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Lattice Boltzmann equations for the isothermal Navier-Stokes equations have been constructed
systematically using a truncated moment expansion of the equilibrium distribution function from
continuum kinetic theory. Applied to the shallow water equations, with its different equation of
state, the same approach yields discrete equilibria that are subject to a grid scale computational
instability. Different and stable equilibria were previously constructed by Salmon [J. Marine Res.
57 p. 503]. The two sets of equilibria differ through a non-hydrodynamic or “ghost” mode that
has no direct effect on the hydrodynamic behavior derived in the slowly varying limit. However,
Salmon’s equilibria eliminate a coupling between hydrodynamic and ghost modes, one that leads
to instability with a growth rate increasing with wavenumber. Previous work has usually assumed
that truncated moment expansions lead to stable schemes. Such instabilities have implications for
lattice Boltzmann equations that simulate other non-ideal equations of state, or that simulate fully
compressible, non-isothermal fluids using additional particles.

PACS numbers: 47.11.+j 05.20.Dd 92.20.-h

I. INTRODUCTION

Methods based on lattice Boltzmann equations (LBE) are a promising alternative to conventional numerical meth-
ods for simulating fluid flows [1]. The lattice Boltzmann approach replaces the nonlinear differential equations of
macroscopic fluid dynamics with a simplified description modeled on the kinetic theory of gases. Hydrodynamic
behavior is recovered through the Chapman-Enskog expansion, which exploits a small mean free path approximation
to describe slowly varying solutions of the underlying kinetic equations. Lattice Boltzmann methods are straight-
forward to implement since they involve linear constant coefficient differential operators, and have proved especially
effective for simulating flows in complicated geometries and exploiting parallel computer architectures. For these
reasons, Salmon [2, 3] has advocated the use of lattice Boltzmann methods in oceanography, beginning with a lattice
Boltzmann formulation of the shallow water equations [2]. The shallow water equations, describing a thin layer of
incompressible fluid with a free surface, are commonly used as a prototype for studying phenomena like wave-vortex
interactions that are also present in more complicated systems [4, 5].

Although lattice Boltzmann equations for the isothermal Navier-Stokes equations were originally constructed em-
pirically as extensions of lattice gas automata [6] to continuous distribution functions [7, 8], it was eventually realized
that the most common LBE is equivalent to a systematic truncation of the continuum Boltzmann equation in velocity
space [9, 10]. This derivation is equivalent to a moment expansion of the continuum Maxwell-Boltzmann equilibrium
distribution in tensor Hermite polynomials [11].

However, when the same moment expansion is applied to the shallow water equations, it yields lattice Boltzmann
equations that differ from those devised by Salmon [2], and turn out to be rendered useless by an instability on
the scale of the computational grid, as illustrated in Fig. 1. The basis difficulty is that the constraints ensuring
that a particular lattice Boltzmann scheme reproduces, say, the isothermal Navier-Stokes equations, are insufficient to
determine a unique set of equilibrium distributions. In the common two dimensional, nine speed case the Navier-Stokes
or shallow water equations provide only eight independent constraints for the nine unknown equilibria. We find that
the remaining degree of freedom must be used to eliminate an instability associated with a non-hydrodynamic mode.
This instability is not analytically tractable with the eigenvalue techniques used previously [12, 13] on the fully discrete
system, so we prefer to treat the instability at the partial differential equation (PDE) level using the concept of non-
hydrodynamic or “ghost” variables introduced by Benzi et al. [14, 15]. A similar approach appeared independently
at about the same time by d’Humières [16]. The idea is to augment the evolution equations for the hydrodynamic
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FIG. 1: Growth of a density instability in a two dimensional shallow water lattice Boltzmann scheme using the Hermite
expansion Eq. (23). This is a slice along the line y = x. Instability eventually develops on the shortest permitted lengthscale
∆x, and then grows rapidly like exp(0.36t/∆t).

quantities (density, momentum, and stress) with additional equations to give a complete description of the lattice
Boltzmann equation, viewed as a PDE system. We then look for instabilities associated with non-hydrodynamic
behavior in these PDEs.

The existence of such instabilities has implications for using lattice Boltzmann equations with modified equilibria
to simulate other non-ideal equations of state [17], or to include additional physics like magnetic fields [18]. These two
previous treatments assumed that equilibria derived from a truncated Hermite expansion with the desired moments
would lead to a stable scheme. This work should also be relevant to lattice Boltzmann equations using moment
expansions with extra particle speeds for compressible, varying temperature fluids [19, 20, 21]. The extra speeds add
further undetermined degrees of freedom, even after the heat flux has been specified.

II. SHALLOW WATER EQUATIONS

The two dimensional shallow water equations are usually written as

∂tu + u · ∇u = −g∇ρ + ρ−1∇·S, ∂tρ +∇·(ρu) = 0, (1)

where u = (u, v) is the fluid velocity, ρ the free surface height, and the constant g the reduced gravity. Dissipative
effects are included via a deviatoric stress tensor S, whose precise form is discussed below. These equations describe a
thin layer of incompressible fluid with a free surface, and may be derived by integrating the three dimensional Navier-
Stokes equations in the vertical. We use ρ for the height, rather than h as is common in geophysical fluid dynamics,
to highlight the similarity with the Navier-Stokes equations. In fact, if Eqs. (1) are rewritten in conservative form,

∂t(ρu) +∇·(P I + ρuu− S) = 0, ∂tρ +∇·(ρu) = 0, (2)

P being the pressure, and I the identity matrix. It is also useful to define a momentum flux or stress tensor Π =
P I+ρuu−S. In this form, the shallow water equations become identical to the two dimensional compressible Navier-
Stokes equations for a fluid with equation of state P = 1

2gρ2 [22]. For subsequent flexibility we also consider the
general barotropic equation of state P = P (ρ), sometimes called “homentropic” [4] to avoid confusion with the usual
oceanographic sense of “barotropic” as meaning independent of depth. An isothermal gas, as simulated by the most
common lattice Boltzmann equations [1], has P = c2

sρ, with constant sound speed cs.
Some diffusive behavior is useful for numerical stability, even though the shallow water equations are normally

used to simulate nearly inviscid phenomena, and many applications in geophysical fluid dynamics use algebraic drag
terms like −ku (Rayleigh friction) instead of, or as well as, diffusive stresses [4, 5]. For an ideal monatomic gas,
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S = µ[∇u + (∇u)T − 2
3 I∇·u], where µ is the dynamic viscosity. Various different forms have been proposed for the

dissipative stress in the shallow water equations, as surveyed in [23], but references [23, 24] favor a two-dimensional
Newtonian viscous stress, S = µ[∇u+(∇u)T− 1

2 I∇·u]+ζI∇·u, albeit with bulk (ζ) and shear (µ) viscosities proportional
to the density ρ to ensure that the dissipation of kinetic energy 1

2ρ|u|2 is sign definite.

