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An elementary observation

Every π1-injective map f : S1 → S1 × S1 factorises up to
homotopy as a finite cover of an embedding.

a

b

A curve representing the element ar bs is, up to homotopy a
finite cover of the embedded curve representing ar/dbs/d where
d = gcd(r , s)
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Hyperbolic surfaces

On the other hand every hyperbolic surface Σ admits
π1-injective maps f : S1 → Σ which do not factorise up to
homotopy as a finite cover of an embedding.

Geodesics minimise self intersection number in their free
homotopy class.
Intersection numbers are additive with exponents.

Choose a closed geodesic with non-trivial self-intersection
number and intersection number 1 with some scc.
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Compare the situation with surfaces in 3-manifolds

Theorem (The Kahn-Markovic theorem)
Every hyperbolic 3-manifold contains an immersed π1-injective
surface.

Theorem (Alan Reid)
There is a hyperbolic 3-manifold which is finitely covered by a
surface bundle over S1 but which does not contain any
embedded π1-injective surfaces.
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The low genus embedding theorems

Theorem (Waldhausen’s torus theorem)
Let N be the 2-torus, M be a closed, aspherical, orientable
3-manifold which is not Seifert fibered and let f be a π1-injective
map from N to M. Then there is a π1-injective embedding of N
in M.

Theorem (The sphere theorem)
Let N be the 2-sphere, M be a closed, orientable 3-manifold
and let f be a π2-injective map from N to M. Then there is a
π2-injective embedding of N in M.
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Whitney’s embedding theorem

The embedding obstruction vanishes if the codimension is high
enough:

Theorem (Whitney)
Let N be an n-manifold and M be an m-manifold with either
2n + 1 ≤ m or m = 2n > 6 and π1(M) = 1. Then any map f
from N to M is homotopic to an embedding.

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity



university-logo

Geometric Superrigidity

Theorem (Ngaiming Mok, Yum-Tong Siu, Sai-Kee Yeung,
Inventiones 1993)

Let Ñ be a globally symmetric irreducible Riemann manifold of

non-compact type. Assume that either Ñ is of rank at least 2, or

is the quaternionic hyperbolic space of dimension at least 8 or

the hyperbolic Cayley plane. Let H be a cocompact discrete

subgroup of the group of isometries of Ñ acting freely. Let M̃ be

a Riemann manifold. Let f be a non-constant H-equivariant

harmonic map from Ñ to M̃. When the rank of Ñ is at least two,

the Riemann sectional curvature is assumed to be non-positive.

When the rank of Ñ is one, the complexified sectional curvature

is assumed to be nonpositive. Then the covariant derivative of

the differential of f is identically zero. As a consequence, f is a

totally geodesic isometric embedding (up to a renormalization

constant).
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Theorem (The torus theorem)
π1-injective, codimension-1→ embedding, up to cut and paste

Theorem (Whitney’s embedding theorem)
Continuous→ embedding, up to homotopy.

Theorem (Geometric Superrigidity)
Harmonic→ totally geodesic embedding, up to renormalization.
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Theorem (Kar, GAN + GAN, Reeves)

Let N be an orientable n-manifold with universal cover Ñ a
globally symmetric irreducible Riemann manifold of
non-compact type.
Assume that either Ñ is of rank at least 2, or Ñ is the
quaternionic or Cayley hyperbolic space.
Let M be a closed, orientable, aspherical n + 1 dimensional
manifold and let f be a π1-injective map from N to M. Then f is
homotopic to a finite cover of an embedding N � �→ M and N �

admits a metric modelled on the symmetric space Ñ.
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Example

N’

N

finite
cover

N’
N‘xS1

If M � is an n + 1 manifold
which has boundary
consisting of two π1-injective
copies of N � then any
diffeomorphism between
them gives rise to a closed
manifold and p induces an
immersion N → M as
required.

In many cases, e.g., when N is quaternionic or Cayley
hyperbolic, these are the only examples.
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Outline of the proof

Step 1 (Geometric group theory) Replace H < G with a subgroup
H � < G commensurable to H and such that G splits over
H, G = A ∗H� B or G = A∗H� with H < A.

