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Lecture 9: Proof of Gromov’s Theorem

We want to apply the Montgomery-Zippin Theorem, hence we want to represent
our group Γ as a group of isometries of a metric space X that is :

• complete;

• connected, locally connected;

• proper (i.e. all balls are compact);

• of finite Hausdorff dimension.

We construct X as a limit of (Γ, 1
λn

d) , where d is a word metric and λn → ∞ .

We use an ultrafilter, i.e. a finitely additive measure ω : P(N) → {0, 1} with
ω(N) = 1, to construct this limit.

Remark 1. If ω(A) = 1 and ω(B) = 1 then ω(A ∩B) = 1.

Indeed, if ω(A∩B) = 0 then, as A = (A\B)⊔(A∩B), it follows that ω(A\B) = 1.

Likewise ω(B \ A) = 1 and since A \ B and B \ A are disjoint subsets it follows
that ω(N) ≥ 2, a contradiction.

Terminology: Let P (n) be a proposition indexed by n ∈ N . We say that ‘P (n) is true
ω -almost surely (ω -a.s.)’ if ω ({n ∈ N | P (n) is true }) = 1.

Recall that a non-principal ultrafilter is an ultrafilter such that ω(F ) = 0 for every
F ⊆ N finite.

Zorn’s Lemma (equivalent to the Axiom of choice) implies that non-principal ultra-
filters exist.



Definition. Let X be a non-empty set. Its ultrapower with respect to the ultrafilter
ω , denoted Xω , is the quotient of the set of sequences (xn) in X with respect to the
equivalence relation

(xn) =ω (yn) ⇔ xn = yn ω − almost surely.

The equivalence class of the sequence (xn) is denoted (xn)ω .

If X has a structure (e.g. group, ring, order) then Xω has the same structure.

For instance if X is a group then Xω is a group with binary operation

(gn)ω(hn)ω = (gnhn)ω .

The space X has a copy in Xω :

x ∈ X 7→ (x)ω = x̂ ∈ Xω .

For every A ⊆ X we denote by Â its image by the above, i.e.

Â = {â | a ∈ A} .

Definition. A subset W ⊆ Xω is called internal if there exists a sequence of subsets
(An) in X such that

W = {(xn)ω ; xn ∈ An} .

We write W = (An)ω .

Proposition 2. If A ⊆ X , A infinite, then Â ⊆ Xω cannot be internal.

Proof. Assume Â = (Bn)ω for some sequence Bn of subsets.

For every a ∈ A , â ∈ (Bn)ω , i.e.

a ∈ Bn ω − almost surely. (1)

Take an infinite sequence a1, a2, ...., ak, ... of distinct elements in A .

Let Ik = {n ∈ N | n ≥ k , {a1, a2, ..., ak} ⊆ Bn} .

From (1) and Remark 1 it follows that ω(Ik) = 1 for every k .

Note that Ik+1 ⊆ Ik and that
∩

n≥1 Ik = ∅ .
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Define the sequence (xn) such that xn = ak for every n ∈ Ik \ Ik+1 .

Since
∩

n≥1 Ik = ∅ , it follows that I1 =
∪∞

k=1 (Ik \ Ik+1). Thus the sequence (xn)
above is defined for all n ∈ I1 , and ω(I1) = 1. For all arguments in the ultrapower,
the behaviour of a sequence on a set of indices of ω -measure zero does not matter.

By definition xn ∈ Bn for every n ∈ I1 , that is xn ∈ Bn ω -a.s.

Thus (xn)ω ∈ (Bn)ω = Â , hence xn = a ω -a.s. for some a ∈ A .

Let J = {n ∈ N | xn = a} , ω(J) = 1. Remark 1 implies that J ∩ I1 ̸= ∅ , hence for
some k ∈ N , J ∩ (Ik \ Ik+1) ̸= ∅ .

For n ∈ J ∩ (Ik \ Ik+1) we have xn = a = ak .

The fact that ω(Ik+1) = 1 and Remark 1 imply that J ∩ Ik+1 ̸= ∅ .

