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Abstract. The two-relaxation-time collision operator in discrete kinetic the-
ory models collisions between particles by grouping them into pairs with anti-

parallel velocities. It prescribes a linear relaxation towards equilibrium with

one rate for the even combination of distribution functions for each pair, and
another rate for the odd combination. We reformulate this collision operator

using relaxation rates for the forward-propagating and backward-propagating
combinations instead. An optimal pair of relaxation rates sets the forward-

propagating combination of each pair of distributions to equilibrium. Only the

backward-propagating non-equilibrium distributions remain. Applying this re-
sult twice gives closed discrete equations for evolving the macroscopic variables

alone across three time levels. We split the equivalent equations into a first-

order system: a conservation law and a kinetic equation for the flux. All
other quantities are evaluated at equilibrium. We apply this formalism to the

magnetic field in a lattice Boltzmann scheme for magnetohydrodynamics. The

antisymmetric part of the kinetic equation matches the Maxwell–Faraday equa-
tion and Ohm’s law. The symmetric part matches the hyperbolic divergence

cleaning model. The discrete divergence of the magnetic field remains zero, to

within round-off error, when the initial magnetic field is the discrete curl of a
vector potential. We have thus constructed a mimetic or constrained transport

scheme for magnetohydrodynamics.

1. Introduction. The lattice Boltzmann approach to simulating hydrodynamics
represents the macroscopic variables, the fluid density and velocity, as moments
of a set of distribution functions. These evolve according to a discrete velocity
Boltzmann equation, such as (4) below. This is a linear, constant-coefficient hyper-
bolic system with algebraic terms representing a linear relaxation of the distribution
functions towards some equilibrium values. The only nonlinearity in the system is
through the dependence of these equilibrium values on the original macroscopic vari-
ables, as in (8) below. This simplicity comes at the price of enlarging the number
of degrees of freedom. For example, the two-dimensional isothermal Navier–Stokes
equations require three degrees of freedom per grid point, the fluid density and two
components of velocity. The standard lattice Boltzmann scheme for these equations
requires nine degrees of freedom per grid point [7, 36, 41].

Ginzburg and colleagues [16, 20, 21, 22, 24, 25, 26, 27] have extensively studied
a particular form of relaxation towards equilibrium called the two-relaxation-time
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(TRT) collision operator. This operator groups the discrete velocities into anti-
parallel pairs. It prescribes one relaxation rate for the even combination of dis-
tribution functions for the two anti-parallel velocities, and another relaxation rate
for the odd combination. One particular “magic” relation between these two relax-
ation rates places the point of zero tangential velocity precisely halfway between
grid points in simulations of axis-aligned Poiseuille flow with bounce-back boundary
conditions [23, 24, 27]. A different “optimal” relation between the relaxation rates
enabled Ginzburg [21, 22] to derive a closed macroscopic finite difference scheme for
the mass density alone from a lattice Boltzmann scheme for an advection-diffusion
equation. This finite difference scheme evolves the mass density across three time
levels, and reduces to the Du Fort–Frankel scheme for the diffusion equation [17].
This derivation holds much more generally than the transformations connecting spe-
cific one-dimensional, two-velocity kinetic models and the Du Fort–Frankel scheme
[1, 10, 14]. Conversely, Fuč́ık & Straka [19] and Bellotti et al. [3] have recently
introduced algorithms to construct equivalent macroscopic finite difference schemes
across multiple time levels for any lattice Boltzmann equation. The first construc-
tion needs up to q + 1 time levels for a lattice Boltzmann equation with q discrete
velocities [19]. The second construction needs up to q + 1 − n time levels for a
lattice Boltzmann equation with q discrete velocities and n conserved moments [3].
Bellotti et al. [3] have used a special case of their algorithm to construct finite
difference schemes across three time levels from lattice Boltzmann equations with
optimal TRT collision operators.

In this work we re-interpret the TRT collision operator as prescribing different re-
laxation rates for the forward-propagating and backward-propagating parts of each
pair of distribution functions with anti-parallel velocities. The optimal combination
of relaxation rates then sets the forward-propagating part to equilibrium. By con-
sidering two successive timesteps of this lattice Boltzmann equation, we can derive a
closed macroscopic finite difference scheme across three time levels for any moment
of the distributions, generalising Ginzburg’s results [21, 22]. Moreover, we argue
that the macroscopic finite difference scheme is best interpreted as a discretisation
of a first order system. One half of this system is a conservation law of the expected
kind, and the other is a separate evolution equation for the flux in the conservation
law. The latter contains no further kinetic degrees of freedom.

We apply this interpretation to a lattice Boltzmann formulation for evolving the
magnetic field in resistive magnetohydrodynamics (MHD). The MHD equations
provide a fluid description of materials containing two or more species of differ-
ent charges, such as electrolytes, liquid metals, and plasmas [8]. The magnetic field
evolves according to Maxwell’s equations, which in particular require the divergence
of the magnetic field to vanish. This property is often not satisfied in numerical
simulations, or only satisfied to within the spatial truncation error, which can cause
artifacts in solutions [5, 52]. We will show that our closed macroscopic finite differ-
ence scheme for the magnetic field implies another closed finite difference scheme
for evolving a particular finite difference approximation of the divergence of the
magnetic field. This discrete divergence obeys a discrete analog of the telegraph
equation, so our formulation implements an extended set of Maxwell’s equations
that support hyperbolic divergence cleaning [2, 9, 15, 43]. Moreover, the discrete
divergence remains zero, to within floating point round-off error, if it is zero ini-
tially. Our scheme thus qualifies as a mimetic finite difference scheme [33, 37, 43],
or equivalently as a constrained transport scheme for the magnetic field [18, 52].
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2. Kinetic formulation for magnetohydrodynamics. The magnetic field in
an electrically conducting fluid evolves according to a combination of the Maxwell–
Faraday equation and Ohm’s law [8]

∂tB +∇×E = 0, E + u×B = ηJ, (1)

where E and B are the electric and magnetic fields, u the fluid velocity, and η
the resistivity (assumed to be constant). Evolution under these equations preserves
∇·B = 0, provided it holds initially, because ∇·(∇×E) ≡ 0 for all vector fields E.

