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We derive equations to describe the flow of multiple superposed layers of inviscid, incompressible fluids with con-
stant densities over prescribed topography in a rotating frame. Motivated by geophysical applications, these equations
incorporate the complete Coriolis force. We do not make the widely used “traditional approximation” that omits the
contribution to the Coriolis force from the locally horizontal part of the rotation vector. Our derivation is performed
by averaging the governing Euler equations over each layer, and from two different forms of Hamilton’s variational
principle that differ in their treatment of the coupling between layers. The coupling may be included implicitly through
the map from Lagrangian particle labels to particle coordinates, or explicitly by adding terms representing the work
done on each layer by the pressure exerted by the layers above. The latter approach requires additional terms in the
Lagrangian, but extends more easily to many layers. We show that our equations obey the expected conservation
laws for energy, momentum, and potential vorticity. The conserved momentum and potential vorticity are modified by
non-traditional effects. The vertical component of the rotation vector that appears in the potential vorticity for each
layer under the traditional approximation is replaced by the component perpendicular to the layer’s midsurface. The
momentum includes an additional contribution that reflects changes in angular momentum caused by changes in a
fluid element’s distance from the rotation axis as it is displaced vertically. Again, this effect is absent in the traditional
approximation.

1. Introduction

Geophysical fluid dynamics, the study of the motion of the Earth’s atmosphere and oceans, is concerned with the
behaviour of rotating, stratified fluids, over wide ranges of length and time scales, and often in complex geometries.
Simplified and approximate models therefore play a very imporetin providing insight into processes that oc-
cur in the full equations. Shallow water equations are widely used as conceptual models, because they capture the
interaction between rotation and stratification, and between waves and vortices evolving on disparate timescales. The
simplest shallow water equations describe the motion of a single layer of fluid with a free surface. They may be derived
by averaging the three-dimensional equations of motion across the layer, under the assumption that the layer’s depth
is small compared with its horizontal dimensions. Many more phenomena may be described by shallow water models
with two or more distinct layers of different densities. These models capture some of the baroclinic effects that arise
in a stratified fluid when the pressure gradient is not parallel to the density gradient. For instance, two-layer shallow
water models describes the troposphere and the stratosghgréa(lis 2006), the upper mixed layer and the lower
ocean €.g.Salmon 198B), or a deep ocean current flowing under relatively quiescent feugllof & Olson 1993).

This paper is primarily concerned with the Coriolis force due to the Earth’s rotation, and its approximation in
idealised models. The angular velocity vecfris directed parallel to the Earth’s axis, so at a typical point on the
Earth’s surface&® has components in both the locally vertical and locally horizontal directions. The exceptions are
the poles, wheré€ is purely vertical, and the equator, whepedis purely horizontal. However, the contribution to the
Coriolis force due to the locally horizontal componentdis widely neglected. This approximation was named the
traditional approximation by Eckart (1980 on the grounds that it was widely used, but seemed to lack theoretical
justification. Phillips (1966) later showed that the traditional approximation could be justified as a consequence of a
shallow layer approximation, one in which vertical lengthscales were small compared with horizontal lengthscales.

However, interest has recently grown in the effects of the Coriolis terms that are neglected under the traditional
approximation. This interest is driven by improvements in numerical simulations, which now reach shorter horizontal
lengthscales for which the shallow layer approximation becomes questionable. A recent review by Garkéma
(2008) explored the sparse material that is available on this topic. The effect of including the “non-traditional” com-
ponents of the Coriolis force is sometimes quite pronounced, particularly in mesoscale flows, such as Ekman spirals
and deep convection (Leibovich & Lele 1985; Marshall & Schott 1999), and in internal waves (Gerkema & Shrira
2008,b). This is consistent with the findings of the UK Meteorological Office, who in 1992 abandoned the traditional
approximation in their unified model for the atmosphere (Cullen 1993). One might expect non-traditional effects to be
even more pronounced in the oceans. The oceans contain substantial wave activity at or near inertial frequencies (Munk
& Phillips 1968; Fu 1981), and regions of very weak stratification where the Bruiigahl or buoyancy frequency
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FIGURE 1. The layered model of the ocean. The upper surface of each layer is givea:-by (z, y, t), and the layer thickness by
hi(z,y,1).

N is less than ten times the inertial frequency (Munk 1981). van Haren & Millot (2005) report observations of “gyro-
scopic” waves in areas of the Mediterranean with little or no stratificatddr=(0 £ 0.4 f) to within the uncertainty of
their measurements. These gyroscopic waves cannot be explained without invoking non-traditional effects.

In this paper we derive multilayer shallow water equations that include the complete Coriolis force, in contrast to the
conventional shallow water equations that rely upon the traditional approximation in their derivation. We thus extend
the derivation of single layer shallow water equations by Dellar & Salmon (2005) to encompass several superposed
layers of inviscid fluid of different, constant densities flowing over topography, as illustrated in figure 1. Dellar &
Salmon (2005) corrected an earlier attempt by Bazdenkov, Morozov & Pogutse (1987) whose equations failed to
conserve either energy or potential vorticity in the presence of topography. Our multilayer equations provide a useful
idealised setting for studying the interaction between density stratification and rotation, and the resulting sets of two-
dimensional equations are practical for numerical studies of some of the phenomena listed above.

The three-dimensional Euler equations for a rotating, stratified, ideal fluid possess conservation laws for energy,
momentum, and potential vorticity. Attention in geophysical fluid dynamics has been focused on model equations that
share the same conservation laws, which are easily destroyed by making approximations directly in the equations. In
addition to a derivation by averaging the three-dimensional Euler equations, we derive our multilayer shallow water
equations by making approximations in a variational principle, Hamilton’s principle of least action, as formulated
for a three-dimensional ideal fluid. The previously mentioned conservation laws are related to symmetries in the
variational principle by Noether’s theorem ($§9 and any equations derived by making approximations that preserve
these symmetries will possess equivalent conservation laws. The single layer shallow water equations may be readily
derived from Hamilton’s principle by integrating a three-dimensional Lagrangian across the layer (Salmon 1983,
1988, 1998). However, the extension to two or more layers is considerably more involved, because the derivation
relies upon introducing Lagrangian particle labels within each layer. The transmission of pressures between layers
requires some means to synchronise the positions of particles in the different layers. Our first derivation is equivalent
to Salmon’s (198B) derivation of the two-layer traditional shallow water equations from Hamilton’s principle. Salmon
(1982) coupled the two layers using a double integral of a delta function across both layers in the Lagrangian (see
the Appendix). This approach does not readily extend to many layers, because one would need integrals Across all
layers. We avoid the integrals across multiple layers by transforming each of the integrals into an integral over layer
when deriving the equations of motion for layeHowever, the calculation is still sufficiently involved that we present
a second derivation that explicitly includes the work done by the pressure exerted by other layers in the Lagrangian.

The non-traditional components of the Coriolis force appear through terms involving the half-layer Bgights
%(Th +m+1). This is because the non-traditional terms are lineanimen the fluid moves approximately in columns,
and layer-averaging a function that is lineariis equivalent to evaluating the function at the midpoint of the layer.

In particular, the potential vorticity within each layer involves the component of the planetary rotationQettiatris
normal to the half-layer surface (as in Dellar & Salmon 2005) rather than the vertical component as found under the
traditional approximation.

