Thm A polycyclic if is either vintually milyotent ar of expon. newth.
Pnoof uduced to
Phop. Considen K milpptent f.g.
A gnoup $G=K \rtimes Z$ is:
(1) eithen mitually nilp;
(2) n of expon. gnoweth.

Remank ${ }^{7} G$ is 7 : 9 . its gnowth is ${ }_{n}$
at most exponential, i.e. $\xi_{6}(n) \leqslant e^{n}$:

fue grap.
(2) the groouth of $a f \cdot \mathrm{~J}$ fou gp. is

In $P_{\text {nef }}, G=K \infty \mathbb{Z}$九en.

$$
\begin{aligned}
& \mathbb{Z} \rightarrow A \cup+(K) \\
& 1 \mapsto \varphi ; n \mapsto \varphi^{n}
\end{aligned}
$$

Notation: $K x_{\varphi}$ Z

$$
\begin{aligned}
& \text { gip of antom. of } Z \text { is } \\
& G L(n, Z)=\{M \in M(n, Z) ; d t M= \pm 4\} \text {. }
\end{aligned}
$$

(2) 17 M has all eijanvalues in $\{z \in \mathbb{C} ;|z|-1\}$ then the eigmvalues an noets of unity: $\lambda^{k}=1$.
(3) If M has only reiguvalue 1 than $\exists P \in G<\langle m\rangle$,$\rangle o.t.$

$$
M=P\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right) P^{-1}
$$

Egnival thy these exists a desanding snime

$$
\begin{aligned}
\Lambda_{0}=\{0\} & \Lambda_{1} \leqslant \ldots \leqslant \Lambda_{i} \leqslant \Lambda_{i+1} \leqslant \ldots \leqslant \Lambda_{n} n t . \\
& \cdot \Lambda_{i} \simeq Z^{i} \\
& \cdot \Lambda_{i+1} / \Lambda_{i} \simeq \mathbb{Z} \\
& \cdot
\end{aligned} M_{i}\left(\Lambda_{i}\right)=\Lambda_{i} \quad \Lambda_{i+1} / \Lambda_{i} \text { theid. }
$$

(4) Assume M has one eiganvalue λ s.t. $|\lambda| \geqslant 2$. Then $r \in \mathbb{Z}^{n}$ o.t.
the following map is inj.:

$m \in \geq$

$$
\left(S_{m}\right) \mapsto S_{0} \cdot v+S_{q} M_{v}+\ldots+S_{i} M^{i} v+\ldots
$$

Phoof $\varphi: Z^{n} \rightarrow Z^{n}, \varphi(u)=M u$.
Extunds to $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, has an adjoint transf. $\varphi^{*}:\left(\mathbb{C}^{n}\right)^{\prime} \mapsto\left(\mathbb{C}^{n}\right)^{\prime}$, φ^{*} has matax $M^{\top} \Rightarrow \quad 7 \mapsto$ has eigural. λ $\exists \mathcal{F}: ⿷^{n} \rightarrow \mathbb{C}, 7 \neq 0$ s.t.

$$
f \circ \varphi=\lambda f
$$

Pisk $v \times \mathbb{\Sigma}^{n} \backslash k_{n} 7$.
of the map conesponding to r notioj
them $\exists t_{i} \in\{0, \pm 2\}, N \geqslant 1$ n.t.

$$
t_{0} v+t_{1} M_{v+\ldots}+t_{N} M^{N} v=0(*)
$$

Assume $t_{N} \neq 0$. W/2 ne-siniti (*):

$$
\begin{aligned}
& M^{N} v \equiv \Omega_{0} v+n_{1} M v+\ldots+\pi_{N-1} M^{N-1} v, \\
& A_{1} p l y f n_{i} \subset\left\{0_{0} \pm 1\right\} . \\
& \lambda^{N} f(v)=\left(n_{0}+n_{1} \lambda+\ldots+n_{N-1} \lambda^{N-1}\right) f(v) \\
& \Rightarrow|\lambda|^{N} \leqslant 1+|\lambda|+\ldots+|\lambda|^{N-1}= \\
&=\frac{|\lambda|^{N}-1}{|\lambda|-1} \leqslant \lambda^{N}-1 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { hoof of Papp } \\
& \varphi: K \rightarrow K \text { nilpotent. } \\
& \varphi\left(C^{i} K\right)=C^{i} K
\end{aligned}
$$

$$
Q_{i}=C^{i} K / C^{i+1} K \simeq \mathbb{Z}^{m_{i}} \times F_{i}
$$

$$
F_{i}=\mathbb{Z}_{\eta_{1}} \times \ldots \times \mathbb{Z}_{n_{k}} \quad \text { (finit). }
$$

φ induces antom. φ_{i} of $Q_{i} \Rightarrow$
\Rightarrow induces antom. $\bar{\varphi}_{i}$ of $\mathbb{Z}^{m_{i}}$,

$$
\bar{\varphi}_{i} \longrightarrow M_{i}=\sigma L\left(m_{i}, \mathbb{\varphi _ { i }}\right)
$$