The equations for compressible resistive magnetohydrodynamics with an isother-
mal equation of state are thus

∂tρ+∇·(ρu) = 0, (2a)

∂t(ρu) +∇·(ρuu + ρθI) = J×B +∇·(µS), (2b)

∂tB = ∇×(u×B− ηJ), (2c)

where ρ is the fluid density, J the electric current, S = (∇u)+(∇u)T the symmetric
strain rate tensor, I the identity tensor, θ the temperature in energy units, and µ
the dynamic viscosity. The electric current is J = ∇×B, in suitable electromagnetic
units, under the non-relativistic approximation that holds when the fluid velocity
|u| is much smaller than the speed of light c. See Sec. 7.1 for details. The magnetic
field exerts a Lorentz force J×B on the fluid, and is in turn advected by, and diffuses
through, the fluid according to the induction equation (2c).

2.1. Hydrodynamics. We represent the density and momentum equations using a
standard hydrodynamic lattice Boltzmann formulation [7, 36, 41]. The fluid density,
momentum and momentum flux Π are given by moments of a set of N scalar
distribution functions fk with associated discrete velocities ξk for k = 0, . . . , N − 1,

ρ =
N−1∑

k=0

fk, ρu =
N−1∑

k=0

ξkfk, Π =
N−1∑

k=0

ξkξkfk. (3)

The fk are postulated to evolve according to the discrete velocity Boltzmann equa-
tion

∂tfk + ξk · ∇fk = −1

τ

(
fk − f (0)k

)
. (4)

The single-relaxation-time collision operator on the right-hand side relaxes the fk
towards some equilibria f

(0)
k that are prescribed functions of the macroscopic vari-

ables ρ, u and B. Taking moments of (4) gives the mass conservation equation (2a)
and a momentum conservation equation in the form

∂t(ρu) +∇·Π = 0. (5)

The right-hand sides of (2a) and (5) vanish because the construction of the f
(0)
k from

the fk ensures that the collision operator on the right-hand side of (4) conserves
mass and momentum,

N−1∑

k=0

f
(0)
k =

N−1∑

k=0

fk,

N−1∑

k=0

ξkf
(0)
k =

N−1∑

k=0

ξkfk. (6)

The momentum equation (2b) can be rewritten in the conservation form (5) with

Π = Π(0) − µS for the equilibrium momentum flux

Π(0) = ρuu + ρθI + 1
2 |B|2 I−BB. (7)
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We have used ∇·B = 0 to write the Lorentz force J×B = (∇×B)×B as the
divergence of a Maxwell stress with an isotropic magnetic pressure 1

2 |B|2 and a
magnetic tension BB along field lines. The equilibrium distributions are thus [11,
41]

f
(0)
k = wk

(
ρ+

1

θ
ρu · ξk +

1

2θ2
ξk · Π̂(0) · ξk −

1

2θ
Tr Π̂(0)

)
, (8)

where Π̂(0) = Π(0) − ρθI is the equilibrium momentum flux minus the fluid pres-
sure, and the wk are quadrature weights associated with the velocities ξk. The
temperature θ is a constant defined by the isotropy condition

N−1∑

k=0

wkξkξk = θI. (9)

Seeking slowly varying solutions of (4) via a Chapman–Enskog expansion is

equivalent to expanding Π = Π(0) + Π(1) + · · · while leaving ρ, u and B un-

expanded. The leading order term Π(0) gives the momentum equation for ideal

magnetohydrodynamics. The first correction Π(1) = −µS is a Newtonian viscous
stress with dynamic viscosity µ = τρθ, to within an error that can be neglected
when the fluid velocity u and Alfvén velocity Bρ−1/2 are both much smaller than
the sound speed θ1/2 [11, 32, 42].

2.2. Magnetic field. We can rewrite the Faraday–Maxwell equation (1) for evolv-
ing B as

∂tB +∇·Λ = 0, (10)

where Λ is a rank-2 tensor. The two are exactly equivalent if Λαβ = −εαβγEγ is
antisymmetric, but we will need to accommodate the symmetric part of Λ in our
kinetic formulation. Equation (10) resembles the momentum equation (5), but the
momentum flux tensor Π defined in (3) is symmetric by construction, while Λ is
not. We therefore cannot represent B using scalar distribution functions [11].

Instead, we introduce a set of M vector-valued distribution functions gk such
that

B =
M−1∑

k=0

gk, Λ =
M−1∑

k=0

ξkgk. (11)

These functions are postulated to evolve according to [11]

∂tgk + ξk · ∇gk = − 1

τM

(
gk − g

(0)
k

)
, (12)

where again we use a collision operator with a single relaxation time τM on the
right-hand side for simplicity. The equilibrium distributions are [11]

g
(0)
k = Wk

(
B + Θ−1ξk ·Λ(0)

)
, with Λ(0) = u B−B u. (13)

Taking the zeroth moment of (12) thus gives (10), because the g
(0)
k are constructed

so that collisions conserve the magnetic field B. The first moment of (12) gives

∂tΛ +∇·M = − 1

τM

(
Λ−Λ(0)

)
, where M =

M−1∑

k=0

ξkξkgk. (14)
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The number of discrete velocities M , weights Wk, and lattice constant Θ defined
by the isotropy condition

M−1∑

k=0

Wkξkξk = ΘI, (15)

can all be different from those used in the hydrodynamic formulation above. In
principle, the set of discrete velocities can be completely different too.

