Geometry of Nilpotent and Solvable Groups

Cornelia Druţu

Lecture 9: Proof of Gromov's Theorem

We want to apply the Montgomery-Zippin Theorem, hence we want to represent our group Γ as a group of isometries of a metric space X that is:

- complete;
- connected, locally connected;
- proper (i.e. all balls are compact);
- of finite Hausdorff dimension.

We construct X as a limit of $(\Gamma, \frac{1}{\lambda_n} d)$, where d is a word metric and $\lambda_n \to \infty$.

We use an ultrafilter, i.e. a finitely additive measure $\omega: \mathcal{P}(\mathbb{N}) \to \{0,1\}$ with $\omega(\mathbb{N}) = 1$, to construct this limit.

Remark 1. If $\omega(A) = 1$ and $\omega(B) = 1$ then $\omega(A \cap B) = 1$.

Indeed, if $\omega(A \cap B) = 0$ then, as $A = (A \setminus B) \sqcup (A \cap B)$, it follows that $\omega(A \setminus B) = 1$.

Likewise $\omega(B \setminus A) = 1$ and since $A \setminus B$ and $B \setminus A$ are disjoint subsets it follows that $\omega(\mathbb{N}) \geq 2$, a contradiction.

Terminology: Let P(n) be a proposition indexed by $n \in \mathbb{N}$. We say that 'P(n) is true ω -almost surely (ω -a.s.)' if ω ($\{n \in \mathbb{N} \mid P(n) \text{ is true } \}$) = 1.

Recall that a non-principal ultrafilter is an ultrafilter such that $\omega(F) = 0$ for every $F \subseteq \mathbb{N}$ finite.

Zorn's Lemma (equivalent to the Axiom of choice) implies that non-principal ultrafilters exist. **Definition.** Let X be a non-empty set. Its ultrapower with respect to the ultrafilter ω , denoted X^{ω} , is the quotient of the set of sequences (x_n) in X with respect to the equivalence relation

$$(x_n) =_{\omega} (y_n) \Leftrightarrow x_n = y_n \ \omega - almost \ surely.$$

The equivalence class of the sequence (x_n) is denoted $(x_n)^{\omega}$.

If X has a structure (e.g. group, ring, order) then X^{ω} has the same structure.

For instance if X is a group then X^{ω} is a group with binary operation

$$(g_n)^{\omega}(h_n)^{\omega} = (g_n h_n)^{\omega}.$$

The space X has a copy in X^{ω} :

$$x \in X \mapsto (x)^{\omega} = \widehat{x} \in X^{\omega}$$
.

For every $A \subseteq X$ we denote by \widehat{A} its image by the above, i.e.

$$\widehat{A} = \{\widehat{a} \mid a \in A\}.$$

Definition. A subset $W \subseteq X^{\omega}$ is called internal if there exists a sequence of subsets (A_n) in X such that

$$W = \{(x_n)^\omega \; ; \; x_n \in A_n\} \, .$$

We write $W = (A_n)^{\omega}$.

Proposition 2. If $A \subseteq X$, A infinite, then $\widehat{A} \subseteq X^{\omega}$ cannot be internal.

Proof. Assume $\widehat{A} = (B_n)^{\omega}$ for some sequence B_n of subsets.

For every $a \in A$, $\hat{a} \in (B_n)^{\omega}$, i.e.

$$a \in B_n \ \omega - \text{almost surely.}$$
 (1)

Take an infinite sequence $a_1, a_2, ..., a_k, ...$ of distinct elements in A.

Let
$$I_k = \{ n \in \mathbb{N} \mid n \ge k, \{a_1, a_2, ..., a_k\} \subseteq B_n \}.$$

From (1) and Remark 1 it follows that $\omega(I_k) = 1$ for every k.

Note that $I_{k+1} \subseteq I_k$ and that $\bigcap_{n \ge 1} I_k = \emptyset$.

Define the sequence (x_n) such that $x_n = a_k$ for every $n \in I_k \setminus I_{k+1}$.