Step 2 (Surgery theory) Apply Cappell’s surgery lemmas to
realise the splitting by an embedded submanifold
i : N � �→ M so that i∗ is πk -injective for all k ≤ n/2.

Step 3 (Homological algebra) Appeal to Poincaré duality to
conclude that i∗ is πk -injective for all k and that H < H �.

Step 4 (Algebraic Topology/Rigidity) Conclude that the map f

factors up to homotopy through a finite cover of the
embedding i .

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity
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Step 1: Generalising Stallings’ theorem

Theorem (GAN)
Let G be a finitely generated group and H < G satisfy

e(G, H) ≥ 2,

Sing(G, H) ⊂ CommG(H).

Then G splits over a subgroup commensurable with H

G = A ∗
H�

B or A ∗
H�

.

The proof is a version of the Casson/Dunwoody least weight
track argument carried out on a cube complex. It is easy to see
that we can arrange that H < A.

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity
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Theorem (Kar, GAN)
Let G be an orientable Poincaré duality group of dimension n.

Suppose that H is an orientable (n − 1)-dimensional Poincaré

duality subgroup of G and that H has property (T). Then G

splits over a subgroup commensurable with H.

By Poincaré duality e(G, H) ≥ 2.
G acts on a CAT(0) cube complex with H as the
hyperplane stabiliser.
Since H has property (T) it must, by (Reeves, GAN) fix a
point in the hyperplane and so by an argument of
Kropholler if g ∈ Sing(G, H) then H ∩ Hg is also a
codimension-1 subgroup of G.
cd(H ∩ Hg) = n − 1 = cd(H).
By Strebel’s theorem [H : H ∩ Hg] <∞, so g lies in the
commensurator of H.

We can then apply the generalised Stallings’ Theorem to obtain
the required splitting.

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity
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The Scott-Wall K (π, 1)

The subgroups A, C (and B) have geometric dimension n so we
choose a cell complex of dimension n to realise each of them,
and build the Scott-Wall K (π, 1) for G:

X=XC

XA

XB

The Scott-Wall complex Y

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity
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Step 2a, Cappell’s surgery lemmas part 1

Lemma
Let Y be an (n + 1)-dimensional closed manifold (or Poincaré
complex) and X a codimension-1 closed submanifold (or
sub-Poincaré complex) with trivial normal bundle in Y and with
π1(X )→ π1(Y ) injective. Let M be an (n + 1)-dimensional
closed differentiable (or PL) manifold with f : M → Y a
homotopy equivalence, n ≥ 4a. Then f is homotopic to a map,
which we continue to call f , which is transverse regular to X
(whence f−1(X ) is a codimension-1 submanifold of M) and with
the restriction of f to f−1(X )→ X inducing isomorphisms
πi(f−1(X ))→ πi(X ), i ≤ (n − 1)/2.

aWithout the assumption that M is differentiable or PL Cappell’s result
applies only for n ≥ 5.

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity
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Step 2b, Cappell’s surgery lemmas part 2

We give a simplified statement:

Lemma
Assume further that f : M → Y is a homotopy equivalence

transverse regular to X with πi(f
−1(X )) → πi(X ) an

isomorphism for i < n/2. Then ∃[P] ∈ K̃0(H) such that if [P] = 0
then f is homotopic to a map f � with f �−1(X ) n/2-connected.

We can apply this lemma in our context since vanishing of the
entire reduced projective class group K̃0(H) is provided by
Bartels and Lück in their proof of the Borel Conjecture for
hyperbolic and CAT(0) spaces.

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity
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Step 3, Poincaré duality

Lemma

Let N � be a closed orientable 2k dimensional manifold such

that its universal cover Ñ � is k-connected. Suppose moreover

that G = π1(N
�) is a 2k-dimensional Poincaré duality group.

Then πi(N
�) = {0} for all i ≥ 2.

Proof.

Apply the Hurewicz isomorphism to the smallest degree for

which πn(Ñ �) �= {0}.

