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CHAPTER 1

General preliminaries

1.1. Notation and terminology

1.1.1. General notation. Given a set X we denote by P(X) the power set
of X, i.e., the set of all subsets of X. If two subsets A, B in X have the property
that AN B = () then we denote their union by A LI B, and we call it the disjoint
union. A pointed set is a pair (X, x), where z is an element of X. The composition
of twomaps f: X — Y and g: Y — Z is denoted either by go f or by gf . We will
use the notation I'dx or simply I'd (when X is clear) to the denote the identity map
X —» X.Foramap f: X —Y and a subset A C X, we let f|A or f|4 denote the
restriction of f to A. We will use the notation |F| or card (E) to denote cardinality
of a set E.

The Axiom of Choice (AC) plays an important part in many of the arguments of
this book. We discuss AC in more detail in Section 77, where we also list equivalent
and weaker forms of AC. Throughout the book we make the following convention:

CONVENTION 1.1. We always assume ZFC: The Zermelo—Fraenkel axioms and
the Axiom of Choice.

We will use the notation A and cl(A) for the closure of a subset A in a topo-
logical space X. The wedge of a family of pointed topological spaces (X;, z;),i € I,
denoted by V;c5X;, is the quotient of the disjoint union Ll;c; X;, where we identify
all the points z;.

If f: X — Ris a function on a topological space X, then we will denote by
Supp(f) the support of f, i.e., the set

c{r e X : f(z) # 0}.

Given a non-empty set X, we denote by Bij(X) the group of bijections X — X,
with composition as the binary operation.

CONVENTION 1.2. Throughout the paper we denote by 1,4 the characteristic
function of a subset A in a set X, i.e. the function 14 : X — {0,1}, 14(x) =1 if
and only if x € A.

We will use the notation d or dist to denote the metric on a metric space X.
For x € X and A C X we will use the notation dist(z, A) for the minimal distance
from x to A, i.e.,

dist(z, A) = inf{d(z,a) : a € A}.
If A,B C X are two subsets A, B, we let

dist gaus(A, B) = max <sup dist(a, B), sup dist (b, A)>
a€A beB
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denote the Hausdorff distance between A and B in X. See Section 1.4 for further
details on this distance and its generalizations.

Let (X, dist) be a metric space. We will use the notation Ng(A) to denote the
open R-neighborhood of a subset A C X, i.e. Ngr(A) = {z € X : dist(z, 4) < R}.
In particular, if A = {a} then Ng(A) = B(a, R) is the open R-ball centered at a.

We will use the notation N'g(A), B(a, R) to denote the corresponding closed
neighborhoods and closed balls defined by non-strict inequalities.

We denote by S(x,r) the sphere with center x and radius r, i.e. the set

{y e X : dist(y,z) =r}.

We will use the notation [A, B] to denote a geodesic segment connecting point
A to point B in X: Note that such segment may be non-unique, so our notation is
slightly ambiguous. Similarly, we will use the notation A(A, B,C) or T(A, B, C) for
a geodesic triangle with the vertices A, B, C. The perimeter of a triangle is the sum
of its side-lengths (lengths of its edges). Lastly, we will use the notation A(4, B, )
for a solid triangle with the given vertices. Precise definitions of geodesic segments
and triangles will be given in Section 1.3.3.

By the codimension of a subspace X in a space Y we mean the difference be-
tween the dimension of Y and the dimension of X, whatever the notion of dimension
that we use.

With very few exceptions, in a group G we use the multiplication sign - to
denote its binary operation. We denote its identity element either by e or by 1. We
denote the inverse of an element g € G by g~!. Given a subset S in G we denote
by S~! the subset {g~! | g € S}. Note that for abelian groups the neutral element
is usually denoted 0, the inverse of z by —x and the binary operation by +.

If two groups G and G’ are isomorphic we write G ~ G'.

A surjective homomorphism is called an epimorphism, while an injective ho-
momorphism is called a monomorphism. An isomorphism of groups ¢ : G — G is
also called an automorphism. In what follows, we denote by Aut(G) the group of
automorphisms of G.

We use the notation H < G or H < G to denote that H is a subgroup in G.
Given a subgroup H in G:

e the order |H| of H is its cardinality;
e the index of H in G, denoted |G : H|, is the common cardinality of the
quotients G/H and H\G.

The order of an element g in a group (G, -) is the order of the subgroup (g) of
G generated by g. In other words, the order of g is the minimal positive integer n
such that ¢g" = 1. If no such integer exists then g is said to be of infinite order. In
this case, (g) is isomorphic to Z.

For every positive integer m we denote by Z,, the cyclic group of order m,

Z/mZ. Given x,y € G we let z¥ denote the conjugation of = by vy, i.e. yxy~!.

1.1.2. Direct and inverse limits of spaces and groups. Let I be a directed
set, i.e., a partially ordered set, where every two elements ¢, 7 have an upper bound,
which is some k € I such that ¢ < k,j < k. The reader should think of the set of
real numbers, or positive real numbers, or natural numbers, as the main examples
of directed sets. A directed system of sets (or topological spaces, or groups) indexed
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by I is a collection of sets (or topological spaces, or groups) A;,i € I, and maps (or
continuous maps, or homomorphisms) f;; : A; = A;,i < j, satisfying the following
compatibility conditions:
(1) fix = fijko fij, Vi< j <k,
(2) fi=1Id.
An idnverse system is defined similarly, except f;; : A; — A;i < j, and,
accordingly, in the first condition we use fi; o fjx.
The direct limit of the direct system is the set

A=limA; = (HAZ) / ~
il
where a; ~ a; whenever fir(a;) = fjr(a;) for some k € I. In particular, we have

maps f, : Ay, — A given by fi,(am) = [an], where [a,,] is the equivalence class in
A represented by a,, € A,,. Note that

A= fm(Am).
icl

If A;’s are groups, then we equip the direct limit with the group operation:

la;] - [a;] = [fir(as)] - [fix(a;)],
where k € I is an upper bound for i and j.

If A;’s are topological spaces, we equip the direct limit with the final topology,
i.e., the topology where U C lim A; is open if and only if f;'(U) is open for every
i. In other words, this is the quotient topology descending from the disjoint union
of A;’s.

Similarly, the inverse limit of an inverse system is

@Ai . {(az) S HAz ta; = fij(aj),Vi < j} .

i€l
If A;’s are groups, we equip the inverse limit with the group operation induced from
the direct product of the groups A;. If A;’s are topological spaces, we equip the
inverse limit the initial topology, i.e., the subset topology of the Tychonoff topology
on the direct product. Explicitly, this is the topology generated by the open sets
of the form f,'(U,,), U, C X,, are open subsets and f,, : @Ai — A, is the
restriction of the coordinate projection.

EXERCISE 1.3. Every group G is the direct limit of the directed family G;,i € I,
consisting of all finitely generated subgroups of G. Here the partial order on I is
given by inclusion and homomorphisms f;; : G; — G; are tautological embeddings.

EXERCISE 1.4. Suppose that G is the direct limit of a direct system of groups
{Gi, fij : i, € I'}. Assume also that for every ¢ we are given a subgroup H; < G;
satisfying

fij(Hs) < Hy, Vi <.
Then the family {H;, f;; : i,j € I} is again a direct system; let H denote the direct
limit of this system. Show that there exists a monomorphism ¢ : H — G, so that
for every i € I,

fila, = do fila, - Hi = G.
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EXERCISE 1.5. 1. Let H < G be a subgroup. Then |G : H| < n if and only

if the following holds: For every subset {go,...,gn} C G, there exist g;, g; so that
—1
9i9; € H.

2. Suppose that G is the direct limit of a family of groups G;,7 € I. Assume
also that there exist n € N so that for every ¢ € I, the group G; contains a subgroup
H; of index < n. Let the group H be the direct limit of the family {H; : i € I} and
¢ : H — G be the monomorphism as in Exercise 1.4. Show that

G : ¢(H)| < n.

1.1.3. Growth rates of functions. We will be using in this book two differ-
ent asymptotic inequalities and equivalences for functions: One is used to compare
Dehn functions of groups and the other to compare growth rates of groups.

DEFINITION 1.6. Let X be a subset of R. Given two functions f,g : X — R,
we say that the order of the function f is at most the order of the function g and
we write f = g, if there exist a,b, ¢, d, e > 0 such that

fl@) <aglbx+c¢)+dr+e

for every x € X, x > x, for some fixed xg.
If f 3 ¢gandg 3 f then we write f &~ ¢g and we say that f and g are approzi-
mately equivalent.

The equivalence class of a numerical function with respect to equivalence rela-
tion = is called the order of the function. If a function f has (at most) the same
order as the function z, 22, 23, % or exp(z) it is said that the order of the function
f is (at most) linear, quadratic, cubic, polynomial, or exponential, respectively. A
function f is said to have subezponential order if it has order at most exp(x) and is
not approximately equivalent to exp(z). A function f is said to have intermediate
order if it has subexponential order and z™ 3 f(z) for every n.

DEFINITION 1.7. We introduce the following asymptotic inequality between
functions f,g : X — R with X C R: We write f =< g if there exist a,b > 0
such that f(z) < ag(bx) for every x € X, x > ¢ for some fixed xg.

If f < gand g = f then we write f < g and we say that f and g are asymptot-
ically equal.

Note that this definition is more refined than the order notion ~. For instance,
x =~ 0 while these functions are not asymptotically equal. This situation arises, for
instance, in the case of free groups (which are given free presentation): The Dehn
function is zero, while the area filling function of the Cayley graph is A(¢) < ¢. The
equivalence relation & is more appropriate for Dehn functions than the relation =,
because in the case of a free group one may consider either a presentation with
no relation, in which case the Dehn function is zero, or another presentation that
yields a linear Dehn function.

EXERCISE 1.8. 1. Show that ~ and = are equivalence relations.
2. Suppose that x < f, x < g. Then f = g if and only if f =< g.

1.2. Graphs

An unoriented graph T' consists of the following data:
e aset V called the set of vertices of the graph;
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e a set E called the set of edges of the graph;
e a map ¢ called incidence map defined on F and taking values in the set
of subsets of V' of cardinality one or two.

We will use the notation V = V(T') and E = E(T") for the vertex and edge sets
of the graph I'". Two vertices u, v such that {u,v} = ¢(e) for some edge e, are called
adjacent. In this case, v and v are called the endpoints of the edge e.

An unoriented graph can also be seen as a 1-dimensional cell complex, with 0-
skeleton V' and with 1-dimensional cells/edges labeled by elements of E, such that
the boundary of each 1-cell e € E is the set t(e). As with general cell complexes
and simplicial complexes, we will frequently conflate a graph with its geometric
realization, i.e., the underlying topological space.

CONVENTION 1.9. In this book, unless we state otherwise, all graphs are as-
sumed to be unoriented.

Note that in the definition of a graph we allow for monogons' (i.e. edges
connecting a vertex to itself) and bigons® (distinct edges connecting the same pair
of vertices). A graph is simplicial if the corresponding cell complex is a simplicial
complex. In other words, a graph is simplicial if and only if it contains no monogons
and bigons.

An edge connecting vertices u,v of T' is denoted [u,v]: This is unambiguous if
T is simplicial. A finite ordered set [v1, v2], [v2, V3], ..., [Un, Unt1] is called an edge-
path in T'. The number n is called the combinatorial length of the edge-path. An
edge-path in T is a cycle if v, 11 = v1. A simple cycle (or a circuit), is a cycle where
all vertices v;,© = 1,...,n, are distinct. In other words, a simple cycle is a cycle
homeomorphic to the circle, i.e., a simple loop in T'.