Since $\bigcap_{n\geq 1} I_k = \emptyset$, it follows that $I_1 = \bigcup_{k=1}^{\infty} (I_k \setminus I_{k+1})$. Thus the sequence (x_n) above is defined for all $n \in I_1$, and $\omega(I_1) = 1$. For all arguments in the ultrapower, the behaviour of a sequence on a set of indices of ω -measure zero does not matter.

By definition $x_n \in B_n$ for every $n \in I_1$, that is $x_n \in B_n$ ω -a.s.

Thus
$$(x_n)^{\omega} \in (B_n)^{\omega} = \widehat{A}$$
, hence $x_n = a$ ω -a.s. for some $a \in A$.

Let $J = \{n \in \mathbb{N} \mid x_n = a\}$, $\omega(J) = 1$. Remark 1 implies that $J \cap I_1 \neq \emptyset$, hence for some $k \in \mathbb{N}$, $J \cap (I_k \setminus I_{k+1}) \neq \emptyset$.

For $n \in J \cap (I_k \setminus I_{k+1})$ we have $x_n = a = a_k$.

The fact that $\omega(I_{k+1}) = 1$ and Remark 1 imply that $J \cap I_{k+1} \neq \emptyset$.

As
$$I_{k+1} = \bigcup_{j=k+1}^{\infty} (I_j \setminus I_{j+1})$$
 it follows that $J \cap (I_j \setminus I_{j+1}) \neq \emptyset$ for some $j \geq k+1$.

For an index n in the above intersection $x_n = a = a_j$. But as j > k we have that $a_j \neq a_k$, so a contradiction.

The following result is a consequence of Loś' Theorem (see J. Bell and A. Slomson, Models and Ultraproducts, North-Holland, Amsterdam, 1969, or J. Keisler, Foundations of Infinitesimal Calculus, Prindel-Weber-Schmitt, Boston, 1976, Chapter 1).

Theorem (non-standard induction). If a non-empty internal subset A^{ω} in \mathbb{N}^{ω} satisfies the properties:

- $\widehat{1} \in A^{\omega}$;
- for every $n^{\omega} \in A^{\omega}$, $n^{\omega} + \widehat{1} \in A^{\omega}$;

then $A^{\omega} = \mathbb{N}^{\omega}$.

Definition. A map $f^{\omega}: X^{\omega} \to Y^{\omega}$ is internal if there exists a sequence of maps $f_n: X_n \to Y_n$ such that $f^{\omega}((x_n)^{\omega}) = (f_n(x_n))^{\omega}$.

If (X, d) is a metric space one can define a 'metric' d^{ω} on X^{ω} as the internal function defined by the constant sequence of functions (d), that is $d^{\omega}: X^{\omega} \times X^{\omega} \to \mathbb{R}^{\omega}$,

$$d^{\omega}((x_n)^{\omega}, (y_n)^{\omega}) = (d(x_n, y_n))^{\omega}.$$
(2)

The problem is that d^{ω} does not take values in \mathbb{R} but in \mathbb{R}^{ω} .

Limit spaces

We want to construct a limit of $\left(\operatorname{Cay}(\Gamma), \frac{1}{\lambda_n} d\right)$ when $\lambda_n \to \infty$.

Why not taking as "limit space" the space of sequences

$$S = \{(x_n) \mid x_n \in \operatorname{Cay}(\Gamma)\},\$$

with the metric

$$D((x_n), (y_n)) = \lim_{\omega} \frac{\mathrm{d}(x_n, y_n)}{\lambda_n} ?$$

Problem 1: This "distance" D may take the value ∞ .

This is solved by restricting the space of sequences. Fix a sequence of basepoints $e = (e_n)$, and take

$$S_e = \left\{ (x_n) \in S \mid \left(\frac{d(x_n, e_n)}{\lambda_n} \right) \text{ bounded } \right\}.$$

Problem 2: We may have $(x_n) \neq (y_n) \in \mathcal{S}_e$ such that $\lim_{\omega} \frac{d(x_n, y_n)}{\lambda_n} = 0$.

