̃‖m < ∞. As g̃ is predictable, for every
(t, x) the random variable g̃(·, t, x) is (FTα−1ft)-measurable. As we have

∞ > ‖g̃‖2m = E

(∫ Tαfτ

0

g̃dm

)2


=
∑
β≤α

∫ τ−

0

E[It∈]Tβ−1,Tβ ]g̃
2(t, x)]dζβ

we know E[It∈]Tβ−1,Tβ ]g̃(t, x)
2] < ∞ ζβ-a.s. for all β ≤ α. Taking the sum

over β ≤ α, we see E[g̃(t, x)2] < ∞. Therefore g̃(t, x) ∈ L2(FTα−1ft). As we
have supposed that the result holds on L2(FTα−1ft), we can find deterministic

{g(t,x)i (· · · )}α−1
i=0 such that

g̃n(ω, t, x) = Iα−1
t ({g(t,x)i (· · · )})

from which we define

gi(t, x, · · · ) = g
(t,x)
i−1 (· · · ) for i > 1; g0 = E[Y ].

This yields the representation of Y ,

Y = Iατ ({gi}) = E[Y ] +

∫ Tαfτ

0

Iα−1
t ({g(t,x)i })dm.

By induction, the result is proven for Y ∈ L2(FTkfτ ) for all k <∞. We now
seek to let τ →∞. This is easily done by the convergence of square-integrable
martingales. For Y ∈ L2(FTk), let Yτ := E[Y |Fτ ], so that Yτ− ∈ L2(FTkfτ ).
Therefore Yτ− = Ikτ ({gτi }) for some collection of functions {gτi }. It is easy to

verify that these functions are consistent, that is, gτi = gτ
′

i on [0, τ ∧ τ ′[×E,
and hence {gτi } can be taken to be independent of τ . Therefore, by martingale
convergence,

Y ← E[Y |Fτ−] = Yτ− = Ikτ ({gi})→ Ik∞({gi}) a.s.

from which we see Y = Ik∞({gi}).

Remark 1. Intuitively, this representation in terms of Ik has a simple inter-
pretation. From the martingale representation theorem, we know we can write
any FTkfτ = FTk ∩Fτ−-measurable random variable in terms of the stochastic
integral on [0, Tk] ∩ [0, τ [ of a predictable process g̃t. However, up to time Tk,
a predictable process g̃t is FTk−1ft-measurable for each t, and so by induction
can itself be written as an integral on [0, Tk−1]∩ [0, t[. Hence any Tk-measurable
random variable can be written as the iterated stochastic integral, where each
integral is at most up to an earlier jump time.

We can now construct the chaos representation.

Definition 4. For T ≤ ∞ a stopping time, we shall write

SnT := {(s1, s2, ..., sn) : 0 ≤ sn < sn−1 < ... < s1 ≤ T} ⊂ [0, T ]n
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For T a stopping time, we define the n-fold iterated integral

JnT (g) =

∫
SnT
g({(sk, xk)})

n⊗
k=1

m(dsk, dxk)

=

∫ T

0

∫ s1−

0

∫ s2−

0

...

∫ sn−

0

g(...)dmn−1 ... dm2 dm1.

For convenience, J0
T (g) := g for all constants g.

Definition 5. For T a stopping time, let

Hm
T := span{JnT (g) : E[(JnT (g))2] <∞, n ≤ m},

the L2(P)-closure of the span of the square integrable iterated stochastic integrals
of order at most m up to T . This is a Hilbert space, with the same inner product
as L2(P).

We can now prove the the Chaos representation theorem for random vari-
ables known after finitely many jumps.

Theorem 4. For any k <∞, we have Hk
Tk

= L2(FTk).

Proof. ClearlyHk
Tk
⊆ L2(FTk), and HTk is a Hilbert subspace. Therefore, either

Hk
Tk

= L2(FTk) or there exists a nonzero random variable Y ∈ L2(FTk) which

is orthogonal to every element of Hk
Tk
.

By Theorem 3, the space spanned by the iterated integrals Ik is L2(FTk).
Hence Y has a representation of the form Y = Ik({gi}), for some functions
{gi}. We seek to show that gi = 0 for all i on the relevant range of integration.
We shall do this using induction, however due to notational complexity, we shall
simply write out the first three steps, the rest follow in the same manner.

