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The Boltzmann equation describing a dilute monatomic gas is equivalent to an infinite hierarchy of evolution
equations for successive moments of the distribution function. The five moments giving the macroscopic mass,
momentum, and energy densities are unaffected by collisions between atoms, while all other moments naturally
evolve on a fast collisional timescale. We show that the macroscopic equations of Chen, Rao, and Spiegel
[Phys. Lett. A, 271, 87], like the familiar Navier–Stokes–Fourier equations, emerge from using a systematic
procedure to eliminate the higher moments, leaving closed evolution equations for the five moments unaffected
by collisions. The two equation sets differ through their treatment of contributions from the temperature to
the momentum and energy fluxes. Using moment equations offers a definitive treatment of the Prandtl number
problem using model collision operators, greatly reduces the labor of deriving equations for different collision
operators, and clarifies the rôle of solvability conditions applied to the distribution function. The original Chen–
Rao–Spiegel approach offers greatly improved agreement with experiments for the phase speed of ultrasound,
but when corrected to match the Navier–Stokes–Fourier equations at low frequencies it then under-estimates
the phase speed at high frequencies. Our introduction of a translational temperature, as in the kinetic theory of
polyatomic gases, motivates a distinction in the energy flux between advection of internal energy and the work
done by the pressure. Exploiting this distinction yields macroscopic equations that offer further improvement
in agreement with experimental data, and arise more naturally as an approximation to the infinite hierarchy of
evolution equations for moments.

I. INTRODUCTION

The derivation of suitable descriptions for the behavior of rarefied gases in practical applications is a long-standing problem.
The underlying kinetic theory is formulated using a distribution function to specify the number density of atoms or molecules
moving with a given velocity at a given point in space and time. The distribution function thus evolves in a six-dimensional phase
space.1–3 Boltzmann’s equation describes the evolution of the distribution function for a dilute monatomic gas, but even this is too
unwieldy for many practical applications, especially those requiring more than one spatial dimension. Early applications were
primarily in the area of high altitude aeronautics and hypersonic flow, but much recent work is motivated by the development of
micro-electro-mechanical devices (MEMs) operating at room temperatures and pressures. In both cases, a simplified description
exploits the separation between the scales that characterize collisions between atoms or molecules and the, typically much larger,
scales of the device in question. This separation is quantified by the smallness of a dimensionless parameter, the Knudsen number
Kn.

A straightforward expansion of the distribution function in Knudsen number leads inevitably to the Hilbert expansion,4 which
becomes disordered after times ofO(1/Kn) when deviations from ideal fluid dynamics become appreciable. Descriptions
valid over long timescales are therefore based on expanding the equations that describe the solution, rather than expanding the
solution itself.4 More precisely, the Chapman–Enskog expansion1,3 yields closed evolution equations for the five quantities –
mass, three components of momentum, and energy – that are conserved by collisions between atoms. The momentum and
energy fluxes are expressed as series in these five quantities and their spatial derivatives. The Chapman–Enskog expansion
yields the compressible Euler equations at leading order, and the Navier–Stokes–Fourier equations as the first corrections at
O(Kn). Although widely used, the Navier–Stokes–Fourier equations become inadequate for rarefied flows withKn & 0.01.
For example, they predict a phase speed for ultrasound that grows arbitrarily large for sufficiently high frequencies (sufficiently
large Kn). Continuing the Chapman–Enskog expansion to higher order yields the Burnett and super-Burnett equations at
O(Kn2) andO(Kn3) respectively. These equations have met with limited success at describing physical phenomena, since
they lead to ill-posed initial value problems, and require additional boundary conditions.

The Chapman–Enskog expansion has usually been presented, since the 1960s, as a multiple-scales expansion of both the
distribution function and the time derivative in powers of the Knudsen number.5,6 The ordering of this double expansion does
survive over long times, but at the price of requiring order-by-order solvability conditions on the expansion of the distribution
function. Recent work by Chen, Rao, and Spiegel7–9 discarded the multiple-scales expansion of the time derivative, with its
associated order-by-order solvability conditions, in favor of solvability conditions imposed only upon the expansion as a whole.
By thus retaining various higher order terms involving time derivatives of macroscopic quantities they obtained a description
that sometimes offers greatly improved agreement with experiment, notably for the phase speed of ultrasound over the whole
range of Knudsen numbers, for only a modest increase in complexity over the Navier–Stokes–Fourier equations.

In this paper we show that the Chen–Rao–Spiegel equations, like the Navier–Stokes–Fourier equations, may be derived using a
general procedure for the elimination of fast variables proposed by van Kampen.10,11The Boltzmann equation is equivalent to an
infinite hierarchy of evolution equations for successive moments of the distribution function with respect to the particle velocity.
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The moments giving the mass, momentum, and energy densities evolve only through spatial gradients of higher moments, with
no contributions from collisions between atoms. These five moments are therefore slow variables in van Kampen’s terminology,
since the hydrodynamic timescaleT associated with evolution due to spatial gradients is typically much longer than the timescale
τ characteristic of collisions between atoms. All other moments, notably the momentum and energy fluxes, naturally evolve on
the fast collisional timescale. The slow variables are left unexpanded in van Kampen’s procedure, while the fast variables are
expanded in powers ofε = τ/T . Solving order-by-order for the fast variables leads to closed evolution equations for the slow
variables that remain valid over long times.10,11

The slow variables are uniquely determined by the structure of the equations, in this case by the collision operator, but to
quote van Kampen: “the fast variables are not unique but can be contaminated with an arbitrary amount of slow terms”.10

Different choices of fast variables lead to different, albeit asymptotically equivalent, evolution equations for the slow variables
at each order of approximation. We show that the Chen–Rao–Spiegel and Navier–Stokes–Fourier equations arise from different
decompositions of the momentum and energy fluxes between fast and slow variables. In the notation described below, the
Navier–Stokes–Fourier equations arise from decomposing the momentum fluxΠ and energy fluxF into

Π = ρuu + ρθI + P̃, F =
1
2
ρ|u|2u + P̃ · u +

5
2
ρθu + q̃, (1)

while the Chen–Rao–Spiegel equations arise from decomposing the same fluxes into

Π = ρuu + P, F =
1
2
ρ|u|2u + P̃ · u + q. (2)

The slightly different set of equations introduced in this paper arise from separating the advection of internal energy from the
work done by the pressure, and writing

Π = ρuu + P, F =
(

1
2
ρ|u|2 +

3
2
ρθ

)
u + P · u + q̃. (3)

ThusP denotes the complete pressure tensor, whileP̃ = P− ρθI is commonly called the deviatoric pressure. Similarly,q̃ would
be the conductive heat flux in the Navier–Stokes–Fourier equations, whileq̃ is an energy flux that also includes advection of
internal energy and work done by pressure. Precise definitions are given in equations (11) and (12) of§II.

