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The Boltzmann equation describing a dilute monatomic gas is equivalent to an infinite hierarchy of evolution
equations for successive moments of the distribution function. The five moments giving the macroscopic mass,
momentum, and energy densities are unaffected by collisions between atoms, while all other moments naturally
evolve on a fast collisional timescale. We show that the macroscopic equations of Chen, Rao, and Spiegel
[Phys. Lett. A271, 87], like the familiar Navier—Stokes—Fourier equations, emerge from using a systematic
procedure to eliminate the higher moments, leaving closed evolution equations for the five moments unaffected
by collisions. The two equation sets differ through their treatment of contributions from the temperature to
the momentum and energy fluxes. Using moment equations offers a definitive treatment of the Prandtl number
problem using model collision operators, greatly reduces the labor of deriving equations for different collision
operators, and clarifies théle of solvability conditions applied to the distribution function. The original Chen—
Rao—Spiegel approach offers greatly improved agreement with experiments for the phase speed of ultrasound,
but when corrected to match the Navier—Stokes—Fourier equations at low frequencies it then under-estimates
the phase speed at high frequencies. Our introduction of a translational temperature, as in the kinetic theory of
polyatomic gases, motivates a distinction in the energy flux between advection of internal energy and the work
done by the pressure. Exploiting this distinction yields macroscopic equations that offer further improvement
in agreement with experimental data, and arise more naturally as an approximation to the infinite hierarchy of
evolution equations for moments.

. INTRODUCTION

The derivation of suitable descriptions for the behavior of rarefied gases in practical applications is a long-standing proble
The underlying kinetic theory is formulated using a distribution function to specify the number density of atoms or molecule
moving with a given velocity at a given point in space and time. The distribution function thus evolves in a six-dimensional pha:s
space:— Boltzmann’s equation describes the evolution of the distribution function for a dilute monatomic gas, but even this is to
unwieldy for many practical applications, especially those requiring more than one spatial dimension. Early applications we
primarily in the area of high altitude aeronautics and hypersonic flow, but much recent work is motivated by the development
micro-electro-mechanical devices (MEMs) operating at room temperatures and pressures. In both cases, a simplified descrif
exploits the separation between the scales that characterize collisions between atoms or molecules and the, typically much la
scales of the device in question. This separation is quantified by the smallness of a dimensionless parameter, the Knudsen nul
Kn.

A straightforward expansion of the distribution function in Knudsen number leads inevitably to the Hilbert exgamkioh,

becomes disordered after times @f1/Kn) when deviations from ideal fluid dynamics become appreciable. Descriptions
valid over long timescales are therefore based on expanding the equations that describe the solution, rather than expandin
solution itself* More precisely, the Chapman—Enskog expansigrields closed evolution equations for the five quantities —
mass, three components of momentum, and energy — that are conserved by collisions between atoms. The momentum
energy fluxes are expressed as series in these five quantities and their spatial derivatives. The Chapman—Enskog expal
yields the compressible Euler equations at leading order, and the Navier—Stokes—Fourier equations as the first correction
O(Kn). Although widely used, the Navier—Stokes—Fourier equations become inadequate for rarefied floWs: with).01.
For example, they predict a phase speed for ultrasound that grows arbitrarily large for sufficiently high frequencies (sufficient
large Kn). Continuing the Chapman—Enskog expansion to higher order yields the Burnett and super-Burnett equations
O(Kn?) andO(Kn?) respectively. These equations have met with limited success at describing physical phenomena, sin
they lead to ill-posed initial value problems, and require additional boundary conditions.

The Chapman—Enskog expansion has usually been presented, since the 1960s, as a multiple-scales expansion of bot
distribution function and the time derivative in powers of the Knudsen nuffo€he ordering of this double expansion does
survive over long times, but at the price of requiring order-by-order solvability conditions on the expansion of the distributio
function. Recent work by Chen, Rao, and Spiégetliscarded the multiple-scales expansion of the time derivative, with its
associated order-by-order solvability conditions, in favor of solvability conditions imposed only upon the expansion as a whol
By thus retaining various higher order terms involving time derivatives of macroscopic quantities they obtained a descriptic
that sometimes offers greatly improved agreement with experiment, notably for the phase speed of ultrasound over the wh
range of Knudsen numbers, for only a modest increase in complexity over the Navier—Stokes—Fourier equations.

In this paper we show that the Chen—Rao—Spiegel equations, like the Navier—Stokes—Fourier equations, may be derived usi
general procedure for the elimination of fast variables proposed by van KafhpeFhe Boltzmann equation is equivalent to an
infinite hierarchy of evolution equations for successive moments of the distribution function with respect to the particle velocit
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The moments giving the mass, momentum, and energy densities evolve only through spatial gradients of higher moments, v
no contributions from collisions between atoms. These five moments are therefore slow variables in van Kampen'’s terminolo
since the hydrodynamic timescaleassociated with evolution due to spatial gradients is typically much longer than the timescale
7 characteristic of collisions between atoms. All other moments, notably the momentum and energy fluxes, naturally evolve
the fast collisional timescale. The slow variables are left unexpanded in van Kampen'’s procedure, while the fast variables
expanded in powers ef= 7/T'. Solving order-by-order for the fast variables leads to closed evolution equations for the slow
variables that remain valid over long tim¥&s-!

The slow variables are uniquely determined by the structure of the equations, in this case by the collision operator, but
quote van Kampen: the fast variables are not unique but can be contaminated with an arbitrary amount of slow.t&rms
Different choices of fast variables lead to different, albeit asymptotically equivalent, evolution equations for the slow variable
at each order of approximation. We show that the Chen—Rao—Spiegel and Navier—Stokes—Fourier equations arise from diffel
decompositions of the momentum and energy fluxes between fast and slow variables. In the notation described below,
Navier—Stokes—Fourier equations arise from decomposing the momentull #nd energy fluxF into

~ 1 ~ 5
II=puu+pfl+P, F= gp\u\2u+P~u+§P9u+(~1> )
while the Chen—Rao-Spiegel equations arise from decomposing the same fluxes into
1 .
II = puu+P, .’F:§p|u|2u—|—P~u+q. @)

The slightly different set of equations introduced in this paper arise from separating the advection of internal energy from tl
work done by the pressure, and writing

1 3
IT = puu + P, .7-':(2p|u|2+2p9>u+P-u+61. 3)

ThusP denotes the complete pressure tensor, white P — pdl is commonly called the deviatoric pressure. Similadiyyould
be the conductive heat flux in the Navier—Stokes—Fourier equations, @lsl@an energy flux that also includes advection of
internal energy and work done by pressure. Precise definitions are given in equations (11) angl{12) of

The fluid densityp, velocity u, and temperaturé are slow variables, being conserved under collisions, while all other
variables are fast. It is worth emphasizing that the decompositions in (2) and (3) lead to extra terms involving time derivativ
of the slow variables, u, 6. In contrast to Grad’s method of momeAts, or the method known as extended irreversible
thermodynamic$3->we do not introduce time derivatives for the pressure tensor, energy flux, or any other quantity. Additiona
time derivatives of the temperature also appear in a modified form of the super-Burnett equations proposed bySlemrod.

