Geometry of Nilpotent and Solvable Groups

Cornelia Druţu

Lecture 9: Proof of Gromov's Theorem

We want to apply the Montgomery-Zippin Theorem, hence we want to represent our group Γ as a group of isometries of a metric space X that is :

- complete;
- connected, locally connected;
- proper (i.e. all balls are compact);
- of finite Hausdorff dimension.

We construct X as a limit of $\left(\Gamma, \frac{1}{\lambda_{n}} \mathrm{~d}\right)$, where d is a word metric and $\lambda_{n} \rightarrow \infty$.
We use an ultrafilter, i.e. a finitely additive measure $\omega: \mathcal{P}(\mathbb{N}) \rightarrow\{0,1\}$ with $\omega(\mathbb{N})=1$, to construct this limit.

Remark 1. If $\omega(A)=1$ and $\omega(B)=1$ then $\omega(A \cap B)=1$.
Indeed, if $\omega(A \cap B)=0$ then, as $A=(A \backslash B) \sqcup(A \cap B)$, it follows that $\omega(A \backslash B)=1$.
Likewise $\omega(B \backslash A)=1$ and since $A \backslash B$ and $B \backslash A$ are disjoint subsets it follows that $\omega(\mathbb{N}) \geq 2$, a contradiction.

Terminology: Let $P(n)$ be a proposition indexed by $n \in \mathbb{N}$. We say that ' $P(n)$ is true ω-almost surely $(\omega \text {-a.s. })^{\prime}$ if $\omega(\{n \in \mathbb{N} \mid P(n)$ is true $\})=1$.

Recall that a non-principal ultrafilter is an ultrafilter such that $\omega(F)=0$ for every $F \subseteq \mathbb{N}$ finite.

Zorn's Lemma (equivalent to the Axiom of choice) implies that non-principal ultrafilters exist.

Definition. Let X be a non-empty set. Its ultrapower with respect to the ultrafilter ω, denoted X^{ω}, is the quotient of the set of sequences $\left(x_{n}\right)$ in X with respect to the equivalence relation

$$
\left(x_{n}\right)={ }_{\omega}\left(y_{n}\right) \Leftrightarrow x_{n}=y_{n} \omega \text {-almost surely. }
$$

The equivalence class of the sequence $\left(x_{n}\right)$ is denoted $\left(x_{n}\right)^{\omega}$.
If X has a structure (e.g. group, ring, order) then X^{ω} has the same structure.
For instance if X is a group then X^{ω} is a group with binary operation

$$
\left(g_{n}\right)^{\omega}\left(h_{n}\right)^{\omega}=\left(g_{n} h_{n}\right)^{\omega} .
$$

The space X has a copy in X^{ω} :

$$
x \in X \mapsto(x)^{\omega}=\widehat{x} \in X^{\omega} .
$$

For every $A \subseteq X$ we denote by \widehat{A} its image by the above, i.e.

$$
\widehat{A}=\{\hat{a} \mid a \in A\} .
$$

Definition. A subset $W \subseteq X^{\omega}$ is called internal if there exists a sequence of subsets $\left(A_{n}\right)$ in X such that

$$
W=\left\{\left(x_{n}\right)^{\omega} ; x_{n} \in A_{n}\right\} .
$$

We write $W=\left(A_{n}\right)^{\omega}$.

Proposition 2. If $A \subseteq X, A$ infinite, then $\widehat{A} \subseteq X^{\omega}$ cannot be internal.
Proof. Assume $\widehat{A}=\left(B_{n}\right)^{\omega}$ for some sequence B_{n} of subsets.
For every $a \in A, \hat{a} \in\left(B_{n}\right)^{\omega}$, i.e.

$$
\begin{equation*}
a \in B_{n} \omega \text { - almost surely. } \tag{1}
\end{equation*}
$$

Take an infinite sequence $a_{1}, a_{2}, \ldots, a_{k}, \ldots$ of distinct elements in A.
Let $I_{k}=\left\{n \in \mathbb{N} \mid n \geq k,\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq B_{n}\right\}$.
From (1) and Remark 1 it follows that $\omega\left(I_{k}\right)=1$ for every k.
Note that $I_{k+1} \subseteq I_{k}$ and that $\bigcap_{n \geq 1} I_{k}=\emptyset$.

Define the sequence $\left(x_{n}\right)$ such that $x_{n}=a_{k}$ for every $n \in I_{k} \backslash I_{k+1}$.
Since $\bigcap_{n \geq 1} I_{k}=\emptyset$, it follows that $I_{1}=\bigcup_{k=1}^{\infty}\left(I_{k} \backslash I_{k+1}\right)$. Thus the sequence $\left(x_{n}\right)$ above is defined for all $n \in I_{1}$, and $\omega\left(I_{1}\right)=1$. For all arguments in the ultrapower, the behaviour of a sequence on a set of indices of ω-measure zero does not matter.