Case (1) AU M_{i} have eigunvalues on

$$
\{z ;|z|=A\} \text {. }
$$

Goal: Thm G viat.inily.
$\exists N \underset{\sim}{\operatorname{sit}} \underset{N}{N}$ oll M_{i}^{N} have eigenvalue 1.

$$
\text { - } \tilde{\varphi}_{i}^{N}=i d_{F_{i}} .
$$

$\sigma=K x_{\varphi} \mathbb{Z}$ has the finitionh x $\operatorname{sun} \sigma_{j p} K x_{\varphi}(N \mathbb{Z}) \simeq K \succ_{\varphi^{N}} \mathbb{Z}$.
Thus, us to mplacing 6 b7 finind. sulbyp, wo mal arony all M_{i} hin eigoncelne (1), all $\bar{\varphi}_{i}={ }^{\text {id }} F_{i}$.
(3) \Rightarrow I a desanding sulnormal sunis in K as follows:

$$
\begin{aligned}
H_{0}= & K \triangleright H_{1} \triangleright \ldots \nabla H_{m}=\{1\} \text { n.t. } \\
& \cdot H_{i} / H_{i+1} \text { cqdicic } i \\
& \cdot \varphi\left(H_{i}\right)=H_{i} ;
\end{aligned}
$$

$$
\text { - } \varphi\left(H_{i}\right)=H_{i} \text { id don each } H_{i} / H_{i+1} i
$$

- all ${ }^{j} K$ appran amang H_{i}.
$G=K x_{\varphi} \mathbb{Z}$. Denok by t a gan. of \mathbb{Z}.

$$
\forall k=k^{\varphi} \quad t k t^{-1}=\varphi(k)
$$

$$
t H_{i} t^{-4}=H_{i}
$$

$$
\begin{aligned}
& \quad t H_{i} t^{2}=H_{i}=H_{i+1} \Leftrightarrow \\
& \forall h \in H_{i} \quad t^{k} h t^{-k} H_{i+1}=h \quad l
\end{aligned}
$$

$$
\Leftrightarrow\left[t^{k}, h\right] \in H_{i+1}
$$

$$
\begin{aligned}
& G=K \times \mathbb{Z}=1+K \rightarrow G \rightarrow \mathbb{Z} \rightarrow 1 \\
& \Rightarrow C^{2} G=[G, G] \leqslant K=H_{0} \\
& \cdot C^{3} G=\left[G, C^{2} G\right] \leqslant\left[G, H_{0}\right] .
\end{aligned}
$$

We prove that $\left[G, H_{i}\right] \leqslant H_{i+1}$.
$\forall h \in H_{i}, \forall g \in G, g=k t^{a}, a \in \mathbb{Z}$.

$$
\begin{aligned}
& \quad\left[k t^{a}, h\right]=k t^{a} h t^{-a} h^{-2} h^{-2}= \\
& =\left[k, t^{a} h t^{-a}\right] t^{a} h t^{-a} h^{-1}= \\
& =\left[k, h^{\prime}\right] \cdot\left[t^{a}, h\right] . \\
& k \in K, h^{\prime} \in H_{i+1} \\
& \exists_{i} \\
& \exists j \geqslant 1 \text { a.t. } C^{i} K \geqslant H_{i} D H_{i+1} \geqslant C^{j+1} k \\
& {\left[k, h^{\prime}\right] \leqslant\left[K, H_{i}\right] \leqslant\left[K_{1} C^{j} k\right]=C^{i+k} k \leqslant} \\
& \text { Thus }-\left[G, H_{i}\right] \leqslant H_{i+1} . \\
& C^{3} G \leqslant\left[G, H_{i+1}\right] \leqslant H_{1} .
\end{aligned}
$$

By ind. $C^{j+2} G \leqslant H_{j}$.
In part. $C^{m+2} 6 \leqslant H_{m}=\{1\}$.
Cabs (2) $\exists M_{i}$ with an rigavivalue λ a.t. $|\lambda|>1$. By mplaing φ with φ^{N}, we ma7 ar. \exists ve $Z^{m_{1}}$ n.t. (4) holds.
Goal: G has expomential ganowth.
Pisk $\bar{g} \in C^{i} G / C^{i+1} G \simeq \mathbb{Z}^{m_{i}} \times F_{i}$ n.t.

$$
\begin{gathered}
\bar{g}=(v, 0) . \\
\text { Take }\left(S_{m}\right) \in \bigoplus_{\substack{m \in \mathbb{Z} \\
m \geqslant 0}}\left(\mathbb{Z}_{2}\right)_{m}
\end{gathered}
$$