Seeking slowly varying solutions of (12) via a Chapman–Enskog expansion is

equivalent to expanding Λ = Λ(0) + Λ(1) + · · · and M = M + M(1) + · · · while
leaving ρ, u and B unexpanded. The leading order term from (13) gives the ideal

MHD induction equation, while the first correction Λ(1) = −τMΘ∇B gives the
resistive MHD induction equation with constant resistivity η = τMΘ in the form

∂tB +∇·(u B−B u) = η∇2B. (16)

This equation can be rewritten as

∂tB = ∇×(u×B− η∇×B) + η∇(∇·B), (17)

where the first term on the right-hand side matches (2c) above. The two equations
exactly coincide if ∇·B = 0, but (17) also includes a parabolic divergence cleaning
term [9, 15]. Taking the divergence of (17) gives a diffusion equation for ∇·B,

∂t(∇·B) = η∇2(∇·B), (18)

in contrast to the Faraday–Maxwell equation that implies ∂t(∇·B) = 0. This is
discussed in Sec. 7.2.

2.3. Coupling. The hydrodynamic and magnetic parts are coupled only through
the macroscopic variables u and B that appear in both sets of equilibrium distribu-
tions. This is a modular formulation that easily acccommodates changes to either
part. By contrast, an earlier lattice Boltzmann formulation for magnetohydrody-
namics used one set of tensorial distribution functions fjk to represent both u and
B [40]. We can use different sets of discrete velocities for the hydrodynamic and
magnetic parts. A popular choice in two dimensions use the D2Q9 lattice for the
fk and two copies of the D2Q5 lattice for the two components of the vectors gk, as
illustrated in Fig. 1. The corresponding weights are [11, 41]

w0 = 4/9, w1,2,3,4 = 1/9, w6,7,8,9 = 1/36, W0 = 1/3, W1,2,3,4 = 1/6. (19)

The lattice constants defined by (9) and (15) are then equal, θ = Θ = 1/3.

3. Two-relaxation-time magnetic collision operator. We now consider a gen-
eralisation of the single-relaxation-time collision operator in the kinetic equation
(12) for the gk. The two-relaxation-time or TRT collision operator groups the dis-
crete velocities into anti-parallel pairs ξk and ξk = −ξk [16, 20, 21, 22, 24, 25, 26, 27].

This relation defines k as a function of k. The anti-parallel pairs are called “links”,
or “dumbbells” in the context of lattice gas collision operators [46]. The TRT colli-
sion operator applies different relaxation times τo and τe to the odd and even parts
of the distribution functions, as defined by the decomposition

gk =
1

2

(
gk + gk

)
+

1

2

(
gk − gk

)
=
(
gk
)
even

+
(
gk
)
odd

. (20)
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Figure 1. The nine velocities ξ0, . . . , ξ8 form the D2Q9 lattice
used for the fk. The five velocities ξ0, . . . , ξ4 (thicker lines) form
the D2Q5 lattice used for the components of the gk.

This is equivalent to applying the odd relaxation time τo to the odd moment Λ,
and the even relaxation time τe to the even moment M. The evolution equation for
the gk thus becomes

∂tgk + ξk · ∇gk = − 1

τe

(
gk − g

(0)
k

)
even
− 1

τo

(
gk − g

(0)
k

)
odd

. (21)

Discretising (21) in space and time using either Strang splitting [13, 49] or an
integration along characteristics using the trapezium rule followed by a change of
variables [12, 30] leads to the discrete evolution equation

g̃k(x + ξk∆t, t+ ∆t) = g̃k(x, t)− ωe

(
g̃k(x, t)− g

(0)
k (x, t)

)
even

− ωo

(
g̃k(x, t)− g

(0)
k (x, t)

)
odd

,
(22)

for the transformed variables

g̃k = gk +
∆t

2τe

(
gk − g

(0)
k

)
even

+
∆t

2τo

(
gk − g

(0)
k

)
odd

. (23)

The even and odd discrete relaxation rates include the Hénon [31] correction of the
relaxation times from τe,o to τe,o + ∆t/2 that arises from discretising (21),

ωe =
∆t

τe + ∆t/2
, ωo =

∆t

τo + ∆t/2
. (24)

The discrete evolution under (22) of the transformed variables approximates the
continuous evolution under (21) with second-order accuracy in ∆t. The trans-
formation (23) is equivalent to the application of collisions for half a timestep to
create a symmetric Strang splitting between advection and collisions [13, 49]. We
can rewrite (22) more simply as

g̃k(x + ξk∆t, t+ ∆t) = g̃k(x, t)− ωf

(
g̃k(x, t)− g

(0)
k (x, t)

)

− ωb

(
g̃k(x, t)− g

(0)

k
(x, t)

)
,

(25)
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by defining the forward and backward relaxation rates

ωf =
1

2
(ωe + ωo), ωb =

1

2
(ωe − ωo). (26)

The combination of odd and even relaxation times with τeτo = (1/4)∆t2 was
named the “optimal two-relaxation-time” or OTRT model by Ginzburg and col-
leagues [16, 21, 25, 26]. This combination of relaxation times reduces the recurrence
relation satisfied by the distribution functions in a steady solution of the general
TRT lattice Boltzmann equation to an explicit formula for the distribution func-
tions at each lattice point in terms of the equilibrium distributions at the same
lattice point and its neighbours [16]. It also reduces the characteristic polynomi-
als governing the stability of plane wave solutions of lattice Boltzmann equations
for advection-diffusion equations to quadratic polynomials [26]. An optimal TRT
lattice Boltzmann equation for an advection-diffusion equation can be reduced to a
macroscopic finite difference scheme for the density across three time levels [21, 22].

