Geometry of Nilpotent and Solvable Groups

Cornelia Drutu
Lecture 8: End of proof of Tits’ Theorem. Gromov’s Theorem
Case 2. Let I' < SL(n,C) be relatively compact.
Let S be a finite generating set of I', S =851, 1¢& 9.
In what follows we denote SL(n,C) by G.

N.B. Do not confuse with the notation in the previous lectures, where GG denoted
the Zariski closure of I in SL(n,K) .

Let F be the subfield of C generated by the entries of the matrices s with s € S .

Step 1. We prove that we may reduce to the case when F is a finite algebraic
extension of Q.

To that end consider the set of all homomorphisms Hom(I', G).

Let S = {si1,89,...,8¢} . Consider a presentation of I', I' = (S | R), with R
possibly infinite. Recall that all relations r € R are words in the alphabet S, and that
I' is entirely determined by the relations r =1, Vr € R..

Every homomorphism ¢ : I' — G is completely determined by the images M; =
o(si)-

Conversely, every set of matrices My, ..., M}, satisfying all the relations r(Mj, ..., M) =
Id,, for all » € R, determine a homomorphism ¢ : I' — G.

Thus we may identify Hom(I', G) with the following subset of G* :
Z ={(My,...My) € G*; r(M,...,My) = 1d,, Vr € R} .

Note that Z is a Zariski closed subset in G*. Moreover all the polynomials defining
Z have rational coefficients in the entries of M, ..., My, since r(Mj, ..., My) are all
products of matrices in {M, ..., M} }.



Reassuring (but useless in our context) remark: since Q[X7, ..., X,,] is a noetherian
algebra, finitely many polynomial equations will suffice to define Z, even though R
might have been infinite.

Number Theory Lemma: Let Z be a Zariski closed set in C™ defined by polynomial
equations with rational coefficients. The set ZN Q" is dense in Z with respect to the
usual topology on C™.

Here Q denotes the field of all the numbers algebraic over Q.

Corollary 1. In Hom(I',G), G = SL(n,C), the following set is dense:

{p: ' = G homomorphism | p(s) have algebraic entries for all s € S} .

In particular consider the inclusion representation p: ' — G.

By the above there exists a sequence of homomorphisms p; : I' — G such that
for every s € S, p;(s) has all entries algebraic numbers, p; converging to p in the
compact-open topology.

It is enough to prove Tits’ Theorem for all p;(T") :

e if some p;(I') contains a copy of Fy , the free group on two generators, then T’
itself contains a copy of Fy (p;(I') is a quotient of I');

o if all p;(I") are virtually solvable then p(I') =T is virtually solvable.

The second statement can be deduced from the following.

Theorem 2. If A < GL(n,C) is virtually solvable then there exists A; subgroup of
index at most 1(n) in A such that Ay is a solvable group of derived length at most

D(n).

Step 2. Now we reduced the proof to the case of I' < GL(n,C), T relatively
compact, all entries of matrices in I' contained in some field [F, finite algebraic extension

of Q.

Goal: By a Number Theory trick we want to reduce this case to Case 1, when I’
was unbounded.

We consider norms on F.



Non-archimedean norms: these are norms v : F — R, s.t. instead of the triangle
inequality v(a +b) < v(a) + v(b) the following stronger inequality is satisfied:

v(a+b) < max(v(a),v(b)).

Example: Let F = Q, fix a prime number p.

Every x € Q can be written as z = p” ™, where k € Z and p does not divide either

m or n. Define
v(ir)=p*.
This norm is called a p-adic norm on Q, and it is non-archimedean.

For every norm v on F consider the completion of F with respect to v, denoted
F,.

Define also the ring of integers O, = {x € F, | v(z) < 1}.
In the example above the completion Q, is the field of p-adic numbers.
Archimedean norms: Every o € Galois(F/Q) defines an embedding
c:F=>C,z—o(x).
The pull-back of the norm on C via ¢ is an archimedean norm on F.
In this case F, is R or C.

Consider N(F) = set of norms v on [ such that v|g is the standard absolute value
or a p-adic norm.

Example: F = Q. Then N(Q) = the set composed of the absolute value and all
the p-adic norms.

Note that for all z € Q, z € O, with finitely many exceptions, equivalently
v(x) > 1 only for finitely many v € N(Q) (possibly the absolute value, and all v,
for p prime dividing the denominator).

The same is true in general:

Proposition 3. Let F be a finite algebraic extension of Q. For every x € F, v(z) > 1
only for finitely many v € N(F).



Definition 4. The ring of adeles corresponding to F is the restricted product

AF) < ] Fo.

veN(F)

i.e. the subset of the direct product which consists of points whose projection to F,
belongs to O, for all but finitely many v’s.

Theorem 5. The image of the diagonal embedding F — A(F), f — (f)venm), s a
discrete subset in A(F) endowed with the product topology.

See the book of S. Lang “Algebraic Numbers”, Chapter 6, Theorem 1.

We had T subgroup in SL(n,F), where I is a finite algebraic extension of Q. The
diagonal embedding above defines an embedding

r— [ SL(n.F.)

veN(F)
with discrete image.