The equations derived in this paper are also relevant for the development of large scale numerical ocean models.
Due to the large disparity in the horizontal and vertical lengthscales, many three-dimensional numerical ocean models
uses different discretisations in the horizontal and vertical coordinates. In particular, it is common to use an isopycnal
coordinate, a constant density surface, which is also a Lagrangian coordinate, in the vertical to prevent excessive
diffusion across tilted isopycnal surfaces. One may think of a layered model with many layers, as illustrated in figure
1, as arising from a Lagrangian finite difference discretisation in the vertical. The most well-known model in this
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class is the Miami Isopycnal Coordinate Ocean Model (MICOM) as described in Bleak (1992) and Bleck &
Chassignet (1994). The multilayer equations derived in this paper could be used to extend a layered ocean model like
MICOM to include the complete Coriolis force.

2. Three-dimensional equations and coordinates

We model each layer as an inviscid, incompressible, fluid of constant densitya frame rotating with angular
velocity ©2. The fluid’s motion is thus governed by the Euler equations,

8 u;
ot

in conjunction with boundary conditions at the interfaces between layers (see belowj Havep; are the velocity
and pressure within th#" layer. The geopotentiab is the combined potential for the gravitational acceleration and
the centrifugal force due to rotation.

The geopotential gradient is much larger than the inertial and Coriolis terms in geophysically reasonable parameter
regimes, so it must be balanced primarily by the pressure gradient. We therefore set up a coordinate system in which
V& = gz, with g being the gravitational acceleration (which by convention includes the centrifugal force). The vector
z is a unit vector in the direction that is locally upward as define@1d; and the horizontal directions are tangent to
the surfaces of constant geopotential.

In theoretical studies of geophysical fluid dynamics it is common to use Cartesian, or pseudo-Cartesian, coordinates
(Pedlosky 1987; Salmon 1998; Vallis 2006). By pseudo-Cartesian coordinates we mean the use of curvilinear coordi-
nates under an approximation that allows the curvilinear metric to be neglected in the equations of motion. Curvilinear
coordinates are necessary because the “horizontal” coordinates should lie within, rather than merely be tangent to,
the surfaces of constant geopotential. This is the correct interpretation of the so-called beta-plane approximation to
spherical geometry (Phillips 1973).

The Earth’s angular velocity vect®? is directed parallel to the line from South pole to North pole. However, the
direction of(2 relative to local coordinates withvertical changes with latitude, $@ must be spatially varying in the
pseudo-Cartesian coordinates of the ocean model presented in figure 1. This approximation, retaining only the latitude-
dependence of the rotation vector from spherical geometry in an otherwise pseudo-Cartesian formulation, is known as
the beta-plane approximation. The simpfeplane approximation arises from takifiyyconstant, and becomes valid
on lengthscales much smaller than the planetary radius.

We allow for arbitrary orientation of the- andy-axes, generalising the conventional axes in whichjthgis points
North and ther-axis points East. We writ® = (2, Q,, ), and allowQ2,, Q,,, and(2, to be arbitrary functions of
x andy. The three-dimensional vector fiefd must be non-divergen¥/ - 2 = 0, to ensure conservation of potential
vorticity (Grimshaw 1975). To allow for spatial variation Qf, and<2,,, we must therefore allow2, to depend orx.

We take(), = Q. (z,y, z) while Q; = Q. (z,y), Q, = Qy(z,y). This is sufficiently flexible to capture a variety of
beta-plane approximations in whi€h, and(2,, as well ag2,, depend on latitude. Integrating - 2 = 0 with respect
to z yields the following expression fae,,,

1

(2.2)

o, 0N
Qz(x,%z)zﬂzo(w,y)— < + y)’z!

ox dy
whereQ.o = Q. |.—o.

Dellar (2009) showed that one may derive (2.1) in a pseudo-Cartesian form, together with (2.2) and expressions for
), and(},, by introducing suitable curvilinear coordinates into Hamilton’s principle on a sphere, and then approximat-
ing for motions on lengthscales that are small compared with the planetary radius. In this derivatietie femdence
of 2, arises as a pseudo-Cartesian approximation to the dependence of the angular momentum of a particle rotating
with the planetary angular velocif@ on the spherical radial coordinate.

3. Derivation by layer averaging

One route to deriving our extended shallow water equations is via an extension of the standard derivation of the
traditional approximation shallow water equations by averaging across layers. We obtain two-dimensional equations
for the depth-averaged horizontal velocities and the layer depths by integrating the three-dimensional equations of
motion over each fluid layer. Our approach follows the derivation of the nonrotating and weakly nonlinear “great lake”
equations by Camassaal. (1996), as adapted by Dellar & Salmon (2005) to include the Coriolis force. Our treatment
of multiple layers is similar to Liska & Wendroff's (1997) derivation of multilayer Green—Naghdi equations, and to
Choi & Camassa’s (1996) derivation of two-layer equations for weakly nonlinear internal waves.

3.1. Formulation and nondimensionalisation

Within each layer we write the three-dimensional velocity vectofwsw;), whereu; = (u;,v;) is now a two-
dimensional vector for the horizontal velocity. Separating the Euler equations (2.1) into horizontal and vertical com-
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ponents, we obtain

i i . 1
du +(u; - V)u; + wia—u +2Q.z x u; + 29 X zw; + —Vp; =0, (3.18)

ot 0z Di

ow; Ow; 1 Op;
i+ Vw; i 2037 — uQ — =0, 3.1b
5 +u; - Vw; +w 8z+ (v U priaz +g=0 (3.1b)
Vo 2%y (3.10)
0z

fori =1,..., N. The quantities appearing in the three-dimensional Euler equations are all functigng of andt.

We assume that each layer of fluid is bounded by an upper sutfaeen;(z,y,t), and a lower surface =
ni11(x,y,t). The exception is the lowest layer, the" layer, that flows over a fixed topography= 7y 1 (z,y). For
future use, we also define the layer heighis= n; — 1,11, as shown in figure 1. We assume that the upper surface
of the uppermost layer is stress-free, and that the pressure is continuous across each internal surface, This leads to the
following boundary conditions for the pressures,

pr=0 on z=nm, Di =Pix1 ON zZ=1m;11. 3.2

By considering(D/Dt)(z — n;) = 0 atz = n; in each of the two layers bounded by, we obtain the kinematic
boundary conditions,

o) _ _
w; = %f —&-ui-Vng) on z:ng ),
) (33)
w; = % +u; - an(ﬂ on z= nl(ﬂ

The superscripts™) and(~) denote that these conditions should be evaluated just above and just below the boundary,
respectively, due to the discontinuity of the tangential velocity across the interfaces. Compatibility of the different
expressions fod,n; from each side of the layer is equivalent to continuity of the normal velocity across each interface.

We now apply a nondimensionalisation similar to that used by Canetsaia(1996), but adapted to a rotating
system. We write

x =Lz, z=¢lLz, uw,=Uw, w;=cUw;, p;=29LUp; p;,
t=L/Ut, =00, Q. =QQ,, n =eLi, (3.4)
whereU is the velocity scalel is the length scale = |(€2,(2.)| is the magnitude of the Earth’s angular velocity,
ande < 1 is a small parameter that enforces the assumption of a shallow layer. We choose the nondimensionalisation

for w; so that the small parametedoes not enter the dimensionless incompressibility condition. The dimensionless
versions of equations (3)}(3.1c) are thus

Ro 3‘{"+(ﬁ7¢-@)ﬁi+ma—‘fi 0z Xy e x aw; + Vi =0, (3.59)
ot 0z
oW, . - Oy O
’R — - Vi + W —— Qo —11;Q ' +Bu= .
€ 0(815 +u; - Vw; +w; 82>+6(v1 e —UiSdy) + EE +Bu=0, (3.50)
Va4 28y, (3.5)
0z

where Ro= U/(2QL) and Bu= ¢gH/(2QUL) are the Rossby and Burger numbers respectively. We assume Ro
and Bu are botlD(1). Hereafter we will drop the tildé ™) notation, with the understanding that all variables are
dimensionless.