III. CONTINUUM KINETIC THEORY

Kinetic theory introduces a distribution function f(x, ξ, t), representing the probability density of particles at
position x moving with speed ξ at time t. Macroscopic variables such as fluid density ρ, velocity u, and momentum
flux Π are recovered from moments of the distribution function with respect to the microscopic particle velocity ξ,

ρ =
∫

fdξ, ρu =
∫

ξfdξ, Π =
∫

ξξfdξ. (3)

The compressible Navier-Stokes equations may be derived from the continuum Boltzmann-BGK equation,

∂tf + ξ · ∇f = −1
τ

(f − f (0)), (4)

in a slowly varying limit using the Chapman-Enskog perturbation expansion [25, 26, 27, 28, 29]. The computational
interest in kinetic theory is largely motivated by the linearity of the differential operator on the left hand side of
Eq. (4). On the right hand side of Eq. (4) we have used the Bhatnagar-Gross-Krook (BGK) approximation [30] to
Boltzmann’s original binary collision term, in which f relaxes towards an equilibrium distribution f (0) with a single
relaxation time τ . The Maxwell-Boltzmann equilibrium distribution in D spatial dimensions is

f (0) =
ρ

(2πΘ)D/2
exp

(
− (ξ − u)2

2Θ

)
, (5)

where ρ, u and Θ are the dimensionless macroscopic density, velocity, and temperature determined from f via Eq. (3)
and

ρΘ =
1
D

∫
|ξ − u|2fdξ =

1
D

TrΠ. (6)

We work in units in which the particle masses and Boltzmann’s constant are both unity, and velocities are scaled so
that the isothermal sound speed cs = Θ1/2.

Xu [31, 32] showed that the shallow water equations could also be cast into continuum kinetic form, using the
equilibrium distribution

f (0) =
ρ

(πgρ)D/2
exp

(
− (ξ − u)2

gρ

)
, (7)

or equivalently by setting Θ = 1
2gρ in Eq. (5). The ideal gas equation of state P = Θρ then coincides with the shallow

water equation of state P (ρ) = 1
2gρ2. Xu [31, 32] simulated the inviscid (µ = 0) shallow water equations using an

upwind finite volume scheme to solve Eqs. (4) and (7).
The “a priori” approach [9, 10, 17, 33] attempts to derive to lattice Boltzmann equations from systematic moment,

or small Mach number, expansions of the continuum equilibrium distributions such as Eq. (5). In this paper we try to
apply this approach to the equilibrium in Eq. (7) for the shallow water equations, and find that the resulting lattice
Boltzmann scheme is unstable.

IV. LATTICE BOLTZMANN HYDRODYNAMICS

The simplification leading to the lattice Boltzmann approach restricts the particle velocity ξ, previously a continuous
variable, to taking values in a discrete set {ξ0, ξ1, . . . , ξN}. The hydrodynamic quantities are now given by discrete
moments of the distribution functions fi(x, t) = f(x, ξi, t),

ρ =
N∑

i=0

fi, ρu =
N∑

i=0

ξifi, Π =
N∑

i=0

ξiξifi, (8)
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which evolve according to the lattice Boltzmann-BGK equation,

∂tfi + ξi · ∇fi = − 1
ετ

(fi − f
(0)
i ), for i = 0, . . . , N. (9)

The left hand side is a linear, constant coefficient differential operator obtained by replacing ξ with ξi in the continuum
Boltzmann-BGK equation (4). We include a formal small parameter ε to facilitate the derivation of continuum
equations in the limit of small mean free path (ε → 0).

The Chapman-Enskog expansion [25, 26, 27, 28] seeks asymptotic solutions of Eq. (9) in the limit ε → 0 by posing
a multiple scales expansion of both f and t, but not x, in powers of ε,

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · · , ∂t = ∂t0 + ε∂t1 + · · · . (10)

We may think of t0 and t1 as advective and diffusive (viscous) timescales respectively. We impose the two solvability
conditions

N∑

i=0

f
(n)
i =

N∑

i=0

ξif
(n)
i = 0, for n = 1, 2, . . . . (11)

Thus the higher order terms f (1), f (2), . . . do not contribute to the macroscopic density or momentum. These con-
straints, which reflect microscopic mass and momentum conservation under collisions, lead to evolution equations for
the macroscopic quantities.

A systematic treatment would substitute the expansions (10) into Eq. (9), collect terms at each order, and then
take moments. A briefer approach, more in the spirit of this paper, is to take moments of Eq. (9) first,

∂tρ +∇·(ρu) = 0, ∂t(ρu) +∇·
(
Π(0) + εΠ(1) + · · ·

)
= 0, (12)

where Π(n) =
∑N

i=0 ξiξif
(n)
i . The right hand sides vanish in Eq. (12), and ρ and u require no superscripts, by virtue

of the solvability conditions in Eq. (11). We evaluate Π(1) using the evolution equation for Π derived by applying∑N
i=0 ξiξi to Eq. (9),

∂tΠ +∇·
(

N∑

i=0

ξiξiξifi

)
= −1

τ
(Π−Π(0)). (13)

At leading order in ε this becomes

Π(1) = −τ

(
∂t0Π

(0) +∇·
N∑

i=0

ξiξiξif
(0)
i

)
. (14)

The multiple scales expansion of the time derivative in Eq. (10) enables us to replace ∂tΠ(0) by ∂t0Π
(0) to sufficient

accuracy. The latter may be expressed in terms of the known quantities ∂t0ρ and ∂t0(ρu),