Besides clarifying thedle of solvability conditions as undoing any expansion of the slow variables inherited from expanding
the distribution function, proceeding from a system of moment equations offers a definitive treatment of the Prandtl number iss
that improves agreement with experiment, and greatly reduces the labor (as contrasted with Ref. 17) of deriving the macroscc
equations that result from different microscopic collision operators. We also draw connections between previously unrelat
earlier work. For instance, the Chen—Rao—-Spiegel pressure tensor appeared previously in work by Ikenberry and'8ruesde
using a procedure they called “Maxwellian iteration” to approximate an infinite hierarchy of moment equations. Maxwelliar
iteration has since been revisit€d?* but always using the equations ferandgq that lead to the familiar Navier—Stokes—Fourier
equations. Van Kampen's general theory, and its iterative extension by &Vay?? justifies the various assumptions that
Ikenberry and Truesdell themselves regarded as questionable — these assumptions are necessary to suppress secular terr
would otherwise disorder the approximation after long times. Unlike van Kampen’s own work on kinetic theory, we make a
explicit decomposition into fast and slow variables by working with a system of moments instead of the distribution function.

The next few sections establish notation and derive the necessary hierarchy of moment equations. We then describe
Kampen'’s elimination procedure and its relation to the Chapman—Enskog expansion, both the original formulation and the mq
recent reinterpretation as a multiple-scales expansion. Results apfg¥aoimvards.

IIl. THE BOLTZMANN EQUATION AND ITS CONSERVATION LAWS

The Boltzmann equation describing the evolution of a dilute monatomic gas is commonly written as

Ohf+&-Vf=C[f [l (4)

The distribution functionf (x, &, t) gives the number density of particles (atoms) moving with velagiy a particular poink

in space at time. The right hand sid€’[f, f] denotes Boltzmann’s collision operator, a multiple integral over pairs of particle
velocities that describes binary collisions between particles. The first few momehtsithf respect t€ give the macroscopic
mass, momentum, and energy densities respectively,

p= [sg. pu= [erae &= [1eprae ©)
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The energy density i§ = %p|u|2 + %pe in terms of the fluid density, velocityu, and temperatur@. These quantities are all
functions ofx andt only, due to the integrations ovér We absorb the particle mass inipand absorb Boltzmann’s constant
by measuring temperature in so-called energy units, s@thas dimensions of velocity squared. The adiabatic sound speed is
then(~0)'/2, with adiabatic exponent = 5/3 for monatomic gases. The specific heats@ye= 3/2 at constant volume, and
C}, = 5/2 at constant pressure.

The corresponding five moments of Boltzmann’s collision operator varfiglf, f|d¢ = 0 etc. This is the mathematical
statement that mass, momentum, and energy are all conserved by elastic collisions between atoms. However, collisions rela;
distribution functionf towards a Maxwell-Boltzmann distribution,

o___ P _lg—up
f 0 — (27“9)3/2 exp ( 29 N (6)

with parameters, u, 6 in f(©) determined by conservation of mass, momentum, and energy. These essential properties a
shared by the much simpler single-relaxation-time, Bhatnagar—Gross—Krook @@K}Velandet* collision operator,

O +€-Vf=——(7~ ), ™

It is understood that the quantitipsu, andd appearing inf(°) are computed fronf using (5). Equation (7) explicitly shows
the distribution function relaxing towards equilibrium with timescajéut the implicit dependence gf® on f throughp, u,
f ensures that these five quantities only evolve on a (much slower) hydrodynamic timescale. The standard Chapman—Ens
expansion leading from (4) to the Navier—Stokes—Fourier equations may be applied equally well to the BGK approximation (7
However, the BGK approximation gives an incorrect Prandtl number, the ratio of viscosity to thermal conductivity. We return t
this point in the next section.

Taking moments of the Boltzmann equation (4), or the BGK equation (7), with respécEtoand%|£|2 therefore gives
conservations laws for the five macroscopic quantities defined above,

1 3
Op+V-(pu) =0, (pu)+VII=0, & (2,0|u|2 + 2,09) +V-F =0. (8)

The vanishing right hand sides reflect the microscopic conservation of mass, momentum, and energy under collisions.
momentum flux tensdfl and energy flux vectaF are given by higher moments of the distribution function with respegt to

n— [eerae. - [lePesie ©)

However, in kinetic theory it is conventional to use moments with respect to the peculiar velecify— u, the deviation of the
particle velocityg from its local average: defined by (5). Multiplication by does not commute with eithéx or £ - V, since
u is a function ofx andt, but the conservation laws (8) may still be rewritten as

D + V-(pu) =0, (108)
O(pu) + V-(puu+ P) =0, (10b)
1 3 1 3 ~
O <2p|u|2 + 2p9> + V. (2p|u|2u + gpﬂu +P-u+ q> =0, (10c)

using a pressure tensBrand heat flux vectofj defined by
1
P= /ccfdé, q= §/|c|20fd£. (12)
For future reference we define additional quantifeandq by
. 5 R
P=P—pol, q:§p9u+q. (12)

The tilde onP and § denotes quantities that vanish when evaluated for the Maxwell-Boltzmann distribution (6). We show
below that the Chen—Rao-Spiegel equations follow from applying van Kampen’s elimination proceBuardq, just as the
Navier—Stokes—Fourier equations follow from applying the same proced8randq. The slightly modified equations derived

in §1X arise from eliminating® andg. Comparing the definitions of the pressure tensor and the energy density establishes th
consistency relations

TP = / c|>fd¢ = 3p9, TrP =0. (13)

These relations are satisfied exactly by the Navier—Stokes—Fourier constitutive relations, but are only satisfied in a consist
asymptotic sense by the Chen—Rao—Spiegel constitutive reldttdas, described if§VIIl below.
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For many purposes it is useful to simplify the above conservation equations, eliminating time derivatives that are given |
lower moments, to obtain

Dp 3 Do
it =0, P=0 =Zp— +P: =0. 14
Dt-l—qu th+V 5 Dt+ Vu+V-q= (24)
Here D/Dt = 9; + u - V denotes a Lagrangian, or material, time derivative moving with the macroscopic fluid velocity.
Combining the continuity and temperature equations gives an evolution equation for the entropy,
D .
pﬁ—ﬂ—FP:Vu—Fv-q:O, (15)
Dt
wherep = 32 10g(0p‘2/3) is the thermodynamic entropy in our energy units. This quantity is commonly called just “entropy” in
kinetic theory even though need not be proportional to Boltzmann’s entrdpy=| f log fd& when the distribution functiorf
differs from a Maxwelliant?
However, none of these sets of equations are closed until the momentum and energy fluxes are known. For this we turn ag
to the Boltzmann equation.