The fluid densityρ, velocity u, and temperatureθ are slow variables, being conserved under collisions, while all other
variables are fast. It is worth emphasizing that the decompositions in (2) and (3) lead to extra terms involving time derivatives
of the slow variablesρ, u, θ. In contrast to Grad’s method of moments,2,12 or the method known as extended irreversible
thermodynamics,13–15we do not introduce time derivatives for the pressure tensor, energy flux, or any other quantity. Additional
time derivatives of the temperature also appear in a modified form of the super-Burnett equations proposed by Slemrod.16

Besides clarifying the r̂ole of solvability conditions as undoing any expansion of the slow variables inherited from expanding
the distribution function, proceeding from a system of moment equations offers a definitive treatment of the Prandtl number issue
that improves agreement with experiment, and greatly reduces the labor (as contrasted with Ref. 17) of deriving the macroscopic
equations that result from different microscopic collision operators. We also draw connections between previously unrelated
earlier work. For instance, the Chen–Rao–Spiegel pressure tensor appeared previously in work by Ikenberry and Truesdell,18

using a procedure they called “Maxwellian iteration” to approximate an infinite hierarchy of moment equations. Maxwellian
iteration has since been revisited,19–21but always using the equations forP̃ andq̃ that lead to the familiar Navier–Stokes–Fourier
equations. Van Kampen’s general theory, and its iterative extension by Warnet al.,22 justifies the various assumptions that
Ikenberry and Truesdell themselves regarded as questionable – these assumptions are necessary to suppress secular terms that
would otherwise disorder the approximation after long times. Unlike van Kampen’s own work on kinetic theory, we make an
explicit decomposition into fast and slow variables by working with a system of moments instead of the distribution function.

The next few sections establish notation and derive the necessary hierarchy of moment equations. We then describe van
Kampen’s elimination procedure and its relation to the Chapman–Enskog expansion, both the original formulation and the more
recent reinterpretation as a multiple-scales expansion. Results appear in§VI onwards.

II. THE BOLTZMANN EQUATION AND ITS CONSERVATION LAWS

The Boltzmann equation describing the evolution of a dilute monatomic gas is commonly written as

∂tf + ξ · ∇f = C[f, f ]. (4)

The distribution functionf(x, ξ, t) gives the number density of particles (atoms) moving with velocityξ at a particular pointx
in space at timet. The right hand sideC[f, f ] denotes Boltzmann’s collision operator, a multiple integral over pairs of particle
velocities that describes binary collisions between particles. The first few moments off with respect toξ give the macroscopic
mass, momentum, and energy densities respectively,

ρ =
∫

fdξ, ρu =
∫

ξfdξ, E =
1
2

∫
|ξ|2fdξ. (5)
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The energy density isE = 1
2ρ|u|2 + 3

2ρθ in terms of the fluid densityρ, velocityu, and temperatureθ. These quantities are all
functions ofx andt only, due to the integrations overξ. We absorb the particle mass intoρ, and absorb Boltzmann’s constant
by measuring temperature in so-called energy units, so thatθ has dimensions of velocity squared. The adiabatic sound speed is
then(γθ)1/2, with adiabatic exponentγ = 5/3 for monatomic gases. The specific heats areCv = 3/2 at constant volume, and
Cp = 5/2 at constant pressure.

The corresponding five moments of Boltzmann’s collision operator vanish,
∫

C[f, f ]dξ = 0 etc. This is the mathematical
statement that mass, momentum, and energy are all conserved by elastic collisions between atoms. However, collisions relax the
distribution functionf towards a Maxwell–Boltzmann distribution,

f (0) =
ρ

(2πθ)3/2
exp

(
− |ξ − u|2

2θ

)
, (6)

with parametersρ, u, θ in f (0) determined by conservation of mass, momentum, and energy. These essential properties are
shared by the much simpler single-relaxation-time, Bhatnagar–Gross–Krook (BGK),23 or Welander24 collision operator,

∂tf + ξ · ∇f = −1
τ

(
f − f (0)

)
. (7)

It is understood that the quantitiesρ, u, andθ appearing inf (0) are computed fromf using (5). Equation (7) explicitly shows
the distribution function relaxing towards equilibrium with timescaleτ , but the implicit dependence off (0) on f throughρ, u,
θ ensures that these five quantities only evolve on a (much slower) hydrodynamic timescale. The standard Chapman–Enskog
expansion leading from (4) to the Navier–Stokes–Fourier equations may be applied equally well to the BGK approximation (7).
However, the BGK approximation gives an incorrect Prandtl number, the ratio of viscosity to thermal conductivity. We return to
this point in the next section.

Taking moments of the Boltzmann equation (4), or the BGK equation (7), with respect to1, ξ, and 1
2 |ξ|2 therefore gives

conservations laws for the five macroscopic quantities defined above,

∂tρ +∇·(ρu) = 0, ∂t(ρu) +∇·Π = 0, ∂t

(
1
2
ρ|u|2 +

3
2
ρθ

)
+∇·F = 0. (8)

The vanishing right hand sides reflect the microscopic conservation of mass, momentum, and energy under collisions. The
momentum flux tensorΠ and energy flux vectorF are given by higher moments of the distribution function with respect toξ,

Π =
∫

ξξfdξ, F =
1
2

∫
|ξ|2ξfdξ. (9)

However, in kinetic theory it is conventional to use moments with respect to the peculiar velocityc = ξ−u, the deviation of the
particle velocityξ from its local averageu defined by (5). Multiplication byc does not commute with either∂t or ξ · ∇, since
u is a function ofx andt, but the conservation laws (8) may still be rewritten as

∂tρ + ∇·(ρu) = 0, (10a)

∂t(ρu) + ∇·(ρuu + P) = 0, (10b)

∂t

(
1
2
ρ|u|2 +

3
2
ρθ

)
+ ∇·

(
1
2
ρ|u|2u +

3
2
ρθu + P · u + q̃

)
= 0, (10c)

using a pressure tensorP and heat flux vector̃q defined by

P =
∫

ccfdξ, q̃ =
1
2

∫
|c|2cfdξ. (11)

For future reference we define additional quantitiesP̃ andq by

P̃ = P− ρθI, q =
5
2
ρθu + q̃. (12)

The tilde onP̃ and q̃ denotes quantities that vanish when evaluated for the Maxwell–Boltzmann distribution (6). We show
below that the Chen–Rao–Spiegel equations follow from applying van Kampen’s elimination procedure toP andq, just as the
Navier–Stokes–Fourier equations follow from applying the same procedure toP̃ andq̃. The slightly modified equations derived
in §IX arise from eliminatingP andq̃. Comparing the definitions of the pressure tensor and the energy density establishes the
consistency relations

TrP =
∫
|c|2fdξ = 3ρθ, Tr P̃ = 0. (13)

These relations are satisfied exactly by the Navier–Stokes–Fourier constitutive relations, but are only satisfied in a consistent
asymptotic sense by the Chen–Rao–Spiegel constitutive relations,8,25 as described in§VIII below.
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For many purposes it is useful to simplify the above conservation equations, eliminating time derivatives that are given by
lower moments, to obtain

Dρ

Dt
+ ρ∇·u = 0, ρ

Du
Dt

+∇·P = 0,
3
2
ρ
Dθ

Dt
+ P :∇u +∇· q̃ = 0. (14)

Here D/Dt = ∂t + u · ∇ denotes a Lagrangian, or material, time derivative moving with the macroscopic fluid velocity.
Combining the continuity and temperature equations gives an evolution equation for the entropy,

ρθ
Dβ

Dt
+ P̃ :∇u +∇· q̃ = 0, (15)

whereβ = 3
2 log(θρ−2/3) is the thermodynamic entropy in our energy units. This quantity is commonly called just “entropy” in

kinetic theory, even thoughβ need not be proportional to Boltzmann’s entropyH =
∫

f log fdξ when the distribution functionf
differs from a Maxwellian.12

However, none of these sets of equations are closed until the momentum and energy fluxes are known. For this we turn again
to the Boltzmann equation.