∂t0Π
(0) = ∂t0(P (ρ)I + ρuu) = I

dP

dρ
∂t0ρ + u∂t0(ρu) + ∂t0(ρu)u− uu∂t0ρ, (15)

as evaluated in Appendix A. We find that Π(1) is a dissipative stress, equivalent to that in a Newtonian fluid, for
the isothermal Navier-Stokes equations, but Π(1) is not a Newtonian viscous stress for other barotropic equations of
state. The dynamic viscosity µ is related to the collision timescale τ in Eq. (9) via µ = τθρ,

Equation (9) is usually implemented computationally using the fully discrete system [1, 33]

f i(x + ξi∆t, t + ∆t)− f i(x, t) = − ∆t

τ + ∆t/2

(
f i(x, t)− f

(0)
i (x, t)

)
, (16)

where the f i are defined by

f i(x, t) = fi(x, t) +
∆t

2τ

(
fi(x, t)− f

(0)
i (x, t)

)
. (17)



5

The solvability conditions imply that this substitution leaves the density and momentum unchanged, so that

ρ =
N∑

i=0

f i, ρu =
N∑

i=0

ξif i, (18)

so the f
(0)
i may be computed directly from the f i, making the fi redundant. Equation (16) is algebraically identical

to a discrete form of (9) with second order accuracy, i.e. O(∆t2) error, obtained by integrating the right hand side
along characteristics for a time interval ∆t using the trapezium rule. The change of variables (17) yields an explicit
scheme, expressing f i at time t + ∆t explicitly in terms of quantities known at time t.

V. NINE SPEED EQUILIBRIA

The equilibria f
(0)
i and speeds ξi must be constructed to recover the desired continuum equations in the limit of

slow variations in x and t. In particular, the first few moments of the equilibria must be

N∑

i=0

f
(0)
i = ρ,

N∑

i=0

ξif
(0)
i = ρu, Π(0) =

N∑

i=0

ξiξif
(0)
i = P (ρ)I + ρuu, (19a)

making the leading order (ε = 0) equations (12) equivalent to the inviscid (µ = 0) continuum equations.
The most common lattice Boltzmann equations for simulating the two dimensional isothermal Navier-Stokes uses

nine particle speeds located on a square lattice [1], although earlier work employed six or seven particle speeds located
on a hexagon [6, 7, 12]. The equilibria are given by

f
(0)
i = wiρ

(
1 + 3ξi · u +

9
2
(ξi · u)2 − 3

2
u2

)
, (20)

in units where the (constant) temperature Θ = 1
3 , and the weight factors wi are [1, 8, 9]

wi =





4/9, i=0,

1/9, i=1,2,3,4,

1/36, i=5,6,7,8.

(21)

The components of the particle speeds ξi take integer values {−1, 0, 1}, forming a square lattice as shown in Fig. 2.
These distribution functions were originally constructed as polynomials in u whose coefficients are arbitrary functions
of ρ. The moments (19a) impose constraints on the coefficients, and the form of the viscous stress imposes further
constraints (see Appendix A). However, at least one coefficient remains arbitrary with nine speeds, and more with
13, 16, or 17 speeds [19].

More recently, a systematic derivation was proposed by He and Luo [9], based on the observation that the continuum
Maxwell-Boltzmann equilibrium (5) may be expanded as

f (0) = ρw(ξ)
(

1 +
ξ · u
Θ

+
(ξ · u)2

2Θ2
− u2

2Θ

)
+ O(u3), (22)

where w(ξ) = (2πΘ)−D/2 exp
(−ξ2/2Θ

)
. This was originally motivated as a small Mach number expansion, valid

for |u| ¿ |ξ|, but it is equivalent to a moment expansion in tensor Hermite polynomials. The equilibria (20) then
followed from Eq. (22) by replacing the continuum weight function w(ξ) by discrete weights wi obtained from a
two-dimensional Gaussian quadrature formula, chosen to make every discrete moment appearing in Sec. IV identical
in value to its continuum analogue in classical kinetic theory. The choice Θ = 1

3 causes the Gaussian quadrature
points in x and y to be the integers {−1, 0, 1}, and causes the polynomials in Eqs. (22) and (20) to coincide.

Applied to the shallow water equations, or to an arbitrary barotropic equation of state P (ρ), the same moment
expansion leads to the equilibria

f
(0)
i = wi

(
ρ +

1
θ
(ρu) · ξi +

1
2θ2

[(P (ρ)− θρ)I + ρuu] : (ξiξi − θI)
)

. (23)

We use a lower case θ to emphasize that θ = 1
3 is now a constant reference temperature, equivalent to a velocity scale

set by the particle speeds, rather than a local fluid temperature that may be spatially varying. Each term in Eq. (23)
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FIG. 2: The nine particle speeds �i in the 2D square lattice. We choose units in which |�1| = 1, and |�5| =
√

2.

involves one of the tensor Hermite polynomials 1, ξi, and ξiξi − θI, contracted with the required Hermite moment ρ,
ρu, and Π(0) − θρI = (P (ρ) − θρ)I + ρuu respectively. The tensor Hermite polynomials have the property of being
orthogonal with respect to both a discrete and a continuous inner product (see Sec. VI). Since the required Hermite
moments are already known, it is actually unnecessary to construct a continuum distribution function first, but
Eq. (5) with Θ = P (ρ)/ρ would suffice. The equilibria in Eq. (23) take a particularly simple form for the isothermal
Navier-Stokes equations, with P (ρ) = θρ, as the isotropic pressure term in square brackets [·] vanishes.

The same expansion (23) may also be obtained through a small Mach number expansion of Xu’s continuum distri-
bution function (7). As the density ρ appears in the exponent it is necessary to consider a nearly uniform density,
ρ = ρ0 + Ma2ρ′, as well as scaling u = O(Ma), to obtain

ρ

(πgρ)
exp

(
− (ξ − u)2

gρ

)
= ρ0w(ξ)

(
1 +

ξ · u
Θ

+
(ξ · u)2

2Θ2
− u2

2Θ
+

(ρ− ρ0)ξ2

2Θ

)
+ O(Ma3), (24)

where Θ = 1
2gρ0. Rearranging to replace ρ0 by ρ as the premultiplier, we may also obtain

ρ

(πgρ)
exp

(
− (ξ − u)2

gρ

)
= ρw(ξ)

(
1 +

ξ · u
Θ

+
(ξ · u)2

2Θ2
− u2

2Θ
+ (ρ− ρ0)

[
ξ2

2Θ
− 1

])
+ O(Ma3), (25)

which coincides with the moment expansion (23) above on substituting ξ = ξi and w(ξi) = wi. In fact, the assumption
that ρ = ρ0+O(Ma2) turns out to be unduly restrictive, and the lattice Boltzmann scheme below successfully simulates
flows with O(1) density fluctuations.