The optimal TRT combination τeτo = (1/4)∆t2 sets the forward relaxation rate
to unity in our notation,

ωf =
1

2

(
∆t

∆t2/(4τo) + ∆t/2
+

∆t

τo + ∆t/2

)
= 1, (27)

so the forward-propagating part of the distribution is set to equilibrium during the
collision step,

g̃k(x + ξk∆t, t+ ∆t) = g
(0)
k (x, t)− ωb

(
g̃k(x, t)− g

(0)

k
(x, t)

)
. (28)

The right-hand side only involves the backward-propagating distributions g̃k and

the forward- and backward-propagating equilibria g
(0)
k and g

(0)

k
. It does not involve

the forward-propagating distributions g̃k.
Applying (28) for two timesteps gives

g̃k(x, t+ ∆t) = g
(0)
k (x− ξk∆t, t) + ωb

(
g
(0)

k
(x− ξk∆t, t)− g

(0)

k
(x, t−∆t)

)

+ ω2
b

(
g̃k(x, t−∆t)− g

(0)
k (x, t−∆t)

)
. (29)

The right-hand side now depends on the distributions g̃k at the same point x at the
earlier time t −∆t. The only coupling to the adjacent points x − ξk∆t is though

the equilibria g
(0)
k and g

(0)

k
.

Taking any moment M of (29) thus gives an expression for M(x, t + ∆t) in
terms of M(x, t − ∆t), the equilibrium moment M(0)(x, t − ∆t), and moments

of the equilibrium distributions g
(0)
k and g

(0)

k
at adjacent points. The latter are

known functions of u and B via (13). This generalises an earlier result by Ginzburg
[21, 22] for the scalar diffusion equation, and provides a simpler derivation based
on the optimal combination of τe and τo being equivalent to setting the forward
relaxation rate ωf = 1, so g̃k(x, t) does not appear on the right-hand side of (28).

4. Discrete evolution equation for the magnetic field. Taking the zeroth
moment of (29) gives a closed evolution equation for B across three time levels.
The last term proportional to ω2

b vanishes, because B is conserved under collisions,
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so

B(x, t+ ∆t) = −ωbB(x, t−∆t) +
M−1∑

k=0

g
(0)
k (x− ξk∆t, t) + ωb

M−1∑

k=0

g
(0)
k (x + ξk∆t, t).

(30)
The last term has been converted to a sum over k using ξk = −ξk. We can evaluate
the sums using

M−1∑

k=0

g
(0)
k (x±ξk∆t, t) =

M−1∑

k=0

WkB(x+ξk∆t, t)± 1

Θ

M−1∑

k=0

Wkξk·Λ(0)(x+ξk∆t, t) (31)

to obtain

B(x, t+ ∆t) =− ωbB(x, t−∆t) + (1 + ωb)
M−1∑

k=0

WkB(x + ξk∆t, t)

− (1− ωb)
1

Θ

M−1∑

k=0

Wkξk ·Λ(0)(x + ξk∆t, t).

(32)

This is an evolution equation for B across the three time levels t+ ∆t, t and t−∆t

that also involves the velocity field u at the intermediate time level t via Λ(0).
Substituting ωb = (τo −∆t/2)/(τo + ∆t/2) and multiplying by τo + ∆t/2 gives

the more time-symmetric form

τo
B(x, t+ ∆t)− 2B(x, t) + B(x, t−∆t)

∆t2
+

B(x, t+ ∆t)−B(x, t−∆t)

2∆t
(33)

=
2τo
∆t2

(
M−1∑

k=0

WkB(x + ξk∆t, t)−B(x, t)

)
− 1

Θ∆t

M−1∑

k=0

Wkξk ·Λ(0)(x + ξk∆t, t),

where B(x, t) is outside the sum. The left-hand side now contains centred finite
difference approximations to the first and second derivatives with respect to time.
The right-hand side contains finite difference approximations adapted to the lattice

for ∇2B and ∇·Λ(0) at the intermediate time level t (see appendix). Expanding
(33) for small ∆t with τo fixed thus gives the telegraph equation

τo∂ttB + ∂tB = τoΘ∇2B−∇·Λ(0) +O(∆t2). (34)

This equation supports plane-wave solutions with B(x, t) = B0ey exp(i(kx − ωt)),
where B0 is a constant and ey is a unit vector in the y direction. These solutions
describe axis-aligned electromagnetic waves propagating in a fluid at rest with u = 0

and hence Λ(0) = 0. Their frequency ω is given by the dispersion relation

ω2 +
iω

τo
= Θk2. (35)

These waves propagate with phase speed Θ1/2 when τo is large enough for atten-
uation to be negligible, The discrete equation (33) has solutions of the same form
when ω satisfies the discrete dispersion relation

sin2

(
ω∆t

2

)
+ i

∆t

4τo
sin(ω∆t) = Θ sin2

(
k∆t

2

)
. (36)

This reduces to the previous dispersion relation with second-order accuracy when
the frequency ω and wavenumber k are small enough for discrete effects to be
negligible.
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Following Ginzburg [21, 22] we can interpret (33) as a Du Fort–Frankel [17] dis-

cretisation of a diffusion equation for B with an additional source term from ∇·Λ(0)

at the intermediate time level t. Du Fort & Frankel [17] introduced their discretisa-
tion as a stabilised variant of the explicit leapfrog time discretisation scheme for the
diffusion equation, but it can also be interpreted as a discretisation of a telegraph
equation [17, 28, 50]. However, it will be more illuminating to treat (33) as the
discretisation of a first order system instead, as described in Sec. 7.