As Ik+1 =
∪∞

j=k+1 (Ij \ Ij+1) it follows that J ∩ (Ij \ Ij+1) ̸= ∅ for some j ≥ k + 1.

For an index n in the above intersection xn = a = aj . But as j > k we have that
aj ̸= ak , so a contradiction.

The following result is a consequence of  Loś’ Theorem (see J. Bell and A. Slomson,
Models and Ultraproducts, North-Holland, Amsterdam, 1969 ,or J. Keisler, Foundations
of Infinitesimal Calculus , Prindel-Weber-Schmitt, Boston, 1976, Chapter 1).

Theorem (non-standard induction). If a non-empty internal subset Aω in Nω satisfies
the properties:

• 1̂ ∈ Aω ;

• for every nω ∈ Aω , nω + 1̂ ∈ Aω ;

then Aω = Nω .

Definition. A map fω : Xω → Y ω is internal if there exists a sequence of maps
fn : Xn → Yn such that fω ((xn)ω) = (fn(xn))ω .

If (X, d) is a metric space one can define a ‘metric’ dω on Xω as the internal
function defined by the constant sequence of functions (d), that is dω : Xω×Xω → Rω ,

dω ((xn)ω , (yn)ω) = (d(xn, yn))ω . (2)

The problem is that dω does not take values in R but in Rω .
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Limit spaces

We want to construct a limit of
(

Cay(Γ) , 1
λn

d
)

when λn → ∞ .

Why not taking as “limit space” the space of sequences

S = {(xn) | xn ∈ Cay(Γ)} ,

with the metric

D((xn) , (yn)) = lim
ω

d(xn, yn)

λn

?

Problem 1: This “distance” D may take the value ∞ .

This is solved by restricting the space of sequences. Fix a sequence of basepoints
e = (en), and take

Se =

{
(xn) ∈ S |

(
d(xn, en)

λn

)
bounded

}
.

Problem 2: We may have (xn) ̸= (yn) ∈ Se such that limω
d(xn,yn)

λn
= 0 .

We solve this by considering the quotient Se/∼ , where

(xn) ∼ (yn) ⇔ lim
ω

d(xn, yn)

λn

= 0 .

The quotient Se/ ∼ is denoted by Coneω(X; e, (λn)) and called asymptotic cone
of X with respect to ω , the sequence of basepoints e and the sequence of scaling
constants (λn).

Convention: From now on all ultrafilters are non-principal, and we use the notation
ω for such an ultrafilter.

Notation: We denote the equivalence class of a sequence (xn) with respect to the
equivalence relation ∼ by limω (xn).

For a sequence of subsets An ⊆ X we define the limit set limω (An) = {limω (an) |
an ∈ An , ∀n ∈ N} .
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List of properties of asymptotic cones

1. Every Coneω(X; e, (λn)) is complete.

2. X is geodesic ⇒ every asymptotic cone is geodesic.

3. If G is a group then every Coneω(G; e, (λn)) is isometric to Coneω(G; (1), (λn)).

4. The subgroup Gω
1 of the ultrapower Gω acts transitively on Coneω(G; (1), (λn)),

where

Gω
1 =

{
(gn)ω ;

(
|gn|S
λn

)
is bounded

}
.

Proof. (1) Let (x(k)) be a Cauchy sequence in Coneω(X; e, (λn)). It suffices to prove
that a subsequence converges. We select a subsequence such that

D(x(k), x(k+1)) <
1

2k
⇔ lim

ω

d
(
x
(k)
n , x

(k+1)
n

)
λn

<
1

2k
⇔ d

(
x(k)
n , x(k+1)

n

)
<

λn

2k
ω − a.s.

Then we have ω(Ik) = 1 for the set

Ik =

{
n ≥ k ; d

(
x(k)
n , x(k+1)

n

)
<

λn

2k

}
.

We can assume that Ik+1 ⊆ Ik , otherwise we replace Ik+1 with Ik+1 ∩ Ik .