lll.  HIGHER MOMENTS OF THE BOLTZMANN EQUATION

Maxwell's equation of transfer determines the evolution of moments of the distribution funyttith respect to arbitrary
functions of the peculiar velocity.2182The pressure tensérthus evolves according to

(9 ou; 1 (0)
OcPj + Ok (urPij + Qiji) + Rka |+ Pk]a = (Pij - P ) ) (16)
where thel /7 factor on the right hand side comes directly from using the BGK collision operator. An effectivay be

calculated for many other collision operators, as described below. The supef@;:mntPi(f) on the right hand side denotes

the quantityP;; evaluated for the Maxwell-Boltzmann distributigf?). The left hand side of (16) involves the divergence of a
higher moment, the heat flow tenQmwith components

Qijr = /CiCjCkfdﬁ- (17)
This moment in turn evolves under Maxwell's equation of transport according to
leh + aiz (wiQrin + Ritin) + Qun gmk + kahg + lezgx}; (18)
_ 1 (Plh %IZC + P 88? + P zaaplzh> = —% (leh - ng) )
which involves the divergence of the fourth moment of the distribution function,
Riui = [ cienenfide (19)

The heat flux vectog results from contractin@ on two of its three indicesy, = %Qiik in the conventional notation. Contract-
ing (18) on two indices gives an evolution equationder

1 1 1
0:q+V-(uq) +Q:Vu+q-Vu-— %(Tr P)V-P— ;(V P)-P+ §V~R = —g (q — q<0>) , (20)
where the second rank teng®is a contraction of?;;;; on two indices, with components

Rij = /CiCj‘C|2fd£. (21)

The coefficient on the right hand sides of (18) and (20) is the Prandtl number, the ratio of viscosity to thermal conductivity.
Particles with larger peculiar velocities make a larger contribution to transporting energy than they do to transporting mome
tum, because energy is proportional to the square of velocity and momentum is proportional to velocity. This is not captur
by the BGK collision operator, which employs only a single relaxation im&he BGK collision operator therefore gives the
incorrect valuer = 1, in the standard kinetic theory definition efthat absorbs a factor @f, = 5/2. However, the evolution
equations (16) and (20) given above may be derived equally well using the linearized Boltzmann collision operator for Maxwe
molecules, those with a soft® repulsive interaction, or the Fokker—Planck collision operator that describes many glancing
collisions. These both give = 2/3, which is accurate to within% over the whole range of inter-molecular interactions,
including the limiting case of hard spher€9One may also use various “synthetic” collision operators that yield equations (16)
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and (20) with any desired Prandtl number. These include the Gross—Jackson extended BGKhtloe@Bakhov S-modé?,
and the ellipsoidal statistics equilibriutfr:32

The linearized Boltzmann and Fokker—Planck collision operators are singular linear operators, and isotropic second re
tensors lie in their kernels. In other words, these collision operators enforce the consistency géraﬁ’o& pf. One should

therefore reformulate equation (16) for tilacelesspartP = P — pdl of the pressure tensor if using these collision | operators.
The resulting evolution equation &, equation (34) ir§VI, then exactly preserves the consistency relation sihde P = 0.
However, we show below that if one accepts (16) as written for the complete pressure tensor, at worst the expréssion fo
computed up to and including terms©f 7) violates the consistency relation By(72).82° Further discussion may be found in
SVIII.

All the constitutive relations in this paper may also be derived from Grad’s 13 moment equdfiensyhich (16) and (20)
are closed by postulating relations betw@&eiQ and the lower moments. Further details are given in the appendix.

IV. THE MODERN CHAPMAN-ENSKOG EXPANSION

In the previous two sections we derived evolution equations for the conserved mass, momentum, and energy densities, and
for the fluxes of momentum and energy. The five conserved quantities only evolve through spatial gradients, on a hydrodynar
timescaleT’, say, while the evolution equations for the fluxes contaiii/7) terms due to collisions between particles. The
Chapman—Enskog expansion exploits the separation between these two timescales to derive closed evolution equations for
the five conserved quantities. Closure is achieved by expressing the momentum and energy fluxes instennsarid their
spatial derivatives.

In modern work>® the Chapman—Enskog expansion is usually presented as a multiple-scales expansion of the distributi
function and time derivative in powers of a small parameterr /T, the ratio of timescales,

fzf(0)+ef(1)+---, Op = Oy + €0y, + -+ . (22)

The expansion of the time derivative suppresses secular terms proportientiabwould otherwise disorder the expansion of
f afterlong times when= O(1/¢). One may think of, and¢; = ¢t, as typical advective and diffusive timescales respectively.
To determine a unigue expansion, it is then necessary to impose solvability conditions,

[rmde=o. [ermag—o. [ lepsae =0 torn=1.2,... (23)
such thatf(") and higher do not contribute to the macroscopic mass, momentum, and energy densities. However, all oth
moments, notably the momentum and energy fluxes, inherit expansiensan example, the pressure tensor may be written as
P=PO 4+ epM ... (24)

where each term is a moment of the correspondfitig,
P — /ccf(")dg, forn=0,1,.... (25)

Although the definitione = 7/T givese the physical interpretation of a Knudsen number based on timescales instead of
lengthscales, it is common practice in kinetic theory to introdues a formal small parameter, later set equal to unity, by
replacingr with er in the collision operator. This leads to powersroéppearing explicitly in the expressions for the higher
terms in the expansions of the moments.

The compressible Euler equations arise at leading order, when the pressure tensor and energy flux are evaluated for
Maxwell Boltzmann distributiory (©)

1 3
O,u+u-Vu+ ;V(p@) =0, 5p(8t00+u-V0) + pfV-u = 0. (26)
The Navier—Stokes—Fourier equations result from computingtfig correctionf () to the equilibrium, and then eliminating

time derivatives in favor of space derivatives usthg= 9;, to sufficient accuracy. Equivalently, one finds thé) corrections
P andg™ by substituting the expansions of the moments into (16) and (20) and collectify théerms,

ou; ou;
0Py + 0y (P + Q) + PPN o i 4 pO = Pfj”, (27a)
1
9,0 + V- (ug) +QV : vu + g vu- 2fp(n P©)v.p©®
! © . pO L LogpO _ _%=0)

The multiple-scales expansion permits the replacemeiitloy 0, at this order. One then evalua@§P(0) O, (p9)d;; using
the Euler equations (26) and the continuity equation. Sijite= 0 there is no need to computeg ), but one reaches exactly
the same constitutive relations by considering the whole energyAlaxd computing)to.’l-'(o) = 04, (%p@u + %p|u|2u).
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Chen, Rao, and Spiedélomitted the multiple-scales expansion in time, and applied solvability conditions to the expansion
as a whole, not order by order as in (23). Leaving the time derivatives as an unexgindettheir analogs of (27), they
obtained expressions for the momentum and energy fluxes involving time derivatiwesdp. These expressions revert to the
usual Navier—Stokes—Fourier forms if one evaluates the time derivatives using the Euler equations, as above, instead of the €
conservation laws frorfll.