5. Discrete evolution equation for the discrete divergence. The discrete
evolution equation (33) for the magnetic field contains a discrete divergence operator

acting on Λ(0). We can define a natural discrete divergence ∆ of the magnetic field
by applying the same operator to B,

∆(x, t) =
1

Θ∆t

M−1∑

j=0

Wjξj ·B(x + ξj∆t, t). (37)

The contribution from rest particles with j = 0 vanishes because ξ0 = 0. This
definition of ∆ corresponds to the standard centred finite difference approximation
to ∇·B on the D2Q5 and D3Q7 lattices, as Wj = Θ/2 for j 6= 0. For the D2Q5
lattice, we obtain

∆(x, t) =
1

2∆t

(
Bx(x + ex∆t, t)−Bx(x− ex∆t, t)

+By(x + ey∆t, t)−By(x− ey∆t, t)
)
,

(38)

where ex and ey are unit vectors in the x and y directions.
Applying the discrete divergence operator to (33) gives a closed discrete telegraph

equation for ∆,

τo
∆(x, t+ ∆t)− 2∆(x, t) + ∆(x, t−∆t)

∆t2
+

∆(x, t+ ∆t)−∆(x, t−∆t)

2∆t

=
2τo
∆t2

(
M−1∑

k=0

Wk∆(x + ξk∆t, t)−∆(x, t)

)
,

(39)

where ∆(x, t) is outside the sum. The contribution from Λ(0) vanishes,

M−1∑

j=0

M−1∑

k=0

WjWkξjαξkβΛ
(0)
αβ(x + ξk∆t+ ξj∆t, t) = 0, (40)

because Λ(0) is an antisymmetric tensor. Expanding (39) for small ∆t gives the
telegraph equation

τo∂tt(∇·B) + ∂t(∇·B) = τoΘ∇2(∇·B) +O(∆t2). (41)

This coincides with the evolution equation for ∇·B derived from an extended set of
Maxwell equations that includes hyperbolic divergence cleaning (see Sec. 7.2).

We now expect ∆ = 0 to be preserved exactly by the discrete evolution under
(39), if it holds initially, rather than just preserved to within an O(∆t2) truncation
error. The discrete equation (33) for evolving B only contains the equilibrium

Λ(0), an antisymmetric tensor, due to the properties of the optimal TRT collision
operator. In general one would obtain a discrete evolution equation involving Λ,
which is not antisymmetric according to (14). Equation (33) is thus a mimetic finite
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difference scheme [33, 37, 43] that exactly satisfies a discrete analog of the vector
identity ∇·(∇×(u×B) ≡ 0.

6. Discrete evolution equation for TrΛ. We can also use (29) to construct a
discrete evolution equation for the trace of the tensor Λ,

Λ̃(x, t+ ∆t) = ω2
bΛ̃(x, t−∆t)− (1 + ωb)

M−1∑

k=0

Wkξk ·B(x + ξk∆t, t), (42)

where Λ̃ = TrΛ̃ =
∑
k ξk · g̃k. The contribution from ξkξk : Λ(0) again vanishes be-

cause Λ(0) is an antisymmetric tensor. Undoing the transformation (23) by putting

Λ̃ = (1 + ∆t/(2τo))Λ gives the more time-symmetric evolution equation

τo
2∆t

((
1 +

∆t

2τo

)2

Λ(x, t+ ∆t)−
(

1− ∆t

2τo

)2

Λ(x, t−∆t)

)
= −τoΘ∆(x, t).

(43)
We can thus evaluate the discrete divergence ∆ locally at each grid point from
Λ at the same grid point and the adjacent time levels t ± ∆t. Equation(43) is a
second-order accurate approximation to

τo∂tΛ + Λ = −τoΘ∇·B, (44)

so Λ = TrΛ plays the role of the extra scalar field in an extended set of Maxwell
equations that includes hyperbolic divergence cleaning (see Sec. 7.2). There is no
second time derivative ∂ttΛ to this order of accuracy because Λ is an odd moment
while B is an even moment. The even relaxation time τe = ∆t2/(4τo) is O(∆t2) as
∆t→ 0 with τo fixed.

7. First order system and Maxwell’s equations. A more illuminating ap-
proach to the telegraph equation (34) for B is to rewrite it as a first order system
in which the magnetic field satisfies the conservation law

∂tB +∇·Λ = 0. (45)

This is consistent with (34) provided the flux Λ satisfies the evolution equation

Λ + τo∂tΛ = −τoΘ∇B + Λ(0). (46)

We can write this in a more familiar form as

∂tΛ + Θ∇B = − 1

τo

(
Λ−Λ(0)

)
. (47)

This now matches (14), except ∇·M has been replaced with ∇·M(0) = Θ∇B using
the properties of the optimal TRT collision operator. We still have a kinetic equation
for Λ, even though (34) is expressed solely in terms of u and B, because (34) contains
two derivatives with respect to time.

7.1. Evolution of the electric field. Taking the antisymmetric part of (47) gives

∂tE−Θ∇×B = − 1

τo
(E + u×B) , (48)

where the electric field E has components Eγ = − 1
2εαβγΛαβ and E(0) = −u×B.

This exactly matches the evolution equation [8]

∂tE− c2∇×B = − 1

τc
(E + u×B) (49)
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obtained by combining Maxwell’s equation

∇×B = µ0J +
1

c2
∂tE (50)

with Ohm’s law

J = σ(E + u×B). (51)

These equations are written in SI units with permeability of free space µ0, speed of
light c, and conductivity σ. The divergence of (49) gives the evolution equation [8]

τc∂t%+ % = −ε0∇·(u×B) (52)

for the electric charge density % = ε0∇·E, where ε0 = 1/(µ0c
2) is the permittivity

of free space, and τc = ε0/σ is the charge relaxation time. The charge density
decays as exp(−t/τc) if the right-hand side vanishes. The resistivity is η = c2τc
in these units, giving J = η(∇×B − c−2∂tE). The last term can be neglected for
non-relativistic flows with velocity |u| � c, leaving J = η∇×B as in Sec. 2.