We solve this by considering the quotient S_e/\sim , where

$$(x_n) \sim (y_n) \Leftrightarrow \lim_{\omega} \frac{\mathrm{d}(x_n, y_n)}{\lambda_n} = 0.$$

The quotient S_e/\sim is denoted by $\operatorname{Cone}_{\omega}(X;e,(\lambda_n))$ and called asymptotic cone of X with respect to ω , the sequence of basepoints e and the sequence of scaling constants (λ_n) .

Convention: From now on all ultrafilters are non-principal, and we use the notation ω for such an ultrafilter.

Notation: We denote the equivalence class of a sequence (x_n) with respect to the equivalence relation \sim by $\lim_{\omega} (x_n)$.

For a sequence of subsets $A_n \subseteq X$ we define the limit set $\lim_{\omega} (A_n) = \{\lim_{\omega} (a_n) \mid a_n \in A_n, \forall n \in \mathbb{N}\}.$

List of properties of asymptotic cones

- 1. Every $\operatorname{Cone}_{\omega}(X; e, (\lambda_n))$ is complete.
- 2. X is geodesic \Rightarrow every asymptotic cone is geodesic.
- 3. If G is a group then every $\operatorname{Cone}_{\omega}(G; e, (\lambda_n))$ is isometric to $\operatorname{Cone}_{\omega}(G; (1), (\lambda_n))$.
- 4. The subgroup G_1^{ω} of the ultrapower G^{ω} acts transitively on $\operatorname{Cone}_{\omega}(G;(1),(\lambda_n))$, where

 $G_1^{\omega} = \left\{ (g_n)^{\omega} \; ; \; \left(\frac{|g_n|_S}{\lambda_n} \right) \text{ is bounded } \right\} .$

Proof. (1) Let $(x^{(k)})$ be a Cauchy sequence in $\operatorname{Cone}_{\omega}(X; e, (\lambda_n))$. It suffices to prove that a subsequence converges. We select a subsequence such that

$$D(x^{(k)}, x^{(k+1)}) < \frac{1}{2^k} \Leftrightarrow \lim_{\omega} \frac{\mathrm{d}\left(x_n^{(k)}, x_n^{(k+1)}\right)}{\lambda_n} < \frac{1}{2^k} \Leftrightarrow \mathrm{d}\left(x_n^{(k)}, x_n^{(k+1)}\right) < \frac{\lambda_n}{2^k} \omega - \text{a.s.}$$

Then we have $\omega(I_k) = 1$ for the set

$$I_k = \left\{ n \ge k \; ; \; d\left(x_n^{(k)}, x_n^{(k+1)}\right) < \frac{\lambda_n}{2^k} \right\} .$$

We can assume that $I_{k+1} \subseteq I_k$, otherwise we replace I_{k+1} with $I_{k+1} \cap I_k$.

Thus we obtain a nested sequence of subsets I_k in $\mathbb N$ such that $\bigcap_{k\in\mathbb N}I_k=\emptyset$.

We define what we claim will be the 'limit point' of $(x^{(k)})$ as $\lim_{\omega} (y_n)$, with $y_n = x_n^{(k)}$ when $n \in I_k \setminus I_{k+1}$. The fact that $\bigcap_{n \geq 1} I_k = \emptyset$ implies that $I_1 = \bigcup_{k=1}^{\infty} (I_k \setminus I_{k+1})$, hence the above defines the sequence y_n for all $n \in I_1$. We have $\omega(I_1) = 1$ and, as for ultraproducts, in the arguments with asymptotic cones, the values of sequences on sets of indices of ω -measure zero do not matter.

For an arbitrary $k \in \mathbb{N}$ we prove that for all $n \in I_k$, $\frac{1}{\lambda_n} d\left(x_n^{(k)}, y_n\right) < \frac{1}{2^{k-1}}$, i.e. ω -almost surely $d\left(x_n^{(k)}, y_n\right) < \frac{1}{2^{k-1}}$; this implies that $D\left(x^{(k)}, y\right) \leq \frac{1}{2^{k-1}}$.

For every $n \in I_k = \bigcup_{j=k}^{\infty} (I_j \setminus I_{j+1})$ there exists $j \ge k$ such that $n \in I_j \setminus I_{j+1}$. By definition $y_n = x_n^{(j)}$.