A simplicial tree is a simply-connected simplicial graph.

An isomorphism of graphs is an isomorphism of the corresponding cell com-
plexes, i.e., it is a homeomorphism f : T' — I so that the images of the edges of T
are edges of IV and images of vertices are vertices. We use the notation Aut(I") for
the group of automorphisms of a graph I'.

The wvalency (or valence, or degree) of a vertex v of a graph T' is the number
of edges having v as one of its endpoints, where every monogon with both vertices
equal to v is counted twice.

A directed (or oriented) graph T' consists of the following data:

e aset V called set of vertices of the graph;

e aset E called the set of edges of the graph;

etwomaps o: E — V and t : E — V, called respectively the head (or
origin) map and the tail map.

Then, for every x,y € V we define the set of oriented edges connecting = to y:

Ey) ={e: (0(e),t(e)) = (z,y)}-
A directed graph is called symmetric if for every subset {u,v} of V the sets

E(.,) and E(,,) have the same cardinality. For such graphs, interchanging the
maps ¢ and o induces an automorphism of the directed graph, which fixes V.

INot to be confused with unigons, which are hybrids of unicorns and dragons.
2Also known as digons.



A symmetric directed graph T is equivalent to a unoriented graph I' with the
same vertex set, via the following replacement procedure: Pick an involutive bijec-
tion 8 : E — E, which induces bijections 3 : Epyy — By forall z,y € V. We
then get the equivalence relation e ~ 3(e). The quotient E = E/ ~ is the edge-set
of the graph I', where the incidence map ¢ is defined by ¢([e]) = {o(e),t(e)}. The
unoriented graph I' thus obtained, is called the underlying unoriented graph of the
given directed graph.

EXERCISE 1.10. Describe the converse to this procedure: Given a graph I',
construct a symmetric directed graph I', so that I' is the underlying graph of I'.

DEFINITION 1.11. Let I C V = V(T') be a set of vertices in a (unoriented)
graph I'. The wertez-boundary of F, denoted by Oy F, is the set of vertices in F'
each of which is adjacent to a vertex in V' \ F.

The edge-boundary of F, denoted by E(F, F€), is the set of edges e such that
the set of endpoints ¢(e) intersects both F and its complement F¢ = V \ F in
exactly one element.

Unlike the vertex-boundary, the edge boundary is the same for F' as for its
complement F°. For graphs without bigons, the edge-boundary can be identified
with the set of vertices v € V' \ F' adjacent to a vertex in F, in other words, with
ov(V\F).

For graphs having a uniform upper bound C on the valency of vertices, cardi-
nalities of the two types of boundaries are comparable

(1.1) 0y F| < |BE(F, F°)| < C|dyF|.

DEFINITION 1.12. A simplicial graph I' is bipartite if the vertex set V splits as
V =Y U Z, so that each edge e € E has one endpoint in Y and one endpoint in Z.
In this case, we write I' = Bip(Y, Z; E).

EXERCISE 1.13. Let W be an n-dimensional vector space over a field K (n > 3).
Let Y be the set of 1-dimensional subspaces of W and let Z be the set of 2-
dimensional subspaces of W. Define the bipartite graph I' = Bip(Y, Z, E), where
y € Y is adjacent to z € Z if, as subspaces in W, y C z.

1. Compute (in terms of K and n) the valence of I', the (combinatorial) length
of the shortest circuit in I', and show that I' is connected. 2. Estimate from above
the length of the shortest path between any pair of vertices of I'. Can you get a
bound independent of K and n?

1.3. Topological and metric spaces

1.3.1. Topological spaces. Lebesgue covering dimension. Given two
topological spaces, we let C'(X;Y") denote the space of all continuous maps X — Y;
set C'(X) := C(X;R). We always endow the space C(X;Y’) with the compact-open
topology.

DEFINITION 1.14. Two subsets A,V of a topological space X are said to be
separated by a function if there exists a continuous function p = pav : X — [0, 1]
so that

1. plA=0

2. plV =1

A topological space X is called perfectly normal if every two disjoint closed
subsets of X can be separated by a function.
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An open covering U = {U; : i € I} of a topological space X is called locally
finite if every subset J C I such that

(Ui #0
ieJ
is finite. Equivalently, every point = € X has a neighborhood which intersects only
finitely many U;’s.
The multiplicity of an open covering U = {U; : i € I} of a space X is the
supremum of cardinalities of subsets .J C I so that

(U # 0.

icJ
A covering V is called a refinement of a covering U if every V € V is contained in
some U € U.

DEFINITION 1.15. The (Lebesgue) covering dimension of a topological space
Y is the least number n such that the following holds: Every open cover U of Y
admits a refinement V which has multiplicity at most n + 1.

The following example shows that covering dimension is consistent with our
“intuitive” notion of dimension:

ExampLE 1.16. If M is a n-dimensional topological manifold, then n equals
the covering dimension of M. See e.g. [Nag83].

1.3.2. General metric spaces. A metric space is a set X endowed with a
function dist : X x X — R with the following properties:

(M1) dist(z, y) > 0 for all z, y € X; dist(x, y) = 0 if and only if x = y;
(M2) (Symmetry) for all z, y € X, dist(y, ) = dist(z, y);
(M3) (Triangle inequality) for all z, y, z € X, dist(z, z) < dist(z, y)+dist(y, z).

The function dist is called metric or distance function. Occasionally, it will be
convenient to allow dist to take infinite values, in this case, we interpret triangle
inequalities following the usual calculus conventions (a+o0o = oo for every a € RUoo,
etc.).

A metric space is said to satisfy the wiltrametric inequality if

dist(z, z) < max(dist(z,y), dist(y, 2)), Vz,y,z € X.
We will see some examples of ultrametric spaces in Section 1.8.
Every norm | - | on a vector space V' defines a metric on V:
dist(u, v) = |u — v|.

The standard examples of norms on the n-dimensional real vector space V are:

n 1/p
vlp = (lem’) 1< p < oo,
=1

and

|U‘maz = |U|oo = max{|x1|, RN ‘l‘n‘}

7



EXERCISE 1.17. Show that the Euclidean plane E? satisfies the parallelogram
identity: If A, B,C, D are vertices of a parallelogram P in E? with the diagonals
[AC] and [BD], then

(1.2) d*(A,B) + d*(B,C) + d*(C, D) + d*(D, A) = d*(A,C) + d*(B, D),

i.e., sum of squares of the sides of P equals the sum of squares of the diagonals of

P.

If X,Y are metric spaces, the product metric on the direct product X x Y is
defined by the formula

(1'3) d((xla yl)? (1‘2, y2))2 - d(x17 1‘2)2 + d(y17 y2)2'

We will need a separation lemma which is standard (see for instance [Mun75,
§32]), but we include a proof for the convenience of the reader.

LEMMA 1.18. Every metric space X is perfectly normal.

PrOOF. Let A,V C X be disjoint closed subsets. Both functions dist 4, disty,
which assign to x € X its minimal distance to A and to V respectively, are clearly
continuous. Therefore the ratio

o(x) =

is continuous as well. Let 7 : [0,00] — [0,1] be a continuous monotone function
such that 7(0) =0,7(c0) =1, e.g.

dist 4 (z) )
Tisty (z)’ o:X —[0,00]

2
T(y) = —arctan(y), y#oo, 7(00):=1.
T
Then the composition p := 7 o o satisfies the required properties. O

A metric space (X, dist) is called proper if for every p € X and R > 0 the closed
ball B(p, R) is compact. In other words, the distance function d,(x) = d(p, x) is
proper.

A topological space is called locally compact if for every x € X there exists
a basis of neighborhoods of x consisting of relatively compact subsets of X, i.e.,
subsets with compact closure. A metric space is locally compact if and only if for
every x € X there exists € = £(x) > 0 such that the closed ball B(z,¢) is compact.

DEFINITION 1.19. Given a function ¢ : Ry — N, a metric space X is called ¢—
uniformly discrete if each ball B(x,r) C X contains at most ¢(r) points. A metric
space is called uniformly discrete if it is ¢—uniformly discrete for some function ¢.

Note that every uniformly discrete metric space necessarily has discrete topol-
ogy.
Given two metric spaces (X, distx), (Y, disty), amap f: X — Y is an isomet-
ric embedding if for every z,2' € X
disty (f(z), f(z')) = distx (z,2) .
The image f(X) of an isometric embedding is called an isometric copy of X inY.
A surjective isometric embedding is called an isometry, and the metric spaces

X and Y are called isometric. A surjective map f : X — Y is called a similarity
with the factor X if for all z,2" € X,

disty (f(z), f(2')) = Mdistx (z,2') .
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The group of isometries of a metric space X is denoted Isom(X). A metric
space is called homogeneous if the group Isom(X) acts transitively on X, i.e., for
every x,y € X there exists an isometry f : X — X such that f(z) = v.

1.3.3. Length metric spaces. Throughout these notes by a path in a topo-
logical space X we mean a continuous map p : [a,b] — X. A path is said to join
(or connect) two points z,y if p(a) = z, p(b) = y. We will frequently conflate a
path and its image.

Given a path p in a metric space X, one defines the length of p as follows. A
partition

a=ty<t1 <...<tph_1<t,=0b

of the interval [a, b] defines a finite collection of points p(to), p(t1), ..., p(tn-1), p(tn)
in the space X. The length of p is then defined to be

n—1
(1.4) length(p) = sup Z dist(p(t:), p(tit1))
a=to<t1<-<tn=b i
where the supremum is taken over all possible partitions of [a, b] and all integers n.
By the definition and triangle inequalities in X, length(p) > dist(p(a),p(b)).
If the length of p is finite then p is called rectifiable, and we say that p is
non-rectifiable otherwise.

EXERCISE 1.20. Consider a C'-smooth path in the Euclidean space p : [a, b] —
R™  p(t) = (x1(¢),...,2,(t)). Prove that its length (defined above) is given by the
familiar formula

length(p) = / JEOP + R

Similarly, if (M, g) is a connected Riemannian manifold and dist is the Rie-
mannian distance function, then the two notions of length, given by equations (2.1)
and (1.4), coincide for smooth paths.

EXERCISE 1.21. Prove that the graph of the function f : [0,1] — R,

zsinl if 0<z< 1,
flz) = { 0 if =0,
is a non-rectifiable path joining (0,0) and (1,sin(1)).

Let (X,dist) be a metric space. We define a new metric dist, on X, known
as the induced intrinsic metric: disty(x,y) is the infimum of the lengths of all
rectifiable paths joining x to y.

EXERCISE 1.22. Show that dist, is a metric on X with values in [0, 00].

Suppose that p is a path realizing the infimum in the definition of distance
disty(z,y). We will (re)parameterize such p by its arc-length; the resulting path
p: [0, D] — (X, disty) is called a geodesic segment in (X, disty).

EXERCISE 1.23. dist < dist,.

DEFINITION 1.24. A metric space (X,dist) such that dist = dist, is called a
length (or path) metric space.



Note that in a path metric space, a priori, not every two points are connected
by a geodesic. We extend the notion of geodesic to general metric spaces: A geodesic
in a metric space X is an isometric embedding g of an interval in R into X. Note
that this notion is different from the one in Riemannian geometry, where geodesics
are isometric embeddings only locally, and need not be arc-length parameterized.
A geodesic is called a geodesic ray if it is defined on an interval (—oo, a or [a, +00),
and it is called bi-infinite or complete if it is defined on R.