We can thus derive the resistive MHD induction equation from our lattice Boltz-
mann formulation using solely the “non-relativistic” approximation |u| � Θ1/2,
where Θ1/2 is the lattice speed of light, to neglect τo∂tΛ in (46) and ∂tE in (48).
We do not need the Chapman–Enskog expansion used in Sec. 2.2, because the effect

of the optimal TRT collision operator has been to replace M with M(0) in the dis-
crete evolution equation for B. The formula η = τoΘ relating the resistivity to the
relaxation time and the lattice speed of light is equivalent to η = τcc

2 in SI units.

7.2. Extended Maxwell equations with divergence cleaning. Taking the di-
vergence of (34) and omitting the O(∆t2) truncation error gives

τo∂tt(∇·B) + ∂t(∇·B) = τoΘ∇2(∇·B). (53)

The contribution from the double divergence ∇∇ : Λ(0) vanishes because Λ(0) is an
antisymmetric tensor, so we obtain this closed telegraph equation for ∇·B.

The Faraday–Maxwell equation implies that ∂t(∇·B) = 0 as ∇·(∇×E) ≡ 0.
However, we can obtain (53) from an extension of Maxwell’s equations that imple-
ments what is known as hyperbolic divergence cleaning [2, 9, 15, 43]. The magnetic
field is postulated to evolve according to

∂tB +∇×E +∇Λ = 0, (54)

with an extra scalar field Λ that is postulated to evolve according to

τo∂tΛ + Λ = −τoΘ∇·B. (55)

The latter coincides with (44) above. This extension of Maxwell’s equations is
designed to diffuse away any nonzero ∇·B created by numerical errors, while keep-
ing the maximum signal propagation speed finite so that explicit time integration
schemes remain stable. It can be interpreted as a continuous-in-time formulation
of the Boris projection method that projects B onto the space of divergence-free
vector fields at every discrete timestep [4, 5]. We can also interpret (54) as a
Helmholtz decomposition of ∂tB into a divergence-free part ∇×E and a curl-free
part ∇Λ. We have established that the ∇×E part reproduces the combination of
the Faraday–Maxwell equation and Ohm’s law, and the ∇Λ part reproduces the
hyperbolic divergence cleaning equations.

The optimal TRT collision operator offers a particularly straightforward lattice
Boltzmann formulation for the hyperbolic divergence cleaning equations. Baty et
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al. [2] introduced Λ as an additional scalar field represented by additional distri-
bution functions. Dellar [15] later transformed (10) with a general tensor Λ into
(54) using a gauge transformation to absorb a contribution from the first-order
Chapman–Enskog approximation to the symmetric and traceless part of Λ. This
transformation is not required in the optimal TRT formulation. The evolution

equation (47) for Λ only involves the equilibrium ∇·M(0) = Θ∇B, while the evolu-
tion of Λ through (14) or its equivalent for a general collision operator involves the
divergence of the evolving tensor M.

The evolution of ∇·B under (54) and (55) reduces to the parabolic divergence
cleaning equation (18) when B evolves on timescales much longer than τo. In this
approximation we recover [11]

Tr Λ ≈ −τoΘ∇·B, (56)

so Tr Λ being small is a consistent proxy for ∇·B being small. This approximation
is made precise by the exact relation (43) between ∆ and Λ in the discrete system.

8. Initialisation. Like any scheme using three time levels, the macroscopic finite
difference scheme derived from the optimal TRT lattice Boltzmann equation needs
two sets of initial conditions at times t = 0 and t = ∆t to determine the solution at
t = 2∆t. The lattice Boltzmann equation itself only needs the first set at t = 0. The
natural approach is to use one step of the lattice Boltzmann equation to advance
from t = 0 to t = ∆t.

In principle, the initial conditions for a lattice Boltzmann equation should ini-
tialise the non-equilibrium parts of the distribution functions consistently with the
structure of slowly varying solutions. For example, the initial Λ should be consis-

tent with Λ = Λ(0) − τoΘ∇B + · · · according to the Chapman–Enskog expansion
in Sec. 2.2 that leads to the resistive MHD induction equation. However, many
lattice Boltzmann simulations simply initialise the distribution functions to their
equilibrium values, thus neglecting non-ideal effects like resistivity or viscosity. The
non-equilibrium distributions are expected to adjust during a short initial transient
to become consistent with the Chapman–Enskog expansion that describes slowly
varying solutions.

Given initial conditions gk = g
(0)
k at t = 0 we can take one step with the lattice

Boltzmann equation to determine

gk(x,∆t) = g
(0)
k (x− ξk∆t, 0). (57)

This holds for all choices of collision operator because the initial conditions at t = 0
are in equilibrium. Taking the zeroth moment of (57) gives the second set of initial
conditions:

B(x,∆t) =
M−1∑

k=0

g
(0)
k (x− ξk∆t, 0),

=

M−1∑

k=0

WkB(x− ξk∆t, 0) +
1

Θ

M−1∑

k=0

Wkξk ·Λ(0)(x− ξk∆t, 0), (58)

= B + 1
2Θ∆t2∇2B + ∆t∇×(u×B) +O(∆t3).

All the fields and their spatial derivatives in the last line are evaluated at t = 0.
Equation (58) is equivalent to the previous discrete evolution equation (32) with
ωb set to zero to eliminate the contribution from B(x,−∆t). Setting ωb = 0 is
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equivalent to setting τo = ∆t/2, which gives the coefficient τoΘ∆t = Θ∆t2/2 for
∇2B in (58). Equation (58) is equivalent to taking the first timestep using Junk
& Rao’s scheme [35], which in turn is equivalent to the simplest form of Inamuro’s
lattice kinetic scheme with no finite-difference correction of the diffusion [34].