III. HIGHER MOMENTS OF THE BOLTZMANN EQUATION

Maxwell’s equation of transfer determines the evolution of moments of the distribution functionf with respect to arbitrary
functions of the peculiar velocityc.12,18,26The pressure tensorP thus evolves according to

∂tPij + ∂k (ukPij + Qijk) + Pik
∂uj

∂xk
+ Pkj

∂ui

∂xk
= −1

τ

(
Pij − P

(0)
ij

)
, (16)

where the1/τ factor on the right hand side comes directly from using the BGK collision operator. An effectiveτ may be
calculated for many other collision operators, as described below. The superscript(0) on P

(0)
ij on the right hand side denotes

the quantityPij evaluated for the Maxwell–Boltzmann distributionf (0). The left hand side of (16) involves the divergence of a
higher moment, the heat flow tensorQ with components

Qijk =
∫

cicjckfdξ. (17)

This moment in turn evolves under Maxwell’s equation of transport according to

∂

∂t
Qklh +

∂

∂xi

(
uiQklh + Riklh

)
+ Qilh

∂uk

∂xi
+ Qkih

∂ul

∂xi
+ Qkli

∂uh

∂xi
(18)

− 1
ρ

(
Plh

∂Pik

∂xi
+ Phk

∂Pil

∂xi
+ Pkl

∂Pih

∂xi

)
= −σ

τ

(
Qklh −Q

(0)
klh

)
,

which involves the divergence of the fourth moment of the distribution function,

Rijkl =
∫

cicjckclfdξ. (19)

The heat flux vector̃q results from contractingQ on two of its three indices,̃qk = 1
2Qiik in the conventional notation. Contract-

ing (18) on two indices gives an evolution equation forq̃,

∂tq̃ +∇·(uq̃) + Q : ∇u + q̃ · ∇u− 1
2ρ

(Tr P)∇·P− 1
ρ
(∇·P) · P +

1
2
∇·R = −σ

τ

(
q̃− q̃(0)

)
, (20)

where the second rank tensorR is a contraction ofRijkl on two indices, with components

Rij =
∫

cicj |c|2fdξ. (21)

The coefficientσ on the right hand sides of (18) and (20) is the Prandtl number, the ratio of viscosity to thermal conductivity.
Particles with larger peculiar velocities make a larger contribution to transporting energy than they do to transporting momen-

tum, because energy is proportional to the square of velocity and momentum is proportional to velocity. This is not captured
by the BGK collision operator, which employs only a single relaxation timeτ . The BGK collision operator therefore gives the
incorrect valueσ = 1, in the standard kinetic theory definition ofσ that absorbs a factor ofCp = 5/2. However, the evolution
equations (16) and (20) given above may be derived equally well using the linearized Boltzmann collision operator for Maxwell
molecules, those with a softr−5 repulsive interaction, or the Fokker–Planck collision operator that describes many glancing
collisions. These both giveσ = 2/3, which is accurate to within1% over the whole range of inter-molecular interactions,
including the limiting case of hard spheres.27 One may also use various “synthetic” collision operators that yield equations (16)
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and (20) with any desired Prandtl number. These include the Gross–Jackson extended BGK models,28 the Shakhov S-model,29

and the ellipsoidal statistics equilibrium.30–32

The linearized Boltzmann and Fokker–Planck collision operators are singular linear operators, and isotropic second rank
tensors lie in their kernels. In other words, these collision operators enforce the consistency relation1

3TrP = ρθ. One should
therefore reformulate equation (16) for thetracelesspart P̃ = P − ρθI of the pressure tensor if using these collision operators.
The resulting evolution equation for̃P, equation (34) in§VI, then exactly preserves the consistency relation since∂tTr P̃ = 0.
However, we show below that if one accepts (16) as written for the complete pressure tensor, at worst the expression forP
computed up to and including terms ofO(τ) violates the consistency relation byO(τ2).8,25 Further discussion may be found in
§VIII.

All the constitutive relations in this paper may also be derived from Grad’s 13 moment equations,2,12 in which (16) and (20)
are closed by postulating relations betweenR, Q and the lower moments. Further details are given in the appendix.

IV. THE MODERN CHAPMAN–ENSKOG EXPANSION

In the previous two sections we derived evolution equations for the conserved mass, momentum, and energy densities, and also
for the fluxes of momentum and energy. The five conserved quantities only evolve through spatial gradients, on a hydrodynamic
timescaleT , say, while the evolution equations for the fluxes containO(1/τ) terms due to collisions between particles. The
Chapman–Enskog expansion exploits the separation between these two timescales to derive closed evolution equations for just
the five conserved quantities. Closure is achieved by expressing the momentum and energy fluxes in terms ofρ, u, θ and their
spatial derivatives.

In modern work,5,6 the Chapman–Enskog expansion is usually presented as a multiple-scales expansion of the distribution
function and time derivative in powers of a small parameterε = τ/T , the ratio of timescales,

f = f (0) + εf (1) + · · · , ∂t = ∂t0 + ε∂t1 + · · · . (22)

The expansion of the time derivative suppresses secular terms proportional toεt that would otherwise disorder the expansion of
f after long times whent = O(1/ε). One may think oft0 andt1 = εt0 as typical advective and diffusive timescales respectively.

To determine a unique expansion, it is then necessary to impose solvability conditions,
∫

f (n)dξ = 0,

∫
ξf (n)dξ = 0,

∫
|ξ|2f (n)dξ = 0, for n = 1, 2, . . . , (23)

such thatf (1) and higher do not contribute to the macroscopic mass, momentum, and energy densities. However, all other
moments, notably the momentum and energy fluxes, inherit expansions inε. For example, the pressure tensor may be written as

P = P(0) + εP(1) + · · · , (24)

where each term is a moment of the correspondingf (n),

P(n) =
∫

ccf (n)dξ, for n = 0, 1, . . . . (25)

Although the definitionε = τ/T gives ε the physical interpretation of a Knudsen number based on timescales instead of
lengthscales, it is common practice in kinetic theory to introduceε as a formal small parameter, later set equal to unity, by
replacingτ with ετ in the collision operator. This leads to powers ofτ appearing explicitly in the expressions for the higher
terms in the expansions of the moments.

The compressible Euler equations arise at leading order, when the pressure tensor and energy flux are evaluated for the
Maxwell Boltzmann distributionf (0),

∂t0u + u · ∇u +
1
ρ
∇(ρθ) = 0,

3
2
ρ (∂t0θ + u · ∇θ) + ρθ∇·u = 0. (26)

The Navier–Stokes–Fourier equations result from computing theO(ε) correctionf (1) to the equilibrium, and then eliminating
time derivatives in favor of space derivatives using∂t = ∂t0 to sufficient accuracy. Equivalently, one finds theO(ε) corrections
P(1) andq̃(1) by substituting the expansions of the moments into (16) and (20) and collecting theO(1) terms,

∂t0P
(0)
ij + ∂k

(
ukP

(0)
ij + Q

(0)
ijk

)
+ P

(0)
ik

∂uj

∂xk
+ P

(0)
kj

∂ui

∂xk
= −1

τ
P

(1)
ij , (27a)

∂t0 q̃
(0) +∇·(uq̃(0)) + Q(0) : ∇u + q̃(0) · ∇u− 1

2ρ
(Tr P(0))∇·P(0)

− 1
ρ
(∇·P)(0) · P(0) +

1
2
∇·R(0) = −σ

τ
q̃(1). (27b)

The multiple-scales expansion permits the replacement of∂t by ∂t0 at this order. One then evaluates∂t0P
(0)
ij = ∂t0(ρθ)δij using

the Euler equations (26) and the continuity equation. Sinceq̃(0) = 0 there is no need to compute∂t0 q̃
(0), but one reaches exactly

the same constitutive relations by considering the whole energy fluxF and computing∂t0F (0) = ∂t0

(
5
2ρθu + 1

2ρ|u|2u)
.
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Chen, Rao, and Spiegel7,8 omitted the multiple-scales expansion in time, and applied solvability conditions to the expansion
as a whole, not order by order as in (23). Leaving the time derivatives as an unexpanded∂t in their analogs of (27), they
obtained expressions for the momentum and energy fluxes involving time derivatives ofu andθ. These expressions revert to the
usual Navier–Stokes–Fourier forms if one evaluates the time derivatives using the Euler equations, as above, instead of the exact
conservation laws from§II.