DEFINITION 1.25. A metric space X is called geodesic if every two points in X
are connected by a geodesic path. A subset A in a metric space X is called convex
if for every two points x,y € A there exists a geodesic v C X connecting x and y.

EXERCISE 1.26. Prove that for (X, disty) the two notions of geodesics agree.

A geodesic triangle T = T(A, B,C) or A(A, B,C) with vertices A,B,C in a
metric space X is a collection of geodesic segments [A, B], [B, C], [C, A] in X. These
segments are called edges of T. Later on, in Chapters 7 and 8 we will use generalized
triangles, where some edges are geodesic rays or, even, complete geodesics. The

corresponding vertices generalized triangles will be points of the ideal boundary of
X.

EXAMPLES 1.27. (1) R™ with the Euclidean metric is a geodesic metric
space.

(2) R™\ {0} with the Euclidean metric is a length metric space, but not a
geodesic metric space.

(3) The unit circle S! with the metric inherited from the Euclidean metric of
R? (the chordal metric) is not a length metric space. The induced intrinsic
metric on S! is the one that measures distances as angles in radians, it is
the distance function of the Riemannian metric induced by the embedding
St — R2

(4) The Riemannian distance function dist defined for a connected Riemann-
ian manifold (M, g) (see Section 2.1.3) is a path-metric. If this metric is
complete, then the path-metric is geodesic.

(5) Every connected graph equipped with the standard distance function (see
Section 1.3.4) is a geodesic metric space.

EXERCISE 1.28. If X, Y are geodesic metric spaces, so is X x Y. If X,Y are
path-metric spaces, so is X x Y. Here X x Y is equipped with the product metric
defined by (1.3).

THEOREM 1.29 (Hopf-Rinow Theorem [GroO07]). If a length metric space is
complete and locally compact, then it is geodesic and proper.

EXERCISE 1.30. Construct an example of a metric space X which is not a
length metric space, so that X is complete, locally compact, but is not proper.

1.3.4. Graphs as length spaces. Let I' be a connected graph. Recall that
we are conflating I' and its geometric realization, so the notation x € I' below will
simply mean that z is a point of the geometric realization.

We introduce a path-metric dist on the geometric realization of I' as follows.
We declare every edge of ' to be isometric to the unit interval in R. Then, the
distance between any vertices of I" is the combinatorial length of the shortest edge-
path connecting these vertices. Of course, points of the interiors of edges of I" are
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not connected by any edge-paths. Thus, we consider fractional edge-paths, where
in addition to the edges of " we allow intervals contained in the edges. The length
of such a fractional path is the sum of lengths of the intervals in the path. Then,
for z,y € T, dist(z,y) is

inf (length(p)),
where the infimum is taken over all fractional edge-paths p in I' connecting x to y.

EXERCISE 1.31. a. Show that infimum is the same as minimum in this defini-
tion.

b. Show that every edge of I (treated as a unit interval) is isometrically em-
bedded in (T, dist).

c. Show that dist is a path-metric.

d. Show that dist is a complete metric.

The metric dist is called the standard metric on I'.

The notion of a standard metric on a graph generalizes to the concept of a
metric graph, which is a connected graph I' equipped with a path-metric dist,.
Such path-metric is, of course, uniquely determined by the lengths of edges of T'
with respect to the metric d.

ExaMPLE 1.32. Consider I' which is the complete graph on 3 vertices (a tri-
angle) and declare that two edges e, es of I' are unit intervals and the remaining
edge e3 of I' has length 3. Let disty be the corresponding path-metric on I". Then
es is not isometrically embedded in (T, disty).

1.4. Hausdorff and Gromov-Hausdorff distances. Nets

Given subsets Ay, As in a metric space (X,d), define the minimal distance
between these sets as

diSt(Al,Ag) = inf{d(ahag) ta; € Ai,i = 172}.

The Hausdorff (pseudo)distance between subsets A, Ao C X is defined as
diStHaus(Ah Ag) = mf{R : A1 C NR(AQ), AQ C NR(Al)}

Two subsets of X are called Hausdorff-close if they are within finite Hausdorff
distance from each other.

The Hausdorft distance between two distinct spaces (for instance, between a
space and a dense subspace in it) can be zero. The Hausdorff distance becomes
a genuine distance only when restricted to certain classes of subsets, for instance,
to the class of compact subsets of a metric space. Still, for simplicity, we call it a
distance or a metric in all cases.

Hausdorff distance defines the topology of Hausdorff-convergence on the set
K(X) of compact subsets of a metric space X. This topology extends to the set
C(X) of closed subsets of X as follows. Given € > 0 and a compact K C X we
define the neighborhood U, i of a closed subset C' € C'(X) to be

{Z € C(X) : distgaus(ZNK,CNEK) < €}

This system of neighborhoods generates a topology on C(X), called Chabauty topol-
ogy. Thus, a sequence C; € C(X) converges to a closed subset C € C(X) if and

11



only if for every compact subset K C X,
lim ;N K=CnK,

71— 00

where the limit is in topology of Hausdorff—convergence.

M. Gromov defined in [Gro81, section 6] the modified Hausdorff pseudo-distance
(also called the Gromov-Hausdorff pseudo-distance) on the class of proper metric
spaces:

(1.5)  distggaus((X,dx), (Y,dy)) = inf inf{e > 0] 3 a pseudo-metric
(z,y)EX XY

dist on M = X UY, such that dist(z,y) < ¢, dist|x = dx,dist|y = dy and
B(x,1/e) C No(Y), B(y,1/e) C No(X)}.

For homogeneous metric spaces the modified Hausdorff pseudo-distance coin-
cides with the pseudo-distance for the pointed metric spaces:

(1.6) dist 5 (X, dx, x0), (Y,dy,90)) = inf{e > 0 | 3 a pseudo-metric
dist on M = X UY such that dist(zg,yo) < &, dist|x = dx,dist|y = dy,

B(xo,1/) C Ne(Y), B(yo, 1/€) C N=(X)}.

This pseudo-distance becomes a metric when restricted to the class of proper
pointed metric spaces.

Still, as before, to simplify the terminology we shall refer to all three pseudo-
distances as ‘distances’ or ‘metrics.’

ExaMPLE 1.33. The real line R with the standard metric and the planar circle
of radius r, C(O, ), with the length metric, are at modified Hausdorff distance

4

0 Vr2r2 £16 + nr

Since both are homogeneous spaces, it suffices to prove that the pointed metric
spaces (R,0) and (C(O,r), N), where N is the North pole, are at the distance &g
with respect to the modified Hausdorff distance with respect to these base-points.

To prove the upper bound we glue R and C(O,r) by identifying isometrically
the interval [—%r, Zr] in R to the upper semi-circle (see Figure 1.1), and we endow
the graph M thus obtained with its length metric dist. Note that the use of pseudo-
metrics on M in the definition of the modified Hausdorff pseudo-distance allows for

points z € X and y € Y to be identified. The minimal € > 0 such that in (M, dist)

[_1, 1] C N-(C(O,r)) and B(N,1/e) Cc N-(R)

g &€

is g9 defined above. This value is the positive solution of the equation

1
(1.7) gr +e=<.
For the lower bound consider another metric dist’ on RVC(O, ) which coincides
with the length metrics on both R and C(O,r). Let €’ be the smallest ¢ > 0 such
that dist’(0, N) <e and [-1, 1] c M(C(O,r)), B(N,1/e) C No(R) in the metric
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dist’. Let 2,y be the nearest points in C(O,r) to —% and L, respectively. Since
dist’(z',9') < 7, it follows that % < wr+2¢’. The previous inequality implies that
e > eo.

N=0

T
/ \ e grap

3

13

NI

i. O\/}
|

Figureg 1.1. Circle and real line glued along an arc of length 7r.

One can associate to every metric space (X, dist) a discrete metric space that
is at finite Hausdorff distance from X, as follows.

DEFINITION 1.34. An e—separated subset A in X is a subset such that
dist(ai,as) > €, Vay,as € A, a1 # asy.

A subset S of a metric space X is said to be r-dense in X if the Hausdorff
distance between S and X is at most r.

DEFINITION 1.35. An e-separated d—net in a metric space X is a subset of X
that is e—separated and d—dense.
An e-separated net in X is a subset that is e—separated and 2e—dense.

When the constants ¢ and d are not relevant we shall not mention them and
simply speak of separated nets.

LEMMA 1.36. A mazimal §—separated set in X is a —separated net in X.

PrOOF. Let N be a maximal J—separated set in X. For every z € X \ N, the
set NU{z} is no longer d—separated, by maximality of N. Hence there exists y € N
such that dist(z,y) < 4. O

By Zorn’s lemma a maximal §—separated set always exists. Thus, every metric
space contains a d—separated net, for any § > 0.

EXERCISE 1.37. Prove that if (X, dist) is compact then every separated net in
X is finite; hence, every separated set in X is finite.
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DEFINITION 1.38 (Rips complex). Let (X,d) be a metric space. For R > 0
we define a simplicial complex Ripsp(X); its vertices are points of X; vertices
g, Z1, ..., Ly Span a simplex if and only if for all 4, j,

diSt(Ii,Ij) g R.
The simplicial complex Ripsg(X) is called the R-Rips complex of X.

We will discuss Rips complexes in more detail in §6.2.1.

1.5. Lipschitz maps and Banach-Mazur distance

1.5.1. Lipschitz and locally Lipschitz maps. A map f: X — Y between
two metric spaces (X, disty), (Y, disty) is L-Lipschitz if for all z, 2’ € X

disty (f(x), f(2')) < Ldistx (x, 2') .
A map which is L-Lipschitz for some L is called simply Lipschitz.

EXERCISE 1.39. Show that every L-Lipschitz path p : [0,1] — X is rectifiable
and length(p) < L.

The following is a fundamental theorem about Lipschitz maps between Eu-
clidean spaces:

THEOREM 1.40 (Rademacher Theorem, see Theorem 3.1 in [HeiO1]). Let U be
an open subset of R™ and let f: U — R™ be Lipschitz. Then f is differentiable at
almost every point in U.

A map f: X — Y is called locally Lipschitz if for every x € X there exists
€ > 0 so that the restriction f|B(x,¢) is Lipschitz. We let Lip,,.(X;Y") denote the
space of locally Lipschitz maps X — Y. We set Lip;,.(X) := Lip;o.(X; R).

EXERCISE 1.41. Fix a point p in a metric space (X, dist) and define the function
dist,, by dist,(x) := dist(z,p). Show that this function is 1-Lipschitz.

LEMMA 1.42 (Lipschitz bump-function). Let 0 < R < co. Then there ezists a
%7Lipschitz function ¢ = pp g on X such that

1. ¢ is positive on B(p, R) and zero on X \ B(p, R).

2. ¢(p) = 1.

3 0<p<1lonX.

PrOOF. We first define the function ¢ : Ry — [0,1] which vanishes on the
interval [R,00), is linear on [0, R] and equals 1 at 0. Then ( is %-Lipschitz. Now
take ¢ 1= ( o dist,. O

LeEmMA 1.43 (Lipschitz partition of unity). Suppose that we are given a lo-
cally finite covering of a metric space X by a countable set of open R;-balls B; :=
B(zi, R;), i € I C N. Then there exists a collection of Lipschitz functions n;, i € I
so that:

2.0<n; <1, Viel.

