Topological Superrigidity Geometry and analysis on graphs and groups

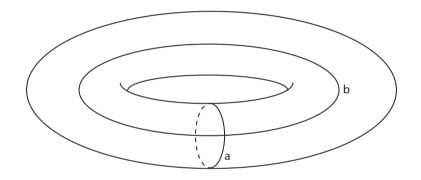
Oxford, November 12th 2010

Aditi Kar and Graham A. Niblo

◆母 ▶ < E ▶ < E ▶ ○ E ○ ○ ○ ○</p>

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity

Every π_1 -injective map $f : S^1 \to S^1 \times S^1$ factorises up to homotopy as a finite cover of an embedding.

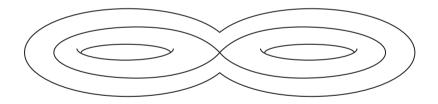


A curve representing the element $a^r b^s$ is, up to homotopy a finite cover of the embedded curve representing $a^{r/d}b^{s/d}$ where $d = \gcd(r, s)$

Hyperbolic surfaces

On the other hand every hyperbolic surface Σ admits π_1 -injective maps $f : S^1 \to \Sigma$ which do not factorise up to homotopy as a finite cover of an embedding.

- Geodesics minimise self intersection number in their free homotopy class.
- Intersection numbers are additive with exponents.



Choose a closed geodesic with non-trivial self-intersection number and intersection number 1 with some scc.

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity

Compare the situation with surfaces in 3-manifolds

Theorem (The Kahn-Markovic theorem)

Every hyperbolic 3-manifold contains an immersed π_1 -injective surface.

Theorem (Alan Reid)

There is a hyperbolic 3-manifold which is finitely covered by a surface bundle over S^1 but which does not contain any embedded π_1 -injective surfaces.

Theorem (Waldhausen's torus theorem)

Let N be the 2-torus, M be a closed, aspherical, orientable 3-manifold which is not Seifert fibered and let f be a π_1 -injective map from N to M. Then there is a π_1 -injective embedding of N in M.

Theorem (The sphere theorem)

Let N be the 2-sphere, M be a closed, orientable 3-manifold and let f be a π_2 -injective map from N to M. Then there is a π_2 -injective embedding of N in M.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

The embedding obstruction vanishes if the codimension is high enough:

Theorem (Whitney)

Let N be an n-manifold and M be an m-manifold with either $2n + 1 \le m$ or m = 2n > 6 and $\pi_1(M) = 1$. Then any map f from N to M is homotopic to an embedding.

Geometric Superrigidity

Theorem (Ngaiming Mok, Yum-Tong Siu, Sai-Kee Yeung, Inventiones 1993)

Let \tilde{N} be a globally symmetric irreducible Riemann manifold of non-compact type.

Let *M* be

< ∃ >

590

a Riemann manifold. Let f be a non-constant H-equivariant harmonic map from \tilde{N} to \tilde{M} .

f is a totally geodesic isometric embedding (up to a renormalization constant).

Theorem (The torus theorem)

 π_1 -injective, codimension-1 \rightarrow embedding, up to cut and paste

Theorem (Whitney's embedding theorem)

Continuous \rightarrow embedding, up to homotopy.

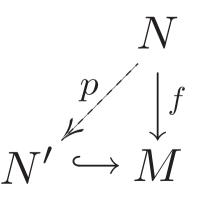
Theorem (Geometric Superrigidity)

Harmonic \rightarrow totally geodesic embedding, up to renormalization.

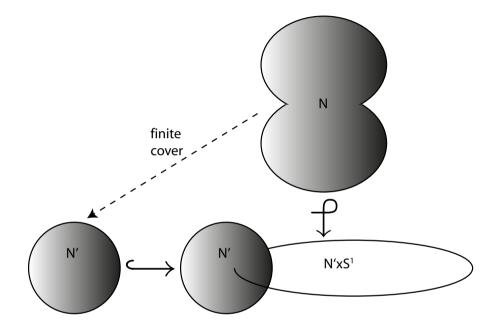
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorem (Kar, GAN + GAN, Reeves)

Let *N* be an orientable *n*-manifold with universal cover \tilde{N} a globally symmetric irreducible Riemann manifold of non-compact type. Assume that either \tilde{N} is of rank at least 2, or \tilde{N} is the quaternionic or Cayley hyperbolic space. Let *M* be a closed, orientable, aspherical n + 1 dimensional manifold and let *f* be a π_1 -injective map from *N* to *M*. Then *f* is homotopic to a finite cover of an embedding $N' \hookrightarrow M$ and N' admits a metric modelled on the symmetric space \tilde{N} .



Example



If *M*' is an n + 1 manifold which has boundary consisting of two π_1 -injective copies of *N*' then any diffeomorphism between them gives rise to a closed manifold and *p* induces an immersion $N \rightarrow M$ as required.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

In many cases, e.g., when *N* is quaternionic or Cayley hyperbolic, these are the **only** examples.