V. CHAPMAN–ENSKOG AS THE ELIMINATION OF FAST VARIABLES

Although the above presentation using multiple scales is now widespread, Chapman and Enskog themselves used a different
approach. They sought a special class of solutions in which each term in the expansion of the distribution functionf depends on
x andt only through the unexpanded slow variablesρ, u, θ and their spatial derivatives. Like the multiple-scales expansion of
∂t in (22), this special class of solutions was chosen to suppress secular terms proportional toεt that would otherwise disorder
the expansion after long times.

van Kampen10,11 showed that the Chapman–Enskog expansion is an application of a general procedure for approximating
systems of evolution equations of the form

∂s
∂t

+ S(s, f , ε) = 0,
∂f
∂t

+
1
ε
F(s, f , ε) = 0. (28)

Heres andf are vectors of slow and fast variables (f should not be confused with the distribution functionf ), andε a small
parameter. The slow variables are determined uniquely by the absence of a1/ε factor in the first of equations (28). The slow
variables therefore evolve on anO(1) timescale, while the fast variables naturally evolve on a fasterO(ε) timescale.

van Kampen10,11 showed that one may find reduced approximate descriptions of the system (28), valid for long times of
O(1/ε), by expandingonly the fast variablesin powers ofε,

f = f (0) + εf (1) + ε2f (2) + · · · , (29)

and leaving the slow variabless unexpanded. Theε → 0 limit of the fast equations determines the first approximationf (0)(s) that
satisfiesF(s, f (0)(s), 0) = 0. Higher terms come from finding successively more accurate series solutions of the fast equations.
Substituting into the slow equations yields successive sets of closed evolution equations for just the slow variables. The first two
of these are

∂s
∂t

+ S
(
s, f (0), 0

)
= 0,

∂s
∂t

+ S
(
s, f (0) + ε f (1), ε

) ∣∣∣
O(ε)

= 0, (30)

where the last expression denotes the expansion ofS(s, f (0) + ε f (1), ε) truncated after theO(ε) terms.
The multiple-scales approach expands the whole distribution function in (22), and subsequently imposes solvability conditions

(23) that leave the slow variables unaffected by the higher terms in the expansion. Van Kampen’s approach leaves the slow
variables unexpanded in the first place, and expands only the fast variables. Either approach serves to suppress secular terms
that would otherwise disorder the expansion. The question of whether to apply solvability conditions order-by-order, or to the
expansion as a whole,7–9 does not arise using van Kampen’s approach,10,11 because the slow variables are not expanded.

Following Warnet al.22 for the general procedure, one may also solve the second of equations (28) by iteratingonly on the
fast variables, beginning with the zeroth iteratef [0] = f (0)(s) as before. The fast equations considered below have a particular
structure reminiscent of the BGK collision operator,

∂f
∂t

+ F(s, f) = −1
ε

(
f − f (0)(s)

)
, (31)

which motivates defining successive iteratesf [1], f [2], . . . according to

∂f [n]

∂t
+ F(s, f [n]) = −1

ε

(
f [n+1] − f (0)(s)

)
. (32)

Substituting any one of these iteratesf [n] into the slow evolution equations again yields closed evolution equations for the slow
variables. In particular, the first iterative improvementf [1] coincides with the first two terms of the expansion (29) above,

f [1] = f (0) + ε f (1) = f (0)(s)− ε

(
∂f (0)

∂s
· ∂s

∂t
+ F

(
s, f (0)(s)

))
, (33)

which is sufficient for the Navier–Stokes–Fourier and Chen–Rao–Spiegel equations. When applied to the moment equations
from kinetic theory, this iterative approach is very similar to what Ikenberry and Truesdell termed “Maxwellian iteration”.18 The
justification, however, is due to van Kampen’s general theory,10,11 and the iterative extension by Warnet al.22
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VI. NAVIER–STOKES–FOURIER EQUATIONS FROM ELIMINATION OF FAST VARIABLES

The consistency relationTrP = 3ρθ for the trace of the pressure tensor implies thatP contains a mixture of fast and slow
behavior. Alternatively, the evolution ofTr P is already known from the three conservation laws (8), so all that remains is to
find an evolution equation for the traceless part ofP. Subtracting a multiple of the temperature equation (14) from the pressure
equation (16), following Ikenberry and Truesdell18 and Grad12 gives an evolution equation for the quantityP̃ = P− ρθI,

∂tP̃ij + ∂k

(
P̃ijuk + Qijk − 2

3
q̃k δij

)
+ ρθ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
(34)

+ P̃ik
∂uj

∂xk
+ P̃jk

∂ui

∂xk
− 2

3
(P̃ :∇u)δij = −1

τ
P̃ij .

The quantity−P̃ is the deviatoric stress in hydrodynamic terminology, and the trace of equation (34) shows thatTr P̃ = 0 is
preserved by the evolution of̃P. SinceP̃ vanishes at equilibrium,̃P(0) = 0, no time derivatives appear in the equation for the first
correctionP̃(1) obtained using van Kampen’s procedure. This agrees with the well-known observation that the Navier–Stokes–
Fourier constitutive relations contain only spatial derivatives of the slow variables.

Following the iterative version of van Kampen’s procedure, we find the first correction to equilibrium by substitutingP̃ =
P̃(0) = 0 andQ = Q(0) = 0 into the left hand side of (34). The majority of terms vanish, leaving

P̃
(1)
ij = −τρθ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
. (35)

This is the Navier–Stokes viscous stress for a dilute monatomic gas with shear viscosityµ = τρθ, and zero bulk viscosity.
Equation (35) is commonly written as̃P(1) = −τρθE̊, whereE̊ denotes the symmetric, traceless part of the velocity gradient
tensor in the notation of Chapman and Cowling.1

Turning to the heat flux̃q, we rewrite its evolution equation (20) in terms ofP̃ as

∂tq̃ +∇·(uq̃) + Q : ∇u + q̃ · ∇u − 1
2ρ

(3ρθ + Tr P̃)(∇(ρθ) +∇·P̃) (36)

− 1
ρ
(∇(ρθ) +∇·P̃) · (θρI + P̃) +

1
2
∇·R = −σ

τ
q̃.

SubstitutingQ = Q(0) = 0, q̃ = q̃(0) = 0, P̃ = P̃(0) = 0, and

R
(0)
ij =

∫
cicj |c|2f (0)dξ = 5ρθ2 δij , (37)

into the left hand side of (36) we obtain Fourier’s heat flux

q̃(1) = − τ

σ

[
∇·

(
5
2
ρθ2I

)
− 3

2
θ∇(ρθ)− θ∇(ρθ)

]
= −5

2
τ

σ
ρθ∇θ. (38)

Equation (37) shows thatR also mixes fast and slow behavior. Before continuing the elimination to higher order, one might
therefore choose to separate out the slow component by writingR = 5ρθ2 I + R̃, following the earlier rewriting of the pressure
tensor asP = ρθI + P̃.