By definition $x_{n} \in B_{n}$ for every $n \in I_{1}$, that is $x_{n} \in B_{n} \omega$-a.s.
Thus $\left(x_{n}\right)^{\omega} \in\left(B_{n}\right)^{\omega}=\widehat{A}$, hence $x_{n}=a \omega$-a.s. for some $a \in A$.
Let $J=\left\{n \in \mathbb{N} \mid x_{n}=a\right\}, \omega(J)=1$. Remark 1 implies that $J \cap I_{1} \neq \emptyset$, hence for some $k \in \mathbb{N}, J \cap\left(I_{k} \backslash I_{k+1}\right) \neq \emptyset$.

For $n \in J \cap\left(I_{k} \backslash I_{k+1}\right)$ we have $x_{n}=a=a_{k}$.
The fact that $\omega\left(I_{k+1}\right)=1$ and Remark 1 imply that $J \cap I_{k+1} \neq \emptyset$.
As $I_{k+1}=\bigcup_{j=k+1}^{\infty}\left(I_{j} \backslash I_{j+1}\right)$ it follows that $J \cap\left(I_{j} \backslash I_{j+1}\right) \neq \emptyset$ for some $j \geq k+1$.
For an index n in the above intersection $x_{n}=a=a_{j}$. But as $j>k$ we have that $a_{j} \neq a_{k}$, so a contradiction.

The following result is a consequence of Łoś' Theorem (see J. Bell and A. Slomson, Models and Ultraproducts, North-Holland, Amsterdam, 1969 , or J. Keisler, Foundations of Infinitesimal Calculus, Prindel-Weber-Schmitt, Boston, 1976, Chapter 1).
Theorem (non-standard induction). If a non-empty internal subset A^{ω} in \mathbb{N}^{ω} satisfies the properties:

- $\widehat{1} \in A^{\omega}$;
- for every $n^{\omega} \in A^{\omega}, n^{\omega}+\widehat{1} \in A^{\omega}$;
then $A^{\omega}=\mathbb{N}^{\omega}$.
Definition. A map $f^{\omega}: X^{\omega} \rightarrow Y^{\omega}$ is internal if there exists a sequence of maps $f_{n}: X_{n} \rightarrow Y_{n}$ such that $f^{\omega}\left(\left(x_{n}\right)^{\omega}\right)=\left(f_{n}\left(x_{n}\right)\right)^{\omega}$.

If ($X, \mathrm{~d}$) is a metric space one can define a 'metric' d^{ω} on X^{ω} as the internal function defined by the constant sequence of functions (d), that is $\mathrm{d}^{\omega}: X^{\omega} \times X^{\omega} \rightarrow \mathbb{R}^{\omega}$,

$$
\begin{equation*}
\mathrm{d}^{\omega}\left(\left(x_{n}\right)^{\omega},\left(y_{n}\right)^{\omega}\right)=\left(\mathrm{d}\left(x_{n}, y_{n}\right)\right)^{\omega} \tag{2}
\end{equation*}
$$

The problem is that d^{ω} does not take values in \mathbb{R} but in \mathbb{R}^{ω}.

Limit spaces

We want to construct a limit of $\left(\operatorname{Cay}(\Gamma), \frac{1}{\lambda_{n}} \mathrm{~d}\right)$ when $\lambda_{n} \rightarrow \infty$.
Why not taking as "limit space" the space of sequences

$$
\mathcal{S}=\left\{\left(x_{n}\right) \mid x_{n} \in \operatorname{Cay}(\Gamma)\right\},
$$

with the metric

$$
D\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\lim _{\omega} \frac{\mathrm{d}\left(x_{n}, y_{n}\right)}{\lambda_{n}} ?
$$

Problem 1: This "distance" D may take the value ∞.
This is solved by restricting the space of sequences. Fix a sequence of basepoints $e=\left(e_{n}\right)$, and take

$$
\mathcal{S}_{e}=\left\{\left(x_{n}\right) \in \mathcal{S} \left\lvert\,\left(\frac{d\left(x_{n}, e_{n}\right)}{\lambda_{n}}\right)\right. \text { bounded }\right\} .
$$

Problem 2: We may have $\left(x_{n}\right) \neq\left(y_{n}\right) \in \mathcal{S}_{e}$ such that $\lim _{\omega} \frac{\mathrm{d}\left(x_{n}, y_{n}\right)}{\lambda_{n}}=0$.
We solve this by considering the quotient \mathcal{S}_{e} / \sim, where

$$
\left(x_{n}\right) \sim\left(y_{n}\right) \Leftrightarrow \lim _{\omega} \frac{\mathrm{d}\left(x_{n}, y_{n}\right)}{\lambda_{n}}=0 .
$$

The quotient \mathcal{S}_{e} / \sim is denoted by $\operatorname{Cone}_{\omega}\left(X ; e,\left(\lambda_{n}\right)\right)$ and called asymptotic cone of X with respect to ω, the sequence of basepoints e and the sequence of scaling constants $\left(\lambda_{n}\right)$.