Outline of the proof

- Step 1 (Geometric group theory) Replace H < G with a subgroup H' < G commensurable to H and such that G splits over $H, G = A *_{H'} B$ or $G = A *_{H'}$ with H < A.
- Step 2 (Surgery theory) Apply Cappell's surgery lemmas to realise the splitting by an embedded submanifold $i: N' \hookrightarrow M$ so that i_* is π_k -injective for all $k \le n/2$.
- Step 3 (Homological algebra) Appeal to Poincaré duality to conclude that i_* is π_k -injective for all k and that H < H'.
- Step 4 (Algebraic Topology/Rigidity) Conclude that the map *f* factors up to homotopy through a finite cover of the embedding *i*.

Step 1: Generalising Stallings' theorem

Theorem (GAN)

Let G be a finitely generated group and H < G satisfy

•
$$e(G,H) \geq 2$$
,

• $Sing(G, H) \subset Comm_G(H)$.

Then G splits over a subgroup commensurable with H

$$G = A \underset{H'}{*} B \text{ or } A \underset{H'}{*}.$$

The proof is a version of the Casson/Dunwoody least weight track argument carried out on a cube complex. It is easy to see that we can arrange that H < A.

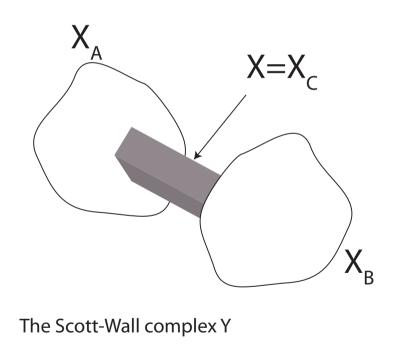
Theorem (Kar, GAN)

Let G be an orientable Poincaré duality group of dimension n. Suppose that H is an orientable (n - 1)-dimensional Poincaré duality subgroup of G and that H has property (T). Then G splits over a subgroup commensurable with H.

- By Poincaré duality $e(G, H) \ge 2$.
- G acts on a CAT(0) cube complex with H as the hyperplane stabiliser.
- Since *H* has property (T) it must, by (Reeves, GAN) fix a point in the hyperplane and so by an argument of Kropholler if *g* ∈ Sing(*G*, *H*) then *H* ∩ *H^g* is also a codimension-1 subgroup of *G*.
- $cd(H \cap H^g) = n 1 = cd(H)$.
- By Strebel's theorem [H : H ∩ H^g] < ∞, so g lies in the commensurator of H.

We can then apply the generalised Stallings' Theorem to obtain the required splitting.

The subgroups *A*, *C* (and *B*) have geometric dimension *n* so we choose a cell complex of dimension *n* to realise each of them, and build the Scott-Wall $K(\pi, 1)$ for *G*:



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Step 2a, Cappell's surgery lemmas part 1

Lemma

Let Y be an (n + 1)-dimensional closed manifold (or Poincaré complex) and X a codimension-1 closed submanifold (or sub-Poincaré complex) with trivial normal bundle in Y and with $\pi_1(X) \to \pi_1(Y)$ injective. Let M be an (n + 1)-dimensional closed differentiable (or PL) manifold with $f : M \to Y$ a homotopy equivalence, $n \ge 4^a$. Then f is homotopic to a map, which we continue to call f, which is transverse regular to X (whence $f^{-1}(X)$ is a codimension-1 submanifold of M) and with the restriction of f to $f^{-1}(X) \to X$ inducing isomorphisms $\pi_i(f^{-1}(X)) \to \pi_i(X), i \le (n-1)/2$.

^{*a*}Without the assumption that *M* is differentiable or PL Cappell's result applies only for $n \ge 5$.

・ロト ・ 四 ト ・ 臣 ト ・ 臣 ト

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Step 2b, Cappell's surgery lemmas part 2

We give a simplified statement:

Lemma

Assume further that $f : M \to Y$ is a homotopy equivalence transverse regular to X with $\pi_i(f^{-1}(X)) \to \pi_i(X)$ an isomorphism for i < n/2. Then $\exists [P] \in \tilde{K}_0(H)$ such that if [P] = 0then f is homotopic to a map f' with $f'^{-1}(X)$ n/2-connected.

We can apply this lemma in our context since vanishing of the **entire** reduced projective class group $\tilde{K}_0(H)$ is provided by Bartels and Lück in their proof of the Borel Conjecture for hyperbolic and CAT(0) spaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ◇◇◇

Step 3, Poincaré duality

Lemma

Let N' be a closed orientable 2k dimensional manifold such that its universal cover \tilde{N}' is k-connected. Suppose moreover that $G = \pi_1(N')$ is a 2k-dimensional Poincaré duality group. Then $\pi_i(N') = \{0\}$ for all $i \ge 2$.

Proof.

Apply the Hurewicz isomorphism to the smallest degree for which $\pi_n(\tilde{N'}) \neq \{0\}$.

$$\{0\}
eq \pi_n(ilde{N}') \stackrel{Hurewicz}{=} H_n(ilde{N}') \ \stackrel{duality}{=} H_c^{2k-n}(ilde{N}') = H^{2k-n}(G, \mathbb{Z}G) \stackrel{duality}{=} \{0\}.$$

Now let $N' = f'^{-1}(X)$. Combining the results above we see that N' is an aspherical *n*-dimensional submanifold $N' \hookrightarrow M$ which induces the splitting of $\pi_1(M)$ over $H' = \pi_1(N')$.