3. Supp(n;) C Bz, R;), Viel.
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ProOF. For each i define the bump-function using Lemma 1.42:

Pi = Pa; R,
Then the function
o= %
icl
is positive on X. Finally, define
Pi
i = —.
2
It is clear that the functions n; satisfy all the required properties. (I

REMARK 1.44. Since the collection of balls {B;} is locally finite, it is clear that
the function

L(z):= sup Lip(n;)
ielvni (2)5&0

is bounded on compact sets in X, however, in general, it is unbounded on X. We
refer the reader to the equation (1.8) for the definition of Lip(;).

From now on, we assume that X is a proper metric space.

PROPOSITION 1.45. Lip,,.(X) is a dense subset in C(X), the space of continu-
ous functions X — R, equipped with the compact-open topology (topology of uniform
convergence on compacts).

PROOF. Fix a base-point o € X and let A,, denote the annulus
{r e X :n—1<dist(zx,0) <n},neN.
Let f be a continuous function on X. Pick € > 0. Our goal is to find a locally
Lipschitz function g on X so that |f(z) — g(x)| < € for all z € X. Since f is
uniformly continuous on compact sets, for each n € N there exists 6 = §(n, €) such
that
Vz,x' € Ay, dist(z,2') <§ = |f(z) — f(2)] <e.
Therefore for each n we find a finite subset
X, = {In,la ce 7In,mn} C An

so that for r := d(n,€)/4, R := 2r, the open balls B,, ; := B(zy, ;,r) cover A,. We
reindex the set of points {z, ;} and the balls B,, ; with a countable set /. Thus, we
obtain an open locally finite covering of X by the balls B;,j € I. Let {n;,j € I}
denote the corresponding Lipschitz partition of unity. It is then clear that

g(z) = Zm(ﬂf)f(wz)
i€l
is a locally Lipschitz function. For x € B; let J C I be such that
J?%B(.Z‘j,Rj), VJ§§J
Then |f(xz) — f(z;)| < € for all j € J. Therefore
l9(z) = (@) <Y mi@)|f(a;) = f@)] <ed_mi(a) =€) mi(x) =e

jeJ jeJ icl

It follows that |f(z) — g(z)| < e for all z € X. O

A relative version of Proposition 1.45 also holds:
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PROPOSITION 1.46. Let A C X be a closed subset contained in a subset U which
is open in X. Then, for every e > 0 and every continuous function f € C(X) there
exists a function g € C(X) so that:

1. g is locally Lipschitz on X \ U.

2. If =gl <e.
3. glA = flA.

PrOOF. For the closed set V' := X \ U pick a continuous function p = pa v
separating the sets A and V. Such a function exists, by Lemma 1.18. According to
Proposition 1.45, there exists h € Lip,,.(X) such that || f — k|| < e. Then take

9(@) == p(x)h(z) + (1 — p(x)) f(z).
We leave it to the reader to verify that g satisfies all the requirements of the propo-
sition. O

1.5.2. Bi—Lipschitz maps. The Banach-Mazur distance. A map f :
X — Y is L—bi-Lipschitz if it is a bijection and both f and f~—! are L-Lipschitz
for some L; equivalently, f is surjective and there exists a constant L > 1 such that
for every x,2' € X

1
Zdistx(as,x') < disty (f(2), f(2)) < Ldistx (z,2”) .
A bi-Lipschitz embedding is defined by dropping surjectivity assumption.

EXAMPLE 1.47. Suppose that X, Y are connected Riemannian manifolds (M, g),
(N, h) (see Section 2.1.3). Then a diffeomorphism f : M — N is L-bi-Lipschitz if
and only if

f*h

L'« < L.

<

In other words, for every tangent vector v € T M,

L1 )
T

|<L.

If there exists a bi-Lipschitz map f: X — Y, the metric spaces (X, distx) and
(Y, disty) are called bi-Lipschitz equivalent or bi-Lipschitz homeomorphic. Tf disty
and diste are two distances on the same metric space X such that the identity map
id : (X,dist;) — (X,dists) is bi-Lipschitz, then we say that dist; and diste are
bi-Lipschitz equivalent.

EXAMPLES 1.48. (1) If dy, dy are metrics on R™ defined by two norms on
R™, then dy, ds are bi-Lipschitz equivalent.
(2) Two left-invariant Riemannian metrics on a connected real Lie group de-
fine bi-Lipschitz equivalent distance functions.

For a Lipschitz function f: X — R let Lip(f) denote
(1.8) Lip(f) :=inf{L : f is L-Lipschitz}

EXAMPLE 1.49. If T : V — W is a continuous linear map between Banach
spaces, then
Lip(T) = |||,
the operator norm of 7.
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The Banach-Mazur distance dist gas(V, W) between two Banach spaces V' and
W is
1 ( inf (|7 - |7~ ) ,
og (. inf (I -IT~"])
where the infimum is taken over all invertible linear maps T : V. — W.

THEOREM 1.50 (John’s Theorem, see e.g. [Verll], Theorem 2.1). For every
pair of n-dimensional normed vector spaces V, W, distgp (V, W) < log(n).

EXERCISE 1.51. Suppose that f, g are Lipschitz functions on X. Let ||f]], ||lg]]
denote the sup-norms of f and g on X. Show that

L.Lip(f + g) < Lip(f) + Lip(g).
2. Lip(fg) < Lip(f)l|gll + Lip(g)II fII.

i (£) < HoDlgl £ Lnto1 1
inf,cx g%(z)
Note that in case when f is a smooth function on a Riemannian manifold, these
formulae follow from the formulae for the derivatives of the sum, product and ratio
of two functions.

1.6. Hausdorff dimension

We recall the concept of Hausdorff dimension for metric spaces. Let K be a
metric space and a > 0. The a—Hausdorff measure p,(K) is defined as

N
(1.9) }%mf;ﬁ ,

where the infimum is taken over all countable coverings of K by balls B(x;,r;),
r; <7 (i =1,...,N). The motivation for this definition is that the volume of
the Euclidean r-ball of dimension a € N is r* (up to a uniform constant); hence,
Lebesgue measure of a subset of R* is (up to a uniform constant) estimated from
above by the a-Hausdorff measure. Euclidean spaces, of course, have integer di-
mension, the point of Hausdorff measure and dimension is to extend the definition
to the non-integer case.
The Hausdorff dimension of the metric space K is defined as:

dimpy (K) = inf{a: po(K) = 0}.
EXERCISE 1.52. Verify that the Hausdorff dimension of the Euclidean space
R™ is n.
We will need the following theorem:

THEOREM 1.53 (L. Sznirelman; see also [HW41]). Suppose that X is a proper
metric space; then the covering dimension dim(X) is at most the Hausdorff dimen-
sion dimg (X).

Let A C X be a closed subset. Let B" := B(0,1) C R" denote the closed unit
ball in R™. Define
C(X,A;B"):={f:X — B™; f(A)c S" ' =09B"}.
An immediate consequence of Proposition 1.46 is the following.
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COROLLARY 1.54. For every function f € C(X, A; B™) and an open set U C X
containing A, there exists a sequence of functions g; € C(X, A; B") so that for all
1€ N:

1. gi|lA = f|A.

2. g; € Lip(X \ U;R™).

For a continuous map f: X — B™ define A = Ay as
A= fH S,

DEFINITION 1.55. The map f is essential if it is homotopic rel. A to a map
f': X — 8" An inessential map is the one which is not essential.

We will be using the following characterization of the covering dimension due
to Alexandrov:

THEOREM 1.56 (P. S. Alexandrov, see Theorem II1.5 in [Nag83]). dim(X) < n
if and only if every continuous map f : X — B™ is inessential.

We are now ready to prove Theorem 1.53. Suppose that dimgy(X) < n. We
will prove that dim(X) < n as well. We need to show that every continuous map
f:X — B"is inessential. Let D denote the annulus {z € R" : 1/2 < |z| < 1}. Set
A= f~YS" Y and U := f~Y(D).

Take the sequence g; given by Corollary 1.54. Since each g; is homotopic to f
rel. A, it suffices to show that some g; is inessential. Since f = lim; g;, it follows
that for all sufficiently large i,

(V)N B (o, ;) —0.
We claim that the image of every such g; misses a point in B (O, %) Indeed,
since dimy (X) < n, the n-dimensional Hausdorff measure of X is zero. However,
9:|X \ U is locally Lipschitz. Therefore g;(X \ U) has zero n-dimensional Hausdorff
(and hence Lebesgue) measure. It follows that g;(X) misses a point y in B (0, §).
Composing g; with the retraction B \ {y} — S"~! we get a map f': X — 7!
which is homotopic to f rel. A. Thus f is inessential and, therefore, dim(X) <
n. (]

1.7. Norms and valuations

In this and the following section we describe certain metric spaces of algebraic
origin that will be used in the proof of the Tits alternative.

A normon aring R is a function |- | from R to R, which satisfies the following
axioms:

1. |z|=0 < x=0.

2. |yl = [a] - |yl

3. | +yl <zl + yl.

An element x € R such that |z| = 1 is called a unit.

We will say that a norm |- | is nonarchimedean if it satisfies the ultrametric
inequality

|+ y| < max(|z], y[).

We say that | - | is archimedean if there exists an isometric monomorphism R < C.
We will be primarily interested in normed archimedean fields which are R and C
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with the usual norms given by the absolute value. (By a theorem of Gelfand-
Tornheim, if a normed field F' contains R as subfield then F' is isomorphic, as a
field, either to R or to C.)

Below is an alternative approach to nonarchimedean normed rings R. A func-
tion v : R — R U {oo} is called a valuation if it satisfies the following axioms:

1. v(z) =00 <= 2z =0.

2. v(zy) = v(z) +v(y)

3. v(z+y) > min(v(z), v(y)).

Therefore, one converts a valuation to a nonarchimedean norm by setting
lz| = ¢V@ 2 £0, [0]=0,
where ¢ > 0 is a fixed real number.

REMARK 1.57. More generally, one also considers valuations with values in
arbitrary ordered abelian groups, but we will not need this.

A normed ring R is said to be local if it is locally compact as a metric space; a
normed ring R is said to be complete if it is complete as a metric space. A norm
on a field F is said to be discrete if the image I" of || : F'\ {0} — (0,00) is an
infinite cyclic group. If the norm is discrete, then an element 7 € F' such that ||
is a generator of I" satisfying |r| < 1, is called a uniformizer of F. If F is a field
with valuation v, then the subset

O, ={x € F:v(z) >0}
is a subring in F', the valuation ring or the ring of integers in F.

EXERCISE 1.58. 1. Verify that every nonzero element of a field F' with discrete
norm has the form 7*u, where u is a unit.
2. Verify that every discrete norm is nonarchimedean.

Below are the two main examples of fields with discrete norms:

1. Field Q, of p-adic numbers. Fix a prime number p. For each number
x = q/p" € Q (where both numerator and denominator of ¢ are not divisible by
p) set |z|, := p". Then |- |, is a nonarchimedean norm on Q, called the p-adic
norm. The completion of Q with respect to the p-adic norm is the field of p-adic
numbers @Q,,. The ring of p-adic integers O,, intersects Q along the subset consisting
of (reduced) fractions /- where m,n € Z and m is not divisible by p. Note that p
is a uniformizer of Q,.

REMARK 1.59. We will not use the common notation Z, for O,, in order to
avoid the confusion with finite cyclic groups.

EXERCISE 1.60. Verify that O, is open in Q,,. Hint: Use the fact that |z+y|, <
1 provided that |z|, < 1, |y,| < 1.