V. CHAPMAN-ENSKOG AS THE ELIMINATION OF FAST VARIABLES

Although the above presentation using multiple scales is now widespread, Chapman and Enskog themselves used a diffe
approach. They sought a special class of solutions in which each term in the expansion of the distribution fudegiemds on
x andt only through the unexpanded slow variables1, § and their spatial derivatives. Like the multiple-scales expansion of
0, in (22), this special class of solutions was chosen to suppress secular terms proportiotiztevould otherwise disorder
the expansion after long times.

van Kampet’ 1! showed that the Chapman—Enskog expansion is an application of a general procedure for approximatir
systems of evolution equations of the form

Os of 1
5 S0 =0. T+ F(sf0=0 (28)
Heres andf are vectors of slow and fast variabldsshould not be confused with the distribution functify ande a small
parameter. The slow variables are determined uniquely by the absendg ofetor in the first of equations (28). The slow
variables therefore evolve on &(1) timescale, while the fast variables naturally evolve on a fagtej timescale.

van Kampet’!! showed that one may find reduced approximate descriptions of the system (28), valid for long times o
O(1/¢), by expandingnly the fast variables powers ofe,

£ =10 4 ef® 4 272 4. (29)

and leaving the slow variablesinexpanded. The— 0 limit of the fast equations determines the first approximafi6h(s) that
satisfiesF (s, f(°)(s), 0) = 0. Higher terms come from finding successively more accurate series solutions of the fast equation:
Substituting into the slow equations yields successive sets of closed evolution equations for just the slow variables. The first t
of these are

% 1S (S7f(0)70) -0, % +S (s, £fO pef@) e) ‘0(@ =0, (30)

where the last expression denotes the expansi@if(®) + ¢ f(1) ¢) truncated after thé(e) terms.

The multiple-scales approach expands the whole distribution function in (22), and subsequently imposes solvability conditio
(23) that leave the slow variables unaffected by the higher terms in the expansion. Van Kampen’s approach leaves the s
variables unexpanded in the first place, and expands only the fast variables. Either approach serves to suppress secular 1
that would otherwise disorder the expansion. The question of whether to apply solvability conditions order-by-order, or to tt
expansion as a whole? does not arise using van Kampen'’s approtich because the slow variables are not expanded.

Following Warnet al?? for the general procedure, one may also solve the second of equations (28) by itendfing the
fast variables, beginning with the zeroth iteréi® = £(°)(s) as before. The fast equations considered below have a particular
structure reminiscent of the BGK collision operator,

% + F(S,f) = _% (f - f(O) (S)> y (31)

which motivates defining successive itera€§ f2!, . .. according to

+F(s, £y = 1 (£ £0)(s)) (32)

€

of [n]
ot

Substituting any one of these iteraf®¥ into the slow evolution equations again yields closed evolution equations for the slow
variables. In particular, the first iterative improveméht coincides with the first two terms of the expansion (29) above,

of®  9s
(1] — £(0) (1) — £0)(g) _ Rdid (0)
£l = £O) 4 c¢(D) — £(0) () e( as at—i—F(s,f (s))>, (33)
which is sufficient for the Navier—Stokes—Fourier and Chen—Rao—-Spiegel equations. When applied to the moment equati
from kinetic theory, this iterative approach is very similar to what Ikenberry and Truesdell termed “Maxwellian itet&iidne’.
justification, however, is due to van Kampen'’s general thé&btand the iterative extension by Waghal 22



VI. NAVIER-STOKES-FOURIER EQUATIONS FROM ELIMINATION OF FAST VARIABLES

The consistency relatiohr P = 3p6 for the trace of the pressure tensor implies thatontains a mixture of fast and slow
behavior. Alternatively, the evolution afr P is already known from the three conservation laws (8), so all that remains is to
find an evolution equation for the traceless parPofSubtracting a multiple of the temperature equation (14) from the pressure
equation (16), following Ikenberry and Truesd@tnd Grad? gives an evolution equation for the quantity= P — p6l,

Ox; + ox; 3 axk
ou; ~ a’LLZ

J
o”'xk + jkaxk

~ ~ 2. Oou; Ou; 20u
0y Pij + Ok, (Pijuk + Qijk — 3k 51‘;‘) + pb ( . : >

(34)

- - 1 -
+ P’Lk —g(P:Vu)(L-j:—;Pij.
The quantity—P is the deviatoric stress in hydrodynamic terminology, and the trace of equation (34) shoi’s fhat 0 is
preserved by the evolution 6f SinceP vanishes at equilibriunP(®) = 0, no time derivatives appear in the equation for the first
correctionP(!) obtained using van Kampen’s procedure. This agrees with the well-known observation that the Navier—Stoke:
Fourier constitutive relations contain only spatial derivatives of the slow variables. ~

Following the iterative version of van Kampen’s procedure, we find the first correction to equilibrium by substtuting
P = pandQ = Q® = 0 into the left hand side of (34). The majority of terms vanish, leaving

~ Ou; Ou; 2 0uy
Py = —1pf (5t + 5L = 226 ). 35
* s <81:j * Ox; 3 0xy ]> (35)

This is the Navier—Stokes viscous stress for a dilute monatomic gas with shear vigcesitypf, and zero bulk viscosity.
Equation (35) is commonly written &) = —Tp@ﬁ, whereE denotes the symmetric, traceless part of the velocity gradient
tensor in the notation of Chapman and Cowling. ~

Turning to the heat fluxg, we rewrite its evolution equation (20) in termskas

24+ V-(uq)+Q:Vu+q-Vu — 5(3,;9 + TrP)(V(pf) + V-P) (36)

! 5 =1
- ;(V(pﬂ) +VP) - (6pl +P)+ JVR = -y

T

SubstitutingQ = Q© =0, =g§® =0, P = P(® =0, and

R = [ elePfOds = 5o @7
into the left hand side of (36) we obtain Fourier's heat flux

) o T

) 3 )
gV =—— {V- <p92|> — =0V (pd) — OV (pd)| = —fszVG. (38)
o 2 2 20
Equation (37) shows tha& also mixes fast and slow behavior. Before continuing the elimination to higher order, one might
therefore choose to separate out the slow component by whtiagsp6? | + R, following the earlier rewriting of the pressure
tensor a = pfl + P.