Step 4a, Mostow-Prasad-Farb rigidity

- $\pi_1(N')$ is commensurable with the lattice $\pi_1(N)$ in an isometry group satisfying Mostow-Prasad-Farb rigidity.
- It follows that, modulo a finite subgroup, $\pi_1(N')$ is a uniform lattice in the same isometry group.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• On the other hand $\pi_1(N')$ is torsion free, so it is in fact a lattice and by rigidity N' admits a metric modelled on \tilde{N} .

Step 4b, homological algebra

Recall that $\pi_1(N')$ and $\pi_1(N)$ are commensurable subgroups of *A*. In most cases $\pi_1(N')$ is self commensurating so that $\pi_1(N) < \pi_1(N')$ as required.

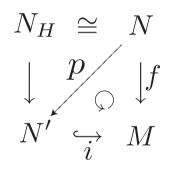
Lemma

Let (A, Ω) be a Poincaré duality pair, with H' the stabiliser of a point in Ω . Then either H' is self commensurating in A, or it is of twisted I-bundle type, i.e., the index [A : H'] = 2 and A acts non-trivially on Ω .

If (A, Ω) is of twisted I-bundle type then A is a non-orientable Poincaré duality group of dimension n and contains a unique maximal orientable PD^n subgroup. Since H' has index 2 and is an orientable PD^n subgroup it is the maximal one, and since H is also an orientable PD^n subgroup it is contained in H' as required.

Rigidity and asphericity

Since H < H', there is a covering space $N_H \rightarrow N'$ induced by the inclusion.



Applying Borel rigidity we see that $N_H \cong N$. This gives a finite covering map $N \to N'$ and the composition $p \circ i : N' \to M$ induces the inclusion of $\pi_1(N)$ in $\pi_1(M)$.

Since *M* is aspherical the map $p \circ i$ is homotopic to the map *f* as required.

A corollary

Recall the following classical fact:

Theorem

If M^{4d+1} is a differentiable manifold such that the first Betti number $b_1(M)$ of M is 0 and N^{4d} has non-zero signature then there are no codimension-1 immersions of N into M.

Proof.

Since *f* is a codimension-1 immersion, $f^*: H^{4d}(M, \mathbb{Q}) \to H^{4d}(N, \mathbb{Q})$ maps the Hirzebruch L-class $L_d(M)$ onto $L_d(N)$. It follows from Poincaré duality that

$$H^{4d}(M,\mathbb{Q})\cong H_1(M,\mathbb{Q})=\{0\}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

590

However Hirzebruch's signature theorem says that $L_d(N)$ is equal to the signature of N which is non-trivial.

Using non-vanishing of Pontryagin numbers instead we get the following generalisation:

Theorem (Kar, GAN)

With the assumptions of the topological superrigidity theorem, if N has a non-trivial Pontryagin number^a and M has first Betti number 0 then there are no π_1 -injective maps $f : N \to M$.

^aE.g., by Lafont and Roy: orientable Cayley hyperbolic manifolds or orientable quaternionic manifolds of dimension at least 8.

- This works when *f* is not an immersion and when the dimension of *N* is not divisible by 4, both of which are prerequisites for the Hirzebruch theorem.
- If *M* is a suitable non-positively curved manifold then the geometric superrigidity theorem theorem tells us that since there are no π_1 -injective maps, there are **no** non-trivial maps $f : N \to M$.

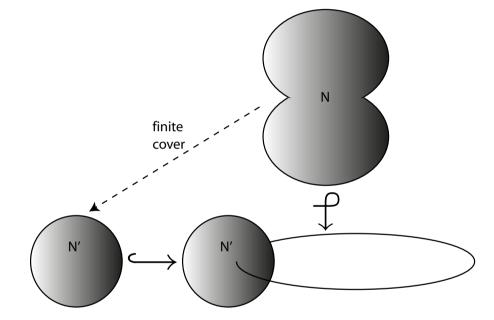
・ロト ・ 四 ト ・ 臣 ト ・ 臣 ト

Proof.

By the topological superrigidity theorem we can replace $f: N \rightarrow M$ by an embedding $i: N' \rightarrow M$ finitely covered by f, and since $\beta_1(M) = 0$ the image is separating. But then i(N') bounds orientably, so N' is null-cobordant. On the other hand N has a non-trivial characteristic class (at least one of its Pontryagin numbers is non-trivial) and these vary multiplicatively with degree of finite coverings It follows that N' also has a non-trivial Pontryagin number. This is a contradiction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ◇◇◇

Earlier example revisited



It follows that when N is quaternionic or Cayley hyperbolic $\pi_1(M)$ splits as an HNN extension and M is obtained from a manifold with two copies of N in the boundary, identified by a homeomorphism.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

E