The initial magnetic field should satisfy the discrete divergence-free condition
∆ = 0. We can construct such a field by expressing B = ∇×A as the curl of a
vector potential A, then discretising this relation using

B(x, 0) =
1

Θ∆t

M−1∑

k=0

Wkξk×A(x + ξk∆t, 0). (59)

The discrete divergence of this expression vanishes,

M−1∑

j=0

Wjξj ·B(x+ξj∆t, 0) =
1

Θ∆t

M−1∑

j=0

M−1∑

k=0

WjWk(ξj×ξk)·A
(
x+(ξj+ξk)∆t, 0

)
= 0,

(60)
because the summand is antisymmetric in j and k. The discrete divergence and curl
operators thus exactly satisfy a discrete form of the vector identity ∇·(∇×A) ≡ 0
for all vector fields A. This is another example of the mimetic properties satisfied
by the lattice-adapted finite difference operators [33, 37, 43].

9. Discrete macroscopic equations for hydrodynamics. Applying the same
approach to the hydrodynamic lattice Boltzmann scheme in Sec. 2.1 with the op-
timal TRT collision operator gives discrete equations for evolving the fluid density
and velocity across three time levels:

ρ(x, t+ ∆t)

= −ω̂bρ(x, t− ∆t) + (1 − ω̂b)
1

θ

N−1∑

k=0

wkξk · (ρu)(x − ξk∆t, t) (61)

+ (1 + ω̂b)

{
N−1∑

k=0

wkρ(x − ξk∆t, t) +
1

2θ2

N−1∑

k=0

wk(ξkξk − θI) : Π̂(0)(x − ξk∆t, t)

}
,

where (ρu)(x− ξk∆t, t) denotes the product ρ(x− ξk∆t, t)u(x− ξk∆t, t), the pres-

sureless part of the equilibrium momentum flux is Π̂(0) = Π(0) − ρθI, and

(ρu)(x, t+ ∆t)

= ω̂b(ρu)(x, t− ∆t) + (1 − ω̂b)
1

θ

N−1∑

k=0

wkξkξk · (ρu)(x − ξk∆t, t)

+ (1 + ω̂b)

{
N−1∑

k=0

wkξkρ(x − ξk∆t) +
1

2θ2

N−1∑

k=0

wkξk(ξkξk − θI) : Π̂(0)(x − ξk∆t, t)

}
.

(62)

The hydrodynamic relaxation rate ω̂b that controls the viscosity can be chosen
independently from the magnetic relaxation rate ωb that controls the resistivity.
The differing signs of the ω̂b terms in (61) and (62) arise because ρ =

∑
k fk is an

even moment of the fk, while ρu =
∑
k ξkfk is an odd moment. As before, we can

construct a second set of initial conditions for this three-time-level finite difference
scheme by taking a first step with ω̂b = 0 to remove the dependence on the prior
time level t = −∆t. The properties of this system will be described elsewhere. It
is included here only as a necessary part of constructing a complete macroscopic
finite difference scheme for magnetohydrodynamics.
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10. Numerical experiments. We consider a simulation of the two-dimensional
doubly-periodic coalescence instability [11, 38, 39] starting from the initial condi-
tions with uniform density ρ0 = 1 and

Bx = π sin(2πy),

By = π sin(2πx),

ux =
1

5
y exp(−10(x2 + y2)),

uy = −1

5
x exp(−10(x2 + y2)),

(63)

in the domain [−1, 1]2. The initial magnetic field corresponds to B = ∇×(Azez)
with Az = (cos(2πx)−cos(2πy))/2 and ez a unit vector in the z direction. This field
represents a symmetrical array of magnetic islands, an equilibrium configuration,
that is destabilised by the fluid flow. The islands merge in pairs by forming intense
current sheets with large current densities. The initial velocity field is larger than
some used previously to reduce the time spent in the linear regime before the solu-
tion starts to evolve nonlinearly. Figure 2 shows the current Jz = ez · ∇×B for the
initial conditions at t = 0, and at the later times t = 1.0, t = 1.5 and t = 2.0. The
simulations used a grid of 1024 × 1024 points, diffusion coefficients η = ν = 0.01,
and a nominal Mach number 0.044.

Figure 3 shows the discrete `2 norms of the differences between the density, ve-
locity, and magnetic fields computed using the macroscopic finite difference scheme
for ρ, u and B across three time levels, and using the optimal TRT lattice Boltz-
mann scheme with a D2Q9 lattice for the f̃k and two copies of the D2Q5 lattice
for the g̃k. The differences between the two solutions can all be attributed to float-
ing point round-off errors. The computations were run using 128-bit IEEE binary
floating point arithmetic with a precision of roughly 33 decimal digits. The hydro-
dynamic part of the lattice Boltzmann scheme was formulated using the variables

δfk = fk − wk and δf
(0)
k = f

(0)
k − wk following Skordos [48]. The macroscopic

finite difference scheme was formulated using the density perturbation δρ = ρ− ρ0.

These two changes alleviate the effects of round-off errors when forming fk − f (0)k

in the collision operator, and when applying finite difference operators to values of
ρ at adjacent grid points. Figure 3 also shows the discrete `2 norm of the discrete
divergence ∆. This starts around 10−31 and decreases with time due to the diffusive
behaviour of the telegraph equation (53) on timescales longer than τo.

11. Conclusion. The lattice Boltzmann approach embeds the target system of
partial differential equations into a larger linear, constant coefficient hyperbolic
system. All nonlinearity is confined to algebraic source terms that model collisions
between particles. The hyperbolic part may be readily discretised by integration
along its characteristics, and combined with local solution of the algebraic part at
individual grid points [13, 30].