Since $n \in I_j \subseteq I_{j-1} \subseteq \cdots \subseteq I_{k+1} \subseteq I_k$ we may write

$$\frac{\mathrm{d}\left(x_n^{(k)}, x_n^{(j)}\right)}{\lambda_n} \le \frac{\mathrm{d}\left(x_n^{(k)}, x_n^{(k+1)}\right)}{\lambda_n} + \dots + \frac{\mathrm{d}\left(x_n^{(j-1)}, x_n^{(j)}\right)}{\lambda_n} \le \frac{1}{2^k} + \frac{1}{2^{k+1}} + \dots + \frac{1}{2^{j-1}} \le \frac{1}{2^k} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2^{k-1}}.$$

Thus we have $D\left(x^{(k)},y\right) \leq \frac{1}{2^{k-1}}$, hence $x^{(k)} \to y$.

- (2) Given two points $\lim_{\omega} (x_n)$ and $\lim_{\omega} (y_n)$ take geodesics $[x_n, y_n]$. Their limit set $\lim_{\omega} ([x_n, y_n])$ is a geodesic joining $\lim_{\omega} (x_n)$ and $\lim_{\omega} (y_n)$.
- (3) The map $\operatorname{Cone}_{\omega}(G; e, (\lambda_n)) \to \operatorname{Cone}_{\omega}(G; (1), (\lambda_n))$ defined by $\lim_{\omega} (x_n) \mapsto \lim_{\omega} (e_n^{-1}x_n)$ is an isometry.

From the above it follows that every asymptotic cone of a Cayley graph of a group is complete and geodesic (hence connected and locally connected).

Our next goal is to prove the implication: ' Γ of polynomial growth \Rightarrow one asymptotic cone of Γ is proper and of finite Hausdorff dimension.'

Theorem (Hopf-Rinow Theorem). If (X, d) is a complete, geodesic, locally compact metric space then it is proper.

Thus, instead of properness, it suffices to prove local compactness for asymptotic cones.

Choice of the scaling sequence (λ_n)

Proposition 3. Assume that there exists $R = (R_n)^{\omega}$ in the ultrapower \mathbb{R}_+^{ω} such that the growth function satisfies:

$$\mathfrak{G}_{\Gamma}(R_n) = \operatorname{card} B_{\Gamma}(1, R_n) \le CR_n^a, \, \forall n \in \mathbb{N},$$

where C > 0 and $a \in \mathbb{N}$ are constants independent of n.

Then there exists $\lambda \in [\log R, R] \subset \mathbb{R}^{\omega}_+$ such that the ball $B\left(1, \frac{\lambda}{4}\right)$ in the ultrapower Γ^{ω} endowed with the metric defined in (2) satisfies the following. For every $i \in \mathbb{N}$, $i \geq 4$, all the sets of $\frac{\lambda}{i}$ -separated points in the ball $B\left(1, \frac{\lambda}{4}\right)$ have cardinality at most i^{2}

A subset A is ε -separated if for every $a_1, a_2 \in A$, $d(a_1, a_2) \geq \varepsilon$.

Proof. Assume that the conclusion of the proposition is false, i.e. for every $\lambda \in [\log R, R] \subset \mathbb{R}_+^{\omega}$ there exists $i \in \mathbb{N}, i \geq 4$, such that the ball $B\left(1, \frac{\lambda}{4}\right)$ contains at least i^{a+1} points that are $\frac{\lambda}{i}$ -separated.

Define the map $F: [\log R, R] \to \mathbb{N} \hookrightarrow \mathbb{N}^{\omega}, \ F(\lambda) = \text{the minimal } i \in \mathbb{N}, \ i \geq 4,$ with the above property.

• F is an internal map defined by the sequence of maps:

 $F_n: [\log R_n, R_n] \to \mathbb{N}, F_n(x) = \text{the minimal } i \in \mathbb{N}, i \geq 4, \text{ such that } B_{\Gamma}(1, \frac{x}{4}) \text{ contains at least } i^{a+1} \text{ points that are } \frac{x}{i}\text{-separated.}$

 \bullet the image of F is therefore internal.