Thus we obtain a nested sequence of subsets Ik in N such that
∩

k∈N Ik = ∅ .

We define what we claim will be the ‘limit point’ of (x(k)) as limω (yn) , with yn =

x
(k)
n when n ∈ Ik \ Ik+1 . The fact that

∩
n≥1 Ik = ∅ implies that I1 =

∪∞
k=1 (Ik \ Ik+1),

hence the above defines the sequence yn for all n ∈ I1 . We have ω(I1) = 1 and, as
for ultraproducts, in the arguments with asymptotic cones, the values of sequences on
sets of indices of ω -measure zero do not matter.

For an arbitrary k ∈ N we prove that for all n ∈ Ik , 1
λn

d
(
x
(k)
n , yn

)
< 1

2k−1 , i.e.

ω -almost surely d
(
x
(k)
n , yn

)
< 1

2k−1 ; this implies that D
(
x(k), y

)
≤ 1

2k−1 .

For every n ∈ Ik =
∪∞

j=k (Ij \ Ij+1) there exists j ≥ k such that n ∈ Ij \ Ij+1 . By

definition yn = x
(j)
n .
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Since n ∈ Ij ⊆ Ij−1 ⊆ · · · ⊆ Ik+1 ⊆ Ik we may write

d
(
x
(k)
n , x

(j)
n

)
λn

≤
d
(
x
(k)
n , x

(k+1)
n

)
λn

+ · · · +
d
(
x
(j−1)
n , x

(j)
n

)
λn

≤

1

2k
+

1

2k+1
+ · · · +

1

2j−1
≤ 1

2k

1

1 − 1
2

=
1

2k−1
.

Thus we have D
(
x(k), y

)
≤ 1

2k−1 , hence x(k) → y .

(2) Given two points limω (xn) and limω (yn) take geodesics [xn, yn] . Their limit
set limω ([xn, yn]) is a geodesic joining limω (xn) and limω (yn).

(3) The map Coneω(G; e, (λn)) → Coneω(G; (1), (λn)) defined by limω (xn) 7→
limω (e−1

n xn) is an isometry.

From the above it follows that every asymptotic cone of a Cayley graph of a group
is complete and geodesic (hence connected and locally connected).

Our next goal is to prove the implication: ‘Γ of polynomial growth ⇒ one asymp-
totic cone of Γ is proper and of finite Hausdorff dimension.’

Theorem (Hopf-Rinow Theorem). If (X, d) is a complete, geodesic, locally compact
metric space then it is proper.

Thus, instead of properness, it suffices to prove local compactness for asymptotic
cones.

Choice of the scaling sequence (λn)

Proposition 3. Assume that there exists R = (Rn)ω in the ultrapower Rω
+ such that

the growth function satisfies:

GΓ(Rn) = cardBΓ(1, Rn) ≤ CRa
n , ∀n ∈ N ,

where C > 0 and a ∈ N are constants independent of n.
Then there exists λ ∈ [logR , R] ⊂ Rω

+ such that the ball B
(
1, λ

4

)
in the ultrapower

Γω endowed with the metric defined in (2) satisfies the following. For every i ∈ N,
i ≥ 4 , all the sets of λ

i
-separated points in the ball B

(
1, λ

4

)
have cardinality at most

ia+1 .

A subset A is ε-separated if for every a1, a2 ∈ A , d(a1, a2) ≥ ε .
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Proof. Assume that the conclusion of the proposition is false, i.e. for every λ ∈
[logR , R] ⊂ Rω

+ there exists i ∈ N , i ≥ 4 , such that the ball B
(
1, λ

4

)
contains

at least ia+1 points that are λ
i
-separated.

Define the map F : [logR , R] → N ↪→ Nω , F (λ) = the minimal i ∈ N , i ≥ 4 ,
with the above property.

• F is an internal map defined by the sequence of maps:

Fn : [logRn , Rn] → N , Fn(x) = the minimal i ∈ N , i ≥ 4 , such that BΓ

(
1 , x

4

)
contains at least ia+1 points that are x

i
-separated.

• the image of F is therefore internal.