Convention: From now on all ultrafilters are non-principal, and we use the notation ω for such an ultrafilter.

Notation: We denote the equivalence class of a sequence $\left(x_{n}\right)$ with respect to the equivalence relation \sim by $\lim _{\omega}\left(x_{n}\right)$.

For a sequence of subsets $A_{n} \subseteq X$ we define the limit set $\lim _{\omega}\left(A_{n}\right)=\left\{\lim _{\omega}\left(a_{n}\right) \mid\right.$ $\left.a_{n} \in A_{n}, \forall n \in \mathbb{N}\right\}$.

List of properties of asymptotic cones

1. Every $\operatorname{Cone}_{\omega}\left(X ; e,\left(\lambda_{n}\right)\right)$ is complete.
2. X is geodesic \Rightarrow every asymptotic cone is geodesic.
3. If G is a group then every $\operatorname{Cone}_{\omega}\left(G ; e,\left(\lambda_{n}\right)\right)$ is isometric to $\operatorname{Cone}_{\omega}\left(G ;(1),\left(\lambda_{n}\right)\right)$.
4. The subgroup G_{1}^{ω} of the ultrapower G^{ω} acts transitively on $\operatorname{Cone}_{\omega}\left(G ;(1),\left(\lambda_{n}\right)\right)$, where

$$
G_{1}^{\omega}=\left\{\left(g_{n}\right)^{\omega} ;\left(\frac{\left|g_{n}\right|_{S}}{\lambda_{n}}\right) \text { is bounded }\right\} .
$$

Proof. (1) Let $\left(x^{(k)}\right)$ be a Cauchy sequence in $\operatorname{Cone}_{\omega}\left(X ; e,\left(\lambda_{n}\right)\right)$. It suffices to prove that a subsequence converges. We select a subsequence such that

$$
D\left(x^{(k)}, x^{(k+1)}\right)<\frac{1}{2^{k}} \Leftrightarrow \lim _{\omega} \frac{\mathrm{d}\left(x_{n}^{(k)}, x_{n}^{(k+1)}\right)}{\lambda_{n}}<\frac{1}{2^{k}} \Leftrightarrow \mathrm{~d}\left(x_{n}^{(k)}, x_{n}^{(k+1)}\right)<\frac{\lambda_{n}}{2^{k}} \omega-\text { a.s. }
$$

Then we have $\omega\left(I_{k}\right)=1$ for the set

$$
I_{k}=\left\{n \geq k ; \mathrm{d}\left(x_{n}^{(k)}, x_{n}^{(k+1)}\right)<\frac{\lambda_{n}}{2^{k}}\right\} .
$$

We can assume that $I_{k+1} \subseteq I_{k}$, otherwise we replace I_{k+1} with $I_{k+1} \cap I_{k}$.
Thus we obtain a nested sequence of subsets I_{k} in \mathbb{N} such that $\bigcap_{k \in \mathbb{N}} I_{k}=\emptyset$.
We define what we claim will be the 'limit point' of $\left(x^{(k)}\right)$ as $\lim _{\omega}\left(y_{n}\right)$, with $y_{n}=$ $x_{n}^{(k)}$ when $n \in I_{k} \backslash I_{k+1}$. The fact that $\bigcap_{n \geq 1} I_{k}=\emptyset$ implies that $I_{1}=\bigcup_{k=1}^{\infty}\left(I_{k} \backslash I_{k+1}\right)$, hence the above defines the sequence y_{n} for all $n \in I_{1}$. We have $\omega\left(I_{1}\right)=1$ and, as for ultraproducts, in the arguments with asymptotic cones, the values of sequences on sets of indices of ω-measure zero do not matter.

For an arbitrary $k \in \mathbb{N}$ we prove that for all $n \in I_{k}, \frac{1}{\lambda_{n}} \mathrm{~d}\left(x_{n}^{(k)}, y_{n}\right)<\frac{1}{2^{k-1}}$, i.e. ω-almost surely $\mathrm{d}\left(x_{n}^{(k)}, y_{n}\right)<\frac{1}{2^{k-1}} ;$ this implies that $D\left(x^{(k)}, y\right) \leq \frac{1}{2^{k-1}}$.

