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Lecture 8: End of proof of Tits’ Theorem. Gromov’s Theorem

Case 2. Let Γ ≤ SL(n,C) be relatively compact.

Let S be a finite generating set of Γ, S = S−1 , 1 ̸∈ S .

In what follows we denote SL(n,C) by G .

N.B. Do not confuse with the notation in the previous lectures, where G denoted
the Zariski closure of Γ in SL(n,K) .

Let F be the subfield of C generated by the entries of the matrices s with s ∈ S .

Step 1. We prove that we may reduce to the case when F is a finite algebraic
extension of Q .

To that end consider the set of all homomorphisms Hom(Γ, G).

Let S = {s1, s2, ..., sk} . Consider a presentation of Γ, Γ = ⟨S | R⟩ , with R
possibly infinite. Recall that all relations r ∈ R are words in the alphabet S , and that
Γ is entirely determined by the relations r = 1, ∀r ∈ R .

Every homomorphism φ : Γ → G is completely determined by the images Mi =
φ(si).

Conversely, every set of matrices M1, ...,Mk satisfying all the relations r(M1, ...,Mk) =
Idn for all r ∈ R , determine a homomorphism φ : Γ → G .

Thus we may identify Hom(Γ, G) with the following subset of Gk :

Z =
{
(M1, ...,Mk) ∈ Gk ; r(M1, ...,Mk) = Idn , ∀r ∈ R

}
.

Note that Z is a Zariski closed subset in Gk . Moreover all the polynomials defining
Z have rational coefficients in the entries of M1, ...,Mk , since r(M1, ...,Mk) are all
products of matrices in {M1, ...,Mk} .



Reassuring (but useless in our context) remark: since Q[X1, ..., Xn] is a noetherian
algebra, finitely many polynomial equations will suffice to define Z , even though R
might have been infinite.

Number Theory Lemma: Let Z be a Zariski closed set in Cm defined by polynomial
equations with rational coefficients. The set Z ∩Qm

is dense in Z with respect to the
usual topology on Cm .

Here Q denotes the field of all the numbers algebraic over Q .

Corollary 1. In Hom(Γ, G), G = SL(n,C), the following set is dense:

{ρ : Γ → G homomorphism | ρ(s) have algebraic entries for all s ∈ S} .

In particular consider the inclusion representation ρ : Γ → G .

By the above there exists a sequence of homomorphisms ρi : Γ → G such that
for every s ∈ S , ρi(s) has all entries algebraic numbers, ρi converging to ρ in the
compact-open topology.

It is enough to prove Tits’ Theorem for all ρi(Γ) :

• if some ρi(Γ) contains a copy of F2 , the free group on two generators, then Γ
itself contains a copy of F2 (ρi(Γ) is a quotient of Γ);

• if all ρi(Γ) are virtually solvable then ρ(Γ) = Γ is virtually solvable.

The second statement can be deduced from the following.

Theorem 2. If Λ ≤ GL(n,C) is virtually solvable then there exists Λ1 subgroup of
index at most I(n) in Λ such that Λ1 is a solvable group of derived length at most
D(n).

Step 2. Now we reduced the proof to the case of Γ ≤ GL(n,C), Γ relatively
compact, all entries of matrices in Γ contained in some field F , finite algebraic extension
of Q .

Goal: By a Number Theory trick we want to reduce this case to Case 1, when Γ
was unbounded.

We consider norms on F .
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Non-archimedean norms: these are norms ν : F → R+ s.t. instead of the triangle
inequality ν(a+ b) ≤ ν(a) + ν(b) the following stronger inequality is satisfied:

ν(a+ b) ≤ max(ν(a), ν(b)).

Example: Let F = Q , fix a prime number p .

Every x ∈ Q can be written as x = pk m
n
, where k ∈ Z and p does not divide either

m or n . Define
ν(x) = p−k .

This norm is called a p-adic norm on Q , and it is non-archimedean.

For every norm ν on F consider the completion of F with respect to ν , denoted
Fν .

Define also the ring of integers Oν = {x ∈ Fν | ν(x) ≤ 1} .

In the example above the completion Qν is the field of p-adic numbers.

Archimedean norms: Every σ ∈ Galois(F/Q) defines an embedding

σ : F → C , x 7→ σ(x) .

The pull-back of the norm on C via σ is an archimedean norm on F .

In this case Fν is R or C .

Consider N(F) = set of norms ν on F such that ν|Q is the standard absolute value
or a p-adic norm.

Example: F = Q . Then N(Q) = the set composed of the absolute value and all
the p-adic norms.

Note that for all x ∈ Q , x ∈ Oν with finitely many exceptions, equivalently
ν(x) > 1 only for finitely many ν ∈ N(Q) (possibly the absolute value, and all νp
for p prime dividing the denominator).

The same is true in general:

Proposition 3. Let F be a finite algebraic extension of Q. For every x ∈ F, ν(x) > 1
only for finitely many ν ∈ N(F).
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Definition 4. The ring of adeles corresponding to F is the restricted product

A(F) ≤
∏

ν∈N(F)

Fν ,

i.e. the subset of the direct product which consists of points whose projection to Fν

belongs to Oν for all but finitely many ν ’s.

Theorem 5. The image of the diagonal embedding F ↪→ A(F), f 7→ (f)ν∈N(F) , is a
discrete subset in A(F) endowed with the product topology.

See the book of S. Lang “Algebraic Numbers”, Chapter 6, Theorem 1.

We had Γ subgroup in SL(n,F), where F is a finite algebraic extension of Q . The
diagonal embedding above defines an embedding

Γ ↪→
∏

ν∈N(F)

SL(n,Fν)

with discrete image.