Recall that one can describe real numbers using infinite decimal sequences.
There is a similar description of p-adic numbers using “base p arithmetic.” Namely,
we can identify p-adic numbers with semi-infinite Laurent series



where n € Z and ay, € {0,...,p—1}. Operations of addition and multiplication here
are the usual operations with power series where we treat p as a formal variable, the
only difference is that we still have to “carry to the right” as in the usual decimal
arithmetic.

With this identification, |x|, = p", where a_,, is the first nonzero coefficient in
the power series. In other words, v(x) = —n is the valuation. In particular, the
ring O, is identified with the set of series

oo

k
> o'
k=0

REMARK 1.61. In other words, one can describe p-adic numbers as left-infinite
sequences of (base p) digits

Q1 ... QQ.G_1 Gy

where Vi, a; € {0,...,p — 1}, and the algebraic operations require “carrying to the
left” instead of carrying to the right.

EXERCISE 1.62. Show that in Q,,
oo P 1
Zp T 1—1p
k=0 p
2. Let A be a field. Consider the ring R = A[t,t~!] of Laurent polynomials

&)= axt".
k=n

Set v(0) = oo and for nonzero f let v(f) be the least n so that a, # 0. In other
words, v(f) is the order of vanishing of f at 0 € R.

EXERCISE 1.63. 1. Verify that v is a valuation on R. Define |f| := e~ (/).

2. Verify that the completion R of R with respect to the above norm is naturally
isomorphic to the ring of semi-infinite formal Laurent series

f = Z a’ktku
k=n
where v(f) is the minimal n such that a,, # 0.

Let A(t) be the field of rational functions in the variable t. We embed A in R

by the rule
1 o0
=1 .
R IL

n=1

If A is algebraically closed, every rational function is a product of a polynomial
function and several functions of the form
1
a; — t,
so we obtain an embedding A(t) — R in this case. If A is not algebraically closed,

proceed as follows. First, construct, as above, an embedding ¢ of A(t) to the
completion of A[t,t~1], where A is the algebraic closure of A. Next, observe that
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this embedding is equivariant with respect to the Galois group Gal(A/A), where
o € Gal(A/A) acts on Laurent series

o0
f:Zaktk,aEA,

k=n

by
o0
f7 = Z agtk.
k=n

Therefore, L(A(t)) C R, R = Alt,t™!).

In any case, we obtain a norm on A(t) by restricting the norm in R. Since
R C (A(t), it follows that R is the completion of tA(t). In particular, R is a
complete normed field.

EXERCISE 1.64. 1. Verify that R is local if and only if A is finite.

2. Show that ¢ is a uniformizer of R. R

3. At the first glance, it looks like QQ, is the same as R for A = Z,, since elements
of both are described using formal power series with coefficients in {0,...,p — 1}.
What is the difference between these fields?

LEMMA 1.65. Q, is a local field.

Proor. It suffices to show that the ring O, of p-adic integers is compact. Since
Qyp is complete, it suffices to show that O, is closed and totally bounded, i.e., for
every € > 0, O, has a finite cover by closed e-balls. The fact that O, is closed
follows from the fact that | -], : @, — R is continuous and O, is given by the
inequality O, = {z : |z|, < 1}.

Let us check that O, is totally bounded. For ¢ > 0 pick & € N such that
p~* < e. The ring Z/p*Z is finite, let 21,...,2y € Z\ {0} (where N = p*) denote
representatives of the cosets in Z/p*Z. We claim that the set of fractions

5
wij:i,lgi,jSN,
Zj
forms a p~*-net in Op N Q. Indeed, for a rational number = € O, N Q, find
s,t € {z1,...,2n} such that

s=m,t=n, mod p*.

Then
m s k
——-€p0
n t P
and, hence,
m s &
—— | <p .
n t P

Since O, N Q is dense in Oy, it follows that
N
Oy C |J Bwij,e). O
ij=1

EXERCISE 1.66. Show that O, is homeomorphic to the Cantor set. Hint: Verify
that O, is totally disconnected and perfect.
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1.8. Metrics on affine and projective spaces

In this section we will use normed fields to define metrics on affine and projective
spaces. Consider the vector space V' = F™ over a normed field F', with the standard
basis eq,...,e,. We equip V with the usual Euclidean /hermitian norm in the case
F is archimedean and with the max-norm

[(z1,...,2,)| = mlax|xi\
if F' is nonarchimedean. We let (-,-) denote the standard inner/hermitian product
on V in the archimedean case.

EXERCISE 1.67. Suppose that F' is nonarchimedean. Show that the metric
|v — w| on V satisfies the ultrametric triangle inequality.

If F is nonarchimedean, define the group K = GL(n, O), consisting of matrices
A such that A, A= € Mat,(O).

EXERCISE 1.68. If F' is a nonarchimedean local field, show that the group K
is compact with respect to the subset topology induced from Mat, (F) = .

LEMMA 1.69. The group K acts isometrically on V.

PRrROOF. It suffices to show that elements g € K do not increase the norm on
V. Let a;; denote the matrix coefficients of g. Then, for a vector v =), vie; € V,
the vector w = g(v) has coordinates

’lUj = E ajivi.
i

Since |a;;| < 1, the ultrametric inequality implies

lw| = mj%lx|wj|» [w;| < max |ajivi] < [o.

Thus, |g(v)| < |v]. O

If F is archimedean, we let K < GL(V') denote the orthogonal/hermitian sub-
group preserving the inner/hermitian product on V. The following is a standard
fact from the elementary linear algebra:

THEOREM 1.70 (Singular Value Decomposition Theorem). If F' is archimedean,
then every matriz M € End(V) admits o singular valued decomposition

M =UDYV,

where U,V € K and D 1is a diagonal matriz with nonnegative entries arranged in
the descending order. The diagonal entries of D are called the singular values of
M.

We will now prove an analogue of the singular value decomposition in the case
of nonarchimedean normed fields:

THEOREM 1.71 (Smith Normal Form Theorem). Let F be a field with discrete
norm and uniformizer © and ring of integers O. Then every matriz M € Mat, (F)
admits a Smith Normal Form decomposition

M = LDU,
where D is diagonal with diagonal entries (dy,...,dy), d; = w"i

kv 2k > ... 2k,

22



and L,U € K = GL(n,0). The diagonal entries d; € F are called the invariant
factors of M.

PRroo¥. First, note that permutation matrices belong to K; the group K also
contains upper and lower triangular matrices with coefficients in O, whose diagonal
entries are units in F. We now apply Gauss Elimination Algorithm to the matrix
M. Note that the row operation of adding the z-multiple of the i-th row to the
j-th row amounts to multiplication on the left with the lower-triangular elementary
matrix E;;(z) with the ij-entry equal z. If z € O, then E;; € K. Similarly,
column operations amount to multiplication on the right by an upper-triangular
elementary matrix. Observe also that dividing a row (column) by a unit in F'
amounts to multiplying a matrix on left (right) by an appropriate diagonal matrix
with unit entries on the diagonal.

We now describe row operations for the Gauss Elimination in detail (column op-
erations will be similar). Consider (nonzero) i-th column of a matrix A € End(F™).
We first multiply M on left and right by permutation matrices so that a;; has the
largest norm in the i-th column. By dividing rows on A by units in F', we achieve
that every entry in the i-th column is a power of 7. Now, eliminating nonzero en-
tries in the i-th column will require only row operations involving 7% -multiples of
the 4-th row, where s;; > 0, i.e., 7% € O. Applying this form of Gauss Algorithm
to M, we convert M to a diagonal matrix A, whose diagonal entries are powers of
m and

A=L'MU', L' ;M € GL(n,0).
Multiplying A on left and right by permutation matrices, we rearrange the diagonal
entries to have weakly decreasing exponents. ([

Note that both singular value decomposition and Smith normal form decom-
position both have the form:

M=UDV, UV ecK,
and D is diagonal. Such decomposition of the Mat, (F) is called the Cartan de-

composition. To simplify the terminology, we will refer to the diagonal entries of D
as singular values of M in both archimedean and nonarchimedean cases.

EXERCISE 1.72. Deduce the Cartan decomposition in FF = R or F' = C, from
the statement that given any Euclidean/hermitian bilinear form ¢ on V. = F",
there exists a basis orthogonal with respect to ¢ and orthonormal with respect to
the standard inner product

1Y+ o+ TRY,-

We now turn our discussion to projective spaces. The F-projective space P =
FP" is the quotient of F"*1\ {0} by the action of F* wia scalar multiplication.
We let [v] denote the projection of a nonzero vector v € V = F"*! to FP". The
j-th affine coordinate patch on P is the affine subspace A; C V,

Aj = (xl,...,l,...,xn_,_l),
where 1 appears in the j-th coordinate.

NoTATION 1.73. Given a nonzero vector v € V' let [v] denote the projection of
v to the projective space P(V'); similarly, for a subset W C V' we let [W] denote the
image of W \ {0} under the canonical projection V' — P(V'). Given an invertible
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linear map g : V — V, we will retain the notation g for the induced projective map
P(V) = P(V).

Suppose now that F' is a normed field. Our next goal is to define the chordal
metric on FP". In the case of an archimedean field F', we define the Euclidean or
hermitian norm on V' AV by declaring basis vectors

e;Nej, 1 <i<j<n+1
to be orthonormal. Then
v A w]? = [o]?|w]? — (v, w) (w,v).

Note that if u, v are unit vectors with Z(v,w) = ¢, then |v A w| = | sin(¢)|.
In the case when F' is nonarchimedean, we equip V AV with the max-norm so
that

v Aw| = Irile}x |ziy; — @y
;

where v = (1,..., Tpt1)s W= (Y1, Ynt1)-
LeEMMA 1.74. Suppose that u is a unit vector and v € V is such that |u; —v;| < €
for alli. Then
[vAw| <2(n+ 1.
PrOOF. We will consider the archimedean case since the nonarchimedean case
is similar. For every 7 let d; = v; — u;. Then
2

|uivj - Uj’Uz'|2 g |’U,15] - Uj5i|2 < 4de
Thus,
lu Av]? <4(n+1)%% O
DEFINITION 1.75. The chordal metric on P = FP" is defined by
d([v], [w])

v Al

ol el
In the nonarchimedean case this definition is due to A. Néron [N64].

EXERCISE 1.76. 1. If F' is nonarchimedean, show that the group GL(n+1,0)
preserves the chordal metric.

2. If F' =R, show that the orthogonal group preserves the chordal metric.
3. If F = C, show that the unitary group preserves the chordal metric.

It is clear that d(Av, pw) = d(v,w) for all nonzero scalars A, u and nonzero
vectors v, w. It is also clear that d(v,w) = d(w,v) and d(v,w) = 0 if and only if

[v] = [w]. What is not so obvious is why d satisfies the triangle inequality. Note,
however, that in the case of a nonarchimedean field F,
d([v], [w]) <1

for all [v], [w] € P. Indeed, pick unit vectors v, w representing [v], [w]; in particular,
v;, w; belong to O for all 4, j. Then, the denominator in the definition of d([v], [w])
equals 1, while the numerator is < 1, since O is a ring.