3.2. Asymptotic expansion

We wish to obtain averaged momentum equations that are accurate up to first order in the small paraveter
therefore pose asymptotic expansions of the dependent variables, w; andp;,
u; :ul(-o) +5u£—1) + 0wy :w§°> +5w§1) +- Di ZPEO) +Ep1(-1) + -, (3.6)
fori=1,...,N.
Substituting this expansion into (&% we find that the leading order pressure in each layer is just the hydrostatic
pressure,

) (0)

pl(o =p; o+ Bu(n; — 2). (3.7)

zZ=m;
The leading order horizontal pressure gradi‘é‘mﬁo) is thus independent af within each layer. Additionally, nondi-
mensionalising (2.2) leads to

Q=00 —c(V-Q)z (3.8)
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so (2, is independent ot at leading order. Equation (3apmay therefore be satisfied at leading order by-a
independent horizontal veIocny(O) = u(o)(;my,t). In other words, columnar mation is consistent with the leading
order horizontal momentum equation.

We now use the vertical momentum equation 63 &gain to evaluate the first correction pressure terms,

(1) = pgl) + (n; — 2) (vfo)Qm — ugo)ﬂy) . 3.9

=N

The combinationp, o 4 ep2 , being the result of balancing the vertical pressure gradient with the gravitational
term and the vertical components of the Coriolis acceleration, is known as the ‘quasihydrostatic’ pressure (White
& Bromley 1995; Whiteet al. 2005). The pressure contributions from the layers above may be evaluated using the

dimensionless form of the pressure boundary condition (3(% + Ep(l) =0onz = n; andp; ( 4 ap(1)>

pi-1 (pf )1 + spg )1) onz = n; for 2 < i < N. This leads to the following expression for the pressure in each layer,

Di —pgo)—kapl + O(e )

=i — 2) (Bu + E’UZ(O)Q;E — EuEO)Qy)
i1
+ Z %hj (Bu + EU§0)Q$ — €u§-0)9y> +0(e?). (3.10)
j=1 "

Similarly, we may determine the leading order vertical velocity usingc§3.5

wgo) _ wl@)

+ (g1 —2) V-ul”, (3.11)

Z=Mi+1

The vertical velocity in each layer acquires a contribution from those in the layers below, which may be evaluated
using (3.3) in the form
wEO) = wgi)l + (ul(.o) 53)1) Vg1 ON 2z =n41. (3.12)

Repeated application of (3.11) and (3.12) leads to a complete expression for the leading order vertical velocities:

w® =v. (niﬂul@)) — 2V -ul Z V- (h ul ) (3.13)
j=i+1

3.3. Averaged momentum equations

We now derive two-dimensional equations governing the dynamics of the depth-averaged horizontal velocity in each
layer. To perform averaging of (3a5-(3.5), we require a result from Wu (1981) for the average of the material
derivativeDF' /Dt across a layer of incompressible fluid bounded by the material surfaceg andz = 7,11,

ni(QF OF o, — —
h,-/77 {at+u7 VF +wi }dz 5 (1iF) + V- (hiuiF). (3.14)

141
Here an overbar () denotes a layer-averaged quantity. For example,

1 ni
hi Nit1
SettingF' = 1in (3.14) leads to an exact evolution equation for the layer héight
oh;
ot

Similarly, settingF' = u; and F' = v; allows us to integrate (3@ over each layer, as described in Camaessal.
(1996) and Dellar & Salmon (2005), to obtain

- (h;®;) = 0. (3.16)

Ro (z—?t (hW;) + V - (hiw)> + hiz x Q.u;

M4 i
+eQ x 2/ wgo)dz +/ \Y ( o 4 sp(l)) dz = O(£?).

Mi+1 i1

(3.17)

To obtain evolution equations for the averaged velocitigsve note thau; and(2, arez-independent at leading
order, and so averages of their products may be factorised to sufficient accuracy (Ceinahsk#06; Su & Gardner
1969) asy;u; = uw;u; + 0(g2), Q,u; = Q,u; + O(?). We may also determine the averaged pressure gradient using
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(3.10),

[0 (0 ) = e (170~ 00,) ¥ s+

Nit1
+ h;V < Bun; + %Ehz (UZ(O)QI — UEO)Q,/)
i—1

Z pjh (Bu—i—av( )Q —EU(O)Q ) , (3.18)

Jj= 1
and the averaged vertical velocity using (3.13),

ug N
/ wl(o)dz = hi ul(-o) . VmH - %hzv : UEO) - Z V- (hjll§-0)) . (319)
MNi+1

j=i+1
Substituting these expressions into (3.17) yields

Ro (gt (ha;)) + V- (hiuiui)) + hiz x Q.1;
+ 3eh; (vgo)Qw - ul(-O)Qy) V (ir1 +ni)

+ 1V { Bun; + ey (0170, — w0, )

i—1
+3° 2y (Butev”q, — cul0,)

j=1
N
+ e x by |u” Ty = 3V eu® = 30 V- (nul”) | = 0(e?), (3.20)
j=i+1

To complete the derivation, we note thq(f’) = 1u; + O(¢e) and that the advection terms may be simplified using
(3.16). Additionally, integrating (3.8) yields an expressionsigr

0. =0.0-c7V-Q, (3.21)

wherez; = % (n; + ni+1) is the vertical position of the midsurface of the layer. The linear dependeriee of ~
makes the average ©f, across the layer equal to the valuetf at the midsurface.

Neglecting terms of)(s2?) and above, and dropping the overbars on averaged velocities, we rearrange (3.20) to
obtain

o
Ro( 81; (u; - V)m) + (on —2ev - ((ms +ni+1)ﬂ)>i X u;

+ V ¢ Bun; + %ehi(vin Z pih; Bu + e (v;Q2 — u; ) )
—eQ %2V [thui+ Y hju;| =0. (3.22)
j=it+1

We thus obtain shallow water momentum equations governing the averaged horizontal fluid velocities and layer
heights. We may recover the traditional multilayer shallow water equations by sgfting €, = 0, or equiva-

lently by lettinge tend to zero. The terms proportional @y, and (2, are the corrections to the traditional shallow
water equations that arise from the non-traditional components of the Coriolis force.

The final term in (3.22) may be rewritten as a time derivative using the continuity equations for the layer heights,

N N
—Qx 2V |$hwi+ Y b :% Qxz|ihi+ Y hi||= 9 Qx2%), (3.23)
J=i+1 Jj=t1+1
wherez; (z, y, ) is the vertical coordinate of the midsurface of tHelayer. This term combines with the time deriva-
tive of the velocity to form the time derivative of what turns out to be the canonical momentum, as st@ahbelow.
Similarly, the quantity whose gradient appear¥ify } is the pressure, given by (3.10), evaluated at the midsukface
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4. Derivation from a variational principle

We may also derive our extended shallow water equations (3.22) and (3.16) from the application of Hamilton’s
principle of least action. Hamilton’s principle gives the equations of motion for a mechanical system as being those

that make the action
ty
S= Ldt 4.1)
to
stationary over variations that vanish at the endpaintnd¢,. For example, the three-dimensional Euler equations
for an incompressible, inviscid fluid may be obtained from Hamilton’s principle and the Lagrangian (Eckds} 1960

L= /]/dadbdc% ox|* —pla,7) (6(“/’2) ! ) . (4.2)

ar d(a,bc)  po

In this formulation, the most natural extension of Lagrange’s formulation of particle mechanics (as in Goldstein 1980)
to hydrodynamics, fluid elements are described by their posittgasr) as functions of a set of labetsand time

7. We have returned to usinganda to denote three-dimensional vectors. A detailed description is given in the next
subsection. The first term in (4.2) is identifiable as the kinetic energy of a fluid element. The second term introduces
a Lagrange multipliep(a, 7) to enforce incompressibility, expressed using the Jacobian of the label-to-particle map
and a reference density. By restricting the dependencexbna so as to enforce columnar motion, one may derive
various two-dimensional Lagrangians that lead to shallow water equations (Salmdn 1988; Miles & Salmon

1985).