VIl. CHEN-RAO-SPIEGEL EQUATIONS FROM ELIMINATION OF FAST VARIABLES

We might equally well apply the same elimination procedure directly to equation (16) for the complete pressurB,tensor
which does not vanish at equilibrium. Substituting= P(®) = pdl andQ = Q(®) = 0 into the left hand side of (16) gives an
equation for the first iterative correction,

du,; A
Or(p953;) + O (p95i5uk) + pBSis + 031, “k - ( Pl paam) (39)

that rearranges into the expression for the pressure tensor given by Chen, Rao, and 8piegel,

[1] Do 2 Ou;  Ouj 2 0uy
Pij’ = poij —1p | 5y + 30V-u| 8y — 7p0 — 250 ) - 40
i = PO TP {Dt + 3 v u} TP <8xj + or; 30xp " (40)

This expression may be written more compactf as

Pl = pg (1 - QTW) | — 7 pbE, (41)
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using the evolution equation (15) for the entrofy= %10g(9p‘2/3). The same expression (41) was given by Ikenberry
and Truesdelt® They advocated retention of the full pressure ter3oinstead of a decomposition into an isotropic patt
and a traceless paR, to preserve the correct transformation properties of the material time derivat®auoder rotations.
Transformation under rotations becomes a contentious issue when the standard Chapman—Enskog expansion is continus
Burnett ordef?33:34

The Chen—Rao—-Spiegel heat flux vector differs from the usual Fourier form (38) by terms involving the time derivative of th
velocity, but not by terms involving the time derivative of the temperature. The latter already appears in the total energy flt
through the rate of working of the pressure. The Chen—Rao—Spiegel heat flux therefore follows from introducing the entro
flux

9 _4q 5
hf9—€+2pu (42)

as a fast variable. Recall that = q + (5/2)pfu as defined in equation (12) includes the contribution to the energy flux
from macroscopic advection of the internal ene(@y2),6, and also the contribution from the work done by the equilibrium
pressuren - P(®) = pgu. For the earlier derivation Fourier’s law it made no difference whether one consigened)/ ¢, since
the vanishing of the equilibrium terng(®) = 0, eliminates any contribution from the time derivativelgh. The reader who
finds the introduction oh contrived may prefer the approach givergliX below.

The variableh defined in (42) evolves according to

5 5 2 5 5

1 1 1 1 o 5
+ 3 [QQ Vu— 27)(T]rP)V-P - ;(VP) P+ QV-R} = (h— 2pu> . (43)

Substituting the equilibrium valugs® = (5/2) pu, P(9) = pdl, Q(®) = 0, R(O) = 5,62 gives

5 5 5 5 o 5
b N 2 he — 2 (pt_Z
Oy <2pu)+v (quu+2p9|>+2pV9 = <h 2pu>, (44)
which rearranges into
5T Du 1
gl = _ 21 -4z
q 20p9 [VG—F (Dt +pV(p9))] : (45)

This coincides with the expression resulting from the Prandtl number adjustment used by Spiegel and THitfeavdter, the
earlier general expression given by Chen, Rao, and Spiégel,

5 1 Du 11
Gt = —Z7p0 [ =V + — 0 46
q 57P [UV + Dt + ) (46)
agrees with those above wher= 1, but differs from Fourier’s law a® () wheno # 1. The leading order momentum equation
has been broken into two parts, and only one part contains a factgrofThis mismatch leads to an excessive attenuation of

ultrasound at low frequencies, as shown in Fig. 2 below.

VIIl. INTERPRETATION USING TRANSLATIONAL TEMPERATURE

The pressure tensor given by lkenberry and Truesfielhd by Chen, Rao, and Spiedéldiffers from the usual Navier—
Stokes expression by an isotropic term proportional to the Lagrangian rate of entropy prodygfion,
Dj

. 2
Pl = [ 61 — pbE| - ST 47)

In particular, one third of the trace of the pressure tensor is no longer precisely equal to the thermodynamicgghessure

1 2 D
gTrPM = pb (1 — BTDf) = pb + O(1?), (48)
but only up to and including terms @(r), which is consistent to the order of approximation of the theory. This feature is
shared by other theories, such as the nonlocal theory of WdoHse pressure tens®? computed taO(72) by Spiegel and
Thiffeaul?®® satisfiest Tr P2 = pg + O(7?), again a consistent approximation for the theory.

The consistency reIatioéTr P = pf should hold exactly for dilute monatomic gases. However, in the kinetic theory of
polyatomic gases, the standard Chapman—Enskog expansion leads to a modified Navier—Stokes viscous stress that is no Ic
traceless,

P = pfl — uE — 1/ (V-u)l. (49)
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The additional term-y' (V-u) | is interpreted as a bulk viscous stress, with a coefficient of bulk viscpSinalogous to the
shear viscosity: previously given byu = 7pf. The additional term arises because polyatomic gas molecules may absorb or
release energy from their internal degrees of freedom. The expreésioglp\uP + %p& therefore no longer coincides with the
total energy density, and will not be conserved under collisions.

Alternatively, one may retain the previous expression for the viscous $eré&ss,

P = pOI — uE, (50)

by defining a translational temperatuesuch that; Tr P = p©. A bulk viscous effect then appears in the energy equation,
as rewritten to express conservation of the total enérgy- %p|u|2 + %p@ + €. The energy density associated with the
internal degrees of freedom takes the fare () + 24/ V-u for small departures from an equilibrium between translational
and internal degrees of freedofBulk viscosity now enters through the relation between the conserved total energy and the
isotropic part of the pressure,

1 2 1 3
ZTrP = i /= 2 _ 2. . 1
3 rP =00 3(5 5Plul 2uVu) (51)
The two approaches are entirely equivalent, but Kogan argues that effects caused by energy transferring to and from inte
degrees of freedom belong more naturally in the energy equation than the momentum e§détion.

By analogy with the second approach to polyatomic gases, the pressure tensor (47) may be interpreted as defining a trar
tional temperatur® for which the pressure tensor takes its usual f&rm pO1 — uE,

B 2 D

This may be rewritten with the aid of the continuity equation as
2 D
0=40 (1 — gTV-u T log 9) . (53)

The combinatiop® = pd(1 — %7V~u) is the mechanical pressure, or trace of the pressure tensor, as modified by bulk viscosity
However, the lkenberry—Truesdell and Chen—Rao—Spiegel mechanical pressure is modified by a further term involving t
Lagrangian derivative of temperature. Unlike bulk viscosity, no additional dissipation is causecibaticconvergence or
divergenceV-u # 0 but D3/Dt = 0,

In summary, the deviation oyTr P from the thermodynamic pressysé may be interpreted as a model, or parametrization,
for the transfer of excitations to and from higher moments of the distribution function that do not appear explicitly in the
theory. The complete pressure tensor takes the standard Navier—Stokésfoml — MIOE when written using the translational
temperature, bud deviates from the thermodynamic temperatiiby anO(72) amount proportional t&3/ Dt, the Lagrangian
rate of entropy production, that is itsél(7).