{0} �= πn(Ñ �)
Hurewicz

= Hn(Ñ �)

duality
= H

2k−n
c (Ñ �) = H

2k−n(G, ZG)
duality

= {0}.
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Now let N � = f �−1(X ). Combining the results above we see that
N � is an aspherical n-dimensional submanifold N � �→ M which
induces the splitting of π1(M) over H � = π1(N

�).

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity
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Step 4a, Mostow-Prasad-Farb rigidity

π1(N �) is commensurable with the lattice π1(N) in an

isometry group satisfying Mostow-Prasad-Farb rigidity.

It follows that, modulo a finite subgroup, π1(N �) is a uniform

lattice in the same isometry group.

On the other hand π1(N �) is torsion free, so it is in fact a

lattice and by rigidity N � admits a metric modelled on Ñ.
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Step 4b, homological algebra

Recall that π1(N
�) and π1(N) are commensurable subgroups of

A. In most cases π1(N
�) is self commensurating so that

π1(N) < π1(N
�) as required.

Lemma
Let (A,Ω) be a Poincaré duality pair, with H � the stabiliser of a

point in Ω. Then either H � is self commensurating in A, or it is of

twisted I-bundle type, i.e., the index [A : H �] = 2 and A acts

non-trivially on Ω.

If (A,Ω) is of twisted I-bundle type then A is a non-orientable
Poincaré duality group of dimension n and contains a unique
maximal orientable PDn subgroup. Since H � has index 2 and is
an orientable PDn subgroup it is the maximal one, and since H

is also an orientable PDn subgroup it is contained in H � as
required.

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity
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Rigidity and asphericity

Since H < H �, there is a covering space NH → N � induced by
the inclusion.

Applying Borel rigidity we
see that NH

∼= N.
This gives a finite covering
map N → N � and the
composition p ◦ i : N � → M

induces the inclusion of
π1(N) in π1(M).

Since M is aspherical the map p ◦ i is homotopic to the map f

as required.

Aditi Kar & Graham A. Niblo, Southampton Topological Superrigidity
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A corollary

Recall the following classical fact:

Theorem

If M4d+1 is a differentiable manifold such that the first Betti

number b1(M) of M is 0 and N4d has non-zero signature then

there are no codimension-1 immersions of N into M.

Proof.

Since f is a codimension-1 immersion,

f ∗ : H4d(M, Q)→ H4d(N, Q) maps the Hirzebruch L-class

Ld(M) onto Ld(N). It follows from Poincaré duality that

H
4d(M, Q) ∼= H1(M, Q) = {0}.

However Hirzebruch’s signature theorem says that Ld(N) is

equal to the signature of N which is non-trivial.
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Using non-vanishing of Pontryagin numbers instead we get the

following generalisation:

Theorem (Kar, GAN)

WIth the assumptions of the topological superrigidity theorem, if
N has a non-trivial Pontryagin numbera and M has first Betti
number 0 then there are no π1-injective maps f : N → M.

a
E.g., by Lafont and Roy: orientable Cayley hyperbolic manifolds or

orientable quaternionic manifolds of dimension at least 8.

This works when f is not an immersion and when the

dimension of N is not divisible by 4, both of which are

prerequisites for the Hirzebruch theorem.

If M is a suitable non-positively curved manifold then the

geometric superrigidity theorem theorem tells us that since

there are no π1-injective maps, there are no non-trivial

maps f : N → M.
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Proof.

By the topological superrigidity theorem we can replace

f : N → M by an embedding i : N � �→ M finitely covered by f ,
and since β1(M) = 0 the image is separating. But then i(N �)
bounds orientably, so N � is null-cobordant.

On the other hand N has a non-trivial characteristic class (at

least one of its Pontryagin numbers is non-trivial) and these

vary multiplicatively with degree of finite coverings

It follows that N � also has a non-trivial Pontryagin number. This

is a contradiction.
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Earlier example revisited

N’

N

finite
cover

N’

It follows that when N is

quaternionic or Cayley

hyperbolic π1(M) splits as an

HNN extension and M is

obtained from a manifold with

two copies of N in the

boundary, identified by a

homeomorphism.
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