VII. CHEN–RAO–SPIEGEL EQUATIONS FROM ELIMINATION OF FAST VARIABLES

We might equally well apply the same elimination procedure directly to equation (16) for the complete pressure tensorP,
which does not vanish at equilibrium. SubstitutingP = P(0) = ρθI andQ = Q(0) = 0 into the left hand side of (16) gives an
equation for the first iterative correction,

∂t(ρθδij) + ∂k (ρθδijuk) + ρθδik
∂uj

∂xk
+ ρθδjk

∂ui

∂xk
= −1

τ

(
P

[1]
ij − ρθδij

)
, (39)

that rearranges into the expression for the pressure tensor given by Chen, Rao, and Spiegel,7,8

P
[1]
ij = ρθδij − τρ

[
Dθ

Dt
+

2
3
θ∇·u

]
δij − τρθ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
. (40)

This expression may be written more compactly as8

P[1] = ρθ

(
1− 2

3
τ

Dβ

Dt

)
I− τρθE̊, (41)
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using the evolution equation (15) for the entropyβ = 3
2 log(θρ−2/3). The same expression (41) was given by Ikenberry

and Truesdell.18 They advocated retention of the full pressure tensorP, instead of a decomposition into an isotropic partρθI
and a traceless part̃P, to preserve the correct transformation properties of the material time derivative ofP under rotations.
Transformation under rotations becomes a contentious issue when the standard Chapman–Enskog expansion is continued to
Burnett order.20,33,34

The Chen–Rao–Spiegel heat flux vector differs from the usual Fourier form (38) by terms involving the time derivative of the
velocity, but not by terms involving the time derivative of the temperature. The latter already appears in the total energy flux
through the rate of working of the pressure. The Chen–Rao–Spiegel heat flux therefore follows from introducing the entropy
flux

h =
q
θ

=
q̃
θ

+
5
2
ρu (42)

as a fast variable. Recall thatq = q̃ + (5/2)ρθu as defined in equation (12) includes the contribution to the energy flux
from macroscopic advection of the internal energy(3/2)ρθ, and also the contribution from the work done by the equilibrium
pressure,u · P(0) = ρθu. For the earlier derivation Fourier’s law it made no difference whether one consideredq̃ or q̃/θ, since
the vanishing of the equilibrium term,̃q(0) = 0, eliminates any contribution from the time derivative of1/θ. The reader who
finds the introduction ofh contrived may prefer the approach given in§IX below.

The variableh defined in (42) evolves according to

∂th +
(
h− 5

2
ρu

)
· ∇u +

5
2
∇·P− 2

3ρθ

(
h− 5

2
ρu

)[
P : ∇u +∇·

(
θh− 5

2
ρθu

)]

+
1
θ

[
2Q : ∇u− 1

2ρ
(Tr P)∇·P− 1

ρ
(∇·P) · P +

1
2
∇·R

]
= −σ

τ

(
h− 5

2
ρu

)
. (43)

Substituting the equilibrium valuesh(0) =(5/2)ρu, P(0) =ρθI, Q(0) = 0, R(0) = 5ρθ2I gives

∂t

(
5
2
ρu

)
+∇·

(
5
2
ρuu +

5
2
ρθI

)
+

5
2
ρ∇θ = −σ

τ

(
h[1] − 5

2
ρu

)
, (44)

which rearranges into

q̃[1] = −5
2

τ

σ
ρθ

[
∇θ +

(
Du
Dt

+
1
ρ
∇(ρθ)

)]
. (45)

This coincides with the expression resulting from the Prandtl number adjustment used by Spiegel and Thiffeault.25 However, the
earlier general expression given by Chen, Rao, and Spiegel,7,9

q̃[1] = −5
2
τρθ

[
1
σ
∇θ +

Du
Dt

+
1
σ

1
ρ
∇(ρθ)

]
, (46)

agrees with those above whenσ = 1, but differs from Fourier’s law atO(τ) whenσ 6= 1. The leading order momentum equation
has been broken into two parts, and only one part contains a factor of1/σ. This mismatch leads to an excessive attenuation of
ultrasound at low frequencies, as shown in Fig. 2 below.

VIII. INTERPRETATION USING TRANSLATIONAL TEMPERATURE

The pressure tensor given by Ikenberry and Truesdell,18 and by Chen, Rao, and Spiegel,7,8 differs from the usual Navier–
Stokes expression by an isotropic term proportional to the Lagrangian rate of entropy productionDβ/Dt,

P[1] =
[
ρθI− τρθE̊

]
− 2

3
τρθ

Dβ

Dt
I. (47)

In particular, one third of the trace of the pressure tensor is no longer precisely equal to the thermodynamic pressureρθ,

1
3
TrP[1] = ρθ

(
1− 2

3
τ

Dβ

Dt

)
= ρθ + O(τ2), (48)

but only up to and including terms ofO(τ), which is consistent to the order of approximation of the theory. This feature is
shared by other theories, such as the nonlocal theory of Woods.27 The pressure tensorP[2] computed toO(τ2) by Spiegel and
Thiffeault25 satisfies1

3TrP[2] = ρθ + O(τ3), again a consistent approximation for the theory.
The consistency relation13TrP = ρθ should hold exactly for dilute monatomic gases. However, in the kinetic theory of

polyatomic gases, the standard Chapman–Enskog expansion leads to a modified Navier–Stokes viscous stress that is no longer
traceless,

P = ρθI− µE̊− µ′ (∇·u) I. (49)



9

The additional term−µ′ (∇·u) I is interpreted as a bulk viscous stress, with a coefficient of bulk viscosityµ′ analogous to the
shear viscosityµ previously given byµ = τρθ. The additional term arises because polyatomic gas molecules may absorb or
release energy from their internal degrees of freedom. The expressionE = 1

2ρ|u|2 + 3
2ρθ therefore no longer coincides with the

total energy density, and will not be conserved under collisions.
Alternatively, one may retain the previous expression for the viscous stress,35,36

P = ρΘI− µE̊, (50)

by defining a translational temperatureΘ such that13TrP = ρΘ. A bulk viscous effect then appears in the energy equation,
as rewritten to express conservation of the total energyE ′ = 1

2ρ|u|2 + 3
2ρΘ + ε. The energy densityε associated with the

internal degrees of freedom takes the formε = ε0(Θ) + 3
2µ′∇·u for small departures from an equilibrium between translational

and internal degrees of freedom.35 Bulk viscosity now enters through the relation between the conserved total energy and the
isotropic part of the pressure,

1
3
Tr P = ρΘ =

2
3

(
E ′ − 1

2
ρ|u|2 − 3

2
µ′∇·u

)
. (51)

The two approaches are entirely equivalent, but Kogan argues that effects caused by energy transferring to and from internal
degrees of freedom belong more naturally in the energy equation than the momentum equation.35,36

By analogy with the second approach to polyatomic gases, the pressure tensor (47) may be interpreted as defining a transla-
tional temperatureΘ for which the pressure tensor takes its usual formP = ρΘI− µE̊,

Θ = θ

(
1− 2

3
τ

Dβ

Dt

)
. (52)

This may be rewritten with the aid of the continuity equation as

Θ = θ

(
1− 2

3
τ∇·u− τ

D
Dt

log θ

)
. (53)

The combinationρΘ = ρθ(1− 2
3τ∇·u) is the mechanical pressure, or trace of the pressure tensor, as modified by bulk viscosity.