On the other hand, by definition, the image of F is contained in $\widehat{\mathbb{N}} \subseteq \mathbb{N}^{\omega}$, therefore it equals \widehat{A} for some $A \subseteq \mathbb{N}$.

Proposition 2 implies that A must be finite.

Thus F takes values in $\{4, ..., N\}$ for some integer $N \in \mathbb{N}$.

We have obtained that for every $\lambda \in [\log R, R]$ there exists $i \in \{4, ..., N\}$ such that the ball $B\left(1, \frac{\lambda}{2}\right)$ contains at least i^{a+1} disjoint balls of radii $\frac{\lambda}{2i}$.

For R there exists $i_1 \in \{4, ..., N\}$ such that the ball $B\left(1, \frac{R}{2}\right)$ contains at least i_1^{a+1} disjoint balls

$$B\left(x_1(1), \frac{R}{2i_1}\right), B\left(x_2(1), \frac{R}{2i_1}\right), \dots, B\left(x_{t_1}(1), \frac{R}{2i_1}\right) \text{ with } t_1 \ge i_1^{a+1}.$$

All the balls in the list above are isometric to $B\left(1,\frac{R}{2i_1}\right)$. Clearly $\frac{R}{i_1} \in [\log R\,,\,R]$, hence there exists $i_2 = F\left(\frac{R}{i_1}\right)$ such that the ball $B\left(1,\frac{R}{2i_1}\right)$ contains at least i_2^{a+1} disjoint balls of radii $\frac{R}{2i_1i_2}$.

It follows that $B\left(1,\frac{R}{2}\right)$ contains a family of disjoint balls

$$B\left(x_1(2), \frac{R}{2i_1i_2}\right)$$
, $B\left(x_2(2), \frac{R}{2i_1i_2}\right)$, ..., $B\left(x_{t_2}(2), \frac{R}{2i_1i_2}\right)$ with $t_2 \ge i_1^{a+1}i_2^{a+1}$.

We started a non-standard induction. We continue, and find $u \in \mathbb{N}^{\omega}$ such that $B\left(1, \frac{R}{2}\right)$ contains a family of disjoint balls

$$B\left(x_1(u), \frac{R}{2i_1i_2...i_u}\right), B\left(x_2(u), \frac{R}{2i_1i_2...i_u}\right), ..., B\left(x_{t_u}(u), \frac{R}{2i_1i_2...i_u}\right),$$

with $t_u \ge (i_1 i_2 ... i_u)^{a+1}$.

The process stops for $u \in \mathbb{N}^{\omega}$ such that

$$\frac{R}{i_1 i_2 ... i_u} < \log R \le \frac{R}{i_1 i_2 ... i_{u-1}} \le \frac{NR}{i_1 i_2 ... i_u} \Leftrightarrow$$

$$\frac{R}{\log R} < i_1 i_2 ... i_u \le \frac{NR}{\log R}.$$

We obtained that the ball $B\left(1,\frac{R}{2}\right)$ in $(X^{\omega},\mathbf{d}_{\omega})$ contains at least $(i_1i_2...i_u)^{a+1}$ elements, hence at least $\left(\frac{R}{\log R}\right)^{a+1}$ elements. This implies that ω -almost surely $B\left(1,R_n\right)$ contains at least $\left(\frac{R_n}{\log R_n}\right)^{a+1}$ elements.

But by hypothesis $B(1, \frac{R_n}{4})$ contains at most CR_n^a elements, hence $\frac{R_n}{(\log R_n)^{a+1}} \leq C$, a contradiction.

Now take $\lambda = (\lambda_n)$ as in Proposition 3, and $X = \text{Cone}_{\omega}(\Gamma; 1, \lambda)$.

In X the ball $B\left(1,\frac{1}{4}\right)$ contains, for every $i\in\mathbb{N}$, $i\geq 4$, at most i^{a+1} points that are $\frac{1}{i}$ -separated.