IX. ALTERNATIVE APPROACH

In this section we derive a slightly modified expression for the heat flux that arises more naturally from a system of mome
equations. As an added benefit, the resulting dispersion relation offers further gains in agreement with experiment. We write
conservation laws for momentum and energy as

d¢(pu) + V-(puu+P) =0, &+ V-(Eu+F')=0, (54)

where€ = 1plul? + %pe is the (total) energy density as before. In other words, we decompose the total enetgyifliacan
advection of the energy density plus a correction,

F=fu+F =Eu+u P+4q, (55)

just as we previously decomposed the momentum flux into an advection of momentum plus a correction b¥k#itmga+P.
Neither correction need be small.
We now formulate an evolution equation & by using

atf, = (atu) -P +u- 8tP + atél (56)
Combining the evolution equations fBrandq derived using Maxwell’s equation of transferghl gives

Du 1
4 VP
P

P+u- [atp F V(P4 Q) 4P Vut (P-vu)T 4 & (P - P(O))] (57)
Dt T

1 1 1
+ [atq +V-(u@)+Q:Vu+§- Vu— —(TtP)V-P — =(V-P) - P+-V-R+2 (q - q<0>)] =0.
2p p 2 T
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The second expression in square brack&®(®) + - - -] is equation (16) fob),P;; rewritten in vector notation.
Following the iterative approach to the elimination of fast variables, we reftacg, andq by their equilibrium values
everywhere except in the collision terms that contain factois of

Du
Dt

V p(O)] PO | .

0P 1 v. (uP(°)+Q(O))+P(0) Vut (PO . vu)T+2 (P[l]—P(O)>]
T

+19,4° + V- (u@®) + Q¥ : Vu+g? - vu (58)

1 1 1 o
— —(TrPOYy.PpO _ Z(y.p@).pO) 4y Zw.RO) 4+ Z (gl _ @) | = 0.
Qp( r PPV p(V ) +2V —i—T(q q ) 0
The whole of the second expression in square brad¢g®s®) +- - - ] exactly cancels, through the definitionR)f! as the solution
to

0P 4 V. (uP<0> + Q(O)) +PO .Y+ (P<0> : Vu)T + % (PM - P<0>) =0. (59)

The third expression in square brack@gy® + - - -] simplifies as described iVI. This just leaves a correction to Fourier's
law from the leading order momentum equation in the first term of (58),

gl =_T zu
! 0{ POV + 0( T V( 0))} (60)

Notice that this expression differs from those given earlier, even in the BGK approximatios with, because the factor of
5/2 only multiplies the temperature gradient.

Heuristically, the(5/2)pfu term in the equilibrium energy flux (1) combiné3/2)pfu from the advection of the internal
energy with a furthepfu from the work done by the equilibrium pressure. The earlier treatments by Spiegel and coworkers
assign a finite response time to the wh@@¢2)pfu term, not just the contribution to the energy flux from the pressure. This
leads to an overestimate of the reduction in phase speed of ultrasound at high frequencies, as shown below.

X. PROPAGATION OF ULTRASOUND

The customary first test of a reduced description of rarefied gases is a comparison between the dispersion relation for lin
plane waves and experimental measurements of the propagation of ultr4$6ar8&2°These measurements were obtained
using a column of gas confined between transmitting and receiving transdtEfsie transmitter was excited at a prescribed
frequencyw, while varying the distance between transmitter and receiver. Assuming a plane-wave disturbance of the for
expli(wt — kz)], the real and imaginary parts of the complex wave nuniberay be inferred from the variation in the phase
and amplitude of the signal at the receiver with distance. Further details may be found in a review by Gr&enspaxtent
to which the experimental disturbances may be described by plane waves, as opposed to solutions of a boundary value prob
has been subject to debadfeas described below.

The experimental data are commonly plotted using the dimensionless variaid& defined by®4°

r:cg—pzi, = ko _c (61)
YW WT w c

Greenspan’s rarefaction parameteorresponds to an effective Reynolds number divided by the adiabatic expaekor is
the natural dimensionless combination for relaxation models containing an explicit timescale dimensionless wavenumber
K also equals the dimensionless inverse phase speed, scaled using the adiabatic soupd=spegetp)'/? of low frequencies
(r — o0). The adiabatic exponent is = 5/3 for a monatomic gas, s@ = (50/3)'/? with temperature in energy units.
In experiments, one typically fixes at the resonant frequency of the two transducers, and vargeslr by varying the gas
density®® However, it is useful to think of — 0 as the high frequency limit, and — oo as the low frequency limit. Low
frequencies correspond to continuum behavior, as described by the Navier—Stokes—Fourier equations, while rarefied effi
become significant at high frequencies. It is conventional to plot the real and imaginary parégafnst-, as in Figs. 1 and 2
respectively.

Turning to the dispersion relations, we seek solutions of the various hydrodynamic equations with perturbations proportior
to expli(wt — kz)]. This follows the convention in more recent wafic® but other conventions for signs and factorsiof
are widely used:>"*840Throughout this section we take the Prandtl number to ke 2/3, as for Maxwell molecules. The
dispersion relation for the Navier—Stokes—Fourier equations i$tf&n

1 1 231
K <19T+6> + K ('13—1> +1=0. (62)

This is a quadratic equation fd¢? in terms ofr. The low frequency (continuum) limit — oo is a singular limit, because
K* is multiplied by small terms of)(r—!) andO(r~2). One pair of solutions gives the dispersion relation for acoustic waves,
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FIG. 1: Dimensionless inverse phase speed of ultrasound. The Chen—Rao—Spiegértlikerfitst order theory of Spiegel and Thiffeafit,
and the theory fron§IX of this paper, are compared with the experimental data of Meyer and S&s#lerGrad 13 moment equations, and
the Navier—Stokes—Fourier equatiofs.

0.4 _— —————

Navier—Stokes—Fourier
------------- Grad 13 moment
— — — — Chen-Rao-Spiegel (2000)
0.3} e N T Spiegel & Thiffeault (2003)
ot St this paper

e o Lo, .o . Meyer & Sessler (1957)
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FIG. 2: Dimensionless attenuation rate of ultrasound with distance. The constitutive relatiorfgXrand Grad’s 13 moment equations are
both in reasonable agreement with experimentfor< 0.3, although all the theories shown predict a vanishing attenuation rate as co.
The Chen—Rao-Spiegel theory systematically over-predicts the attenuationdrthe 0 limit, while all the other theories converge to
Navier—Stokes—Fourier behavior.

and is distinguished b?> — 1 asr — oco. This is the branch of the dispersion relation that we compare with experimental
measurements. The other pair of solutions correspond to thermal waves, and are distinguisShedbit/5/3) (1 + i) /2
becoming large a8 — oo. The phase speed, proportionallfo!, thus vanishes in the continuum limit. We therefore recover
the purely diffusive behavior of thermal disturbances given by the Navier—Stokes—Fourier equations.