On the other hand, by definition, the image of F is contained in N̂ ⊆ Nω , therefore
it equals Â for some A ⊆ N .

Proposition 2 implies that A must be finite.

Thus F takes values in {4, ..., N} for some integer N ∈ N .

We have obtained that for every λ ∈ [logR,R] there exists i ∈ {4, ..., N} such that
the ball B

(
1, λ

2

)
contains at least ia+1 disjoint balls of radii λ

2i
.

For R there exists i1 ∈ {4, ..., N} such that the ball B
(
1, R

2

)
contains at least ia+1

1

disjoint balls

B

(
x1(1),

R

2i1

)
, B

(
x2(1),

R

2i1

)
, . . . , B

(
xt1(1),

R

2i1

)
with t1 ≥ ia+1

1 .

All the balls in the list above are isometric to B
(

1, R
2i1

)
. Clearly R

i1
∈ [logR , R] ,

hence there exists i2 = F
(

R
i1

)
such that the ball B

(
1, R

2i1

)
contains at least ia+1

2

disjoint balls of radii R
2i1i2

.

It follows that B
(
1, R

2

)
contains a family of disjoint balls

B

(
x1(2),

R

2i1i2

)
, B

(
x2(2),

R

2i1i2

)
, . . . , B

(
xt2(2),

R

2i1i2

)
with t2 ≥ ia+1

1 ia+1
2 .

We started a non-standard induction. We continue, and find u ∈ Nω such that
B
(
1, R

2

)
contains a family of disjoint balls

B

(
x1(u),

R

2i1i2...iu

)
, B

(
x2(u),

R

2i1i2...iu

)
, . . . , B

(
xtu(u),

R

2i1i2...iu

)
,

with tu ≥ (i1i2...iu)a+1 .
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The process stops for u ∈ Nω such that

R

i1i2...iu
< logR ≤ R

i1i2...iu−1

≤ NR

i1i2...iu
⇔

R

logR
< i1i2...iu ≤ NR

logR
.

We obtained that the ball B
(
1, R

2

)
in (Xω, dω) contains at least (i1i2...iu)a+1 ele-

ments, hence at least
(

R
logR

)a+1

elements. This implies that ω -almost surely B (1, Rn)

contains at least
(

Rn

logRn

)a+1

elements.

But by hypothesis B
(
1, Rn

4

)
contains at most CRa

n elements, hence Rn

(logRn)
a+1 ≤ C ,

a contradiction.

Now take λ = (λn) as in Proposition 3, and X = Coneω(Γ; 1, λ).

In X the ball B
(
1, 1

4

)
contains, for every i ∈ N , i ≥ 4 , at most ia+1 points that

are 1
i
-separated.

Lemma 4. The ball B
(
1, 1

4

)
in X is compact.

Proof. For every open cover {Uj | j ∈ J} , take ε > 0 such that every ball of radius ε
is contained in some Uj (i.e. ε is the Lebesgue number of the cover).

Take n ∈ N such that 1
n
< ε .

B
(
1, 1

4

)
contains at most na+1 points that are 1

n
-separated.

Take a maximal 1
n

-separated set, {x1, ..., xN} with N ≤ na+1 . For every r ∈
{1, 2, ..., n} , the ball B

(
xr,

1
n

)
is contained in some Ujr .

We have

B

(
1,

1

4

)
⊆

N∪
r=1

B

(
xr,

1

n

)
⊆

N∪
r=1

Ujr .

The first inclusion is due to the maximality of the 1
n

-separated set {x1, ..., xN}
(implying that any other point must be at distance < 1

n
from one of the points xr .

Lemma 4 and the fact that X is homogeneous (see page 4, property (4)) imply that
X is locally compact.

We must prove that X has finite Hausdorff dimension. The following well-known
result allows to simplify this problem further.
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Proposition 5. For a proper metric space X such that Isom(X) acts transitively on
it, it suffices to prove that some small ball B has finite Hausdorff dimension.

This is because the hypotheses imply that X is covered by countably many trans-
lates gB of B by elements g in Isom(X).