Unfortunately, the lattice Boltzmann equation for the shallow water equations (P = 1
2gρ2) with these equilibria

turns out to be linearly unstable to a rapidly growing zig-zag mode at the grid scale, rendering it useless for numerical
simulations. However, a stable and useful lattice Boltzmann formulation for shallow water has already been devised
by Salmon [2], that uses the alternative equilibria

f
(0)
0 = ρ + w0ρ

(
−15

8
gρ− 3

2
u2

)
, (26a)

f
(0)
i = wiρ

(
3
2
gρ + 3ξi · u +

9
2
(ξi · u)2 − 3

2
u2

)
, for i 6= 0, (26b)

where Salmon chose an otherwise arbitrary coefficient so that Eq. (26b) takes the same form for both |ξi| = 1 and
|ξi| =

√
2 types of particles (see Fig. 2).
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This casts doubt on the utility of the Hermite polynomial expansion at constructing equilibrium distribution func-
tions for systems other than the isothermal Navier-Stokes equations. In fact, Salmon’s equilibria (26a-b) may be
rewritten in the form

f
(0)
i = wi

(
ρ +

1
θ
(ρu) · ξi +

1
2θ2

[(P (ρ)− θρ)I + ρuu] : (ξiξi − θI)
)

+ wigi

(
1
4
ρ− 3

8
gρ2

)
, (27)

which differs from the truncated Hermite expansion (23) only through a multiple of the “ghost vector” gi =
(1,−2,−2,−2,−2, 4, 4, 4, 4)T. This vector is orthogonal in a discrete sense to the Hermite polynomials appearing
in Eqs. (23) and (27), so the modification to Eq. (27) leaves the continuity and momentum equations (12) unchanged
up to O(ε) in the Chapman-Enskog expansion. This particular choice for the otherwise arbitrary function F (ρ, |u|)
multiplying wigi is determined in Sec. VI below, in that it eliminates an instability due to cross-coupling to some
non-hydrodynamic “ghost modes” present in the lattice Boltzmann equation.

VI. NON-HYDRODYNAMIC GHOST VARIABLES

In principle the equilibrium distribution functions f
(0)
i for the nine particle speeds are nine independent arbitrary

functions. The constraints (19a) on the first three moments comprise only six independent constraints, since the
symmetric second rank tensor Π(0) has only three independent components in two dimensions. In this section we
develop a treatment of the remaining three degrees of freedom, later identified with non-hydrodynamic “ghost”
variables.

Ghost variables were introduced by Benzi et al. [14, 15] for an earlier form of lattice Boltzmann equation,

∂tfi + ξi · ∇fi = −1
τ

Ωij(fj − f
(0)
j ), for i = 0, . . . , N. (28)

where the 9 × 9 matrix Ωij was obtained by linearizing a quadratic collision operator of the kind used in lattice gas
cellular automata [6]. A similar treatment appeared about the same time by d’Humières [16]. Hydrodynamic and
ghost vectors arose naturally in both these treatments as eigenvectors of the collision matrix Ωij . The Bhatnagar-
Gross-Krook (BGK) approximation [30] used in Eqs. (4) and (9) takes Ωij = δij , so all departures from equilibrium
decay at the same rate. The BGK approximation is now almost universally employed, since it eliminates various
artifacts like a velocity-dependent pressure that plagued earlier models [1]. Any lattice vector is an eigenvector of
the BGK collision operator, making the choice of basis somewhat arbitrary. For instance, Lallemand and Luo [13],
following [16], used a different basis that is orthogonal with respect to the unweighted inner product 〈f, h〉 =

∑8
i=0 fihi

instead of the weighted inner product in Eq. (30). This basis leads to a rather unnatural equation for the normal
stress difference Πxx −Πyy in place of Eq. (35b).

The expressions (23) and (27) for the equilibria involve the first three tensor Hermite polynomials 1, ξ and ξξ− θI,
with coefficients depending on the hydrodynamic variables ρ and u. The components of the tensor Hermite polynomials
comprise the 6 polynomials 1, ξix, ξiy, ξi

2
x − θ, ξixξiy and ξi

2
y − θ, each of which may be regarded as a 9-dimensional

lattice vector, p say, with components (p0, p1, . . . , p8) corresponding to the polynomial evaluated at the lattice points
ξi. Written out in full, these vectors are

1i = (1, 1, 1, 1, 1, 1, 1, 1, 1)T, ξix = (0, 1, 0,−1, 0, 1,−1,−1, 1)T,

ξiy = (0, 0, 1, 0,−1, 1, 1,−1,−1)T, ξi
2
x − θ1i =

1
3
(−1, 2,−1, 2,−1, 2, 2, 2, 2)T, (29)

ξixξiy = (0, 0, 0, 0, 0, 1,−1, 1,−1)T, ξi
2
y − θ1i =

1
3
(−1,−1, 2,−1, 2, 2, 2, 2, 2)T.

These 6 lattice vectors are orthogonal with respect to the inner product defined by the weights wi. In other words,

〈p, q〉 =
8∑

i=0

wipiqi = 0 for p 6= q, (30)

where “p = q” means “pi = qi for i = 0, . . . , 8”. This is the discrete analogue of the continuous orthogonality relation
satisfied by the original polynomials,

∫
w(ξ)p(ξ)q(ξ)dξ = 0 for p 6= q, (31)
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where w(ξ) = (2πθ)−1 exp
(−ξ2/2θ

)
in two dimensions (D = 2) as in Sec. V. Equation (30) follows from Eq. (31)

using the two dimensional Gaussian quadrature formula

∫
w(ξ)p(ξ)q(ξ)dξ =

8∑

i=0

wip(ξi)q(ξi) =
8∑

i=0

wipiqi, (32)

provided the product p(ξ)q(ξ) is a polynomial of degree five or less in ξx and ξy [9, 33, 34]. It may be helpful to draw
an analogy with the trigonometric functions sin(nx) and cos(nx), as they also satisfy both discrete and continuous
orthogonality relations on the periodic interval [0, 2π].