The acoustic branch of the Navier—Stokes—Fourier dispersion relation/gives0 in the high frequency limit{ — 0). In
other words, the phase speed tends to infinity at high frequencies, as shown in Fig. 1. The rate of attenuation with distance te
to zero, as shown in Fig. 2, having previously reached a maximum wke®(1). Neither the phase speed nor the attenuation
rate given by the Navier—Stokes—Fourier equations is physically reasonable at high frequencies.

The dispersion relation for the Chen—-Rao—-Spiegel equationsowitl2 /3 is®

91 91 141 1
—_ 4 ) — — —_—— 2 ) — — _—— =
K (110r+27’2>+lc (Z5T+T2 1)+1 0, (63)
while the dispersion relation for the first order equations of Spiegel and Thiffe&ult is
91 91 231 31
—_ 4 ) — — —_—— 2 ) — — —_——_— =
K <210r+2r2)+lc <210r+2r2 1)+1 0. (64)

The additionalO(K?/r?) terms appearing in (63) and (64) limit the phase speed to finite values in the high frequency limit
(r — 0). However, the different numerical coefficient} /5 rather thar23/10, of thei K2 /r term in the dispersion relation

for the Chen—Rao—Spiegel equations means that the attenuation rate of ultrasound exceeds that given by the Navier—Sto
Fourier equations, even in the low frequency limit{ oc). This discrepancy is readily apparent from the comparison of
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attenuation rates shown in Fig. 2. The alternative “Prandtl number fix” adopted by Spiegel and TRiffeadl to the same
coefficient23/10 as the Navier—Stokes—Fourier equations, but they did not remark on the misbehavior of the earlier equatio
in the continuum limit.

However, the high frequency limi€ — /2/3 = 0.4714... asr — 0, given by balancing th&(1/r?) terms in the Chen—
Rao-Spiegel equatiofsis in remarkably good agreement with the limiting valie— 0.47 derived from the collisionless
Boltzmann equation by Kahn and MintZ€rBoth values are in good agreement with experiments, which fives 0.45
according to the interpretation of Kahn and Mint2ehe corresponding limitC — 1/4/3 = .5773. .. for the first order
Spiegel and Thiffeault theory is in noticeably poorer agreement with experiments. The limiting behavior of the second ord
theory comes closer, but lies below the range given by experinients.

The dispersion relation arising from the alternative heat flux (60) is

91 721 231 31
4 [ - 2 (. —
K <ZIOT+257’2>+’C (zl()r+5r2 1) 1=0 (69)

which agrees with the dispersion relations for the Navier—Stokes—Fourier and Spiegel-Thiffeault equétiohsatdO (r—1).
However, the modifications to th@(r—?2) terms lead to the high frequency limit

IC—>\/%=O.4564...aS7‘—>O7 (66)

which is in much better agreement with Kahn and Mintzer’s interpretation of the experimental data for the phase®Velocity.

All of the theories shown in Fig. 2 predict a vanishing of the attenuation rate at high frequeneie®), while the experi-
mental data show a trend towards a finite attenuation raté;; ~ 0.2 for » < 1. This is generally taken to be an aspect of the
experiments that cannot be captured by theoretical studies of the dispersion relation for a single plafié\pavticles leav-
ing the transmitter might be expected to require several collisions before becoming organised into a single plane wave, and
cannot occur when the gas is sufficiently rarefied that the distance between transmitter and receiver is comparable to a mean
path. Mathematically, particles that do not undergo collisions contribute to the continuous spectrum of the linearised Boltzma
equatiorn’243 A continuous spectrum may exist in the linearised Boltzmann equation because it remains an integral equation
the particle velocity after assuming a plane wave behaviarand¢. By contrast, finite systems of partial differential equations
in justx andet, like those derived in this paper, cannot possess continuous spectra. The amplitude of the modes in the continu
spectrum of the linearised Boltzmann equation is typically small compared with the amplitudes of the discrete modes, but t
former decay more slowly with distance.

Buckner and Ferziger’s solution of a boundary value problem for the linearized Boltzmann equation using an eigenfunctic
expansion over a complete set of linear plane waves, including contributions from the continuous spectrum, gives excelle
agreement with Schotter’s more recent experimental data over the whole rang&*®Bchotter’'s data show a smaller atten-
uation forr =~ 0.1 that alleviates the disagreement between Buckner and Ferziger’s solution and earlier expéfiineats.
alternative approach, Sirovich and Thurlféormulated a boundary value problem for the linearized Boltzmann equation in a
half-space using Laplace transforms. Rather than solve this problem, though, they used analytic continuation of the dispers
relations obtained from the linearised, one-dimensional Boltzmann equation with Gross—Jackson collision operators using 3
8, or 11 moments. This approach captures the qualitative behavior over the whole rang#hafut explicitly formulating a
boundary value problem, or considering the continuous spectrum. The phase speed and attenuation rate are both typically
large asr — 0, but the precise details depend upon the number of moments retained in the Gross—Jackson collision opera
and whether their eigenvalues correspond to hard spheres or Maxwell molecules. An earlier review by C&ttagoasd the
results of Sirovich and Thurber over those of Buckner and Ferziger, but Schotter’s more recent experimental data mentior
above favors the results of Buckner and Ferzfgdtanh and Mintzer's expansion about solutions of the collisionless Boltz-
mann equation appeared to work well even in the continuum fiftiityt this was only due to an erroneous evaluation of certain
integrals?’ When corrected, the attenuation rate becomes negative in the near-continuum regime,isshevderately largé’

In summary, the dispersion relation for the general purpose nonlinear theory presegidédives the correct phase speed
for ultrasound in both the continuum and highly rarefied limits, improving upon the earlier Chen—Rao—-Spiegel and Spiege
Thiffeault equations. The attenuation rate is in good agreement with experimengfér but incorrectly vanishes in the highly
rarefied limitr — 0. The derivation of the general purpose theory is considerably simpler than that leading to the variou
linearised, one-dimensional theories mentioned aBb¢&*®

Xl. CONCLUSION

The distribution function in Boltzmann’s equation evolves through a combination of two processes, spatial gradients and col
sions between atoms, acting on two different timescales. Replacing Boltzmann’s equation by an equivalent hierarchy of mom
equations leads to an explicit separation of timescales. The five moments that correspond to the macroscopic mass, momen
and energy densities are unaffected by collisions, and evolve only slowly through spatial gradients. All higher moments, inclu
ing the momentum and energy fluxes, tend to evolve on the faster timescale of collisions between atoms. Neither experimel
measurements nor theoretical studies of the linearized Boltzmann collision operator show any evidence supporting a furt
separation of timescales between the higher monténtan Kampen's theory for the elimination of fast variabl€s! and the
center manifold theory of dynamical systeffigherefore motivate the formulation of approximate descriptions in the form of
closed evolution equations for the five slowly evolving moments. These descriptions will remain valid over long timescale:
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Exact conservation laws for the macroscopic mass, momentum, and energy densities follow from the corresponding moment
Boltzmann’s equation, but these conservation laws are not closed because the momentum and energy fluxes involve the hi
moments.