If for every v the image of I' in SL(n,F,) is relatively compact then (by Tychonoff
Theorem) I' is relatively compact in [], ¢y SL(n,F,). But since it is also discrete,
it must be finite. This yields a contradiction, when I' is infinite.

Thus, if I' is infinite then there exists v € N(F) such that the embedding I' —
SL(n,F,) is unbounded. Thus we are back to Case 1. The proof in this case works,
with very few modifications, when replacing R or C by an arbitrary complete field
with a norm.

The proof of Tits’ Alernative Theorem is now complete. U

Theorem 6 (Gromov’s Theorem). If I finitely generated has polynomial growth then
[' is virtually nilpotent.

If we could reduce to the case when I' < GL(n, C) then we could use Tits” Alernative
Theorem.

This can be done by using the following consequence of the Montgomery-Zippin
Theorem.



Theorem 7 (Montgomery-Zippin). Input: a melric space.
Let X be a metric space that is
e complete;
e connected, locally connected;
e proper (i.e. all balls are compact);

e of finite Hausdorff dimension.

Qutput: an ‘almost linear’ group.

If H = Isom(X) = {f : X — X | f bijection ,d(f(z), f(y)) = d(z,y)} acts
transitively on X then H has finitely many connected components, and for the con-
nected component Hy containing the identity element there exists a homomorphism
¢ : Hy — GL(n,C) with ker p < Z(H,).

If the group I' would appear as subgroup of H = Isom(X) as above then we would
be done because:

e we would replace I' by I' N Hy subgroup of finite index;

e o(I') < GL(n,C) has polynomial growth (as quotient of I') = (by Tits’ Theo-
rem) ¢(I") is solvable = (by Milnor-Wolf Theorem) ¢(I") is virtually nilpotent.

Thus we have the short exact sequence
l1>K—->T—pl)=N-—>1,

where K < Z(I') and N is virtually nilpotent.
Replace I' by a finite index subgroup so that N becomes nilpotent.

In Lecture 5, page 5 we proved:

Lemma 8. If G is finitely generated and of sub-exponential growth and there
exists a short exact sequence

1= A—-G—H—>1,

with A abelian and H polycyclic, then A is finitely generated, equivalently G s
polycyclic.

In our case this gives I' polycyclic, hence virtually nilpotent, by Wolf’s Theorem.



What is the space X 7

What about a Cayley graph G = Cayley(T', S) ?

All the hypotheses of Theorem 7 are satisfied except the one requiring a transitive
action of Isom(X) on X. Of course, the group itself I' acts transitively on the set of
vertices. But if we take only the set of vertices we loose the connectedness.

Gromov’s idea was to rescale a Cayley graph, i.e to consider G with the metric %d.
The set of vertices becomes ‘more and more dense’, hence the action of I' becomes
‘closer and closer to a transitive action’. Thus, when considering a limit of (g , %d) as
n — oo we might obtain a metric space and an action as in Theorem 7.

For instance when I' = Z? and G is the Cayley graph with respect to the generators
{(£1,0), (0,£1)}, (Q, %d) is the planar grid with edges of length %, and the limit
should be R?, which obviously satisfies the hypotheses of Theorem 7.

For every group I', we consider G = Cayley(I',S) and we construct a limit of

(G 5d).
Construction of the limit space

We need the following device to construct the limit space.

An ultrafilter on a set [ is a finitely additive measure w defined on P(I) (the power
set of 1), taking only values zero and one and such that w(Il) = 1.

Example: Let x be a point in I. Then we can define §,(A) to be 1 if z € A and
0 if x ¢ A. It is easy to see that ¢, is an ultrafilter.
Such an ultrafilter is called principal.

Lemma 9. An ultrafilter w is non-principal iff w(F) = 0 for every finite subset F
of I.

The proof is easy to see if we reformulate: w is principal iff there exists a finite set
F such that w(F) = 1.

Fix an ultrafiter w on N (all ultrafilters that we consider from now on are on N).

Definition 10. Given a sequence (x,) in a topological space, its w-limit is a point
x € X such that for every open set U containing x,

w({neN|z,eU})=1.



If w is principal, i.e. w = d,,, for some ng € N, the w-limit of every sequence (x,,)
is the element z,, .

Lemma 11. If a sequence (x,) is contained in K compact and Hausdorff separated,
and w is an ultrafilter, then (z,) has a unique w-limit in K .

Proof. Uniqueness of the limit follows easily from the Hausdorff property. We prove
existence.

Assume that no point in K is w-limit of (z,). Then every z € K is contained in
an open set U, such that

w({neN|z,eU,})=0.

K CU,cx Uz and K compact, hence there exist zi,..., 2, in K such that
KCcU,uU,U---uU,, .

() CK=N=LULU---UI, , where

I;j={neN|z, cU,}.
w(l;) =0 for all j implies w(N) = 0, contradiction. O

Exercise. When w is a non-principal ultrafilter, the w-limit of a sequence ()
contained in a compact is the actual limit of a subsequence.