Lemma 4. The ball $B\left(1,\frac{1}{4}\right)$ in X is compact.

Proof. For every open cover $\{U_j \mid j \in J\}$, take $\varepsilon > 0$ such that every ball of radius ε is contained in some U_j (i.e. ε is the Lebesgue number of the cover).

Take $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon$.

 $B\left(1,\frac{1}{4}\right)$ contains at most n^{a+1} points that are $\frac{1}{n}$ -separated.

Take a maximal $\frac{1}{n}$ -separated set, $\{x_1,...,x_N\}$ with $N \leq n^{a+1}$. For every $r \in \{1,2,...,n\}$, the ball $B\left(x_r,\frac{1}{n}\right)$ is contained in some U_{j_r} .

We have

$$B\left(1,\frac{1}{4}\right) \subseteq \bigcup_{r=1}^{N} B\left(x_r,\frac{1}{n}\right) \subseteq \bigcup_{r=1}^{N} U_{j_r}.$$

The first inclusion is due to the maximality of the $\frac{1}{n}$ -separated set $\{x_1, ..., x_N\}$ (implying that any other point must be at distance $<\frac{1}{n}$ from one of the points x_r . \square

Lemma 4 and the fact that X is homogeneous (see page 4, property (4)) imply that X is locally compact.

We must prove that X has finite Hausdorff dimension. The following well-known result allows to simplify this problem further.

Proposition 5. For a proper metric space X such that Isom(X) acts transitively on it, it suffices to prove that some small ball B has finite Hausdorff dimension.

This is because the hypotheses imply that X is covered by countably many translates gB of B by elements g in Isom(X).

We prove that the closed ball $B = B'\left(1, \frac{1}{8}\right) \subset B\left(1, \frac{1}{4}\right)$ has finite Hausdorff dimension.

A compact metric space K has Hausdorff dimension $< \beta$ if there exists a sequence of covers of K by balls $\{B_i(n) ; i \in I_n\}$ such that:

- $\max \{ \operatorname{radius}(B_i(n)) ; i \in I_n \}$ converges to 0 as $n \to \infty$;
- $\sum_{i \in I_n} [\operatorname{radius}(B_i(n))]^{\beta}$ converges to 0 as $n \to \infty$.

Remark. Since K is compact, we may assume that all the covers by balls above are finite.

For $K=B=B'\left(1,\frac{1}{8}\right)$ take, for every $n\in\mathbb{N}$, a maximal $\frac{1}{n}$ -separated subset, $x_1(n),...,x_{k_n}(n)$.

We know that $k_n \leq n^{a+1}$.

The n-th cover of B is

$$B\left(x_1(n), \frac{1}{n}\right), ..., B\left(x_{k_n}(n), \frac{1}{n}\right)$$
.

- radii are $\frac{1}{n} \to 0$;
- $\sum_{i=1}^{k_n} \frac{1}{n^{\beta}} \le \frac{n^{a+1}}{n^{\beta}}$ converges to 0 if $\beta > a+1$.

Thus B has finite Hausdorff dimension, hence so does X.

We can now apply Montgomery-Zippin to the group H = Isom(X).

We have

$$\begin{array}{cccc} \Gamma & \hookrightarrow & \Gamma_1^\omega & \stackrel{\varphi}{\longrightarrow} & Isom(X) \,, \\ \gamma & \mapsto & (\gamma)^\omega \,. \end{array}$$

We obtain a homomorphism $\varphi: \Gamma \to Isom(X)$.

 $\varphi(\Gamma) \leq Isom(X)$, and $\varphi(\Gamma)$ has polynomial growth because Γ has polynomial growth.

By the argument in last lecture it follows that $\varphi(\Gamma)$ is virtually nilpotent.

In order to prove Gromov's Theorem, we argue by induction on the degree of the polynomial growth, i.e. on $a \in \mathbb{N}$ such that $\mathfrak{G}_{\Gamma}(n) \leq n^a$.

 $a = 0 \Rightarrow \Gamma$ is finite.

Assume that Gromov's Theorem is true for a and consider Γ with $\mathfrak{G}_{\Gamma}(n) \leq n^{a+1}$.