However, the Ikenberry–Truesdell and Chen–Rao–Spiegel mechanical pressure is modified by a further term involving the
Lagrangian derivative of temperature. Unlike bulk viscosity, no additional dissipation is caused by anadiabaticconvergence or
divergence,∇·u 6= 0 butDβ/Dt = 0,

In summary, the deviation of13Tr P from the thermodynamic pressureρθ may be interpreted as a model, or parametrization,
for the transfer of excitations to and from higher moments of the distribution function that do not appear explicitly in the
theory. The complete pressure tensor takes the standard Navier–Stokes formP = ΘρI−µE̊ when written using the translational
temperature, butΘ deviates from the thermodynamic temperatureθ by anO(τ2) amount proportional toDβ/Dt, the Lagrangian
rate of entropy production, that is itselfO(τ).

IX. ALTERNATIVE APPROACH

In this section we derive a slightly modified expression for the heat flux that arises more naturally from a system of moment
equations. As an added benefit, the resulting dispersion relation offers further gains in agreement with experiment. We write the
conservation laws for momentum and energy as

∂t(ρu) +∇·(ρuu + P) = 0, ∂tE +∇·(Eu + F ′) = 0, (54)

whereE = 1
2ρ|u|2 + 3

2ρθ is the (total) energy density as before. In other words, we decompose the total energy fluxF into an
advection of the energy density plus a correction,

F = Eu + F ′ = Eu + u · P + q̃, (55)

just as we previously decomposed the momentum flux into an advection of momentum plus a correction by writingΠ = ρuu+P.
Neither correction need be small.

We now formulate an evolution equation forF ′ by using

∂tF ′ = (∂tu) · P + u · ∂tP + ∂tq̃. (56)

Combining the evolution equations forP andq̃ derived using Maxwell’s equation of transfer in§III gives
[

Du
Dt

+
1
ρ
∇·P

]
· P + u ·

[
∂tP +∇·(uP + Q) + P · ∇u + (P · ∇u)T +

1
τ

(
P− P(0)

)]
(57)

+
[
∂tq̃ +∇·(uq̃)+Q :∇u + q̃ · ∇u− 1

2ρ
(Tr P)∇·P− 1

ρ
(∇·P) · P+

1
2
∇·R +

σ

τ

(
q̃− q̃(0)

)]
= 0.
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The second expression in square brackets[∂tP
(0) + · · · ] is equation (16) for∂tPij rewritten in vector notation.

Following the iterative approach to the elimination of fast variables, we replaceP, Q, and q̃ by their equilibrium values
everywhere except in the collision terms that contain factors of1/τ ,

[
Du
Dt

+
1
ρ
∇·P(0)

]
· P(0) + u ·

[
∂tP

(0)+∇·
(
uP(0)+Q(0)

)
+P(0) · ∇u+(P(0) · ∇u)T+

1
τ

(
P[1]−P(0)

) ]

+

[
∂tq̃(0) + ∇·(uq̃(0)) + Q(0) : ∇u + q̃(0) · ∇u (58)

− 1
2ρ

(Tr P(0))∇·P(0) − 1
ρ
(∇·P(0)) · P(0) +

1
2
∇·R(0) +

σ

τ

(
q̃[1] − q̃(0)

) ]
= 0.

The whole of the second expression in square brackets[∂tP
(0)+· · · ] exactly cancels, through the definition ofP[1] as the solution

to

∂tP
(0) +∇·

(
uP(0) + Q(0)

)
+ P(0) · ∇u +

(
P(0) · ∇u

)T

+
1
τ

(
P[1] − P(0)

)
= 0. (59)

The third expression in square brackets[∂tq̃(0) + · · · ] simplifies as described in§VI. This just leaves a correction to Fourier’s
law from the leading order momentum equation in the first term of (58),

q̃[1] = − τ

σ

[
5
2
ρθ∇θ + ρθ

(
Du
Dt

+
1
ρ
∇(ρθ)

)]
. (60)

Notice that this expression differs from those given earlier, even in the BGK approximation withσ = 1, because the factor of
5/2 only multiplies the temperature gradient.

Heuristically, the(5/2)ρθu term in the equilibrium energy flux (1) combines(3/2)ρθu from the advection of the internal
energy with a furtherρθu from the work done by the equilibrium pressure. The earlier treatments by Spiegel and coworkers
assign a finite response time to the whole(5/2)ρθu term, not just the contribution to the energy flux from the pressure. This
leads to an overestimate of the reduction in phase speed of ultrasound at high frequencies, as shown below.

X. PROPAGATION OF ULTRASOUND

The customary first test of a reduced description of rarefied gases is a comparison between the dispersion relation for linear
plane waves and experimental measurements of the propagation of ultrasound.4,9,25,37–39These measurements were obtained
using a column of gas confined between transmitting and receiving transducers.40,41 The transmitter was excited at a prescribed
frequencyω, while varying the distance between transmitter and receiver. Assuming a plane-wave disturbance of the form
exp[i(ωt − kz)], the real and imaginary parts of the complex wave numberk may be inferred from the variation in the phase
and amplitude of the signal at the receiver with distance. Further details may be found in a review by Greenspan.38 The extent
to which the experimental disturbances may be described by plane waves, as opposed to solutions of a boundary value problem,
has been subject to debate,39 as described below.

The experimental data are commonly plotted using the dimensionless variablesr andK defined by38,40

r =
c2
0ρ

γωµ
=

1
ωτ

, K =
kc0

ω
=

c0

c
. (61)

Greenspan’s rarefaction parameterr corresponds to an effective Reynolds number divided by the adiabatic exponentγ, andωτ is
the natural dimensionless combination for relaxation models containing an explicit timescaleτ . The dimensionless wavenumber
K also equals the dimensionless inverse phase speed, scaled using the adiabatic sound speedc0 = (γp/ρ)1/2 of low frequencies
(r → ∞). The adiabatic exponent isγ = 5/3 for a monatomic gas, soc0 = (5θ/3)1/2 with temperatureθ in energy units.
In experiments, one typically fixesω at the resonant frequency of the two transducers, and variesτ andr by varying the gas
density.38 However, it is useful to think ofr → 0 as the high frequency limit, andr → ∞ as the low frequency limit. Low
frequencies correspond to continuum behavior, as described by the Navier–Stokes–Fourier equations, while rarefied effects
become significant at high frequencies. It is conventional to plot the real and imaginary parts ofK againstr, as in Figs. 1 and 2
respectively.

Turning to the dispersion relations, we seek solutions of the various hydrodynamic equations with perturbations proportional
to exp[i(ωt − kz)]. This follows the convention in more recent work,25,39 but other conventions for signs and factors ofi
are widely used.9,37,38,40Throughout this section we take the Prandtl number to beσ = 2/3, as for Maxwell molecules. The
dispersion relation for the Navier–Stokes–Fourier equations is then37,38

−K4

(
i

9
10

1
r

+
6
5

1
r2

)
+K2

(
i
23
10

1
r
− 1

)
+ 1 = 0. (62)

This is a quadratic equation forK2 in terms ofr. The low frequency (continuum) limitr → ∞ is a singular limit, because
K4 is multiplied by small terms ofO(r−1) andO(r−2). One pair of solutions gives the dispersion relation for acoustic waves,
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FIG. 1: Dimensionless inverse phase speed of ultrasound. The Chen–Rao–Spiegel theory,7–9 the first order theory of Spiegel and Thiffeault,25

and the theory from§IX of this paper, are compared with the experimental data of Meyer and Sessler,41 the Grad 13 moment equations, and
the Navier–Stokes–Fourier equations.37
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FIG. 2: Dimensionless attenuation rate of ultrasound with distance. The constitutive relations from§IX and Grad’s 13 moment equations are
both in reasonable agreement with experiment forωτ . 0.3, although all the theories shown predict a vanishing attenuation rate asωτ →∞.
The Chen–Rao–Spiegel theory systematically over-predicts the attenuation in theωτ → 0 limit, while all the other theories converge to
Navier–Stokes–Fourier behavior.

and is distinguished byK2 → 1 asr → ∞. This is the branch of the dispersion relation that we compare with experimental
measurements. The other pair of solutions correspond to thermal waves, and are distinguished byK ∼ ±(

√
5/3) (1 + i) r1/2

becoming large asr → ∞. The phase speed, proportional toK−1, thus vanishes in the continuum limit. We therefore recover
the purely diffusive behavior of thermal disturbances given by the Navier–Stokes–Fourier equations.