For every $n \in I_{k}=\bigcup_{j=k}^{\infty}\left(I_{j} \backslash I_{j+1}\right)$ there exists $j \geq k$ such that $n \in I_{j} \backslash I_{j+1}$. By definition $y_{n}=x_{n}^{(j)}$.

Since $n \in I_{j} \subseteq I_{j-1} \subseteq \cdots \subseteq I_{k+1} \subseteq I_{k}$ we may write

$$
\begin{gathered}
\frac{\mathrm{d}\left(x_{n}^{(k)}, x_{n}^{(j)}\right)}{\lambda_{n}} \leq \frac{\mathrm{d}\left(x_{n}^{(k)}, x_{n}^{(k+1)}\right)}{\lambda_{n}}+\cdots+\frac{\mathrm{d}\left(x_{n}^{(j-1)}, x_{n}^{(j)}\right)}{\lambda_{n}} \leq \\
\frac{1}{2^{k}}+\frac{1}{2^{k+1}}+\cdots+\frac{1}{2^{j-1}} \leq \frac{1}{2^{k}} \frac{1}{1-\frac{1}{2}}=\frac{1}{2^{k-1}} .
\end{gathered}
$$

Thus we have $D\left(x^{(k)}, y\right) \leq \frac{1}{2^{k-1}}$, hence $x^{(k)} \rightarrow y$.
(2) Given two points $\lim _{\omega}\left(x_{n}\right)$ and $\lim _{\omega}\left(y_{n}\right)$ take geodesics $\left[x_{n}, y_{n}\right]$. Their limit set $\lim _{\omega}\left(\left[x_{n}, y_{n}\right]\right)$ is a geodesic joining $\lim _{\omega}\left(x_{n}\right)$ and $\lim _{\omega}\left(y_{n}\right)$.
(3) The map $\operatorname{Cone}_{\omega}\left(G ; e,\left(\lambda_{n}\right)\right) \rightarrow \operatorname{Cone}_{\omega}\left(G ;(1),\left(\lambda_{n}\right)\right)$ defined by $\lim _{\omega}\left(x_{n}\right) \mapsto$ $\lim _{\omega}\left(e_{n}^{-1} x_{n}\right)$ is an isometry.

From the above it follows that every asymptotic cone of a Cayley graph of a group is complete and geodesic (hence connected and locally connected).

Our next goal is to prove the implication: ' Γ of polynomial growth \Rightarrow one asymptotic cone of Γ is proper and of finite Hausdorff dimension.'

Theorem (Hopf-Rinow Theorem). If ($X, \mathrm{~d}$) is a complete, geodesic, locally compact metric space then it is proper.

Thus, instead of properness, it suffices to prove local compactness for asymptotic cones.

$$
\text { Choice of the scaling sequence }\left(\lambda_{n}\right)
$$

Proposition 3. Assume that there exists $R=\left(R_{n}\right)^{\omega}$ in the ultrapower \mathbb{R}_{+}^{ω} such that the growth function satisfies:

$$
\mathfrak{G}_{\Gamma}\left(R_{n}\right)=\operatorname{card} B_{\Gamma}\left(1, R_{n}\right) \leq C R_{n}^{a}, \forall n \in \mathbb{N},
$$

where $C>0$ and $a \in \mathbb{N}$ are constants independent of n.
Then there exists $\lambda \in[\log R, R] \subset \mathbb{R}_{+}^{\omega}$ such that the ball $B\left(1, \frac{\lambda}{4}\right)$ in the ultrapower Γ^{ω} endowed with the metric defined in (2) satisfies the following. For every $i \in \mathbb{N}$, $i \geq 4$, all the sets of $\frac{\lambda}{i}$-separated points in the ball $B\left(1, \frac{\lambda}{4}\right)$ have cardinality at most i^{a+1}.

A subset A is ε-separated if for every $a_{1}, a_{2} \in A, \mathrm{~d}\left(a_{1}, a_{2}\right) \geq \varepsilon$.

Proof. Assume that the conclusion of the proposition is false, i.e. for every $\lambda \in$ $[\log R, R] \subset \mathbb{R}_{+}^{\omega}$ there exists $i \in \mathbb{N}, i \geq 4$, such that the ball $B\left(1, \frac{\lambda}{4}\right)$ contains at least i^{a+1} points that are $\frac{\lambda}{i}$-separated.

Define the map $F:[\log R, R] \rightarrow \mathbb{N} \hookrightarrow \mathbb{N}^{\omega}, F(\lambda)=$ the minimal $i \in \mathbb{N}, i \geq 4$, with the above property.