Wee an looking for an aliment is 6 with inge in $\mathbb{Z}^{m_{i}}$:

$$
\begin{aligned}
& s_{0} v+s_{1} M v+\ldots+s_{j} M^{j} v+\ldots \\
& g^{s_{0}} t g t^{-1} t^{2} g^{s_{2}} t^{-2} \ldots .
\end{aligned}
$$

is such an element.
Tale $\left(S_{m}\right)$ with $S_{n}=0$ for $n \geqslant N+1$.
We hat wands:

$$
g^{s_{0}} \operatorname{tg}^{s_{1}} \operatorname{tg}^{s_{2}} \ldots \operatorname{tg}^{s_{N}} t^{-N},
$$

one far every chain of (si).
All words have lingth $\leqslant 2 N+2$ (if g, t, gt an in the gin.fut).
we have 2^{N+1} distinct words.
Thus $\zeta_{G}(2 N+1) \geqslant 2^{N+1}$.
poly- $C_{\infty}=6$ obtained by:

$$
(\cdots(\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z} . .) \times \mathbb{Z}
$$

Solvable groups
G. Define the iterated commentator subgroups:

$$
\begin{aligned}
& G^{(0)}=G, G^{(n)}=G^{\prime}=[G, G], \\
& G^{(n+1)}=\left[G^{(n)}, G^{(n)}\right] . \\
& G^{(01} \triangleright G^{(n)} \triangleright \ldots \nabla G^{(n)} \triangleright \ldots
\end{aligned}
$$

All $G^{|i|}$ ane characteristic.
G is solvable if $\exists k$ s.t. $G^{(k)}=\{1\}$.
Thu minimal ouch $k=$ derived length. If derived length $\leqslant 2=6$ is metrbelian $=$ abelim-by-abelian: $G^{(2)}=\left\{1 \mid+\sigma^{\prime}\right.$ ablian, G / G^{\prime} abelian.

Pnopenties
(1) $H \leq G$ solvable $\Rightarrow H$ solvable.

$$
H^{(n)} \leqslant G^{(n)}
$$

(2) σ srelvable $\Rightarrow G / N$ solu, $\forall N \nexists G$.
(3) Solvable-by-Solvable \Rightarrow solvable.

Not twa for milpotent:

$$
\left.\mathbb{Z}^{2} x_{(1 n}^{1}\right)
$$

(4) polyeyclie $=1$ solvable.

Induction on a mirinal lingth of a polyaychicsinis $+(3)$.
Prop. A solvable gnoup is polyaycha iff every subgroup of σ is 7.9 .
Roof \Rightarrow is immediati.
$\Leftrightarrow: 4 t G$ be slvable $+\forall 1 \leqslant G$, His $7 \cdot g$.
Induction on the durind lungth:
$k=1=\sigma$ abclian, $7 \cdot 9 .=1$ poly.
Assume true for k, et 6 hare drited
length $k+1$.
G oolv. of durited lingth k
$+\forall$ subgr. i $7 . g .=G^{\prime}$ polyc.
G / G^{\prime} abilin $7 \cdot 9 .=1$ poly.
G is plyc. -67 p-lys. \Rightarrow plyc.
(D) 576 milh, what nel, Gtwem duived length and clas?
Rof. (1) $G^{(i)} \leqslant C^{2^{i}} G, \forall i$.
(2) $77 G$ is k-sty mip. Then dmind ling th $\leqslant \log _{2} k$

$G^{(0+1)}=\left[G^{(i)}, G^{\text {(ii }}\right] \leqslant\left[c^{i} \sigma, c^{2} G\right] \leqslant C^{2} \sigma$

Rem. No lowen Gound in (2).
Ex. Cousithn the dikichal gavenp $D_{2 n}=$ the gt. of isom. of the n-ngulan pelygon. $D_{2 n} \simeq \mathbb{Z}_{n} \times \mathbb{Z}_{2}$ $n=2^{k} \Rightarrow D_{2 n}$ is k-nilpotent. - dnived lingth 2 .

$$
\oplus_{n \in \mathbb{Z}}\left(\mathbb{Z}_{2}\right)_{n} \rtimes_{\varphi} \mathbb{Z}=L
$$

$\oplus\left(\mathbb{Z}_{2}\right)_{n}=\left\{f: \mathbb{Z} \rightarrow \mathbb{Z}_{2} ; f(m) \neq 0\right.$
$n \in \mathbb{Z}$ fon finitaly many m.

$$
\begin{aligned}
\mathbb{Z} & \rightarrow \operatorname{Ant}(\oplus \cdots) \\
1 & \mapsto \varphi \\
& \varphi(f)(x)=f(x-1)
\end{aligned}
$$

 \Rightarrow metabrlian.
Ex. L is grunnatid by:
L is not polycyclic.
$\underset{\mathbb{Z}}{(}\left(\mathbb{Z}_{2}\right)_{n}$ not $7 \cdot g$.
Ex. $L^{\prime}=\{(7,0) ; \#$ supp f is puen $\}$.
Ex. Previdu an ex. of tohe.gp. of durived langth 24.