The acoustic branch of the Navier–Stokes–Fourier dispersion relation givesK → 0 in the high frequency limit (r → 0). In
other words, the phase speed tends to infinity at high frequencies, as shown in Fig. 1. The rate of attenuation with distance tends
to zero, as shown in Fig. 2, having previously reached a maximum whenr = O(1). Neither the phase speed nor the attenuation
rate given by the Navier–Stokes–Fourier equations is physically reasonable at high frequencies.

The dispersion relation for the Chen–Rao–Spiegel equations withσ = 2/3 is9

−K4

(
i

9
10

1
r

+
9
2

1
r2

)
+K2

(
i
14
5

1
r

+
1
r2
− 1

)
+ 1 = 0, (63)

while the dispersion relation for the first order equations of Spiegel and Thiffeault is25

−K4

(
i

9
10

1
r

+
9
2

1
r2

)
+K2

(
i
23
10

1
r

+
3
2

1
r2
− 1

)
+ 1 = 0. (64)

The additionalO(K2/r2) terms appearing in (63) and (64) limit the phase speed to finite values in the high frequency limit
(r → 0). However, the different numerical coefficient,14/5 rather than23/10, of the iK2/r term in the dispersion relation
for the Chen–Rao–Spiegel equations means that the attenuation rate of ultrasound exceeds that given by the Navier–Stokes–
Fourier equations, even in the low frequency limit (r → ∞). This discrepancy is readily apparent from the comparison of
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attenuation rates shown in Fig. 2. The alternative “Prandtl number fix” adopted by Spiegel and Thiffeault25 leads to the same
coefficient23/10 as the Navier–Stokes–Fourier equations, but they did not remark on the misbehavior of the earlier equations
in the continuum limit.

However, the high frequency limitK → √
2/3 = 0.4714 . . . asr → 0, given by balancing theO(1/r2) terms in the Chen–

Rao–Spiegel equations,9 is in remarkably good agreement with the limiting valueK → 0.47 derived from the collisionless
Boltzmann equation by Kahn and Mintzer.37 Both values are in good agreement with experiments, which giveK → 0.45
according to the interpretation of Kahn and Mintzer.37 The corresponding limitK → 1/

√
3 = .5773 . . . for the first order

Spiegel and Thiffeault theory is in noticeably poorer agreement with experiments. The limiting behavior of the second order
theory comes closer, but lies below the range given by experiments.25

The dispersion relation arising from the alternative heat flux (60) is

−K4

(
i

9
10

1
r

+
72
25

1
r2

)
+K2

(
i
23
10

1
r

+
3
5

1
r2
− 1

)
+ 1 = 0, (65)

which agrees with the dispersion relations for the Navier–Stokes–Fourier and Spiegel–Thiffeault equations atO(r0) andO(r−1).
However, the modifications to theO(r−2) terms lead to the high frequency limit

K →
√

5
24

= 0.4564 . . . asr → 0, (66)

which is in much better agreement with Kahn and Mintzer’s interpretation of the experimental data for the phase velocity.37

All of the theories shown in Fig. 2 predict a vanishing of the attenuation rate at high frequencies (r → 0), while the experi-
mental data show a trend towards a finite attenuation rate,ImK ≈ 0.2 for r ¿ 1. This is generally taken to be an aspect of the
experiments that cannot be captured by theoretical studies of the dispersion relation for a single plane wave.37,39 Particles leav-
ing the transmitter might be expected to require several collisions before becoming organised into a single plane wave, and this
cannot occur when the gas is sufficiently rarefied that the distance between transmitter and receiver is comparable to a mean free
path. Mathematically, particles that do not undergo collisions contribute to the continuous spectrum of the linearised Boltzmann
equation.42,43 A continuous spectrum may exist in the linearised Boltzmann equation because it remains an integral equation in
the particle velocity after assuming a plane wave behavior inx andt. By contrast, finite systems of partial differential equations
in justx andt, like those derived in this paper, cannot possess continuous spectra. The amplitude of the modes in the continuous
spectrum of the linearised Boltzmann equation is typically small compared with the amplitudes of the discrete modes, but the
former decay more slowly with distance.

Buckner and Ferziger’s solution of a boundary value problem for the linearized Boltzmann equation using an eigenfunction
expansion over a complete set of linear plane waves, including contributions from the continuous spectrum, gives excellent
agreement with Schotter’s more recent experimental data over the whole range ofr.44,45 Schotter’s data show a smaller atten-
uation forr ≈ 0.1 that alleviates the disagreement between Buckner and Ferziger’s solution and earlier experiments.43 In an
alternative approach, Sirovich and Thurber46 formulated a boundary value problem for the linearized Boltzmann equation in a
half-space using Laplace transforms. Rather than solve this problem, though, they used analytic continuation of the dispersion
relations obtained from the linearised, one-dimensional Boltzmann equation with Gross–Jackson collision operators using 3, 5,
8, or 11 moments. This approach captures the qualitative behavior over the whole range ofr without explicitly formulating a
boundary value problem, or considering the continuous spectrum. The phase speed and attenuation rate are both typically too
large asr → 0, but the precise details depend upon the number of moments retained in the Gross–Jackson collision operator,
and whether their eigenvalues correspond to hard spheres or Maxwell molecules. An earlier review by Cercignani43 favored the
results of Sirovich and Thurber over those of Buckner and Ferziger, but Schotter’s more recent experimental data mentioned
above favors the results of Buckner and Ferziger.45 Kanh and Mintzer’s expansion about solutions of the collisionless Boltz-
mann equation appeared to work well even in the continuum limit,37 but this was only due to an erroneous evaluation of certain
integrals.47 When corrected, the attenuation rate becomes negative in the near-continuum regime, wherer is moderately large.47

In summary, the dispersion relation for the general purpose nonlinear theory presented in§IX gives the correct phase speed
for ultrasound in both the continuum and highly rarefied limits, improving upon the earlier Chen–Rao–Spiegel and Spiegel–
Thiffeault equations. The attenuation rate is in good agreement with experiment forr & 3, but incorrectly vanishes in the highly
rarefied limit r → 0. The derivation of the general purpose theory is considerably simpler than that leading to the various
linearised, one-dimensional theories mentioned above.37,44,46

XI. CONCLUSION

The distribution function in Boltzmann’s equation evolves through a combination of two processes, spatial gradients and colli-
sions between atoms, acting on two different timescales. Replacing Boltzmann’s equation by an equivalent hierarchy of moment
equations leads to an explicit separation of timescales. The five moments that correspond to the macroscopic mass, momentum,
and energy densities are unaffected by collisions, and evolve only slowly through spatial gradients. All higher moments, includ-
ing the momentum and energy fluxes, tend to evolve on the faster timescale of collisions between atoms. Neither experimental
measurements nor theoretical studies of the linearized Boltzmann collision operator show any evidence supporting a further
separation of timescales between the higher moments.15 Van Kampen’s theory for the elimination of fast variables,10,11 and the
center manifold theory of dynamical systems,48 therefore motivate the formulation of approximate descriptions in the form of
closed evolution equations for the five slowly evolving moments. These descriptions will remain valid over long timescales.
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Exact conservation laws for the macroscopic mass, momentum, and energy densities follow from the corresponding moments of
Boltzmann’s equation, but these conservation laws are not closed because the momentum and energy fluxes involve the higher
moments.

