1) Establish the classical analogue of Ehrenfest's theorem for observables in the Liouville equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\mathcal{O}\rangle=\langle\{\mathcal{O}, \mathcal{H}\}\rangle
$$

2) The Hamiltonian for n identical particles interacting through a pairwise potential ϕ is

$$
\mathcal{H}=\sum_{i=1}^{N} \frac{\left|\mathbf{p}_{i}\right|^{2}}{2 m}+\sum_{1 \leq i<j \leq N} \phi\left(\left|\mathbf{q}_{i}-\mathbf{q}_{j}\right|\right)
$$

with expectation $\langle\mathcal{H}\rangle=\int \mathrm{d} V_{1} \ldots \mathrm{~d} V_{N} \rho(\mathbf{p}, \mathbf{q}, t) \mathcal{H}(\mathbf{p}, \mathbf{q})$, as defined in lectures.
a) Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\mathcal{H}\rangle=\int \mathrm{d} V_{1} \frac{\left|\mathbf{p}_{1}\right|^{2}}{2 m} \frac{\partial f_{1}}{\partial t}+\frac{1}{2} \int \mathrm{~d} V_{1} \mathrm{~d} V_{2} \phi\left(\left|\mathbf{q}_{1}-\mathbf{q}_{2}\right|\right) \frac{\partial f_{2}}{\partial t} .
$$

b) Use the evolution equations for f_{1} and f_{2} from the BBGKY hierarchy to show that the above right hand side vanishes, assuming the usual decay conditions for f_{1} and f_{2} with large arguments.
3) Show that substituting the "mean-field" ansatz

$$
f_{2}\left(\mathbf{p}_{1}, \mathbf{q}_{1}, \mathbf{p}_{2}, \mathbf{q}_{2}, t\right)=f_{1}\left(\mathbf{p}_{1}, \mathbf{q}_{1}, t\right) f_{1}\left(\mathbf{p}_{2}, \mathbf{q}_{2}, t\right)
$$

into the first equation of the BBGKY hierarchy leads to the Vlasov equation

$$
\left(\partial_{t}+\left(\mathbf{p}_{1} / m\right) \cdot \boldsymbol{\nabla}\right) f_{1}\left(\mathbf{p}_{1}, \mathbf{q}_{1}, t\right)=\left(\int \mathrm{d} \mathbf{p}_{2} \int \mathrm{~d} \mathbf{q}_{2} f_{1}\left(\mathbf{p}_{2}, \mathbf{q}_{2}, t\right) \frac{\partial \phi\left(\left|\mathbf{q}_{1}-\mathbf{q}_{2}\right|\right)}{\partial \mathbf{q}_{1}}\right) \cdot \frac{\partial f_{1}\left(\mathbf{p}_{1}, \mathbf{q}_{1}, t\right)}{\partial \mathbf{p}_{1}}
$$

and interpret the term on the right hand side when ϕ is the Coulomb potential.
Think about which scaling regimes for the size and range of the interaction potential ϕ make sense for deriving the Vlasov and Boltzmann equations in the limit as $N \rightarrow \infty$. Hint, you may want to consider a potential $\Phi\left(\left|\mathbf{q}_{i}-\mathbf{q}_{j}\right| / d\right)$.
4) Using a suitably normalised velocity, show that the product of a Hermite polynomial and a rest-state MaxwellBoltzmann distribution is an eigenfunction of the one-dimensional Lénard-Bernstein model collision operator

$$
\mathrm{L} f=\frac{\partial}{\partial v}\left(v f+\frac{1}{2} \frac{\partial f}{\partial v}\right)
$$

What are the eigenvalues? Can you find a related collision operator that also conserves momentum and energy by adopting coefficients that depend upon integrals of f ?

The "physicist's" Hermite polynomials are

$$
H_{n}(v)=(-1)^{n} e^{v^{2}}\left(\frac{\mathrm{~d}}{\mathrm{~d} v}\right)^{n} e^{-v^{2}}
$$

for $n=0,1,2, \ldots$.
5) Homoenergetic shearing flow
a) Show that a solution of the Boltzmann equation with the linearised collision operator for Maxwell molecules exists for which ρ is constant, $\mathbf{u}=\gamma y \hat{\boldsymbol{x}}$ is a steady linear shear at rate γ, and the components of the pressure tensor are spatially uniform, and satisfy (where I is the 3×3 identity matrix)

$$
\mathrm{P}+\tau\left[\partial_{t} \mathrm{P}+\gamma\left(\begin{array}{ccc}
2 P_{x y} & P_{y y} & 0 \\
P_{y y} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]=\frac{1}{3}\left(P_{x x}+P_{y y}+P_{z z}\right) \mathrm{I} .
$$

b) Show that these equations for the components of P have solutions proportional to $\exp (\chi t / \tau)$, where χ is a root of

$$
\chi(1+\chi)^{2}=(2 / 3)(\gamma \tau)^{2}
$$

c) Show that if $\gamma \tau \ll 1$, the shear stress approaches the Navier-Stokes form $P_{x y}=-\mu \gamma$ at long times, with dynamic viscosity $\mu=\tau \rho \theta$.

This is a rare exact solution of the Boltzmann equation. For the BGK collision operator one can reconstruct f as well. See Cercignani (2000) section 2.2.
6) Consider the following model ODE system for one moment that is conserved by collisions, and one than is not:

$$
\begin{aligned}
\partial_{t} u+i m & =0 \\
\partial_{t} m & =-(m-u) /(\epsilon \tau) .
\end{aligned}
$$

Compare the result of a straightfoward expansion of u and m in ϵ with a multiple-scales expansion. Alternatively, expand only m as a series in ϵ, and find a closed evolution equation for the unexpanded function $u(t)$ at zeroth and first order in ϵ. How do these solutions compare with the exact solution of the system?
7) Fill in the details to derive the first correction $f^{(1)}$, the Navier-Stokes viscous stress, and Fourier's law from the Boltzmann-BGKW equation via the Chapman-Enskog expansion.

As in the construction of the linearised collision operator, it is easiest to find $h=f^{(1)} / f^{(0)}$ by considering the evolution equation for $\log f^{(0)}$, and then write the w-dependence of h using Grad's tensor Hermite polynomials,

$$
1, \quad w_{i}, \quad w_{i} w_{j}-\Theta \delta_{i j}, \quad w_{i} w_{j} w_{k}-\Theta\left(w_{i} \delta_{j k}+w_{j} \delta_{k i}+w_{k} \delta_{i j}\right)
$$

These polynomials are orthogonal with respect to the weight function $\exp \left(-|\mathbf{w}|^{2} /(2 \Theta)\right)$, which makes it relatively to find the necessary moments of your expression for $f^{(1)}$.