We prove that the closed ball B = B′ (1, 1
8

)
⊂ B

(
1, 1

4

)
has finite Hausdorff dimen-

sion.

A compact metric space K has Hausdorff dimension < β if there exists a sequence
of covers of K by balls {Bi(n) ; i ∈ In} such that:

• max {radius(Bi(n)) ; i ∈ In} converges to 0 as n → ∞ ;

•
∑

i∈In [radius(Bi(n))]β converges to 0 as n → ∞ .

Remark. Since K is compact, we may assume that all the covers by balls above are
finite.

For K = B = B′ (1, 1
8

)
take, for every n ∈ N , a maximal 1

n
-separated subset,

x1(n), ..., xkn(n) .

We know that kn ≤ na+1 .

The n-th cover of B is

B

(
x1(n) ,

1

n

)
, ..., B

(
xkn(n) ,

1

n

)
.

• radii are 1
n
→ 0 ;

•
∑kn

i=1
1
nβ ≤ na+1

nβ converges to 0 if β > a + 1 .

Thus B has finite Hausdorff dimension, hence so does X .

We can now apply Montgomery-Zippin to the group H = Isom(X).

We have

Γ ↪→ Γω
1

φ−→ Isom(X) ,
γ 7→ (γ)ω .

We obtain a homomorphism φ : Γ → Isom(X) .

φ(Γ) ≤ Isom(X), and φ(Γ) has polynomial growth because Γ has polynomial
growth.
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By the argument in last lecture it follows that φ(Γ) is virtually nilpotent.

In order to prove Gromov’s Theorem, we argue by induction on the degree of the
polynomial growth, i.e. on a ∈ N such that GΓ(n) ≼ na .

a = 0 ⇒ Γ is finite.

Assume that Gromov’s Theorem is true for a and consider Γ with GΓ(n) ≼ na+1 .

Case 1. φ(Γ) is infinite.

In that case the abelianization φ(Γ)ab (or that of a finite index subgroup) is infinite.
Hence, up to replacing Γ by a finite index subgroup, we may assume that there exists
a surjective homomorphism φ(Γ) → Z .

Then we have a short exact sequence

1 → N → Γ → Z → 1 . (3)

Lemma 6. Suppose that Γ is a finitely generated group such that GΓ(n) ≼ na+1 ,
and Γ fits into a short exact sequence as in (3). Then N is finitely generated and
GN(n) ≼ na .

Proof. Let {s1, ..., sk} be a set of generators of Γ, and let γ ∈ Γ be an element which
projects to the generator 1 of Z .

For each i there exists mi ∈ Z such that π(siγ
mi) = 0 ∈ Z .

Define elements gi := siγ
mi , i = 1, ..., k . The set {g1, ..., gk, γ} generates Γ, and

g1, ..., gk are in N .
The (infinite) subset C of N defined by

C := {γm,i := γmgiγ
−m ; m ∈ Z, i = 1, ..., k}

generates N .

To see this it suffices to write an element in N as a word in {g1, ..., gk, γ} , re-write
it as a product of conjugates in C , plus some power γn , and deduce by projecting in
Z that n = 0 .

Lemma 1 in Lecture 5 (page 1) implies that N is generated by a finite subset F
of C .

Note that Γ is isomorphic to NoZ , hence, if we consider N with the generating set
F and Γ with the generating set F ∪{γ±1} , we obtain that nGN(n) ≤ GΓ(2n) ≼ na+1 ,
whence GN(n) ≼ na .
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We may then use the induction hypothesis to conclude that N is virtually nilpotent,
hence Γ is virtually polycyclic, which, by Wolf’s Theorem, implies that Γ is virtually
nilpotent.

Case 2. φ(Γ) is finite. Up to finite index, we may assume that φ(Γ) = {id} .

If Γ = Zn this is indeed what occurs: for every γ , the pairs of sequences γ(xn) =
(xnγ) and (xn) clearly satisfy d(xnγ, xn) ≤ |γ| .