Case 1. $\varphi(\Gamma)$ is infinite.

In that case the abelianization $\varphi(\Gamma)_{ab}$ (or that of a finite index subgroup) is infinite. Hence, up to replacing Γ by a finite index subgroup, we may assume that there exists a surjective homomorphism $\varphi(\Gamma) \to \mathbb{Z}$.

Then we have a short exact sequence

$$1 \to N \to \Gamma \to \mathbb{Z} \to 1. \tag{3}$$

Lemma 6. Suppose that Γ is a finitely generated group such that $\mathfrak{G}_{\Gamma}(n) \leq n^{a+1}$, and Γ fits into a short exact sequence as in (3). Then N is finitely generated and $\mathfrak{G}_{N}(n) \prec n^{a}$.

Proof. Let $\{s_1, ..., s_k\}$ be a set of generators of Γ , and let $\gamma \in \Gamma$ be an element which projects to the generator 1 of \mathbb{Z} .

For each *i* there exists $m_i \in \mathbb{Z}$ such that $\pi(s_i \gamma^{m_i}) = 0 \in \mathbb{Z}$.

Define elements $g_i := s_i \gamma^{m_i}$, i = 1, ..., k. The set $\{g_1, ..., g_k, \gamma\}$ generates Γ , and $g_1, ..., g_k$ are in N.

The (infinite) subset C of N defined by

$$C := \{ \gamma_{m,i} := \gamma^m g_i \gamma^{-m} ; m \in \mathbb{Z}, i = 1, ..., k \}$$

generates N.

To see this it suffices to write an element in N as a word in $\{g_1, ..., g_k, \gamma\}$, re-write it as a product of conjugates in C, plus some power γ^n , and deduce by projecting in \mathbb{Z} that n=0.

Lemma 1 in Lecture 5 (page 1) implies that N is generated by a finite subset F of C.

Note that Γ is isomorphic to $N \rtimes \mathbb{Z}$, hence, if we consider N with the generating set F and Γ with the generating set $F \cup \{\gamma^{\pm 1}\}$, we obtain that $n\mathfrak{G}_N(n) \leq \mathfrak{G}_{\Gamma}(2n) \leq n^{a+1}$, whence $\mathfrak{G}_N(n) \leq n^a$.

We may then use the induction hypothesis to conclude that N is virtually nilpotent, hence Γ is virtually polycyclic, which, by Wolf's Theorem, implies that Γ is virtually nilpotent.

Case 2. $\varphi(\Gamma)$ is finite. Up to finite index, we may assume that $\varphi(\Gamma) = \{id\}$.

If $\Gamma = \mathbb{Z}^n$ this is indeed what occurs: for every γ , the pairs of sequences $\gamma(x_n) = (x_n \gamma)$ and (x_n) clearly satisfy $d(x_n \gamma, x_n) \leq |\gamma|$.

We define the following displacement functions. For every $\gamma \in \Gamma$, $x \in \Gamma$ and r > 0 we define

$$\Delta(\gamma, x, r) = \max\{d(y, \gamma y) ; y \in B(x, r)\}.$$

When x = 1 we write $\Delta(\gamma, r)$ for the displacement function.

Let S be a finite generating set of Γ . Define $\Delta(S, x, r) = \max_{s \in S} \Delta(s, x, r)$.

Likewise we write $\Delta(S, r)$ when x = 1.

Lemma. If the function $r \mapsto \Delta(S, r)$ is bounded then Γ is virtually abelian.

Proof. Assume $\Delta(S,r) \leq C$ for every $r \geq 0$, where C is a constant uniform in r.

For a fixed $s \in S$ and every $x \in \Gamma$,

$$d(sx, x) \le C \Leftrightarrow |x^{-1}sx|_S \le C$$
.

It follows that s has finitely many conjugates.

Consider the action of Γ on itself by conjugation.

The orbit map of s

$$\Gamma \to \Gamma$$
, $x \mapsto x^{-1}sx$,

has its image in the ball B(1,C).