The two-relaxation-time (TRT) collision operator combines the discrete veloc-
ities into anti-parallel pairs, called links or dumbbells, and assigns odd and even
relaxation times τo and τe to the odd and even combinations of the distribution
functions [16, 20, 21, 22, 24, 25, 26, 27]. The particular “magic” combination with
τeτo = (3/16)∆t2 places the point of zero tangential velocity precisely half-way be-
tween grid points in simulations of axis-aligned Poiseuille flow with bounce-back
boundary conditions [23, 24, 27]. A different combination with τeτo = (1/4)∆t2 has
been named the “optimal TRT” because it greatly simplifies both the structure of
the recurrence relations governing steady solutions of lattice Boltzmann equations,
and the characteristic polynomials governing the stability of plane wave solutions
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Figure 2. The current Jz = ez · ∇×B at the four times t = 0.0,
1.0, 1.5 and 2.0. The magnetic islands in the initial regular array
merge in pairs by forming the current sheets visible at t = 1.5.

[16, 21, 25, 26]. Ginzburg [21, 22] derived a macroscopic finite difference scheme
for the mass density from an optimal TRT lattice Boltzmann formulation of an
advection-diffusion equation.

We have re-interpreted the optimal combination τeτo = (1/4)∆t2 as setting
the dimensionless forward relaxation rate ωf to unity, hence setting the forward-
propagating distribution functions to equilibrium at every timestep. This allowed
us to derive closed evolution equations for every moment of the distribution func-
tions across three time levels, involving only the macroscopic variables at adjacent
grid points. This gives a more intuitive derivation of the earlier result by Ginzburg
[21, 22]. Moreover, the equivalent equations for the macroscopic variables are more
easily interpreted as a first-order system: the expected conservation law and a first-
order kinetic equation for the flux. In particular, we derived a closed finite difference
scheme for evolving the magnetic field across three time levels. The resulting macro-
scopic finite difference scheme for the MHD equations reduces the required number
of degrees of freedom per grid point from 9 + 2 × 5 = 19 to 2 × (1 + 2 + 2) = 10
in two dimensions. We can replace all the distribution functions fk and gk at one
time level with just the fluid density, velocity and magnetic field at two consecutive
time levels.
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Figure 3. Discrete `2 norms of the differences between the den-
sity, velocity, and magnetic fields computed using the optimal TRT
lattice Boltzmann equation and the macroscopic finite difference
scheme, both using 128-bit arithmetic. These differences initially
increase linearly with time (dashed line − − −). The `2 norm of
the discrete divergence ∆ decreases over time due to the diffusive
properties of the divergence cleaning equations on timescales much
longer than τo.

In this formulation, the resistive MHD induction equation follows solely from a
non-relativistic assumption without requiring the usual Chapman–Enskog expan-
sion. We also obtain an additional scalar contribution linked to∇·B in the evolution
equation for B, so our scheme implements the hyperbolic divergence cleaning equa-
tions [2, 9, 15, 43]. The closed finite difference scheme for the magnetic field defines
a natural discrete divergence operator acting on the electric field tensor Λ. Apply-
ing the same operator to the magnetic field gives a natural discrete approximation
to ∇·B that satisfies a closed discrete telegraph equation. This discrete approxima-
tion to ∇·B = 0 is maintained at the level of floating point round-off error when
B is consistently initialised using a discrete approximation to B = ∇×A. We have
thus constructed a mimetic finite difference [33, 37, 43] scheme, or equivalently a
constrained transport scheme [18, 52], for magnetohydrodynamics. This scheme
exactly preserves a discrete analog of ∇·B = 0 because it satisfies an exact discrete
analog of ∇·(∇×E) ≡ 0.

Acknowledgments. The author thanks Dr Thomas Bellotti for pointing him to
ref. [21]. The computations were performed using the Advanced Research Comput-
ing facilities of the University of Oxford [44].

Appendix. Discrete Laplacian and divergence operators. The early de-
velopment of lattice gas and lattice Boltzmann algorithms for multiphase flows
introduced lattice-adapted finite difference formulae using the discrete velocities ξk
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and weights Wk to approximate the momentum gradient [45], the colour gradient
[29, 46], the pseudopotential gradient [47], and the Laplacian [6]. A compilation of
these formulae may be found in [51].

For any smooth scalar function f , we can expand f(x + ξk∆t) in a Taylor series
around x for small ∆t and evaluate

M−1∑

k=0

Wkf(x + ξk∆t) =
M−1∑

k=0

Wk

(
f(x) + ∆tξkα

∂f

∂xα
+

1

2
∆t2ξkαξkβ

∂2f

∂xα∂xβ

+
1

6
∆t3ξkαξkβξkγ

∂3f

∂xα∂xβ∂xγ
+O(∆t4)

)
, (64)

= f(x) +
1

2
∆t2Θ∇2f +O(∆t4),

using the normalisation, symmetry, and isotropy properties of the weights and dis-
crete velocities:
M−1∑

k=0

Wk = 1,
M−1∑

k=0

Wkξk = 0,
M−1∑

k=0

Wkξkξk = ΘI,
M−1∑

k=0

Wkξkξkξk = 0. (65)

Similarly, for any smooth vector function F we can evaluate

M−1∑

k=0

Wkξk · F(x + ξk∆t) =

M−1∑

k=0

Wkξkα

(
Fα(x) + ∆tξkβ

∂Fα
∂xβ

+
1

2
∆t2ξkβξkγ

∂2Fα
∂xβ∂xγ

+
1

6
∆t3ξkβξkγξkδ

∂3Fα
∂xβ∂xγ∂xδ

+O(∆t4)

)
, (66)

= ∆tΘ∇·F +O(∆t3).

We thus have the second-order accurate finite differerence approximations [51]

1

Θ∆t

M−1∑

k=0

Wkξk · F(x + ξk∆t) = ∇·F +O(∆t2), (67a)

2

Θ∆t2

(
M−1∑

k=0

Wkf(x + ξk∆t)− f(x)

)
= ∇2f +O(∆t2), (67b)

where f(x) is outside the sum. These reduce to the standard centred finite difference
formulae on the D2Q5 and D3Q7 lattices for all symmetric choices of weights Wk

that satisfy (65).
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