- F is an internal map defined by the sequence of maps:
$F_{n}:\left[\log R_{n}, R_{n}\right] \rightarrow \mathbb{N}, F_{n}(x)=$ the minimal $i \in \mathbb{N}, i \geq 4$, such that $B_{\Gamma}\left(1, \frac{x}{4}\right)$ contains at least i^{a+1} points that are $\frac{x}{i}$-separated.
- the image of F is therefore internal.

On the other hand, by definition, the image of F is contained in $\widehat{\mathbb{N}} \subseteq \mathbb{N}^{\omega}$, therefore it equals \widehat{A} for some $A \subseteq \mathbb{N}$.

Proposition 2 implies that A must be finite.
Thus F takes values in $\{4, \ldots, N\}$ for some integer $N \in \mathbb{N}$.
We have obtained that for every $\lambda \in[\log R, R]$ there exists $i \in\{4, \ldots, N\}$ such that the ball $B\left(1, \frac{\lambda}{2}\right)$ contains at least i^{a+1} disjoint balls of radii $\frac{\lambda}{2 i}$.

For R there exists $i_{1} \in\{4, \ldots, N\}$ such that the ball $B\left(1, \frac{R}{2}\right)$ contains at least i_{1}^{a+1} disjoint balls

$$
B\left(x_{1}(1), \frac{R}{2 i_{1}}\right), B\left(x_{2}(1), \frac{R}{2 i_{1}}\right), \ldots, B\left(x_{t_{1}}(1), \frac{R}{2 i_{1}}\right) \text { with } t_{1} \geq i_{1}^{a+1}
$$

All the balls in the list above are isometric to $B\left(1, \frac{R}{2 i_{1}}\right)$. Clearly $\frac{R}{i_{1}} \in[\log R, R]$, hence there exists $i_{2}=F\left(\frac{R}{i_{1}}\right)$ such that the ball $B\left(1, \frac{R}{2 i_{1}}\right)$ contains at least i_{2}^{a+1} disjoint balls of radii $\frac{R}{2 i_{1} i_{2}}$.

It follows that $B\left(1, \frac{R}{2}\right)$ contains a family of disjoint balls

$$
B\left(x_{1}(2), \frac{R}{2 i_{1} i_{2}}\right), B\left(x_{2}(2), \frac{R}{2 i_{1} i_{2}}\right), \ldots, B\left(x_{t_{2}}(2), \frac{R}{2 i_{1} i_{2}}\right) \text { with } t_{2} \geq i_{1}^{a+1} i_{2}^{a+1}
$$

We started a non-standard induction. We continue, and find $u \in \mathbb{N}^{\omega}$ such that $B\left(1, \frac{R}{2}\right)$ contains a family of disjoint balls

$$
B\left(x_{1}(u), \frac{R}{2 i_{1} i_{2} \ldots i_{u}}\right), B\left(x_{2}(u), \frac{R}{2 i_{1} i_{2} \ldots i_{u}}\right), \ldots, B\left(x_{t_{u}}(u), \frac{R}{2 i_{1} i_{2} \ldots i_{u}}\right)
$$

with $t_{u} \geq\left(i_{1} i_{2} \ldots i_{u}\right)^{a+1}$.

The process stops for $u \in \mathbb{N}^{\omega}$ such that

$$
\begin{gathered}
\frac{R}{i_{1} i_{2} \ldots i_{u}}<\log R \leq \frac{R}{i_{1} i_{2} \ldots i_{u-1}} \leq \frac{N R}{i_{1} i_{2} \ldots i_{u}} \Leftrightarrow \\
\frac{R}{\log R}<i_{1} i_{2} \ldots i_{u} \leq \frac{N R}{\log R}
\end{gathered}
$$

We obtained that the ball $B\left(1, \frac{R}{2}\right)$ in $\left(X^{\omega}, \mathrm{d}_{\omega}\right)$ contains at least $\left(i_{1} i_{2} \ldots i_{u}\right)^{a+1}$ elements, hence at least $\left(\frac{R}{\log R}\right)^{a+1}$ elements. This implies that ω-almost surely $B\left(1, R_{n}\right)$ contains at least $\left(\frac{R_{n}}{\log R_{n}}\right)^{a+1}$ elements.

But by hypothesis $B\left(1, \frac{R_{n}}{4}\right)$ contains at most $C R_{n}^{a}$ elements, hence $\frac{R_{n}}{\left(\log R_{n}\right)^{a+1}} \leq C$, a contradiction.