Closed evolution equations follow from expressing the instantaneous values of the higher moments in terms of the five sl
moments and their derivatives. These expressions coincide with the constitutive relations that are postulated to complement
conservation laws in axiomatic approaches to continuum mechanics. The same distinction between (evolutionary) conserva
laws and (instantaneous) constitutive relations was made in the original formulation of Chapman and Enskog, who postula
solutions in which the distribution function (and hence the higher moments) depend on space and time only through the fi
slow moments and their derivatives. All these approximate descriptions therefore lead to the so-called normal solutions of
Boltzmann equation, solutions in which the higher moments evolve on a slow hydrodynamic timescale, rather than on the f
collisional timescale characteristic of generic solutiéns.

Maxwell’s equation of transfer may be used to formulate evolution equations for the higher moments of the distributio
function. The details specific to a number of different collision operators may be captured through an effective relaxation time
and Prandtl number in the evolution equations for the moments. The use of moment equations enables a systematic progressi
from kinetic theory to macroscopic equations without the subsequent alteration of coefficients or “Prandtl number fixes” four
in Refs. 7,8,25. No solvability conditions are required, because the slow variables are left unexpanded.

The higher moments are known collectively as fast variables in van Kampen'’s theory. The five slow variahlésare
uniquely identified by the collision operator, but any combination of fast and slow variables comprises another valid fast variabl
Different fast variables lead to different, but asymptotically equivalent, evolution equations for the slow variables at each stage
van Kampen'’s proceduré:* Although it is conventional to use moments with respect to the peculiar velocity in kinetic theory,
the momentum fludI and energy fluxF may be written equally well as

II=puu+pll +P, F= %p\u\zu—i—ls-u—&-gwu—&-fl, (67)
or as
II = puu + P, .’F:%p|u|2u+|5~u+q, (68)
or even as
II = puu + P, f_(;p|u|2+2p9>u+u-P+q. (69)

Application of van Kampen’s procedut!! or its iterative extensiof? using any of these three pairs of expressions leads to
constitutive relations for the momentum and energy fluxes in terms of the slow varjghles) and their derivatives. The
familiar Navier—Stokes—Fourier constitutive relations arise from eliminating the fast variabledq appearing in (67).

However, we have shown that the Chen—Rao—-Spiegel constitutive relations arise from applying exactly the same the procec
to eliminateP andq appearing in (68) instead. SinBeandq do not vanish at equilibrium, the Chen—Rao—-Spiegel constitutive
relation are distinguished by the appearance of time derivatives of the leading order expie¥siandq(?, or equivalently by
time derivatives of the velocity and temperature. By cont$Y, = 0 andg®) = 0, so time derivatives only appear at second
order when van Kampen'’s theory is applied®t@andq.

The viscous stress that follows from writidi§ = puu + P may be interpreted as defining a translational tempera#ife,

B 2 D
0—o (1 _ STDt> , (70)

as in the kinetic theory of polyatomic gases. The pressure tensor then takes the standard Newtonian or Navier—Stokes fi
P = poOl — MIGE with zero bulk viscosity, but the translational temperature deviates from the qu@atityearing in the energy
equation by an amount proportional to the Lagrangian rate of entropy proddgtig®t. In physical terms, changes of internal
energy caused by non-equilibrium (diabatic) processes are only reflected in the (mechanical) pressure after a delay compar
to the collision time. This interpretation motivates the rewriting of the energy flux in (69) to distinguish between the advectiol
of internal energy and the work done by the pressure. Applying the usual elimination procedure leads to constitutive relatio
with slightly different coefficients in the heat flux,

2 Dg o - T|5 Du 1
pll — 1— 2722 )1 — 7p0E L R YA — 4V 71
po ( STDt> Tp0E, q o 2p9 0+ pb Di + p (pd) |1, (71)

and offers a modest further improvement in agreement with experiment, as shown in Figs. 1 and 2.

In conclusion, no solvability conditions are necessary in a derivation of closed macroscopic equations using moments, beca
the slow variables are explicitly identified and left unexpanded. The explicit freedom to choose fast variables in van Kamper
theory leads in principle to a continuum of possible constitutive relations, all equally valid within this theory, and all asymp
totically equivalent to the Navier—Stokes—Fourier relations at first order in Knudsen number. Our introduction of a translation
temperature, as in the kinetic theory of polyatomic gases, motivates a distinction in the energy flux between advection of inter
energy and the work done by the pressure. Combining this distinction with a finite adjustment time for the pressure, compara
to the mean free time, yields a set of macroscopic equations that are similar in spirit to those of Chen, Rao, arffd®Spiegel
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and Spiegel and Thiffeaulf:?> However, the equations presented in this paper improve upon the earlier equations by giving
the correct phase speeds for ultrasound in both the continuum and highly rarefied limits. The attenuation of ultrasound w
distance is in good agreement with experiment in the continuum and moderately rarefied regimes. This improves slightly up
the equations of Spiegel and Thiffeault, and corrects a systematic error in the attenuation arising from the Chen—Rao—Spie
equations in the continuum limit. All these sets of equations are much simpler than the specialised treatments of the linearis
one-dimensional Boltzmann equation summarisefkin

Acknowledgments

The author thanks Ed Spiegel, Rick Salmon, and Russ Caflisch for useful conversations. Jean-Luc Thiffeault kindly suppli
the experimental data from Ref. 41 in tabulated form. Some of these interactions took place during travel supported by N
grant OCE-0100868, and by the 2004 New Zealand Mathematics in Industry Study Group organized by Graeme Wake.

APPENDIX A: RELATION TO GRAD’'S MOMENT EQUATIONS

When eliminating fast variables as above, the contracted fourth mdRregopearing in (20), and the heat flow ten€gmwere
both approximated by their values at equilibrium. These approximations led to the various closed systems of equations descri
above. Grad proposed an alternative closure that expresses the complete fourth Mgmémterms of lower moment$12-26

Rijii = Pij Py + Py Pjy + PyPj, — Py Py — PPy — Py Pj. (A1)

There is no explicit requirement that any of the moments be close to their equilibrium values.
Inserting (Al) into (18) gives a closed system of equationgfar, 6, P, andQ, known as the 20 moment equations since there
are 20 independent degrees of freedom. The more commonly used 13 moment equations result from a further approximatiol

2
Qiji = 5 (¢i0;% + 0k + qrdij) , (A2)

that restricts the heat flow tens@rto just three degrees of freedom. Equations (A1) and (A2) were motivated by orthogonality
relations among the tensor Hermite polynomials. They therefore hold exactly for the equilibrium Maxwell-Boltzmann distribu
tion, for which P’ = p0;;, Q\)) = 0, andR\; = 50p6%3;; as used previously. All the constitutive relations derived in this
paper may thus E)e derived from Grad'’s 13 or 20 moment equations, as well as directly from the unclosed equations of trans
(16) and (18).
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