4.1. Particle labels

Within each layer we let the positions of the fluid elementscpe/hich we treat as functions of some particle labels
a; = (a;, b, c;) and timer. In thei™ layer,x denotes the position at timeof the particle whose label is;. To clarify,
we write
x =x; = (zi(ai, 7), yi(a, 7), zi(ai, 7)), (4.3)
to reflect the dependence wfon the particle labels in each layer. We ustor time to emphasise tha/or means
a partial derivative at fixed labels rather than at fixed positior;. Thusd/dr = 9/0t 4+ u; - V corresponds to an

advective or material derivative with the velocity field definedlyx;, 7) = 0x;/07.
We choose the particle labels to be mass-weighted coordinates that satisfy

da;db;dc; = p; dx;dy;dz;, (4.4)

fori =1,..., N. This means that the density and velocity may both be expressed in terms of the label-to-particle map
x;(a;, 7). Varying this map induces coordinated variations of the density and velocity, which is what distinguishes the
variational principle for a fluid from the variational principle for a cloud of non-interacting particles. In particular, the
density within each layer is related to the Jacobian of the map by

@i, yi,2i) _ 1
8(a‘i7 bi7 C’L) B Pi '
Differentiating this relation with respect toleads to the incompressibility condition (8)1as in Miles & Salmon

(1985). Thus the continuity equation (kinematics) is incorporated in the label-to-particle map, while the momentum
equation (dynamics) will come from Hamilton’s principle.

(4.5)

4.2. Formulation of the multilayer Lagrangian

We formulate a Lagrangian for the multilayered system from the kinetic enéfgipstential energiel;, and pressure
constraintsP; in each layer,

N
oy T (4.6)
=1
N 2
o%; 0w, Yi, i 1
:Z///daidbidCi {; T tR _%|R|2—gzi+pi(ai,7) (a((azgc))—p)}
=1 1y Y1y 7

TheR terms arise from the Coriolis and centrifugal forces in a rotating framegani the gravitational potential
energy.

The Coriolis force is mathematically identical to the Lorentz force experienced by a charged particle in a magnetic
field. We may therefore include the Coriolis force in Hamilton’s principle by introducing a vector pot&ngakch
that

VxR=29Q. 4.7)

HereR = (R,, Ry, R.) andQ = (Q,,,,.) are both three-dimensional vectors. TRenotation was introduced
by Holm, Marsden & Ratiu (1986), by analogy with the introduction of a vector poteAtifdr the magnetic field
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B = V x A when formulating the Lagrangian for a charged particle in a magnetic fetd Goldstein 1980).
However, various special cases for particular form§wéppeared earliere(g. Salmon 1988, 1983). Pursuing the
analogy with magnetic fieldsy x R is left unchanged by the gauge transformatibhs— R + V¢, which gives
us some freedom in our choice Bf. AlthoughR appears explicitly in the Lagrangian (4.6), the contribution from
V¢ to the Lagrangian reduces to a surface integral, which is readily shown to vanish at rigid boundaries. In addition,
Dellar & Salmon (2005) showed that the integral over a free surface may be transformed into an exact time derivative,
which gives no contribution to the action defined by (4.1X2Ifs spatially uniform,R = © x x is a suitable vector
potential. The combinatioék‘?xi/c“)f + RJ? in (4.6) then corresponds to the kinetic energy calculated in an inertial
frame. The—%|R\2 term in (4.6) subtracts out the effect of the centrifugal force, which we take to have been included
in the gravitational acceleration, as explained in the Introduction.

More generally, our assumption that, and (2, are independent of allows us to find a suitabl® by imposing
R, = 0. We may then integrate the andy-components of (4.7) to obtain

R=2(F(z,y) +29Q,,G(z,y) — 2Q;,0) (4.8)

whereF andG are arbitrary functions arising from the integrationfof and R, with respect to:. We obtain a relation
betweenF’ andG by substituting (4.8) and (2.2) f&2, into thez-component of (4.7),

0G OF

= = Q(z,y). 4.9

O ay o(z,y) (4.9)
This construction involving” and@ is identical to that used under the traditional approximation by Salmon (1982
1983). The remaining arbitrariness inand G is a consequence of being to make gauge transformatioRs as
described above.

4.3. Dimensionless variables

As before, we introduce dimensionless variables using (3.4), and also

. ~ L
F=QLF =QL =L/UT = — 4.1
, G G, T JUT, L e LT (4.10)
We also introduce the dimensionless particle labels defined by
a; = pll/?)L(NIL, bi = p,}/gLBq, C; = pzl/?)ELEq, (411)
so that the incompressibility condition (4.5) becomes
i z) _ (4.12)
d(as, by, ¢;)
Heree <« 1 is introduced again to enforce the assumption that the layers of fluid are shallow.
We thus obtain the dimensionless Lagrangian
N ~ 2 ~ 2 ~ 2
= Pi R 1 0z; 0y; o (0%
L= — da,db;dé; ¢ =R ~ & -
;Pl// ¢ C{2 O((@T) +<8T> e (87-
_ 0Tix 0¥ s\ - 0z; = 0Y; ~
— Buzl+5<8%9y_8%9w) Zi + (8%F+ 8%G)
s (T4, i, Zi) >}
+pi(a;, )| —=""—+—-1]) ;. 4.13
pilae) (6(5@,@,@) @1

We now drop the tildé notation, with the understanding that all variables used henceforth are dimensionless.

4.4, Restriction to columnar motion

In §3, we demonstrated thatindependent horizontal velocity satisfies the governing equations at leading oeder in
We will therefore follow Salmon (1983, 1988) and Miles & Salmon (1985) and restrict the fluid to columnar motion
by assuming that; = x;(a;,b;, 7) andy; = y;(a;, b;, 7) are independent of the vertical particle labglEquation
(4.12) then simplifies to

6zi 8(ai, bz)
= . 4.14
dc; (w4, i) ( )
Choosinge; = 0 at the bottom of each layer, angl = 1 at the top, we may integrate (4.14) with respectt@o
determinez;,

zi = hic; +niy1. (4.15)
This definesh; as the reciprocal of the Jacobian of the horizontal particle positions and labels,

h; = (g((ZZD_l (4.16)
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We write the expression this way to emphasise thé more naturally treated as a function of the particle labgtnd
b;, rather than the particle positioms andy; . Differentiatingh; (a;, b;, 7) with respect ta- leads to the layer-averaged
continuity equation (3.16), as in Miles & Salmon (1985). Substituting (4.16) into (4.15) gives

al al d(aj,bj)
j=it1 j=it1 9(xj,y5)

The vertical coordinate in each layer therefore acquires a dependence on the particle labels in all of the layers below.
It is this dependence that allows each layer to respond to the motion of the layers above and below it.
Substituting these expressions into the Lagrangian (4.13) we obtain

2
Pi 8@ l ayl
;pl/ daldb/dcz{ Ro(a ) 2Ro(aT)
oz, Oy, 0yi Oz;
+ <a F+ o7 G) - ( 587_ T _587_92/) (hzcz +771+1)}- (418)

The pressure terms involving the Lagrange multiplig(s;, 7) have been discarded becausequo z; map has been

explicitly constructed to enforce incompressibility. We have also discarded te(at3 and above, as i3, so we

have also dropped th@z; /07)? term from (4.13) to obtain (4.18). Miles & Salmon (1985) showed that retaining this

term would lead to a multilayer analogue of the equations derived by Green & Naghdi (1976) using Cosserat surfaces.
We may now complete the integration ovgiin (4.18) to obtain the two-dimensional “shallow water” Lagrangian

£= 572 [[ dadp, d 1Ro (2% i 1Ro (%Y i 0%i o Wi
Zzlpl “ii?oaf +§O§T +8T +8T

y; Oz
- (Bu teg Q —¢ o Qy> (5hi + 77i+1)} : (4.19)

The integration over; leads to the appearance (Gé‘hl + n;+1) in the last term in the integrand. Sinegdepends
linearly onc; through (4.17), the average of any quantity that varies linearly atross a layer is equal to the quantity
evaluated at the mid-point of the layer.