ProPoOSITION 1.77. If F is nonarchimedean, then d satisfies the triangle in-
equality.
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Proor. We will verify the triangle inequality by giving an alternative descrip-
tion of the function d. We define affine patches on P to be the affine hyperplanes

Aj={zeV:iz;=1}CV
together with the (injective) projections A; — P. Every affine patch is, of course,
just a translate of F'", so that e; is the translate of the origin. We, then, equip A,

with the restriction of the metric |[v — w| from V. Let B; C A; denote the closed
unit ball centered at e;. In other words,

B;=A;nO™.

We now set d;(z,y) = |z —y| if ,y € B; and d;(x,y) = 1 otherwise. It follows
immediately from the ultrametric triangle inequality that d; is a metric. We, then,
define for [z], [y] € P the function dist([z], [y]) by:

1. If there exists j so that z,y € B; project to [z],[y], then dist([z],[y]) :=
dj(z,).

2. Otherwise, set dist([z], [y]) = 1.

If we knew that dist is well-defined (a priori, different indices j give different
values of dist), it would be clear that dist satisfies the ultrametric triangle inequality.
Proposition will, now, follow from

LeMMA 1.78. d([z], [y]) = dist([z], [y]) for all points in P.

PRrOOF. The proof will break in two cases:

1. There exists k such that [z], [y] lift to z,y € Bi. To simplify the notation,
we will assume that £k = n + 1. Since z,y € B,11, |2;| < 1,]y;| < 1 for all 4, and
Zpt1 = Ynt1 = 1. In particular, |z| = |y| = 1. Hence, for every i,

|zi — yil = [TiYns1 — Tjynsa] < max |23y — zjy:| < d([], [y]),

which implies that
dist([2], [y]) < d([2], [v])-

We will now prove the opposite inequality:

Vi, i |viy; — iyl <a=lz -yl
There exist z;,2; € F so that

yi=ai(l+2z), vy =z;(1+z),
where, if z; # 0,2; # 0,

Yi — Zi Yji —Zj
Z; = s Zj = J J.
iz Xy

We will consider the case x;x; # 0, leaving the exceptional cases to the reader.

Then
’ a a
|Zi|<ma |Zz|<7|x‘
i J

Computing x;y; — x;y; using the new variables z;, z;, we obtain:

[iy; — x5yl = |wi; (14 25) =z (1 + 20)| = [2525(25 — )| <
a a
s ma il ) < oy mae (25, ) < amax (il ) <
i J

since z;,x; € O.
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2. Suppose that (1) does not happen. Since d([z], [y]) < 1 and dist([z], [y]) = 1
(in the second case), we just have to prove that

d([z], [y]) = 1.

Consider representatives z, y of points [z], [y] and let 4, j be the indices such that

lzs| = x|, |yl = |yl

Clearly, 4, j are independent of the choices of the vectors x,y representing [z], [y].
Therefore, we choose x so that z; = 1, which implies that x; € O for all k. If y; =0
then

|$iyj - xjyi| = |?Jj|
and

d@mw>>m”19wﬂ

Thus, we assume that y; # 0. This allows us to choose y € A; as well. Since (1)
does not occur, y ¢ O™, which implies that |y;| > 1. Now,

=1.

lziy; — z5uil _ ly; — 25
d([z], ly]) > —H—— = =~
EAR ;]
Since z; € O and y; ¢ O, the ultrametric inequality implies that |y; — z;| = |y;|.
Therefore,

v =35l _ sl _
;] ly;|
and d([z], [y]) = 1. This concludes the proof of lemma and proposition. O

We now consider real and complex projective spaces. Choosing unit vectors
u, v as representatives of points [u], [v] € P, we get:

d([ul, [v]) = sin(£(u, v)),

where we normalize the angle to be in the interval [0, 7]. Consider now three points
[u], [v], [w] € P; our goal is to verify the triangle inequality

d([u], [w]) < d([u], [v]) + d([v], [w]).
We choose unit vectors u, v, w representing these points so that
0<a=Zuv)<g, 0<B=LEw) <z
Then,
¥ = L(u,w) < a+ 8
and the triangle inequality for the metric d is equivalent to the inequality
sin(7y) < sin(«) + sin(f).

We leave verification of the last inequality as an exercise to the reader. Thus, we
obtain

THEOREM 1.79. Chordal metric is a metric on P in both archimedean and
nonarchimedean cases.
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EXERCISE 1.80. Suppose that F' is a normed field (either nonarchimedean or
archimedean).

1. Verify that metric d determines the topology on P which is the quotient
topology induced from V' \ {0}.

2. Assuming that F' is local, verify that P is compact.

3. If the norm on F is complete, show that the metric space (P, d) is complete.

4. If H is a hyperplane in V = F"t!, given as Ker f, where f : V — F is a
linear function, show that

/()]
ol LA

1.9. Kernels and distance functions

dist([v], [H]) =

A kernel on a set X is a symmetric map ¢ : X x X — R, such that ¢(x,z) = 0.
Fix p € X and define the associated Gromov kernel

Kry) = 5 (6(,0) + 0(p,) — 9(,9)).

If X were a metric space and ¢ (z,y) = dist?(z,y), then this quantity is just the
Gromov product in X where distances are replaced by their squares (see Section
8.3 for the definition of Gromov product in metric spaces). Clearly,

Vee X, k(z,x)=1v(z,p).

DEFINITION 1.81. 1. A kernel 1 is positive semidefinite if for every natural

number n, every subset {z1,...,2,} C X and every vector A € R",
(1.10) DD Aiht(aiag) > 0.
i=1 j=1

2. A kernel v is conditionally negative semidefinite if for every n € N, every
subset {z1,...,2,} C X and every vector A € R" with > | A; = 0, the following
holds:

n

(1.11) iz A (i, i) 0.

This is not a particularly transparent definition. A better way to think about
this definition is in terms of the vector space V = V(X)) of consisting of functions
with finite support X — R. Then each kernel ¢ on X defines a symmetric bilinear

form on V (denoted V):
> (@ y) f@)g(y).
z,yeX

With this notation, the left hand side of (1.10) becomes simply ¥(f, f), where

Xi = f(z;), Supp(f) C {z1,...,2,} C X.
Thus, a kernel is positive semidefinite if and only if ¥ is a positive semidefinite
bilinear form. Similarly, ¢ is conditionally negative semidefinite if and only if the

restriction of —W to the subspace Vj consisting of functions with zero average, is a
positive semidefinite bilinear form.

NoTATION 1.82. We will use the lower case letters to denote kernels and the
corresponding upper case letters to denote the associated bilinear forms on V.
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Below is yet another interpretation of the conditionally negative semidefinite
kernels. For a subset {z1,...,2,} C X define the symmetric matrix M with the
entries

mi; = —P(vi, ), 1<4,j<n.
For A = (A1,...,A,), the left hand-side of the inequality (1.11) equals
g(A) = ATMA,

a symmetric bilinear form on R™. Then, the condition (1.11) means that ¢ is
positive semi-definite on the hyperplane
n

> Ai=0

i=1
in R™. Suppose, for a moment, that this form is actually positive-definite, Since
Y(z;,z;) = 0, it follows that the form ¢ on R™ has signature (n—1, 1). The standard
basis vectors ey, ..., e, in R™ are null-vectors for ¢; the condition m;; < 0 amounts
to the requirement that these vectors belong to the same, say, positive, light cone.

The following theorem gives yet another interpretation of conditionally negative

semidefinite kernels in terms of embedding in Hilbert spaces. It was first proven
by J. Schoenberg in [Sch38] in the case of finite sets, but the same proof works for
infinite sets as well.

THEOREM 1.83. A kernel b on X is conditionally negative definite if and only
if there exists a map F : X — H to a Hilbert space so that

U(@,y) = |F(z) - Fy)|*.

PROOF. 1. Suppose that the map F exists. Then, for every p = zg € X, the
associated Gromov kernel k(z,y) equals

k(z,y) = (F(z), F(y)) ,
and, hence, for every finite subset {xg,z1,...,2,} C X, the corresponding matrix
with the entries k(z;, ;) is the Gramm matrix of the set

{y; := F(x;) — F(20) :i=1,...,n} C H.

Hence, this matrix is positive semidefinite. Accordingly, Gromov kernel determines
a positive semidefinite bilinear form on the vector space V = V(X).

We will verify that v is conditionally negative semidefinite by considering sub-
sets X in X of the form {xzo,21,...,2,}. (Since the point xy, was arbitrary, this
will suffice.)

Let f: X9 — R be such that

(1.12) Zf(xi) =0.

=0
Thus,
f(wo) i= =3 flan).
i=1
Set y; := F(x;),i =0,...,n. Since the kernel K is positive semidefinite, we have
(1.13) > (o = wil® + lyo — wi* = lyi — ws?) fwi) f () =

7,j=1
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2 Z k(xi, ;) f(z:) f(z5) = 0.
i,7=1

The left hand side of this equation equals

2 (Z f(:m) A D lwo = wslPFay) | -
i=1 Jj=1

S lyi =yl f (@) £ ().

ij=1

Since f(zo) := — >+, f(x;), we can rewrite this expression as

—f(x0)?[yo — ol — 2 Zlyoﬂ/ﬂ f(zo) f Z lyi — ys 1 f () f ) =

Jj=1 7,7=1

Z lyi — y]‘ fza)f Z (@i, ) (i) f(z5).

2,j=0 1,7=0
Taking into account the inequality (1.13), we conclude that
(1.14) Z z/J(a:Z,a:J)f(asl)f(a?]) < 0.
i,j=0
In other words, the kernel ¢ on X is conditionally negative semidefinite.

2. Suppose that 1 is conditionally negative definite. Fix p € X and define the
Gromov kernel

k(z,y) = (2, 9)p =

The key to the proof is:

(W(x,p) +¥(p,y) — v(x,y)) .

DO =

LEMMA 1.84. k is a positive semidefinite kernel on X.

Proor. Consider a subset Xg = {x1,...,2,} C X and a function f : Xg — R.
a. We first consider the case when p ¢ X,. Then we set 2y := p and extend

the function f to p by
- Z f(@s).
i=1

The resulting function f : {zg,...,2,} — R satisfies (1.12) and, hence,

S @i zs) f(2:) f(2;) < 0.

4,j=0
The same argument as in the first part of the proof of Theorem 1.83 (run in the
reverse) then shows that

n
> k@i, @) (@) f(2) > 0.
i,j=1
Thus, k is positive semidefinite on functions whose support is disjoint from {p}.
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b. Suppose that p € Xo, f(p) = ¢ # 0. We define a new function g(z) :=
f(z) — cdp. Here 6, is the characteristic function of the subset {p} C X. Then
p ¢ Supp(g) and, hence, by the Case (a),

K(g,9) = 0.
On the other hand,

K(f,f) =F(g.9) +2cK(g.6,) + K (5,,0,) = F(g.9),
since the other two terms vanish (as k(x,p) = 0 for every x € X). Thus, K is
positive semidefinite. O

Now, consider the vector space V' = V(X) equipped with the positive semi-
definite bilinear form (f,g) = K(f,g). Define the Hilbert space H as the metric
completion of

VI{feV:(ff)=0}
Then we have a natural map F': X — H which sends « € X to the projection of
the d-function §,; we obtain:

(F(x), F(y)) = k(z,y).
Let us verify now that
(1.15) (F(z) = F(y), F(x) = F(y)) = ¥(z,y).
The left hand side of this expression equals
(F(x), F(x)) + (F(y), F(y)) — 2k(z,y) = (2, p) + ¥(y,p) — 2k(z,y).
Then, the equality (1.15) follows from the definition of the Gromov kernel k. O

According to [Sch38], for every conditionally negative definite kernel ¢ : X x
X — R, and every 0 < a < 1, the power ¢ is also a conditionally negative definite
kernel.
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CHAPTER 2

Geometric preliminaries

2.1. Differential and Riemannian geometry

In this book we will use some elementary Differential and Riemannian geometry,
basics of which are reviewed in this section. All the manifolds that we consider are
second countable.