For g0, note that we must have

0 = E[Y J0
Tk
(g0)]

= E

[(
g0 +

∫ Tk

0

Ik−1
t ({gi−1(t, x, · · · )})dm

)
(g0)

]

= g20 + g0E

[∫ Tk

0

Ik−1
t ({gi−1(t, x, · · · )})dm

]
= g20

and we see g0 ≡ 0.
For g1, note that as g0 ≡ 0, we know

Y =

∫ Tk

0

Ik−1
t1 ({gi−1(· · · )})dm1 =

∫ Tk

0

(g1(t1, x1) + ξ(t1, x1))dm1.

where ξ(t1, x1) =
∫ Tk−1ft1
0

Ik−2
t2 ({gi−2(t1, x1, · · · )})dm2. Note that E[ξ(t, x)] ≡
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0. Then

0 = E[Y J1
Tk
(g1)]

= E

[(∫ Tk

0

(g1(t1, x1) + ξ(t1, x1))dm1

)(∫ T1

0

g1dm1

)]

= ‖It1≤Tkg1(t1, x1)‖2m +
∑
α

∫ τ

0

E [ξ(t1, x1))] g1(t1, x1)dζ
α

= ‖It1≤Tkg1(t1, x1)‖2m

and so g1(t1, x1) ≡ 0 on [0, Tk] (up to a set of ζα-measure zero for all relevant
α ≤ k).

For g2, note that as g0 = g1 = 0, we know

Y =

∫ Tk

0

∫ Tk−1ft1

0

Ik−2
t2 ({gi−2(· · · )})dm2dm1

=

∫ Tk

0

∫ Tk−1ft1

0

(g2(t1, x1, t2, x2) + ξ(t1, x1, t2, x2))dm2dm1.

where E[ξ(...)] ≡ 0. Hence, expanding in the same way as above

0 = E[Y J2
Tk
(g2)]

=
∑
α≤k

∫ ∞

0

E

It1∈]Tα−1,Tα]

(∫ Tk−1ft1

0

g2(t1, x1t2, x2)dm2

)2
 dζα1

=
∑
α≤k

∑
β≤α

∫ ∞

0

∫ t1

0

E[It1∈]Tα−1,Tα]It2∈]Tβ−1,Tβ ]](g2(t1, x1, t2, x2))
2dζβ2 dζ

α
1

and so g2 ≡ 0 up to a set of measure zero, on its relevant domain.
Continuing the induction, we see that gi ≡ 0 for all i ≤ k. Therefore

Y ≡ 0, and there is no element of L2(FTk) orthogonal to all of HTk . Therefore
the spaces coincide.

Finally, we can expand our Chaos representation theorem to all of L2(F).

Theorem 5. Any square integrable random variable can be arbitrarily well ap-
proximated in L2 by a sum of iterated integrals, or equivalently,

L2(F) =
{
∪kHk

Tk

}
.

Proof. We shall again use the convergence of square integrable martingales. For
any Y ∈ L2(F), let Yk = E[Y |FTk ]. This is a martingale in the discrete filtration
Gk = FTk , and so Yk → Y in L2. Hence for any ε > 0 there exists a k such that
E[(Y − Yk)2] < ε/4. By Theorem 4 there is also a sequence {gn}kn=1 such that

E
[(
Yk −

∑k
n=0 J

n
Tk
(gn)

)2]
< ε/4. By the triangle inequality,

E

(Y − k∑
i=1

JnTk(gn)

)2
 < ε.
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5 Conclusions

We have shown general conditions such that an arbitrary marked point process
generates a martingale random measurem for which a martingale representation
theorem holds, and such that L2(F) admits a chaos decomposition.

A key motivating application of this result is to allow a general development
of Malliavin calculus for marked point processes. This development is done in
[3], under the assumption that a chaos decomposition exists.

The only assumptions that we have made on the processes in question is that
the compensating measure p̃α is equivalent to some deterministic measure ζα,
which is continuous in time and finite for finite times. It seems reasonable that
some relaxation of this assumption is possible, for example, to only assuming
that p̃α is absolutely continuous with respect to ζα. The difficulty in doing this
arises as we cannot then write the quadratic variation of a martingale in terms
of a product measure P × ζ, and therefore cannot directly show that iterated
integrals of different orders are orthogonal.

It also seems reasonable that a relaxation of the assumption that there are
finitely many jumps should be possible. In [4] no such assumption is made,
however this leads to the need for transfinite induction in the proof of the
martingale representation theorem. Having convergent sequences of jumps also
requires a relaxation of the continuity of p̃ in time (which we assume through the
equivalence of p̃α and ζα, coupled with the continuity of ζα). This may also be
possible, however it leads to a more complex quadratic variation for stochastic
integrals, as it allows the possibility of accessible jump times.
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