4.5, Derivation of momentum equations

The most straightforward route to the shallow water equations is to require that the variatidnsitbf respect to
x;(a;, 7) vanish, in accordance with Hamilton’s principle of least action. Having integrated over the third direction,
we now return to two-dimensional vector notation andsset (z;,y;) anda; = (a;, b;). We first note that we may
transform between integrals over particle labelsdd; and d:;db; using (4.16) in the form

// dajdbj A= // d:z:jdyj hJA = // dmldyl h]A :/ daidbi ]1}1'74, (420)

for any A andj # . We see that when varying; (a;, 7), we must transform all integrals:gdb; to determine their
contribution to the variation. We therefore apply (4.20) to transform the Lagrangian in (4.19) into an integral over the
labels in thei" layer,

L= //dadbz iR %2+1R0%2+ axJF+aij
' p1h or 2 or or or

N
_ <Bu+5%f9m —5%5”;93,) (;hj +B+ Y hk) } (4.21)

k=j+1

A more explicit approach to the transformation of integrals between layers was used by Salmdi) éreBB de-
scribed briefly in an Appendix. A different approach that avoids this technicality completely is describédb in
below.

When taking variations aof;, we assume thdtx; /Ot andh; for all j # i are prescribed functions afevaluated at
x;. For this we use the (nonvarying) label-to-particle maps in the lajyets, and their inverses. Similarlyg, F, G,
Q, andQ, are all treated as prescribed functionsxadvaluated ak;. The variation of any prescribed functiof(x)
with respect tak; is (Miles & Salmon 1985)

0A =VA.x;. (4.22)
To resolve the implicit dependence/ofonx; we rewrite (4.16) as
R D (4.23)

8(ai,bi) ’
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and take variations

_ i, yi)\ _ o Owiy) o, 00w, y:) 0w, 0y:)
=2 (hZ 8(ai,bi)) =0 d(ai, b) i d(ai, b) i J(as, b;)
_ Ol O(xi,yi) O(6zi,y:) | O(wi, 0ys)
~ e b [0y T ) .29
ox; dy;

to obtain (Miles & Salmon 1985)
Oh, = —h;V - 0x;. (4.25)
For an arbitrary quantity) multiplying the variationyh,;, we obtain (Miles & Salmon 1985)

The second step follows from a transformation to an integral with respectdg, thtegration by parts, and then a
transformation back to an integral iagib; .

We now show that the majority of the terms in the integrand in (4.21) make no contribution when vse vBoy
any prescribed functiord (x), the variation of the functional 4 defined by

1 A 1 1 h?A
6[,,4 = // daidbi E(SA - Fgéhl = // daidbi EVA . (SXi — Ev ( h% > '5Xi =0. (428)

As we treatox; /0T andh,; as prescribed functions of when varyingx; with ¢ # j, many of the terms in (4.21)
are of the form (4.28), and therefore make no contribution under variatians ®hus, when we take variations 6f
with respect tak;, we may drop all such terms, leaving

pi pj Jy; Ox
5/d7£_5/d7//daldb { Z ohs (Bu+ e5 % - aJQ>
oz, yi Oz; y;
+ RO(&'T) + RO(@r) +<8 F+8TG>

82]7; 8:61

is given by

Thus, we are essentially taking variations of the Lagrangian for a single layer of shallow water flowing over a pre-
scribed lower surface; .1 (x,t), as in Dellar & Salmon (2005), but with additional contributions due to the pressure
inherited from each of the layers above (3.10).

Using (4.22) and (4.26) to compute the variation of (4.19) with respect tives

5/df,c /df/ daldbpz{ %

Pj Wi 0z
; h; <Bu+ 5 6TQy>]

v %igp Zy’ VG; — 68 (F;,G:)

h +’rh+1) (amvﬂ . ayQO )

or
+els d or
( _ Oy;

-V

Qx) \Y (%hz + 77¢+1)
0
tegs ((5hi +miv1) (=94, Q)

+1lev {hi <%ny - %ﬁ(lm)] } - 5xi, (4.30)
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fori = 1,..., N. Rewriting the material time derivatives 8g0T = 9/9t + u; - V, the terms involvingF; andG;
combine to give

UT;VFIL' + UZVGZ — (111' . VFfL', u; - VGJ = (Gm — Fiy)(’Ui, —ui), (431)
andG,, — F;, = Q.0 using (4.9). Hamilton’s principle, setting the integrand of (4.30) equal to zero, thus gives the
same equations of motion (3.22) as before.

4.6. Alternative formulation using a separate Lagrangian for each layer

In the previous approach the different layers were coupled together through the label-to-particle map. The map from
the labele; to the vertical positiory; depended upon the heights of every layer underneath. Varying the maje,;from

to z; would raise or lower every layer above, and thus change these layers’ contributions to the gravitational potential

energy. This is the natural way to include the pressure exerted by the layers above, but taking variations is complicated
by the need to transform integrals over the upper layers into integrals with respechtac;.

In this section we describe a different derivation that uses a separate Lagrahdianeach layer of fluid. The
label-to-particle map in each layer may be varied independently, making the derivation of the equations of motion
much simpler. In particular, this approach would be much more attractive for deriving multilayer analogues of the
Green & Naghdi (1976) equations that retain the vertical kinetic en@;ﬁyn each layer.

We begin with a three-dimensional Lagrangian, as before, and decompose it into the sum of contributions from each
of the different layers. This leads to a Lagrangian for the multilayer system that is the sum of separate Lagrangians for
each layer. The layers are coupled through an additional term representing the work done by the pressure in the layers
above, analogous to the treatment of external pressure in Miles & Salmon (1985).

Returning to three-dimensional notation, we may formulate a Lagrangian fdf lager as

Li=T, —U+Pi + Wi, (4.32)

where7; andl{; are the kinetic and potential energies given in (4.6), @ads a incompressibility constraint that
contains the pressugg as a Lagrange multiplies;. So far this is exactly the same as in Eckart (1968nd 4.2
above. The extra contributiorV; is the work done on the upper surface of each layer by the layers above,

W, = /// da;db;dc; { - %Pi(i%yiﬂ')}v (4.33)

treated analogously to the imposed external pressure on a single fluid layer in Miles & Salmon (1985 (Thus, 7)
is the pressure exerted on laydyy the layers above.
We may therefore write the complete three-dimensional Lagrangian as
2
+R’ ~ 1R gz

T
i, yiszi) 1 ) 1

+ pi(ai, 7) ((%abc) o piPi(Xi,T)} . (4.34)
Taking variations of (4.34) with respect 19, y; z;, andp;, and invoking Hamilton’s principle of least action, we
recover (3.43), (3.1b), and (4.5), respectively. In (&}, p; is replaced by, + P; and the pressure boundary condition
is modified top, = 0 on z = n;. The inclusion ofP; thereby accounts for the pressure imposed in laysrthe fluid
in the layers above.