The six orthogonal lattice vectors in Eqs. (29) may be extended to form an orthogonal basis for R9 with the addition
of three more vectors, conveniently expressed as gi, giξix, and giξiy, where

giξix = (0,−2, 0, 2, 0, 4,−4,−4, 4)T, giξiy = (0, 0,−2, 0, 2, 4, 4,−4,−4)T, (33)

gi = (1,−2,−2,−2,−2, 4, 4, 4, 4)T,

with gi as in Sec. V above. Associated with these three extra vectors are three extra moments, named “ghost variables”
by Benzi et al. [14, 15],

N =
8∑

i=0

gifi, J =
8∑

i=0

giξifi, (34)

by analogy with the hydrodynamic moments ρ, ρu and Π defined previously. The hydrodynamic equations

∂tρ +∇·(ρu) = 0, ∂t(ρu) +∇·Π = 0, (35a)

∂tΠ +∇·
(

8∑

i=0

ξiξiξifi

)
= −1

τ
(Π−Π(0)), (35b)

comprising six independent equations since Π is symmetric, may thus be augmented by three ghost component
equations,

∂tN +∇·J = −1
τ

(N −N (0)), ∂tJ +∇·
(

8∑

i=0

giξiξifi

)
= −1

τ
(J− J(0)), (36)

to give a complete description of the nine speed lattice Boltzmann equation (9). In other words, the nine quantities
fi may be reconstructed from the nine independent components of ρ, u, Π, N , and J as

fi = wi

(
ρ +

1
θ
(ρu) · ξi +

1
2θ2

(Π− θρI) : (ξiξi − θI)
)

+ wigi

(
1
4
N +

3
8
ξi · J

)
, (37)

and the lattice Boltzmann equation (9) may be reconstructed by combining the hydrodynamic equations (35a-b)
with the ghost variable equations (36). This procedure is thus equivalent to a linear change of variables in the
lattice Boltzmann equation, one chosen to separate the intended hydrodynamic behavior from unintentional “ghost”
behavior.

The most general equilibria with the required first three moments (19a) are therefore

f
(0)
i = wi

(
ρ +

1
θ
(ρu) · ξi +

1
2θ2

[ρuu + (P (ρ)− θρ)I] : (ξiξi − θI)
)

+ wigi

(
1
4
N (0) +

3
8
ξi · J(0)

)
, (38)

where N (0) and J(0) may be arbitrary scalar and vector functions respectively. The components of the tensors ξiξiξi

and giξiξi appearing in Eqs. (35b) and (36) may be expressed in terms of the nine basis lattice vectors as

giξixξix = 2
(
ξiyξiy − θ1i

)
+

2
3
gi, giξixξiy = 4ξixξiy, (39a)

ξixξixξix = ξix, ξixξixξiy =
1
3
ξiy +

1
6
giξiy, (39b)

and their permutations in x and y. Recall that we are using the term “lattice vector” to denote a collection of nine
values at the nine lattice points, so the xx component of a tensor, say, comprises a lattice vector labeled by the index i.
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The relations (39a-b) are responsible for cross-coupling between the hydrodynamic and ghost variables. In particular
J appears in the non-equilibrium stress via Eqs. (39b) and (35b),

∂tΠxx + ∂x(ρux) + ∂y

(
1
3
ρuy +

1
6
Jy

)
= −1

τ
(Πxx −Π(0)

xx ), (40a)

∂tΠxy + ∂x

(
1
3
ρuy +

1
6
Jy

)
+ ∂y

(
1
3
ρux +

1
6
Jx

)
= −1

τ
(Πxy −Π(0)

xy ), (40b)

(similarly for Πyy), which are equivalent to the components Eq. (13). Similarly, the second of Eqs. (36) becomes

∂tJx + ∂x

(
2Πyy − 2

3
ρ +

2
3
N

)
+ 4∂yΠxy = −1

τ
(Jx − J (0)

x ), (41a)

∂tJy + 4∂xΠxy + ∂y

(
2Πxx − 2

3
ρ +

2
3
N

)
= −1

τ
(Jy − J (0)

y ). (41b)

Although the nine speed lattice has sufficient symmetry to recover the isotropic Navier-Stokes equations at the first
two orders in the Chapman-Enskog expansion, these ghost equations are not themselves isotropic.

To summarise, the lattice Boltzmann equation (9) separates into the set of equations (35a, 40a-b, 36, 41a-b) for ρ,
ρu, Π, N and J respectively in the orthogonal basis given by Eqs. (29) and (33). The variables Π(0), N (0) and J(0)

appearing in Eqs. (40a-b, 36, 41a-b) are determined by the equilibrium distribution in Eq. (38). The leading order
stress Π(0) = P (ρ)I + ρuu is determined by the equation of state, but N (0) and J(0) remain arbitrary.

We must choose J(0) = 0 to avoid interfering with the leading order viscous stress Π(1) (see Appendix A below) via
the cross coupling in Eq. (39b) involving ξixξixξiy. Thus the leading order equation for the ghost variable J becomes

∇·
(

2ρu2
y 4ρuxuy

4ρuxuy 2ρu2
x

)
+ 2∇

(
P (ρ)− 1

3
ρ +

1
3
N (0)

)
= −1

τ
J(1), (42)

using Eq. (39a), by analogy with equation Eq. (14) for Π(1). However, N (0) so far remains arbitrary, and must be
determined by some criterion other than the form of the continuum equations at viscous order in the Chapman-Enskog
expansion, since N (0) does not appear in these equations.