2.1.1. Smooth manifolds. We expect the reader to know basics of differen-
tial topology, that can be found, for instance, in [GP10], [Hir76], [War83]. Below
is only a brief review.

Recall that, given a smooth n—dimensional manifold M, a k—dimensional sub-
manifold is a closed subset N C M with the property that every point p € N is
contained in the domain U of a chart ¢ : U — R" such that o(UNN) = o(U)NR*.

If £ = n then, by the inverse function theorem, N is an open subset in M;
in this case N is also called an open submanifold in M. (The same is true in the
topological category, but the proof is harder and requires Brouwer’s Invariance of
Domain Theorem, see e.g. [Hat02], Theorem 2B.3.)

Suppose that U C R”™ is an open subset. A piecewise-smooth function f: U —
R™ is a continuous function such that for every z € U there exists a neighborhood
V of z in U, a diffeomorphism ¢ : V. — V' C R", a triangulation T of V', so that
the composition

foo (V' T) »R™

is smooth on each simplex. Note that composition g o f is again piecewise-smooth,
provided that g is smooth; however, composition of piecewise-smooth maps need
not be piecewise-smooth.

One then defines piecewise smooth k—dimensional submanifolds N of a smooth
manifold M. Such N is a topological submanifold which is locally the image of R”
in R™ under a piecewise-smooth homeomorphism R™ — R™. We refer the reader to
[Thu97] for the detailed discussion of piecewise-smooth manifolds.

If kK =n — 1 we also sometimes call a submanifold a (piecewise smooth) hyper-
surface.

Below we review two alternative ways of defining submanifolds. Consider a
smooth map f : M — N of a m-dimensional manifold M = M™ to an n-
dimensional manifold N = N". The map f : M — N is called an immersion
if for every p € M, the linear map df,, : T, M — Ty, N is injective. If, moreover,
f defines a homeomorphism from M to f(M) with the subspace topology, then f
is called a smooth embedding.

EXERCISE 2.1. Construct an injective immersion R — R? which is not a smooth
embedding.
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If N is a submanifold in M then the inclusion map 7 : N — M is a smooth
embedding. This, in fact, provides an alternative definition for k-dimensional sub-
manifolds: They are images of smooth embeddings with k—dimensional manifolds
(see Corollary 2.4). Images of immersions provide a large class of subsets, called
immersed submanifolds.

A smooth map f : M* — N™ is called a submersion if for every p € M, the
linear map df), is surjective. The following theorem can be found for instance, in
[GP10], [Hir76], [War83|.

THEOREM 2.2. (1) If f: M™ — N" is an immersion, then for every
p € M and q = f(p) there exists a chart ¢ : U — R™ of M with p € U,
and a chart ¢ : V. — R™ of N with ¢ € V such that f = Yo fop ! :
o(U) = (V) is of the form

flz1, .. xm) = (@1,.. ., Tm, 0,...,0).
——
n—m times
(2) If f: M™ — N" is a submersion, then for every p € M and q = f(p)

there exists a chart o : U — R™ of M withp € U, and a chart+ : V — R"
of N with ¢ € V such that f = o fop™t:pU) — (V) is of the form

fler,. . xn, o xm) = (21, T0)

EXERCISE 2.3. Prove Theorem 2.2.

Hint. Use the Inverse Function Theorem and the Implicit Function Theorem
from Vector Calculus.
COROLLARY 2.4. (1) If f : M™ — N™ is a smooth embedding then

F(M™) is a m-dimensional submanifold of N™.

(2) If f: M™ — N™ is a submersion then for every x € N™ the fiber f~1(x)
is a submanifold of dimension m —n.

EXERCISE 2.5. Every submersion f : M — N is an open map, i.e., the image
of an open subset in M is an open subset in N.

Let f: M™ — N™ be a smooth map and y € N is a point such that for some
z € f~Y(y), the map df, : T.M — TyN,y = f(z), is not surjective. Then the point
y € N is called a singular value of f. A point y € N which is not a singular value
of f is called a regular value of f. Thus, for every regular value y € N of f, the
preimage f~!(y) is either empty or a smooth submanifold of dimension m — n.

THEOREM 2.6 (Sard’s theorem). Almost every point y € N is a regular value
of f.

Sard’s theorem has an important quantitative improvement due to Y. Yomdin
which we will describe below. Let B be the closed unit ball in R*~!. Consider a
C"-smooth function f: B — R. For every multi-index i = (iy,..., )| set [i| := k,
and for k < n let

orf
be the i-th mized partial derivative of f. Let

10 := max 0" f ().

of =
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Define the C"™-norm of f as
[ fllen == max [|d"f]].

1,0<i|<n+1

Given € > 0 let E. C R denote the set

{yeR:3we f(y),|Vf()| <e}

Thus, the set F. consists of “almost” critical values of f. Yomdin’s theorem infor-
mally says that for small e the set F. is small. Below is the precise statement.

THEOREM 2.7 (Y. Yomdin, [Yom83]). There ezists a constant ¢ = c¢(n, || f|lcn)
so that for every C™-smooth function f : B — R, and every ¢ € (0,1) the set E.
can be covered by at most c/e¢ intervals of length e/ (=1 In particular:
1. Lebesgue measure of E. is at most
e,
2. Whenever an interval J C R has length £ > ce'/("=V) | there exists a subin-
terval J' C J\ E., so that J' has length at least

£ (0= cet/nmm)
€
2.1.2. Smooth partition of unity.

DEFINITION 2.8. Let M be a smooth manifold and U = {B; : i € I} a locally
finite covering of M by open subsets diffeomorphic to Euclidean balls. A collection
of smooth functions {n; : i € I} on M is called a smooth partition of unity for the
cover U if the following conditions hold:

(1) >mi =1
2) 0<m <1, Viel
(3) Supp(mi) C By, Viel.

LEMMA 2.9. Ewvery open cover U as above admits a smooth partition of unity.

2.1.3. Riemannian metrics. A Riemannian metric on a smooth n-dimen-
sional manifold M, is a positive definite inner product (-, -), defined on the tangent
spaces T, M of M; this inner product is required to depend smoothly on the point
p € M. We will suppress the subscript p in this notation; we let || - || denote the
norm on 7, M determined by the Riemannian metric. The Riemannian metric is
usually denoted g = g, = g(x),2 € M or ds?>. We will use the notation |dx|? to
denote the Euclidean Riemannian metric on R":

da? = dx? + ...+ da?.
Here and in what follows we use the convention that for tangent vectors u, v,
da;dxj(u,v) = uv;
and dac? stands for dx;dx;.

A Riemannian manifold is a smooth manifold equipped with a Riemannian
metric.

Two Riemannian metrics g, h on a manifold M are said to be conformal to
each other, if h, = \(x)g,, where A(z) is a smooth positive function on M, called
conformal factor. In matrix notation, we just multiply the matrix A, of g, by
a scalar function. Such modification of Riemannian metrics does not change the
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angles between tangent vectors. A Riemannian metric g, on a domain U in R" is
called conformally-Euclidean if it is conformal to |dz|?, i.e., it is given by

M) |dz]? = M) (do? + ...+ dz?).

Thus, the square of the norm of a vector v € T,,U with respect to g, is given by

Az) va
i=1

Given an immersion f : M™ — N™ and a Riemannian metric g on N, one
defines the pull-back Riemannian metric f*(g) by

(v,w), = (df (v),df (w)), . p € M,q= f(p) €N,

where the right-hand side we use the inner product defined by ¢ and in the left-
hand side the one defined by f*(g). It is useful to rewrite this definition in terms
of symmetric matrices, when M, N are open subsets of R". Let A, be the matrix-
function defining g. Then f*(g) is given by the matrix-function B,,, where

y:f(z), B, = (D;cf)Ay (Dwf)T

and D, f is the Jacobian matrix of f at the point x.

Let us compute how pull-back works in “calculus terms” (this is useful for
explicit computation of the pull-back metric f*(g)), when g(y) is a Riemannian
metric on an open subset U in R™. Suppose that

9(y) = Zgij(y)dyidyj

and f = (f1,..., fn) is a diffeomorphism V C R™ — U. Then
[ (g)=h,
h(z) = Zgij(f<x))dfidfj'
2%}

Here for a function ¢ : R™ — R, e.g., ¢(z) = fi(z),

k=1 k=1
and, thus,
Py 81‘k (9%‘1

A particular case of the above is when N is a submanifold in a Riemannian
manifold M. One can define a Riemannian metric on N either by using the inclusion
map and the pull-back metric, or by considering, for every p € N, the subspace
T,N of T, M, and restricting the inner product (-,-), to it. Both procedures define
the same Riemannian metric on N.

Measurable Riemannian metrics. The same definition makes sense if the
inner product depends only measurably on the point p € M, equivalently, the
matrix-function A, is only measurable. This generalization of Riemannian metrics
will be used in our discussion of quasi-conformal groups, Chapter ??, section ?7?.
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Length and distance. Given a Riemannian metric on M, one defines the
length of a path p : [a,b] = M by

b
(2.1) length(p) = [ '(6)]dr

By abusing the notation, we will frequently denote length(p) by length(p([a,b))).
Then, provided that M is connected, one defines the Riemannian distance func-
tion
dist(p, q) = ir;f length(p),

where the infimum is taken over all paths in M connecting p to q.

A smooth map f : (M,g9) — (N,h) of Riemannian manifolds is called a
Riemannian isometry if f*(h) = g. In most cases, such maps do not preserve
the Riemannian distances. This leads to a somewhat unfortunate terminological
confusion, since the same name isometry is used to define maps between metric
spaces which preserve the distance functions. Of course, if a Riemannian isome-
try f: (M,g) — (N, h) is also diffeomorphism, then it preserves the Riemannian
distance function.

A Riemannian geodesic segment is a path p : [a,0] C R — M which is a local
length-minimizer, i.e.:

There exists ¢ > 0 so that for all ¢1,%s in J sufficiently close to each other,

dist(p(t1), p(t2)) = length(p([t1, t2])) = cft1 — t2f.

If ¢ = 1, we say that p has unit speed. Thus, a unit speed geodesic is a locally-
distance preserving map from an interval to (M,g). This definition extends to
infinite geodesics in M, which are maps p : J — M, defined on intervals J C M,
whose restrictions to each finite interval are finite geodesics.

A smooth map f : (M, g) — (N, h) is called totally-geodesic if it maps geodesics
in (M, g) to geodesics in (N, h). If, in addition, f*(h) = g, then such f is locally
distance-preserving.

Injectivity and convexity radii. For every complete Riemannian manifold
M and a point p € M, there exists the exponential map

exp, : T, M — M

which sends every vector v € T,,M to the point v,(1), where ,(t) is the unique
geodesic in M with v(0) = p and +/(0) = v. The injectivity radius InjRad(p) is the
supremum of the numbers r so that exp, [B(0,7) is a diffeomorphism to its image.
The radius of convezity ConRad(p) is the supremum of ’s so that r < InRad(p)
and C' = exp,(B(0,7)) is a convex subset of M, i.e., every z,y € C are connected
by a (distance-realizing) geodesic segment entirely contained in C. It is a basic fact
of Riemannian geometry that for every p € M,

ConRad(p) > 0,
see e.g. [dC92].