We now apply the nondimensionalisations in (3.4), (4.10) and (4.11) to the Lagrangian in (4.34), dropping the tilde
(") notation for dimensionless variables,

ox; dyi\°
L; :ﬂ daidbqu {%RO(a l) +§R0(8yl) — Buz;
T T

+e (8”9,, - 8%91) %+ (85””F+ 8in>

aXi

or or or or
e @i, yi) Oz .\ .
+ pi(aq, 1) (8(ai,bi) 7, 1) Pz(xzvysz)} : (4.35)

Here we have introduced the shallow water assumptions, restrictiagdy; to be independent af;, and neglecting
terms of de?). To determineP;(z;, y;, 7), the unknown pressures exerted on the upper surface of each layer, we
consider variations of (4.35) with respect#oalone,

5/dr£i = /dT // da;db;dc; {— Bu

d(a;, bi) Oc; ar T s §y ) (02 (4.36)
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Hamilton’s principle states that leading order variations of the action with respechtast vanish, so it follows that
the integrand in (4.36) must be uniformly equal to zero. Using (4.16) to evaluate the Jacobian multiplyifg;,
this yields
Op;
ac, =h; (BU +ev;Qy — EuiQy) . (4.37)
This is equivalent to what White & Bromley (1995) call quasihydrostatic balance in the vertical momentum equation.
We may thus determing by integrating with respect ta,

Pi = Dile,—1 + (1 —ci)hi (Bu+ev;Qp — cu;ifdy). (4.38)

The Lagrangian pressure boundary condition is

(4.39)

PiDi L = Pi—1Pi—1

ci= ci,1:0,
which corresponds to continuity of the dimensional pressure at the interface. We {et0, corresponding to the
stress-free boundary condition on the upper surface of the top layer, and let

i—1
p=""
Pi

(&2

i—1 i—1
=3 2P =5 P (But e —cuyQy), (4.40)
=1 = Pi ) Pi

fori = 2,...,N. This expression for the pressure acting on the upper surface of each layer is the same as the
expression calculated by layer averaging in (3.10).

We now simplify (4.35) using the assumption of columnar motion, a$4i@ above. The definitions (4.15) and
(4.16) mean that (4.5) is satisfied automatically, so we may drop the terms multipligdroghe Lagrangian. We may
then integrate with respect tg by substituting in (4.15), leading to a two-dimensional ‘shallow water’ Lagrangian,

! oz \ Ay; 2
J— db: )1 ¢ 1 i _ P
L; //daldbl/o dc; {2R0<3T> +2R0<87) P;

Ay; ox; 0x; y;
— (BU+ £ o7 Qg; — EaTQy> (hzcz + 771+1) + ( or F+ or G)}

— [{ dasdb; { tro [ 2% 2+1Ro Oy QfBu(lh-+ 1) — Py
- ALY 2 87’ 2 87' PR MNi+1 [

+s<aT Q, — aTQx) (2h1+m+1)+<8TF+ 5 G (4.41)

Thus, we recover the effective Lagrangian (4.29) used to take variations with resgeab t§.5.

5. Conservation properties

We now show that our non-traditional multilayer shallow water equations inherit the expected conservation laws for
energy, momentum, and potential vorticity from the underlying three-dimensional equations. The existence of these
conservation laws is guaranteed by our variational formulatidj#jrand Noether’s theorem that relates symmetries
in a variational principle to conservation laws.d. Goldstein 1980). Conservation of energy and momentum are
consequences of symmetries under translations in time and space, while material conservation of potential vorticity
follows from a more subtle symmetry under relabelling of the particles (Ripa 1981; Salmoa, 19883, 1998).

5.1. Energy conservation

An equation expressing conservation of energy may be obtained either by manipulating the extended shallow water
equations (3.22), or by a Legendre transformation of the Lagrangian (4.19). The latter approach corresponds to finding
the quantity that is conserved under time translation, as required by Noether’s theageBo(dstein 1980; Salmon

1998) since the Lagrangian does not depend explicitly upa¥e present the energy conservation law in dimensional

form for ease of interpretation,

N
0
i {Z 3oihi [wi* + 3 pighs (i + Th‘+1)}
i=1
N
+ VS g | 3pi [wl® + pigns + piti (Vi€ — wiQy) (5.1)
i=1
i—1
+ > pighy + 2pih; (v, — u; Q) | p =0

j=1
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As usual, the energy density is unaffected by the Coriolis force, and is simply the sum of the integrals of the three-
dimensional energy densig,pl- |u; \2+pigz over each layer. However, the energy flux differs from the standard shallow
water form by terms proportional €, andS2,. These extra terms represent the work done by the quasihydrostatic (as
opposed to purely hydrostatic) pressure.

5.2. Canonical momenta

The canonical momenta are best considered using the standard axes of geophysical fluid dynamics. We-take the
axis pointing East, and thg-axis pointing North, so tha®, = 0, Q, = Q,(y) andQ,o = Q.o(y). We first turn

our attention to the zonal momentum, which we expect to be conserved when the Lagrangian contains no explicit
dependence on. We therefore choosé = 0 andF(y) = — [ Q.¢(y)dy, as in Salmon (198%). We also assume a
zonally symmetric topography 11 (y) with no z- dependence The shallow water Lagrangian (4.19) then becomes

pi b, L LRol%: |2 & i, oW 1 4
L= ; p // da;db; {2R0|x1\ + & F + (e — Bu) (3h; + m+1)} , (5.2)
wherex; = (&;,79;) = (0x/07,0y/0T). The canonical momenta in thedirection are given by
oL 1
Diz = 5 Rou; + F +eQy (3h; + nig1) - (5.3)

We do not expect any individual canonical momentymto be conserved. When we take variations with respect,to
thex; andh; in the other layers;j(# ©) are treated as prescribed functionscgfso there is no symmetry associated
with translations inc; alone. In other words, the form drag due to tilted interfaces between layers transfers momentum
between layers.

However, there is a symmetry if we translate all of thesimultaneously by the same amount, letting— x; + éx
with the same variatiofz for eachi = 1, ..., N. The resulting variation of the Lagrangian (5.2) is

N
6/dT£:/dTZ%//daidbi (Rod; + F + 2 (%hi*—m“))%
i=1 F1

N
+ (e —Bu) [ 30hi+ > ohy | o (5.4)
j=i+1

Usingdh; = —h;0(dx)/0x for variations inz;, we find that

/ daldblAéh] = —/ dai

for an arbitrary functiondA and anyi andj. This result is very similar to (4.26), in that the second equality follows
from a transformation to an integral overd,, integration by parts, and then transformation back to an integral over
da;db;. It allows us to simplify (5.4) into

h; 0 .
6/d7'£ //daldbl /dT pl hl _aTi (ROLE,L' —|—F+€Qy (%h, +?7L+1))

/ daydh; = (hih; A) o (5.5)

19 N
+ B hi(ediQy —BU) | 3hi+ Y hy oz, (5.6)
j=i+1

where we have used (4.20) to transform each of the integuath,dfor i = 2, ... IV into an integral d,db;. We write
0/01; = 9/0t + u; - V for the material time derivative in layer

By Hamilton’s principle of least action, the integrand in (5.6) must be equal to zero. Redimensionalising and using
(3.16), we obtain the momentum conservation equation

N N
0 .
pn (Z pihipix> + VS pihipiai + pihi (9 — 2Qui) | 3hi+ > by | X p =0. (5.7
i=1 Jj=i+1
Thus, the conserved total zonal momentum is a weighted sum of the canonical momenta over the layers.