VII. DENSITY-DRIVEN INSTABILITY MECHANISM

The first term in Eq. (42) is present in the usual lattice Boltzmann scheme for the isothermal Navier-Stokes
equations, as in [1, 8, 9, 10], and is found to be innocuous there as the scheme is stable even for high Reynolds
numbers (small viscosity). More concretely, the first term is O(Ma2) in the usual scaling where u = O(Ma). The
second, gradient term was not present in the isothermal Navier-Stokes case, since P = (1/3)ρ and N (0) = 0. Since
∇ρ may be O(1) in the shallow water equations, this term is also much larger than the first term. These observations
strongly suggests that this term is responsible for the observed instability, which is supported by the fact that Salmon’s
choice [2] for the undetermined function N (0) = ρ− (3/2)gρ2 = ρ− 3P (ρ) in Eq. (27) eliminates both this additional
term and the instability.

To illustrate the instability mechanism, we consider small perturbations about a rest state with uniform density.
Discarding the first term on the left hand side of Eq. (42), which is O(Ma2) smaller than the second term, we obtain

J(1) = −2τ∇
(

P (ρ)− 1
3
ρ +

1
3
N (0)

)
= −2τ∇Q(ρ), (43)

defining Q(ρ) as a convenient shorthand. Discarding terms involving ρu and ∂t0Π
(0) from Eqs. (40a-b), we find

Πxx = P (ρ) +
τ2

3
∂2Q

∂y2
, Πxy =

2τ2

3
∂2Q

∂xy
, Πyy = P (ρ) +

τ2

3
∂2Q

∂x2
. (44)

These simplifications are only intended to highlight the instability mechanism associated with the gradient term in
Eq. (42). As explained below, any quantitative treatment must recognize that the computational system is only a
discrete approximation to the PDE system.
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The continuity and momentum equations (35a) may be differentiated with respect to time, without further approx-
imation, to obtain

∂2ρ

∂t2
= −∂2(ρux)

∂x∂t
− ∂2(ρuy)

∂y∂t
=

∂2Πxx

∂x2
+ 2

∂2Πxy

∂x∂y
+

∂2Πyy

∂y2
= ∇2P (ρ) + 2τ2 ∂4Q(ρ)

∂x2∂y2
. (45)

If dQ/dρ > 0, this equation is linearly unstable to perturbations of the form ρ(x, y, t) = ρ0 + ρ′ exp(σt + ixkx + iyky)
about a uniform state with density ρ0. The growth rate σ is determined by

σ2 = −(k2
x + k2

y)
dP

dρ

∣∣∣
ρ=ρ0

+ 2τ2k2
xk2

y

dQ

dρ

∣∣∣
ρ=ρ0

. (46)

In fact, the equation is ill-posed when dQ/dρ > 0, because the growth rate increases faster than linearly with
wavenumber, |σ| ∝ |k|2. If dQ/dρ < 0 the Q term only leads to high frequency oscillations, i.e. σ purely imaginary,
with frequency proportional to kxky, rather than frequency proportional to |k| like the sound waves associated with
the pressure term in Eq. (46). This is the case for the equilibria based on a Hermite expansion for the shallow water
equations, where Q(ρ) = − 1

3ρ + 1
2gρ2, and dQ/dρ = − 1

3 + O(Ma2/Fr2) is typically negative. However, it is easy
to suppose that the discrete system would in turn be unstable for such high frequency waves, based on a Courant-
Friedrichs-Lewy stability criterion, so high frequency waves in the PDEs would in fact appear as growing modes in
the discrete system.

The scaling |σ| ∝ |k|2 explains why numerical simulations exhibit an instability on the scale of the computational
grid, since this analysis predicts that the fastest growing mode is the shortest mode permitted, although strictly
the description of the discrete computational system as a set of partial differential equations breaks down at these
scales. The instability associated with Q is only present if both kx and ky are nonzero, which explains why the one
dimensional version of the Hermite expansion shallow water lattice Boltzmann scheme is stable.

VIII. EIGENVALUE PROBLEM

For a quantitative treatment of the instability, we consider an eigenvalue problem as in [12, 13, 35] for the the
linearized response of the fully discrete system (16) to plane waves of the form

f i(x, t) = f
(0)
i

∣∣∣
ρ=ρ0,u=0

+ hi exp(ik · x + σt), (47)

where the hi are small constants. We have linearized around a uniform rest state with ρ = ρ0 and u = 0 for simplicity.
In this section we use lattice units in which ∆x = ∆t = 1. The continuum limit then corresponds to |k| → 0, for
which presumably σ → 0 too. Substituting into Eq. (16) we obtain

[exp(σ + ik · ξi)− 1]hi = − 1
τ + 1/2

Lijhj , (48)

which is an eigenvalue problem for eσ, with hi the associated eigenvector. The 9 × 9 matrix Lij is the result of
linearizing the BGK collision operator f i − f

(0)
i around the rest state (ρ = ρ0,u = 0), recalling that f

(0)
i depends

implicitly and nonlinearly on the f i via ρ and u. In general the eigenvalue problem is not analytically tractable,
involving a ninth degree polynomial that does not readily factorize, and has to be solved numerically, for instance by
QR iteration [36]. The parameter space is also rather large, involving at least the wavevector k, the relaxation time τ
(equivalent to the viscosity), the derivative of pressure dP/dρ evaluated at the background density ρ0, and also dQ/dρ
at ρ = ρ0 (or equivalently the parameter λ from Appendix B). In principle we should also consider background states
with a non-zero uniform velocity u0 as well, adding another two parameters. The vectors k and u0 must be kept as
general vectors because the ghost equations are anisotropic.