The stabilizer of s by this action is the centralizer $Z_{\Gamma}(s)$. It follows that $Z_{\Gamma}(s)$ has finite index in Γ .

The intersection $\bigcap_{s\in S} Z_{\Gamma}(s) = Z(\Gamma)$ likewise has finite index in Γ , and it is obviously abelian.

Assume then that the function $r \mapsto \Delta(S, r)$ is unbounded.

Lemma. For every $\varepsilon > 0$ there exists a sequence (x_n) in Γ such that

$$\lim_{\omega} \frac{\max_{s \in S} \Delta(x_n s x_n^{-1}, \lambda_n)}{\lambda_n} = \varepsilon.$$
 (4)

Proof. Since φ has trivial image it follows that $\lim_{\omega} \frac{\Delta(S, \lambda_n)}{\lambda_n} = 0$. In particular $\Delta(S, \lambda_n) = \Delta(S, 1, \lambda_n)$ is at most $\frac{\varepsilon}{2}\lambda_n$ ω -almost surely.

On the other hand, since $\Delta(S, r)$ is unbounded, for every n there exists a point p_n such that $2\varepsilon\lambda_n \leq \max_{s\in S} \mathrm{d}(sp_n, p_n) \leq \Delta(S, p_n, \lambda_n)$.

It is easy to check that for a fixed λ , the function $p \mapsto \Delta(S, p, \lambda)$ is 2-Lipschitz. This continuity and the considerations above imply that ω -almost surely there exists a point x_n such that $\Delta(S, x_n, \lambda_n) = \varepsilon \lambda_n$.

For a sequence (x_n) as in the previous lemma we define a new homomorphism

$$\varphi_{\varepsilon}: \Gamma \to Isom(X), \ \varphi_{\varepsilon}(\gamma) = (x_n \gamma x_n^{-1})^{\omega}.$$

Clearly the image of φ_{ε} is not {id}. If the image of φ_{ε} is infinite, we argue as before.

Assume that the image of φ_{ε} is finite, for every $\varepsilon > 0$. Note that by construction, for every $s \in S$, $\varphi_{\varepsilon}(s)$ has maximal displacement in the ball $B(1,1) \subseteq X$ at most ε .

This means that, as $\varepsilon \to 0$, the elements $\varphi_{\varepsilon}(s)$ are in smaller and smaller neighbourhoods of the identity element in the topological group H = Isom(X) (endowed with the compact-open topology.)

The group H is a Lie group, we have denoted by H_0 its connected component of the identity, and two properties of Lie groups will allow to finish the argument.

Theorem. 1. Every finite subgroup of H_0 contains an abelian subgroup of index at most $I = I(H_0)$.

2. For every $m \in \mathbb{N}$ there exists a neighbourhood of the identity element in H_0 that does not contain cyclic subgroups of order m.

The first statement in the above Theorem implies that, by eventually replacing Γ with a finite index subgroup, we may assume that all $\varphi_{\varepsilon}(\Gamma)$ are abelian.

If the order of $\varphi_{\varepsilon}(\Gamma)$ is bounded by a constant M uniform in ε , this implies that for every $\gamma \in \Gamma$, $\varphi_{\varepsilon}(\Gamma)$ has maximal displacement in the ball $B(1,1) \subseteq X$ at most

 $M\varepsilon$. Thus $\varphi_{\varepsilon}(\Gamma)$ is in smaller and smaller neighbourhoods of the identity element in H_0 .

Consequently, smaller and smaller neighbourhoods of the identity element in H_0 contain cyclic subgroups of fixed order, contradicting the second part of the above Theorem.

It follows that for some $\varepsilon_n \to 0$, the orders of $\varphi_{\varepsilon_n}(\Gamma)$ diverge to infinity.

All $\varphi_{\varepsilon_n}(\Gamma)$ are abelian, therefore they are quotients of the abelianization Γ_{ab} of Γ . It follows that the abelianization of Γ is infinite, hence we may define a surjective homomorphism $\Gamma \to \Gamma_{ab} \to \mathbb{Z}$.

Lemma 6 and the inductive hypothesis allow to finish the argument. \Box