If Q,, Q.0, andny 4, are all constants, we may find a similar conservation law for the meridional momentum by
choosingF’ = 0 andG = z£2,¢. The shallow water Lagrangian now takes the form

L= Z p”’i // daylh; { SROJ:[? + 456 + (e, — BU) (Shi + i) } (5.8)
=1



14 A. L. Stewart and P. J. Dellar

and the canonica)-momenta are now given by

Diy = g—i = Rowv; + 28,0. (5.9)
We thus obtain a conservation law for tirgnomentum by a process similar to that described above,
0 (& N
Fn <Z1 pihipiy> + V- 4 pihipigu; + pihi (9 — 2Qu;) | hi + ZH hi |y =0. (5.10)
i= =

There is no one choice fdr andG that allows us to express conservationtofindy-momentum simultaneously, but

there are two conserved components of momentum when the rotation vector and the bottom topography are constants.
On a beta-plane, for example, we would not expect a conserved meridional momentum becdegends explicitly

on latitudey. We also see that the conserved zonal momentum contains terms proporti@pahtoilst the conserved
meridional momentum does not depend uphnin these standard axes the non-traditional components of the Coriolis
force act vertically and zonally, but not meridionally, see (3.1a-c).

5.3. Potential vorticity

Material conservation of potential vorticity is even more important in geophysical fluid dynamics than conservation of
energy and momentum. Both energy and momentum may be transported over large distances by waves, while potential
vorticity remains tied to fluid particles. Each layer of our equations possesses a potential vgrticéy obeys the
conservation law;q; + u; - Vg; = 0, with

1

q; = o {[on - %EV (s +mig1) Q)] + RO(ZZZ - 881:) } . (5.112)

This expression fog; differs from the standard shallow water potential vorticity by the teréfv (i + niv1) Q)
that contains the horizontal componef¥s and(2, of the rotation vector. Equivalently, if we expand the divergence
into two terms, we obtain

on — Z,;V . Q — Q . VE, = Qz — Q . Vzi = (Q, Qz) . V(Z — Z;(:v,y,t)) (512)

wherez; = % (n; + miy1) is thez-coordinate of the midsurface of th® layer. The non-traditional effects therefore
replace the vertical component of rotation vector, as found in the standard shallow water potential vorticity, by the
component perpendicular to the layer's midsurface z;(x, y, t).

The potential vorticity conservation law with the expression (5.11);fanay be obtained from the curl of (3.22),
or we may findg; directly from the canonical momenta. The patrticle relabelling symmetry Ripa 1981; Salmon
19823, 1988, 1998) implies material conservation of

_ 1 apiy apm
@“= ( Ba By, ) (5.13)

for any Lagrangian that depends on the particle labgbndb; only through the height; formed from the Jacobian
O(x;,v:)/0(as, b;). Moreover, the combination gf;, andp,, appearing iny; is invariant under changes of gauge in
R, i.e.itis the same for all possible choicesBfandG, even though;,. andp;, themselves are gauge-dependent.

6. Non-canonical Hamiltonian structure

Our equations may also be expressed using the non-canonical Hamiltonian structure for multilayered shallow wa-
ter equations formulated by Ripa (1993). The non-canonical Hamiltonian formalism is convenient for fluid systems
expressed using Eulerian (space-fixed) variables, as described in Shepherd (1990); Morrison (1998); Salmon (1988,
1998). It specifies the evolution of any function&las being given byF;, = {F,H} in terms of a Hamiltonian
functional™, and a Poisson brackeét -} that satisfies certain geometrical properties.

Using dimensional variables for simplicity, and writing the fluid velocitygs= (u;,,u;,), the evolution of the
density-weighted canonical momenta

Viz = piPiz = Pi (Uiw + F + 2 (3hi +1i41)) 5 Vig = pibiy = pilliy, (6.1)
and the layer depth; under our non-traditional multilayer shallow water equations is given by

hs 8, 9, 0] \sH/oh;

The Hamiltonian is the energy density frdjB.1, but expressed in terms of thg,, v;,, andh;,

N
h
H = Z ﬁ {[vm — o (F+2Qy (3 + 77k+1))}2 + ’Ul%y} + gprhi (3he + Nes1) - (6.3)
k=1
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Calculation of the variational derivativé{/dh, is complicated by the hidden dependenceg;obn iy, . . ., hy through
the relation

N
Me = NN+1 + Z h;, (6.4)
=k

whereny 11 (z,y) is the fixed bottom topography. The calculations are essentially the same as those computing the
variation in the potential energy part of the Lagrangiag4nThe combination}hk + nr+1 appearing in (6.3) is the
mid-point of layerk, denoteds;, by Ripa (1993).

All the coupling between layers is thus expressed through the Hamiltonian. The Poisson bracket that generates (6.2)
may be written as a sum of standard shallow water Poisson braekgtSiiepherd 1990) for each layer, as in Ripa

(1993),
N
. [(0F 4G oG oF oF 0G
{F.G} = ;//dxdy PiGi Z - (6vi X 5Vi> + §hiV~ (5‘”) - 5hiV~ (5vi> . (6.5)

This definition holds for any functional& andg satisfying suitable boundary conditions that allow integrations by
parts in (6.5) without generating surface terms. The Poisson bracket may be shown to be bilinear, antisymmetric,
and to satisfy the Jacobi identifyF, {G,K}} + {G, {K, F}} + {K,{F,G}} = 0 for all functionalsF, G, and K.
Equation (6.2) then follows from (6.5) and the evolution equaftpn= {F,H} by settingF equal tov;,, v;,, andh;

in turn. Conservation laws like those listedsii may be derived from properties of the Poisson bracket, especially the
existence of so-called Casimir functionglshat satisfy{C, F} = 0 for all functionalsF. A full description may be

found in Ripa (1993) and survey articles such as Shepherd (1990); Morrison (1998); Salmon (1988, 1998).

7. Conclusion

We have derived multilayer shallow water equations that include a complete treatment of the Coriolis force, thus
extending the single-layer equations of Dellar & Salmon (2005) to multiple layers. We have presented a derivation
of our equations by direct averaging of the three-dimensional Euler equations across layers, and two derivations by
averaging three-dimensional Lagrangians in Hamilton’s variational principle. Our two variational derivations differ in
their treatment of the coupling between layers. The latter derivations guarantee the existence of conservation laws for
energy, momentum, and potential vorticity in our equations. These laws are related to symmetries of the variational
principle by Noether’s theorem, and the symmetries are preserved by our averaging procedure. Our construction of a
vector potential for a wide class of spatially varyifdgextends the variational formulation of Dellar & Salmon (2005),
which relied upon constaf2, and corrects an error in their derivation by averaging the three-dimensional equations
whend,Q, + 9,8, # 0.

This coupling between layers makes our derivations, especially the derivations from Hamilton’s principle, much
more involved than for a single layer. Our three-dimensional variational formulation is expressed using Lagrangian
particle labels. This gives a formulation very close to Hamilton’s principle for particle mechanics, and avoids the need
to introduce extraneous variables such as Lin constraints or Clebsch potentiglg(Saémon 1988). Lagrangian par-
ticle labels are also very convenient for representing the interfaces between different fluid layers, which are themselves
Lagrangian surfaces. However, the reconstruction of particle positions from the labels introduces a hidden coupling
between layers. The vertical position of a particle in laydepends on the vertical position of the lower boundary of
the layermn;+1 in our notation, which in turn depends upon the labels in the layers, ..., N below.