In the continuum limit, where k and σ are both small, and τ is large (compared with the timestep ∆t) the eigenvalues
of the discrete system (48) should coincide with the analogous eigenvalues of the lattice Boltzmann PDE system (9),

(σ + ik · ξi)hi = −1
τ

Lijhj . (49)

Figures 3 and 4 show the real parts of the eigenvalues of both discrete and continuum systems as functions of
kx = ky (recall that instability only occurs for kxky 6= 0) for the parameters τ = 1, P = 0, Q = − 1

3ρ (Fig. 3)
and Q = + 1

3ρ (Fig. 4). Three eigenvalues vanish in the long wave (k → 0) limit, for both the discrete and the
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FIG. 3: Eigenvalues of the systems (48) and (49) for kx = ky, and parameters τ = 1, P = 0, and Q = − 1
3
ρ (as in the Hermite

expansion). All modes are stable (Re σ ≤ 0) in both the continuum (—) and discrete (•) systems.
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FIG. 4: Eigenvalues of the systems (48) and (49) for kx = ky, and parameters τ = 1, P = 0, Q = 1
3
ρ. One mode is unstable

(Re σ > 0) in both the continuum (—) and discrete (•) systems.

continuous systems, corresponding to conservation of density and the two components of momentum under collisions.
The remaining six eigenvalues emerge from −1/τ in the continuous system (49), and from log |(1 − 2τ)/(1 + 2τ)| in
the discrete system (48). Instability, meaning an eigenvalue with positive real part, only occurs for dQ/dρ > 0, as
predicted by the analysis above, and shown in Fig. 4. For dQ/dρ < 0, which includes the Hermite expansion with
dQ/dρ ≈ − 1

3 , only stable oscillations occur (Fig. 3), again in agreement with the above analysis in Sec. VII.
However, lattice Boltzmann schemes are typically used in parameter regimes were τ < 1

2 in lattice units. They attain
low net diffusivities, or high Reynolds numbers, through an almost exact cancellation between negative diffusion, from
the O(∆x) spatial truncation error, and positive diffusion from collisions. In this instance, instability does arise for
dQ/dρ < 0 as shown in Fig. 5, but only for wavevectors k large enough that the behavior of the discrete system is no
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FIG. 5: Eigenvalues of the systems (48) and (49) for kx = ky, and parameters τ = 0.2, P = 0, Q = − 1
3
ρ (as in the Hermite

expansion). One mode becomes unstable (Re σ > 0) in the discrete (•) system, even though all continuum (—) modes remain
stable. For this smaller valuer of τ the other six continuum modes have Re σ ≈ −5, and so are off the bottom of the figure.

longer close to the continuum system. Thus the continuum analysis of Sec. VII serves only to identify a mechanism, and
the criterion Q = 0 to eliminate the instability. We believe this approach is more illuminating than a computational
search for unstable eigenvalues in a five or larger dimensional parameter space.

IX. CONCLUSION

The most common two dimensional lattice Boltzmann scheme uses nine particle speeds arranged on a square
lattice as in Fig. 2. Simulating the viscous compressible Navier-Stokes, shallow water, or general barotropic fluid,
equations imposes only eight constraints on the equilibrium distribution functions. In this paper we have explored an
instability associated with the remaining single degree of freedom, identified with a non-hydrodynamic “ghost” mode.
Eliminating this instability provides one more constraint, Q = 0 in Eq. (43), and so serves to determine the unique
set of equilibria that yield a usable computational scheme. With respect to understanding the instability mechanism,
and a criterion for removing it, the approximate analytical treatment in Sec. VII is more useful than the numerical
solution of eigenvalue problems in Sec. VIII.

The equilibrium distribution functions given by a truncated expansion in tensor Hermite polynomials [11], as
advocated by the “a priori” approach [9, 10, 17, 33], coincide with those determined by the ghost mode stability
condition for the isothermal Navier-Stokes equations. For general equations of state the Hermite polynomial expansion
leads to unstable schemes, and must be modified in the fashion described above. We are unable to offer an explanation
of why the Hermite expansion happens to work for the isothermal Navier-Stokes equations.

This scheme may be used for non-ideal barotropic equations of state other than the shallow water equations, provided
the pressure P (ρ) appears in the Hermite expansion as above, and the function N (0)(ρ) is chosen to eliminate the
density gradient term in Eq. (42). The Enskog equation, an extension of the Boltzman equation to dense (non-dilute)
gases studied recently by Luo [17], yields a barotropic equation of state P = θρ(1+bgρ) for small density fluctuations,
where the virial coefficients b and g have been calculated as perturbation series in ρ [26, 28]. Our approach offers an
alternative lattice Boltzmann formulation to Luo’s [17] for gases described by the Enskog equation, and one that does
not require a density gradient computed by finite difference approximation, which in turn complicates the treatment
of boundaries. On the other hand, our approach gives a viscous stress that is not quite Newtonian, as calculated in
Appendix A, but the deviation will be small for nearly ideal gases.

Returning to geophysical applications, we have used this scheme to simulate Bühler’s modified shallow water
equations [37] with P = −1/(2ρ2). This equation of state has the property of allowing steadily propagating one
dimensional simple waves with smooth profiles in the absence of viscosity, while being equivalent to the conventional
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shallow water equations for small amplitude (linear) waves. This modification suppresses the formation of shocks, that
are often an unnecessary nuisance when the shallow water equations are used as a prototype for the meteorological
primitive equations, say, that do not form shocks.

Other recent work has tried to extend the lattice Boltzmann approach to finite Mach number and non-isothermal
flows with a correct internal energy equation. Different approaches using differing equilibria and numbers of particle
speeds have met with varying degrees of success and stability at finite Mach numbers [19, 20, 21]. Again, the
constraints needed to derive the viscous, thermally conducting Navier-Stokes-Fourier equations do not determine a
unique set of equilibria [19].

Finally, it is interesting to note (see Appendix B for details) that the shallow water equations provide a counterex-
ample to the arguments in [38] for the stability of lattice Boltzmann schemes where separate particle distribution
functions are restricted to be either always positive or always negative, and for the instability of schemes in which
distribution functions change sign. The equilibria necessary for a stable shallow water scheme, those that eliminate
the ghost mode instability, turn out to be precisely those that most encourage distribution functions to change sign.
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APPENDIX A: THE DISSIPATIVE STRESS

Equation (14) expresses the dissipative stress Π(1) that appeared in Sec. IV in terms of
∑

i ξiξiξif
(0)
i , and the

known quantities ∂t0ρ and ∂t0(ρu). In this appendix we compute Π(1) for a general barotropic equation of state P (ρ).
In continuum kinetic theory the third tensor Hermite moment is independent of the lower moments [11, 27], but in
the two dimensional, nine speed discrete system

∑
i ξiξiξif

(0)
i is determined completely by the vectors J(0) and ρu

via Eqs. (39a-b). For f
(0)
i given by Eq. (38) with J(0) = 0, and N (0) arbitrary,

8∑

i=0

ξiαξiβξiγf
(0)
i = θρ(uαδβγ + uβδγα + uγδαβ). (A1)