Closed evolution equations follow from expressing the instantaneous values of the higher moments in terms of the five slow
moments and their derivatives. These expressions coincide with the constitutive relations that are postulated to complement the
conservation laws in axiomatic approaches to continuum mechanics. The same distinction between (evolutionary) conservation
laws and (instantaneous) constitutive relations was made in the original formulation of Chapman and Enskog, who postulated
solutions in which the distribution function (and hence the higher moments) depend on space and time only through the five
slow moments and their derivatives. All these approximate descriptions therefore lead to the so-called normal solutions of the
Boltzmann equation, solutions in which the higher moments evolve on a slow hydrodynamic timescale, rather than on the fast
collisional timescale characteristic of generic solutions.2

Maxwell’s equation of transfer may be used to formulate evolution equations for the higher moments of the distribution
function. The details specific to a number of different collision operators may be captured through an effective relaxation timeτ
and Prandtl numberσ in the evolution equations for the moments. The use of moment equations enables a systematic progression
from kinetic theory to macroscopic equations without the subsequent alteration of coefficients or “Prandtl number fixes” found
in Refs. 7,8,25. No solvability conditions are required, because the slow variables are left unexpanded.

The higher moments are known collectively as fast variables in van Kampen’s theory. The five slow variablesρ, u, θ are
uniquely identified by the collision operator, but any combination of fast and slow variables comprises another valid fast variable.
Different fast variables lead to different, but asymptotically equivalent, evolution equations for the slow variables at each stage in
van Kampen’s procedure.10,11 Although it is conventional to use moments with respect to the peculiar velocity in kinetic theory,
the momentum fluxΠ and energy fluxF may be written equally well as

Π = ρuu + ρθI + P̃, F =
1
2
ρ|u|2u + P̃ · u +

5
2
ρθu + q̃, (67)

or as

Π = ρuu + P, F =
1
2
ρ|u|2u + P̃ · u + q, (68)

or even as

Π = ρuu + P, F =
(

1
2
ρ|u|2 +

3
2
ρθ

)
u + u · P + q̃. (69)

Application of van Kampen’s procedure,10,11 or its iterative extension,22 using any of these three pairs of expressions leads to
constitutive relations for the momentum and energy fluxes in terms of the slow variablesρ, u, θ and their derivatives. The
familiar Navier–Stokes–Fourier constitutive relations arise from eliminating the fast variablesP̃ andq̃ appearing in (67).

However, we have shown that the Chen–Rao–Spiegel constitutive relations arise from applying exactly the same the procedure
to eliminateP andq appearing in (68) instead. SinceP andq do not vanish at equilibrium, the Chen–Rao–Spiegel constitutive
relation are distinguished by the appearance of time derivatives of the leading order expressionsP(0) andq(0), or equivalently by
time derivatives of the velocity and temperature. By contrast,P̃(0) = 0 andq̃(0) = 0, so time derivatives only appear at second
order when van Kampen’s theory is applied toP̃ andq̃.

The viscous stress that follows from writingΠ = ρuu + P may be interpreted as defining a translational temperature,35,36

Θ = θ

(
1− 2

3
τ

Dβ

Dt

)
, (70)

as in the kinetic theory of polyatomic gases. The pressure tensor then takes the standard Newtonian or Navier–Stokes form
P = ρΘI − µE̊ with zero bulk viscosity, but the translational temperature deviates from the quantityθ appearing in the energy
equation by an amount proportional to the Lagrangian rate of entropy productionDβ/Dt. In physical terms, changes of internal
energy caused by non-equilibrium (diabatic) processes are only reflected in the (mechanical) pressure after a delay comparable
to the collision time. This interpretation motivates the rewriting of the energy flux in (69) to distinguish between the advection
of internal energy and the work done by the pressure. Applying the usual elimination procedure leads to constitutive relations
with slightly different coefficients in the heat flux,

P[1] = ρθ

(
1− 2

3
τ

Dβ

Dt

)
I− τρθE̊, q̃[1] = − τ

σ

[
5
2
ρθ∇θ + ρθ

(
Du
Dt

+
1
ρ
∇(ρθ)

)]
, (71)

and offers a modest further improvement in agreement with experiment, as shown in Figs. 1 and 2.
In conclusion, no solvability conditions are necessary in a derivation of closed macroscopic equations using moments, because

the slow variables are explicitly identified and left unexpanded. The explicit freedom to choose fast variables in van Kampen’s
theory leads in principle to a continuum of possible constitutive relations, all equally valid within this theory, and all asymp-
totically equivalent to the Navier–Stokes–Fourier relations at first order in Knudsen number. Our introduction of a translational
temperature, as in the kinetic theory of polyatomic gases, motivates a distinction in the energy flux between advection of internal
energy and the work done by the pressure. Combining this distinction with a finite adjustment time for the pressure, comparable
to the mean free time, yields a set of macroscopic equations that are similar in spirit to those of Chen, Rao, and Spiegel7–9
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and Spiegel and Thiffeault.17,25 However, the equations presented in this paper improve upon the earlier equations by giving
the correct phase speeds for ultrasound in both the continuum and highly rarefied limits. The attenuation of ultrasound with
distance is in good agreement with experiment in the continuum and moderately rarefied regimes. This improves slightly upon
the equations of Spiegel and Thiffeault, and corrects a systematic error in the attenuation arising from the Chen–Rao–Spiegel
equations in the continuum limit. All these sets of equations are much simpler than the specialised treatments of the linearised,
one-dimensional Boltzmann equation summarised in§X.
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APPENDIX A: RELATION TO GRAD’S MOMENT EQUATIONS

When eliminating fast variables as above, the contracted fourth momentR appearing in (20), and the heat flow tensorQ, were
both approximated by their values at equilibrium. These approximations led to the various closed systems of equations described
above. Grad proposed an alternative closure that expresses the complete fourth momentRijkl in terms of lower moments,2,12,26

Rijkl = PijPkl + PikPjl + PilPjk − P̃ijP̃kl − P̃ikP̃kl − P̃ilP̃jl. (A1)

There is no explicit requirement that any of the moments be close to their equilibrium values.
Inserting (A1) into (18) gives a closed system of equations forρ, u, θ, P̃, andQ, known as the 20 moment equations since there

are 20 independent degrees of freedom. The more commonly used 13 moment equations result from a further approximation,

Qijk =
2
5

(qiδjk + qjδki + qkδij) , (A2)

that restricts the heat flow tensorQ to just three degrees of freedom. Equations (A1) and (A2) were motivated by orthogonality
relations among the tensor Hermite polynomials. They therefore hold exactly for the equilibrium Maxwell–Boltzmann distribu-
tion, for whichP

(0)
ij = ρθδij , Q

(0)
ijk = 0, andR

(0)
ij = 5ρθ2δij as used previously. All the constitutive relations derived in this

paper may thus be derived from Grad’s 13 or 20 moment equations, as well as directly from the unclosed equations of transfer
(16) and (18).
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