Now take $\lambda=\left(\lambda_{n}\right)$ as in Proposition 3, and $X=\operatorname{Cone}_{\omega}(\Gamma ; 1, \lambda)$.
In X the ball $B\left(1, \frac{1}{4}\right)$ contains, for every $i \in \mathbb{N}, i \geq 4$, at most i^{a+1} points that are $\frac{1}{i}$-separated.

Lemma 4. The ball $B\left(1, \frac{1}{4}\right)$ in X is compact.

Proof. For every open cover $\left\{U_{j} \mid j \in J\right\}$, take $\varepsilon>0$ such that every ball of radius ε is contained in some U_{j} (i.e. ε is the Lebesgue number of the cover).

Take $n \in \mathbb{N}$ such that $\frac{1}{n}<\varepsilon$.
$B\left(1, \frac{1}{4}\right)$ contains at most n^{a+1} points that are $\frac{1}{n}$-separated.
Take a maximal $\frac{1}{n}$-separated set, $\left\{x_{1}, \ldots, x_{N}\right\}$ with $N \leq n^{a+1}$. For every $r \in$ $\{1,2, \ldots, n\}$, the ball $B\left(x_{r}, \frac{1}{n}\right)$ is contained in some $U_{j_{r}}$.

We have

$$
B\left(1, \frac{1}{4}\right) \subseteq \bigcup_{r=1}^{N} B\left(x_{r}, \frac{1}{n}\right) \subseteq \bigcup_{r=1}^{N} U_{j_{r}}
$$

The first inclusion is due to the maximality of the $\frac{1}{n}$-separated set $\left\{x_{1}, \ldots, x_{N}\right\}$ (implying that any other point must be at distance $<\frac{1}{n}$ from one of the points x_{r}.

Lemma 4 and the fact that X is homogeneous (see page 4, property (4)) imply that X is locally compact.

We must prove that X has finite Hausdorff dimension. The following well-known result allows to simplify this problem further.

Proposition 5. For a proper metric space X such that $\operatorname{Isom}(X)$ acts transitively on it, it suffices to prove that some small ball B has finite Hausdorff dimension.

This is because the hypotheses imply that X is covered by countably many translates $g B$ of B by elements g in $\operatorname{Isom}(X)$.

We prove that the closed ball $B=B^{\prime}\left(1, \frac{1}{8}\right) \subset B\left(1, \frac{1}{4}\right)$ has finite Hausdorff dimension.

A compact metric space K has Hausdorff dimension $<\beta$ if there exists a sequence of covers of K by balls $\left\{B_{i}(n) ; i \in I_{n}\right\}$ such that:

- $\max \left\{\operatorname{radius}\left(B_{i}(n)\right) ; i \in I_{n}\right\}$ converges to 0 as $n \rightarrow \infty$;
- $\sum_{i \in I_{n}}\left[\operatorname{radius}\left(B_{i}(n)\right)\right]^{\beta}$ converges to 0 as $n \rightarrow \infty$.

Remark. Since K is compact, we may assume that all the covers by balls above are finite.

For $K=B=B^{\prime}\left(1, \frac{1}{8}\right)$ take, for every $n \in \mathbb{N}$, a maximal $\frac{1}{n}$-separated subset, $x_{1}(n), \ldots, x_{k_{n}}(n)$.

We know that $k_{n} \leq n^{a+1}$.
The n-th cover of B is

$$
B\left(x_{1}(n), \frac{1}{n}\right), \ldots, B\left(x_{k_{n}}(n), \frac{1}{n}\right) .
$$

- radii are $\frac{1}{n} \rightarrow 0$;
- $\sum_{i=1}^{k_{n}} \frac{1}{n^{\beta}} \leq \frac{n^{a+1}}{n^{\beta}}$ converges to 0 if $\beta>a+1$.

Thus B has finite Hausdorff dimension, hence so does X.
We can now apply Montgomery-Zippin to the group $H=\operatorname{Isom}(X)$.
We have

$$
\begin{array}{rlc}
\Gamma & \hookrightarrow & \Gamma_{1}^{\omega} \\
\gamma & \mapsto & (\gamma)^{\omega} .
\end{array}
$$

We obtain a homomorphism $\varphi: \Gamma \rightarrow \operatorname{Isom}(X)$.
$\varphi(\Gamma) \leq \operatorname{Isom}(X)$, and $\varphi(\Gamma)$ has polynomial growth because Γ has polynomial growth.