We define the following displacement functions. For every γ ∈ Γ , x ∈ Γ and r > 0
we define

∆(γ, x, r) = max{d(y, γy) ; y ∈ B(x, r)} .

When x = 1 we write ∆(γ, r) for the displacement function.

Let S be a finite generating set of Γ. Define ∆(S, x, r) = maxs∈S ∆(s, x, r) .

Likewise we write ∆(S, r) when x = 1.

Lemma. If the function r 7→ ∆(S, r) is bounded then Γ is virtually abelian.

Proof. Assume ∆(S, r) ≤ C for every r ≥ 0, where C is a constant uniform in r .

For a fixed s ∈ S and every x ∈ Γ,

d(sx, x) ≤ C ⇔ |x−1sx|S ≤ C .

It follows that s has finitely many conjugates.

Consider the action of Γ on itself by conjugation.

The orbit map of s
Γ → Γ , x 7→ x−1sx ,

has its image in the ball B(1, C).

The stabilizer of s by this action is the centralizer ZΓ(s). It follows that ZΓ(s) has
finite index in Γ.

The intersection
∩

s∈S ZΓ(s) = Z(Γ) likewise has finite index in Γ, and it is obvi-
ously abelian.

Assume then that the function r 7→ ∆(S, r) is unbounded.
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Lemma. For every ε > 0 there exists a sequence (xn) in Γ such that

lim
ω

maxs∈S ∆(xnsx
−1
n , λn)

λn

= ε . (4)

Proof. Since φ has trivial image it follows that limω
∆(S,λn)

λn
= 0. In particular ∆(S, λn) =

∆(S, 1, λn) is at most ε
2
λn ω -almost surely.

On the other hand, since ∆(S, r) is unbounded, for every n there exists a point pn
such that 2ελn ≤ maxs∈S d(spn, pn) ≤ ∆(S, pn, λn).

It is easy to check that for a fixed λ , the function p 7→ ∆(S, p, λ) is 2-Lipschitz.
This continuity and the considerations above imply that ω -almost surely there exists
a point xn such that ∆(S, xn, λn) = ελn .

For a sequence (xn) as in the previous lemma we define a new homomorphism

φε : Γ → Isom(X), φε(γ) = (xnγx
−1
n )ω .

Clearly the image of φε is not {id} . If the image of φε is infinite, we argue as
before.

Assume that the image of φε is finite, for every ε > 0. Note that by construction,
for every s ∈ S , φε(s) has maximal displacement in the ball B(1, 1) ⊆ X at most ε .

This means that, as ε → 0, the elements φε(s) are in smaller and smaller neigh-
bourhoods of the identity element in the topological group H = Isom(X) (endowed
with the compact-open topology.)

The group H is a Lie group, we have denoted by H0 its connected component of
the identity, and two properties of Lie groups will allow to finish the argument.

Theorem. 1. Every finite subgroup of H0 contains an abelian subgroup of index at
most I = I(H0).

2. For every m ∈ N there exists a neighbourhood of the identity element in H0 that
does not contain cyclic subgroups of order m.

The first statement in the above Theorem implies that, by eventually replacing Γ
with a finite index subgroup, we may assume that all φε(Γ) are abelian.

If the order of φε(Γ) is bounded by a constant M uniform in ε , this implies that
for every γ ∈ Γ, φε(Γ) has maximal displacement in the ball B(1, 1) ⊆ X at most
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Mε . Thus φε(Γ) is in smaller and smaller neighbourhoods of the identity element in
H0 .

Consequently, smaller and smaller neighbourhoods of the identity element in H0

contain cyclic subgroups of fixed order, contradicting the second part of the above
Theorem.

It follows that for some εn → 0, the orders of φεn(Γ) diverge to infinity.

All φεn(Γ) are abelian, therefore they are quotients of the abelianization Γab of
Γ. It follows that the abelianization of Γ is infinite, hence we may define a surjective
homomorphism Γ → Γab → Z .

Lemma 6 and the inductive hypothesis allow to finish the argument. 2
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