Our first variational derivation uses the natural Lagrangian of kinetic energy minus gravitational potential energy,
plus an incompressibility constraint multiplied by a pressure as a Lagrange multiplier. This is the Lagrangian that may
be found in Eckart (1968 for a homogenous fluid. However, the derivation of the equations of motion in a layered
setting requires a very intricate exchange of integration variables between the different layers. This is because the
coupling between layers is exerted by particles in adjacent positions on either side of a layer, not by particles with
adjacent labels. This coupling was made explicit in an two-layer formulation by Salmonbj1®&2 contained a
double integral of a delta-function to tie the particle positions in the two layers together. This formulation is equivalent
to ours (see Appendix), but does not scale up easily to three or more layers. One would need to include triple and
higher integrals across all the layers in the system. As an alternative, we made the coupling between layers explicit by
introducing additional terms the Lagrangian. These term represent the work done on each layer by the pressure exerted
by the layers above(f. Miles & Salmon 1985). With these extra terms to make the previously hidden coupling explicit,
we derived the same equations of motion from independent variations of the label-to-particle map within each layer.
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The momentum equations we have derived are, in dimensionless form,

R0<3a‘: (u - v)u,-,> + <on — eV (i + nig1) Q))i X u;

+ V< Bun; + %5hi(viQw u; ) Z pih; Bu + e (v;Qy — u;QYy) )
N
—eQx2V-Q thui+ > hjuy o =0, (3.22)
j=it1

together with the usual continuity equatiofyg:; + V - (h;u;) = 0. They contain several non-traditional corrections

to the standard multilayer shallow water equations, as derived under the traditional approximation. The traditional
Coriolis term2§2,z x u; is modified by replacing the vertical componéht with the component of the full rotation
vector(2 that is perpendicular to each layer's midsurface. Secondly, the pressure changes from the hydrostatic pressure
to the quasihydrostatic pressure (White & Bromley 1995; Whital. 2005), due to the non-traditional Coriolis
termv;Q, — u;Q, in the vertical momentum equation. The last term in (3.22) has no analogue under the traditional
approximation. It arises from the non-traditional Coriolis force due to the vertical velocity, as reconstructed from
the divergence of the horizontal velocity under the assumption of columnar motion, and may be rewritten as the
time derivatived; (e Q x z%;), wherez;(x,y,t) is the vertical coordinate of the midsurface of #i& layer. This

time derivative then combines with the time derivative of the velocity to form the time derivative of the canonical
momentum, as shown §b.2.

We have shown that these equations inherit conservation laws for energy, momentum, and potential vorticity from
the underlying three-dimensional equations, as is guaranteed by our derivations from Hamilton’s principle. The con-
served components of momentum include additional non-traditional terms proportiobglas explained above.

These terms represent the angular momentum gained or lost as fluid elements change their vertical position, and
hence their distance from the rotation axis. This effect is absent in the traditional approximation, since a fluid ele-
ment displaced vertically is also displaced parallel to the rotation axis. The conserved energy density is unchanged by
non-traditional effects, just as it is unchanged by rotation about a vertical axis, but the energy flux gains additional
terms reflecting the work done by the quasihydrostatic (as opposed to purely hydrostatic) pressure on the boundary of
a control volume. Finally, the potential vorticity that is materially conserved within each layer becomes

1 . ov; ou;
= g {0 oV o) +Ro (G2 - S, (5.11)

The vertical componeri?, of the rotation vector is replaced by the component perpendicular to the layer’s midsurface

z = z;(z,y,t). We expect this change to be significant in the dynamics of cross-equatorial ocean currents, since the
change in sign of2, at the equator severely constrains the ability of fluid parcels to cross the equat@t¢mmel

& Arons 1960; Nof & Olson 1993). In our non-traditional equations, this constraint may be at least partly alleviated
by the interaction of non-traditional Coriolis effects with suitable topography.

In Part Il we focus attention on the two-layer version of our equations. We show that, like the standard two-layer
shallow water equations, they are well-posed for geophysically reasonable values of the velocity difference between the
two layers. We then turn to a study of linear waves, and show that our two-layer equations support sub-inertial waves.
These waves are permitted only by the presence of the non-traditional Coriolis terms, and may play an ingi@rtant r
in transferring energy from near-surface waves into the deep ocean, and hence in driving mixing in the deep ocean
(Gerkema & Shrira 200%b). Our study identifies a distinguished limit in which sufficiently long near-inertial waves
are substantially affected by even notionally very small non-traditional effects. These effects couple the eastward and
westward propagating branches of surface and internal waves. Long eastward surface waves connect with westward
internal waves, and vice versa. Further work will explore analytical solutions for cross-equatorial currents, like those
of Nof & Olson (1993), in the two-layer version of our equations.

ALS is supported by an EPSRC Doctoral Training Account award. PJD’s research is supported by an EPSRC
Advanced Research Fellowship, grant number EP/E054625/1.

Appendix: Connection with Salmon’s two-layer variational formulation

The two-layer version of our derivation §4.5 is equivalent to Salmon’s (198derivation of the two-layer shallow
water equations from the Lagrangian

L= P1 // daldb1 L1 +)02 // dagdbg Lz +,01 // da1db1/ dagdbg L12, (Al)
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which we write asC = £; + L5 + L12. The Lagrangian densities foe= 1,2 are
2 2
=3 () <2 (5) —aoses “2
in dimensional variables, and we have excluded rotation for simplicity. The two layers are coupled throughich
is expressed as a simultaneous integral over both layers of a delta function density,
Lio = —gd(x1 — X2), (A.3)
that ties together the particle positiongandxs in the two layers.

Usingdaidb; = hq(x1,t) dzidy; we transformls into

L1 =—p1 // dadyy // dagdbs ghi(x1,t) 6(x1 — X2), (A.4)

and then perform the integrations owgrandy;to obtain

Liz = —p1 // daydby ghy(xa,t). (A.5)
The total Lagrangian (A.1) thus becomes
L= p1 // da;db; {%|x1|2 _ %ghl} + p2 /d(lzdbg {§X2|2 _ %ghQ — g;ghl(XQ,t)} R (AG)

which is the same as (4.29) above with= 2 andi = 2. Varying the magas, 7) — x2(as, 7) gives the lower layer
equation of motion.
Conversely, usingasdby = ha(x2,t)dzodys we transform’;s into

Li2 = —p1 // da;dby // dzodys gha(xa,t) 6(x1 — X2), (A.7)
and then perform the integration ovey to obtain
L2 = —p1 // daydby gha(x1,t). (A.8)
The total Lagrangian (A.1) then becomes
z:pl/ daldbl{%|x1|2—%ghl—gh2(x1,t)}+p2//da2dbg{%|5<2|2—%ghg}, (A.9)

which is the same as (4.29) above with= 2 andi = 1. Varying the maga;, ) — xi(az, 7) gives the upper layer
equation of motion.

Salmon’s (198B) expression of,, as an integral over both layers explicitly indicates that it contributes to the
equations of motion in both layers, as found by varyingandxs independently. However, extending this approach
to n layers would require writing the coupling terms as integrals over &lyers. This is avoided by the approaches
we presented in the body of this paper. Our first approach is mathematically equivalent to Salmon’s, but we trans-
form directly from (A.5) to (A.8) without the intermediate multiple integral. Our second approach avoids this issue
completely by expressing the coupling using explidif terms in the Lagrangians.
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