By the argument in last lecture it follows that $\varphi(\Gamma)$ is virtually nilpotent.
In order to prove Gromov's Theorem, we argue by induction on the degree of the polynomial growth, i.e. on $a \in \mathbb{N}$ such that $\mathfrak{G}_{\Gamma}(n) \preceq n^{a}$.
$a=0 \Rightarrow \Gamma$ is finite.
Assume that Gromov's Theorem is true for a and consider Γ with $\mathfrak{G}_{\Gamma}(n) \preceq n^{a+1}$.
Case 1. $\varphi(\Gamma)$ is infinite.
In that case the abelianization $\varphi(\Gamma)_{a b}$ (or that of a finite index subgroup) is infinite. Hence, up to replacing Γ by a finite index subgroup, we may assume that there exists a surjective homomorphism $\varphi(\Gamma) \rightarrow \mathbb{Z}$.

Then we have a short exact sequence

$$
\begin{equation*}
1 \rightarrow N \rightarrow \Gamma \rightarrow \mathbb{Z} \rightarrow 1 \tag{3}
\end{equation*}
$$

Lemma 6. Suppose that Γ is a finitely generated group such that $\mathfrak{G}_{\Gamma}(n) \preceq n^{a+1}$, and Γ fits into a short exact sequence as in (3). Then N is finitely generated and $\mathfrak{G}_{N}(n) \preceq n^{a}$.

Proof. Let $\left\{s_{1}, \ldots, s_{k}\right\}$ be a set of generators of Γ, and let $\gamma \in \Gamma$ be an element which projects to the generator 1 of \mathbb{Z}.

For each i there exists $m_{i} \in \mathbb{Z}$ such that $\pi\left(s_{i} \gamma^{m_{i}}\right)=0 \in \mathbb{Z}$.
Define elements $g_{i}:=s_{i} \gamma^{m_{i}}, i=1, \ldots, k$. The set $\left\{g_{1}, \ldots, g_{k}, \gamma\right\}$ generates Γ, and g_{1}, \ldots, g_{k} are in N.

The (infinite) subset C of N defined by

$$
C:=\left\{\gamma_{m, i}:=\gamma^{m} g_{i} \gamma^{-m} ; m \in \mathbb{Z}, i=1, \ldots, k\right\}
$$

generates N.
To see this it suffices to write an element in N as a word in $\left\{g_{1}, \ldots, g_{k}, \gamma\right\}$, re-write it as a product of conjugates in C, plus some power γ^{n}, and deduce by projecting in \mathbb{Z} that $n=0$.

Lemma 1 in Lecture 5 (page 1) implies that N is generated by a finite subset F of C.

Note that Γ is isomorphic to $N \rtimes \mathbb{Z}$, hence, if we consider N with the generating set F and Γ with the generating set $F \cup\left\{\gamma^{ \pm 1}\right\}$, we obtain that $n \mathfrak{G}_{N}(n) \leq \mathfrak{G}_{\Gamma}(2 n) \preceq n^{a+1}$, whence $\mathfrak{G}_{N}(n) \preceq n^{a}$.

We may then use the induction hypothesis to conclude that N is virtually nilpotent, hence Γ is virtually polycyclic, which, by Wolf's Theorem, implies that Γ is virtually nilpotent.

Case 2. $\varphi(\Gamma)$ is finite. Up to finite index, we may assume that $\varphi(\Gamma)=\{\mathrm{id}\}$.
If $\Gamma=\mathbb{Z}^{n}$ this is indeed what occurs: for every γ, the pairs of sequences $\gamma\left(x_{n}\right)=$ $\left(x_{n} \gamma\right)$ and $\left(x_{n}\right)$ clearly satisfy $\mathrm{d}\left(x_{n} \gamma, x_{n}\right) \leq|\gamma|$.

We define the following displacement functions. For every $\gamma \in \Gamma, x \in \Gamma$ and $r>0$ we define

$$
\Delta(\gamma, x, r)=\max \{\mathrm{d}(y, \gamma y) ; y \in B(x, r)\}
$$

When $x=1$ we write $\Delta(\gamma, r)$ for the displacement function.
Let S be a finite generating set of Γ. Define $\Delta(S, x, r)=\max _{s \in S} \Delta(s, x, r)$.
Likewise we write $\Delta(S, r)$ when $x=1$.

Lemma. If the function $r \mapsto \Delta(S, r)$ is bounded then Γ is virtually abelian.
Proof. Assume $\Delta(S, r) \leq C$ for every $r \geq 0$, where C is a constant uniform in r.
For a fixed $s \in S$ and every $x \in \Gamma$,

$$
\mathrm{d}(s x, x) \leq C \Leftrightarrow\left|x^{-1} s x\right|_{S} \leq C .
$$

It follows that s has finitely many conjugates.
Consider the action of Γ on itself by conjugation.
The orbit map of s

$$
\Gamma \rightarrow \Gamma, x \mapsto x^{-1} s x,
$$

has its image in the ball $B(1, C)$.
The stabilizer of s by this action is the centralizer $Z_{\Gamma}(s)$. It follows that $Z_{\Gamma}(s)$ has finite index in Γ.