We follow [1] in using Greek indices for vector components, as Roman indices have been used to label the discrete
velocity vectors ξi. Using Eq. (15), the other term ∂t0Π

(0) contributing to the dissipative stress is

∂t0Π
(0)
αβ = −

(
dP

dρ
δαβ − uαuβ

)
∇·(ρu)− uα

(
dP

dρ

∂ρ

∂xβ
+

∂

∂γ
(ρuβuγ)

)
− uβ

(
dP

dρ

∂ρ

∂xα
+

∂

∂γ
(ρuαuγ)

)
,

= −dP

dρ

(
δαβ∇·(ρu) + uα

∂ρ

∂xβ
+ uβ

∂ρ

∂xα

)
− ∂

∂γ
(ρuαuβuγ). (A2)

The total dissipative stress is therefore

Π(1)
αβ = −τ

[
θρ

(
∂uα

∂xβ
+

∂uβ

∂xα

)
+

(
θ − dP

dρ

)(
δαβ∇·(ρu) + uα

∂ρ

∂xβ
+ uβ

∂ρ

∂xα

)
− ∂

∂γ
(ρuαuβuγ)

]
, (A3)

where the first term is the usual Navier-Stokes viscous stress, with shear viscosity µ = τθρ, and bulk viscosity 2
3µ

[22, 35]. For non-zero J(0), Eq. (A3) becomes

Π(1) = Π(1)
∣∣∣
J(0)=0

− τ

6

(
∂yJ

(0)
y ∂xJ

(0)
y + ∂yJ

(0)
x

∂xJ
(0)
y + ∂yJ

(0)
x ∂xJ

(0)
x

)
, (A4)

using Eqs. (40a-b). Thus J(0) must vanish to recover the correct continuum behavior, as asserted in Sec. VI, but N (0)

remains undetermined.
The final term ∇·(ρuuu) in Eq. (A3) is O(Ma3) in the usual lattice Boltzmann scalings, so it is usually negligible in

comparison with the other terms. It may be eliminated by modifying the equilibrium distribution f
(0)
i to add a term

ρuαuβuγ to Eq. (A1), but this requires a larger lattice with 13 or more particle speeds instead of nine [19, 20, 21].
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The second term in Eq. (A3), proportional to (θ − dP/dρ), vanishes for the isothermal Navier-Stokes case, where
P = θρ, owing to an exact cancellation of the density gradient between the two terms in Eq. (14). Thus the
lattice Boltzmann equation for the isothermal Navier-Stokes correctly simulates a Newtonian fluid, with a viscous
stress proportional to the symmetric part of the velocity gradient [35]. For the shallow water equations, P = 1

2gρ2,
this lattice Boltzmann treatment yields a dissipative stress involving the momentum gradient, plus corrections of
O(Ma2/Fr2). This distinction is particularly significant for the shallow water equations, where density gradients may
be O(1), rather than only O(Ma2) in the weakly compressible Navier-Stokes equations. The dissipation takes the
form [2]

∇·Π(1) = −τθ
[∇2(ρu) + 2∇∇·(ρu) + O(Ma2/Fr2)

]
, (A5)

where the Froude number Fr = u/
√

gρ is the ratio of the fluid speed to the surface gravity wave speed. The O(Ma2/Fr2)
term is due to the time derivative ∂t0Π

(0), and may be made arbitrarily smaller than the other two terms by taking
the Mach number to be sufficiently small, equivalent to taking sufficiently small timesteps. This form of dissipation is
somewhat unsatisfactory in principle because it is not Galilean invariant, and the resulting “dissipation” of the total
energy density 1

2ρ|u|2 + 1
2gρ2 is in fact not sign definite. However, by being the divergence of a symmetric tensor

this form of dissipation is at least momentum and angular momentum conserving, and so is preferable to just ∇2(ρu)
as used in some previous ocean models, according to the criteria in [23]. In particular, [23] found that asymmetric
viscous stress tensors could generate spurious vorticity, and by amounts that did not vanish with increasing spatial
resolution.

A Newtonian viscous stress could be obtained by modifying the equilibria f
(0)
i to make the third moment in Eq. (A1)

equal to P (ρ)(uαδβγ + uβδγα + uγδαβ), equivalent to replacing what was the isothermal pressure ρθ by the correct
pressure P (ρ). This change would require 13 or more particle speeds instead of nine speeds [20]. Equation (A3) would
then give a Newtonian viscous stress with dynamic viscosity µ = P (ρ)τ . The collision rate τ may be made a function
of ρ, for example τ ∝ 1/P (ρ) gives a spatially uniform dynamic viscosity [33]. For shallow water, τ ∝ 1/ρ gives µ ∝ ρ
as recommended by [23, 24] for a sign definite energy dissipation.

APPENDIX B: DISTRIBUTION FUNCTION SIGNS

A possible alternative argument for choosing the equilibria Eq. (27) in preference to Eq. (23) is that all nine f
(0)
i

in Eq. (27) are positive in a rest state with u = 0. If we consider the more general form

f
(0)
i = wi

(
ρ +

1
θ
(ρu) · ξi +

1
2θ2

[(P (ρ)− θρ)I + ρuu] : (ξiξi − θI)
)

+ wigiλ

(
1
4
ρ− 3

8
gρ2

)
, (B1)

with an adjustable parameter λ, the equilibrium distributions at rest are

f
(0)
0 =

8 + λ

9
ρ− 4 + λ

6
gρ2, f

(0)
1234 =

1− λ

18
ρ +

1 + λ

12
gρ2, f

(0)
5678 =

λ− 1
36

ρ +
2− λ

24
gρ2. (B2)

Since gρ = O(|u|2) = O(Ma2) ¿ 1 in our scalings, λ = 1 is the unique choice that makes all the f
(0)
i positive in the

small Mach number limit. This has been presumed to be beneficial for stability [38]. However, for λ = 1 and i 6= 0
the f

(0)
i take the form f

(0)
i = 3wi ξi · u + O(Ma2). The first term is typically the larger in magnitude, being O(Ma)

rather than O(Ma2), and is equally likely to be either positive or negative. The equilibria in Eqs. (26a-b) are thus of
indefinite sign, except for rest states with u = 0.
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