If for every ν the image of Γ in SL(n,Fν) is relatively compact then (by Tychonoff
Theorem) Γ is relatively compact in

∏
ν∈N(F) SL(n,Fν). But since it is also discrete,

it must be finite. This yields a contradiction, when Γ is infinite.

Thus, if Γ is infinite then there exists ν ∈ N(F) such that the embedding Γ ↪→
SL(n,Fν) is unbounded. Thus we are back to Case 1. The proof in this case works,
with very few modifications, when replacing R or C by an arbitrary complete field
with a norm.

The proof of Tits’ Alernative Theorem is now complete. �

Theorem 6 (Gromov’s Theorem). If Γ finitely generated has polynomial growth then
Γ is virtually nilpotent.

If we could reduce to the case when Γ ≤ GL(n,C) then we could use Tits’ Alernative
Theorem.

This can be done by using the following consequence of the Montgomery-Zippin
Theorem.
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Theorem 7 (Montgomery-Zippin). Input: a metric space.

Let X be a metric space that is

• complete;

• connected, locally connected;

• proper (i.e. all balls are compact);

• of finite Hausdorff dimension.

Output: an ‘almost linear’ group.

If H = Isom(X) = {f : X → X | f bijection , d(f(x), f(y)) = d(x, y)} acts
transitively on X then H has finitely many connected components, and for the con-
nected component H0 containing the identity element there exists a homomorphism
φ : H0 → GL(n,C) with kerφ ≤ Z(H0).

If the group Γ would appear as subgroup of H = Isom(X) as above then we would
be done because:

• we would replace Γ by Γ ∩H0 subgroup of finite index;

• φ(Γ) ≤ GL(n,C) has polynomial growth (as quotient of Γ) ⇒ (by Tits’ Theo-
rem) φ(Γ) is solvable ⇒ (by Milnor-Wolf Theorem) φ(Γ) is virtually nilpotent.

Thus we have the short exact sequence

1 → K → Γ → φ(Γ) = N → 1 ,

where K ≤ Z(Γ) and N is virtually nilpotent.

Replace Γ by a finite index subgroup so that N becomes nilpotent.

In Lecture 5, page 5 we proved:

Lemma 8. If G is finitely generated and of sub-exponential growth and there
exists a short exact sequence

1 → A → G → H → 1 ,

with A abelian and H polycyclic, then A is finitely generated, equivalently G is
polycyclic.

In our case this gives Γ polycyclic, hence virtually nilpotent, by Wolf’s Theorem.
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What is the space X ?

What about a Cayley graph G = Cayley(Γ, S) ?

All the hypotheses of Theorem 7 are satisfied except the one requiring a transitive
action of Isom(X) on X . Of course, the group itself Γ acts transitively on the set of
vertices. But if we take only the set of vertices we loose the connectedness.

Gromov’s idea was to rescale a Cayley graph, i.e to consider G with the metric 1
n
d.

The set of vertices becomes ‘more and more dense’, hence the action of Γ becomes
‘closer and closer to a transitive action’. Thus, when considering a limit of

(
G , 1

n
d
)
as

n → ∞ we might obtain a metric space and an action as in Theorem 7.

For instance when Γ = Z2 and G is the Cayley graph with respect to the generators
{(±1, 0), (0,±1)} ,

(
G , 1

n
d
)
is the planar grid with edges of length 1

n
, and the limit

should be R2 , which obviously satisfies the hypotheses of Theorem 7.

For every group Γ, we consider G = Cayley(Γ, S) and we construct a limit of(
G , 1

n
d
)
.

Construction of the limit space

We need the following device to construct the limit space.

An ultrafilter on a set I is a finitely additive measure ω defined on P(I) (the power
set of I ), taking only values zero and one and such that ω(I) = 1.

Example: Let x be a point in I . Then we can define δx(A) to be 1 if x ∈ A and
0 if x ̸∈ A . It is easy to see that δx is an ultrafilter.

Such an ultrafilter is called principal.

Lemma 9. An ultrafilter ω is non-principal iff ω(F ) = 0 for every finite subset F
of I .

The proof is easy to see if we reformulate: ω is principal iff there exists a finite set
F such that ω(F ) = 1.

Fix an ultrafiter ω on N (all ultrafilters that we consider from now on are on N).

Definition 10. Given a sequence (xn) in a topological space, its ω -limit is a point
x ∈ X such that for every open set U containing x ,

ω ({n ∈ N | xn ∈ U}) = 1 .
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If ω is principal, i.e. ω = δn0 , for some n0 ∈ N , the ω -limit of every sequence (xn)
is the element xn0 .

Lemma 11. If a sequence (xn) is contained in K compact and Hausdorff separated,
and ω is an ultrafilter, then (xn) has a unique ω -limit in K .

Proof. Uniqueness of the limit follows easily from the Hausdorff property. We prove
existence.

Assume that no point in K is ω -limit of (xn). Then every z ∈ K is contained in
an open set Uz such that

ω ({n ∈ N | xn ∈ Uz}) = 0 .

K ⊆
∪

z∈K Uz and K compact, hence there exist z1, ..., zm in K such that

K ⊆ Uz1 ∪ Uz2 ∪ · · · ∪ Uzm .

(xn) ⊆ K ⇒ N = I1 ∪ I2 ∪ · · · ∪ Im , where

Ij = {n ∈ N | xn ∈ Uzj} .

ω(Ij) = 0 for all j implies ω(N) = 0, contradiction.

Exercise. When ω is a non-principal ultrafilter, the ω -limit of a sequence (xn)
contained in a compact is the actual limit of a subsequence.
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