The intersection $\bigcap_{s \in S} Z_{\Gamma}(s)=Z(\Gamma)$ likewise has finite index in Γ, and it is obviously abelian.

Assume then that the function $r \mapsto \Delta(S, r)$ is unbounded.

Lemma. For every $\varepsilon>0$ there exists a sequence $\left(x_{n}\right)$ in Γ such that

$$
\begin{equation*}
\lim _{\omega} \frac{\max _{s \in S} \Delta\left(x_{n} s x_{n}^{-1}, \lambda_{n}\right)}{\lambda_{n}}=\varepsilon . \tag{4}
\end{equation*}
$$

Proof. Since φ has trivial image it follows that $\lim _{\omega} \frac{\Delta\left(S, \lambda_{n}\right)}{\lambda_{n}}=0$. In particular $\Delta\left(S, \lambda_{n}\right)=$ $\Delta\left(S, 1, \lambda_{n}\right)$ is at most $\frac{\varepsilon}{2} \lambda_{n} \omega$-almost surely.

On the other hand, since $\Delta(S, r)$ is unbounded, for every n there exists a point p_{n} such that $2 \varepsilon \lambda_{n} \leq \max _{s \in S} \mathrm{~d}\left(s p_{n}, p_{n}\right) \leq \Delta\left(S, p_{n}, \lambda_{n}\right)$.

It is easy to check that for a fixed λ, the function $p \mapsto \Delta(S, p, \lambda)$ is 2-Lipschitz. This continuity and the considerations above imply that ω-almost surely there exists a point x_{n} such that $\Delta\left(S, x_{n}, \lambda_{n}\right)=\varepsilon \lambda_{n}$.

For a sequence $\left(x_{n}\right)$ as in the previous lemma we define a new homomorphism

$$
\varphi_{\varepsilon}: \Gamma \rightarrow \operatorname{Isom}(X), \varphi_{\varepsilon}(\gamma)=\left(x_{n} \gamma x_{n}^{-1}\right)^{\omega} .
$$

Clearly the image of φ_{ε} is not $\{\operatorname{id}\}$. If the image of φ_{ε} is infinite, we argue as before.

Assume that the image of φ_{ε} is finite, for every $\varepsilon>0$. Note that by construction, for every $s \in S, \varphi_{\varepsilon}(s)$ has maximal displacement in the ball $B(1,1) \subseteq X$ at most ε.

This means that, as $\varepsilon \rightarrow 0$, the elements $\varphi_{\varepsilon}(s)$ are in smaller and smaller neighbourhoods of the identity element in the topological group $H=\operatorname{Isom}(X)$ (endowed with the compact-open topology.)

The group H is a Lie group, we have denoted by H_{0} its connected component of the identity, and two properties of Lie groups will allow to finish the argument.

Theorem. 1. Every finite subgroup of H_{0} contains an abelian subgroup of index at most $I=I\left(H_{0}\right)$.
2. For every $m \in \mathbb{N}$ there exists a neighbourhood of the identity element in H_{0} that does not contain cyclic subgroups of order m.

The first statement in the above Theorem implies that, by eventually replacing Γ with a finite index subgroup, we may assume that all $\varphi_{\varepsilon}(\Gamma)$ are abelian.

If the order of $\varphi_{\varepsilon}(\Gamma)$ is bounded by a constant M uniform in ε, this implies that for every $\gamma \in \Gamma, \varphi_{\varepsilon}(\Gamma)$ has maximal displacement in the ball $B(1,1) \subseteq X$ at most
$M \varepsilon$. Thus $\varphi_{\varepsilon}(\Gamma)$ is in smaller and smaller neighbourhoods of the identity element in H_{0}.

Consequently, smaller and smaller neighbourhoods of the identity element in H_{0} contain cyclic subgroups of fixed order, contradicting the second part of the above Theorem.

It follows that for some $\varepsilon_{n} \rightarrow 0$, the orders of $\varphi_{\varepsilon_{n}}(\Gamma)$ diverge to infinity.
All $\varphi_{\varepsilon_{n}}(\Gamma)$ are abelian, therefore they are quotients of the abelianization $\Gamma_{a b}$ of Γ. It follows that the abelianization of Γ is infinite, hence we may define a surjective homomorphism $\Gamma \rightarrow \Gamma_{a b} \rightarrow \mathbb{Z}$.

Lemma 6 and the inductive hypothesis allow to finish the argument.