2.1.4. Riemannian volume. For every n-dimensional Riemannian manifold
(M, g) one defines the volume element (or volume density) denoted dV (or dA if M
is 2-dimensional). Given n vectors vy, ..., v, € Tp,M, dV (v1A...Avy,) is the volume
of the parallelepiped in 7, M spanned by these vectors, this volume is nothing but
V] det(G(v1, ..., v,))], where G(vy,...,v,) is the Gramm matrix with the entries
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(vi,v;). If ds* = p?(x)|dz|?, is a conformally-Euclidean metric, then its volume
density is given by
Pt (x)dxy ... dxy,.

Thus, every Riemannian manifold has a canonical measure, given by the integral
of its volume form

mes(E):/AdV.

THEOREM 2.10 (Generalized Rademacher’s theorem). Let f : M — N be a
Lipschitz map of Riemannian manifolds. Then f is differentiable almost every-
where.

EXERCISE 2.11. Deduce Theorem 2.10 from Theorem 1.40 and the fact that
M is second countable.

We now define volumes of maps and submanifolds. The simplest and the most
familiar notion of volume comes from the vector calculus. Let € be a bounded
region in R™ and f : Q — R™ be a smooth map. Then the geometric volume of f
is defined as

(2.2) Vol(f) ::/Q|Jf(:c)|dm1...dxn

where J; is the Jacobian determinant of f. Note that we are integrating here a
non-negative quantity, so geometric volume of a map is always non-negative. If f
were 1-1 and Jy(x) > 0 for every x, then, of course,

Vol(f) :/QJf(at)dxl...dwn — Vol(F().

More generally, if f: Q — R™ (now, m need not be equal to n), then

val(f) = [ \/ldet(Gy)

where Gy is the Gramm matrix with the entries <%, %>, where brackets denote
i J

the usual inner product in R™. In case f is 1-1, the reader will recognize in this

formula the familiar expression for the volume of an immersed submanifold ¥ =

f(Q) in R™,
Vol(f):/ZdS.

The Gramm matrix above makes sense also for maps whose target is an m-
dimensional Riemannian manifold (M, g), with partial derivatives replaced with
vectors df (X;) in M, where X; are coordinate vector fields in Q:

7]
Xl:aixl,?l:l”n

Furthermore, one can take the domain of the map f to be an arbitrary smooth
manifold N (possibly with boundary). Definition still makes sense and is indepen-
dent of the choice of local charts on N used to define the integral: this independence
is a corollary of the change of variables formula in the integral in a domain in R™.
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More precisely, consider charts ¢, : Uy — Vi, C N, so that {V,}aes is a locally-
finite open covering of N. Let {n,} be a partition of unity on N corresponding to
this covering. Then for (4, = 14 © Yo, fo = f © Ya,

Vol(f Z/ Car/| det(Gy,)|dxy . .

acJ
In particular, if f is 1-1 and ¥ = f(N), then
Vol(f) = Vol(%).

REMARK 2.12. The formula for Vol(f) makes sense when f : N — M is merely
Lipschitz, in view of Theorem 2.10.

Thus, one can define the volume of an immersed submanifold, as well as that of
a piecewise smooth submanifold; in the latter case we subdivide a piecewise-smooth
submanifold in a union of images of simplices under smooth maps.

By abuse of language, sometimes, when we consider an open submanifold /V in
M, so that boundary ON of N a submanifold of codimension 1, while we denote
the volume of N by Vol(N), we shall call the volume of ON the area, and denote
it by Area (ON).
EXERCISE 2.13. (1) Suppose that f: Q C R™ — R™ is a smooth map so
that |d, f(u)] < 1 for every unit vector v and every x € Q. Show that
|Jr(x)] < 1 for every x and, in particular,

Vol(f(Q 7|/ Jrday .. .dr,| < Vol(f) < Vol(Q).

Hint: Use that under the linear map A = d, f, the image of every r-ball
is contained in r-ball.

(2) Prove the same thing if the map f is merely 1-Lipschitz.
More general versions of the above exercises are the following.

EXERCISE 2.14. Let (M, g) and (N, h) be n-dimensional Riemannian manifolds.

(1) Let f: M — N be a smooth map such that for every € M, the norm of
the linear map

df : (T (,),) = (Tr@)N. ()

is at most L.
Prove that |Jy(x)| < L™ for every = and that for every open subset U
of M
Vol(f(2)) < L"Vol(Q).

(2) Prove the same statement for an L-Lipschitz map f: M — N.

A consequence of Theorem 2.2 is the following.

THEOREM 2.15. Consider a compact Riemannian manifold M, a submersion
f:M™ — N", and a point p € N. For every v € N set M, := f~(z). Then, for
every p € N and every € > 0 there exists an open neighborhood W of p such that
for every x € W,

Vol(M,)

1—eg L2Y)
S Voi(M,)

<l+4e
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Proor. First note that, by compactness of M, for every neighborhood U of
M,, there exists a neighborhood W of p such that f~1(W) c U.

According to Theorem 2.2, (2), for every x € M, there exists a chart of M,
0y : Uy — Uy, with U, containing x, and a chart of N, ¢, : V, = V, with V,
containing p, such that v, o f o p, ! is a restriction of the projection to the first n
coordinates. Without loss of generality we may assume that U, is an open cube in
R™. Therefore, V, is also a cube in R”, and U, =V, x Z,,, where Z,, is an open
subset in R™™".

Since M, is compact, it can be covered by finitely many such domains of charts
Up,...,Ug. Let Vq,...,V} be the corresponding domains of charts containing p.
For the open neighborhood U = Ule U; of M, consider an open neighborhood W
of p, contained in (*_, V;, such that f~*(W) C U.

For every z € W, M, = Ule(Ui NM,). Fixl e {1,...,k}. Let (9:5(y))1<ii<n
be the matrix-valued function on U;, defining the pull-back by ; of the Riemannian
metric on M .

Since g;; is continuous, there exists a neighborhood W of p = v;(p) such that
for every z € W; and for every £ € Z; we have,

(1- 62 < det [9i5 (%, )], 1 <ij<m
= det [gij(ﬁaf)]n+1gi,jgm
Recall that the volumes of M, N U; and of M, N U, are obtained by integrating

respectively (det [g;;(, 1?)]n+1<i7]<k)1/2 and (det [gi; (P, mnﬂgi,jgk)l/z on Z;. The
volumes of M, and M, are obtained by combining this with a partition of unity.

It follows that for = € ﬂle v (W),

Vol(My)
l—-e< ———+<<1 .
‘ Vol(M,) e

< (1462,

Finally, we recall an important formula for volume computations:

THEOREM 2.16 (Coarea formula, see e.g. Theorem 6.3 [Cha06] ). Let U be an
open connected subset with compact closure U in a Riemannian manifold M and
let f:U — (0,00) be a smooth submersion with a continuous extension to U such
that f restricted to U \ U is constant. For everyt € (0,00) let H; denote the level
set f=1(t), and let dA; be the Riemannian area density induced on H;.

Then, for every function g € L*(U),

/g|gradf|dV:/ dt/ gdA,
U 0 Hi

where AV is the Riemannian volume density of M

2.1.5. Growth function and Cheeger constant. In this section we present
two basic notions initially introduced in Riemannian geometry and later adapted
and used in group theory and in combinatorics.

Given a Riemannian manifold (M, g) and a point 29 € M, we define the growth
function

Sz, (1) := Vol B(xg,T),

the volume of the metric ball of radius r and center at x in (M, g)
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REMARKS 2.17. (1) For two different points z, yo, we have
G120 (1) < Bagy, (r+d), where d = dist(zo, yo) .

(2) Suppose that the action of the group of isometries of M is cobounded,
i.e., there exists x such that the Isom(M)-orbit of B(xg, k) equals M. In
this case, for every two basepoints xg, yg

®M,fbo (T) < 6JVLyO (T‘ + H) :

Thus, in this case the growth rate of the function & does not depend on
the choice of the basepoint.
We refer the reader to Section ?7 for the detailed discussion of volume growth
and its relation to group growth.

EXERCISE 2.18. Assume again that the action Isom(M) ~ M is cobounded
and that (M, g) is complete.

(1) Prove that the growth function is almost sub-multiplicative, that is:
Garao (1 +8)K) < Gt (1K) n o (8 +1)K) -
(2) Prove that the growth function of M is at most exponential, that is there
exists a > 1 such that

Sz (x) < a®, for every x > 0.

DEFINITION 2.19. An isoperimetric inequality in a manifold M is an inequality
satisfied by all open submanifolds €2 with compact closure and smooth boundary,
of the form

Vol(R2) < f(2)g (Aread) ,

where f and g are real-valued functions, g defined on R .
DEFINITION 2.20. The Cheeger (isoperimetric) constant h(M) (or isoperimetric
ratio) of M is the infimum of the ratios
Area(09)
min [Vol(Q), Vol(M \ Q)]
where (2 varies over all open submanifolds with compact closure and smooth bound-
ary.

If in particular h(M) > k > 0 then the following isoperimetric inequality holds
in M: )
Vol(R2) < ;Area(aﬂ) for every 2.

This notion was defined by Cheeger for compact manifolds in [Che70]. Further
details can be found for instance in P. Buser’s book [Bus10]|. Note that when M
is a Riemannian manifold of infinite volume, one may replace the denominator in
the ratio defining the Cheeger constant by Vol(€2).

Agsume now that M is the universal cover of a compact Riemannian manifold
N. A natural question to ask is to what extent the growth function and the Cheeger
constant of M depend on the choice of the Riemannian metric on N. The first
question, in a way, was one of the origins of the geometric group theory.
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V.A. Efremovich [Efr53] noted that two growth functions corresponding to
two different choices of metrics on N increase at the same rate, and, moreover,
that their behavior is essentially determined by the fundamental group only. See
Proposition ?? for a slightly more general statement.

A similar phenomenon occurs with the Cheeger constant: Positivity of h(M)
does not depend on the metric on N, it depends only on a certain property of
m1(N), namely, the non-amenability, see Remark 11.12. This was proved much later
by R. Brooks [Bro81, Bro82a]. Brooks’ argument has a global analytic flavor, as
it uses the connection established by Cheeger [Che70| between positivity of the
isoperimetric constant and positivity of spectrum of the Laplace-Beltrami operator
on M. Note that even though in the quoted paper Cheeger only considers compact
manifolds, the same argument works for universal covers of compact manifolds.
This result was highly influential in global analysis on manifolds and harmonic
analysis on graphs and manifolds.

2.1.6. Curvature. Instead of defining the Riemannian curvature tensor, we
will only describe some properties of Riemannian curvature. First, if (M, g) is a 2-
dimensional Riemannian manifold, one defines Gaussian curvature of (M, g), which
is a smooth function K : M — R, whose values are denoted K (p) and K.

More generally, for an n-dimensional Riemannian manifold (M,g), one de-
fines the sectional curvature, which is a function A2M — R, denoted K, (u,v) =
K, o(u,v):

(R(u,v)u,v)

|u A v]?
provided that u,v € T,M are linearly independent. Here R is the Riemannian
curvature tensor and |uAv| is the area of the parallelogram in 7), M spanned by the
vectors u,v. Sectional curvature depends only on the 2-plane P in T),M spanned
by u and v. The curvature tensor R(u,v)w does not change if we replace the metric
g with a conformal metric h = ag, where a > 0 is a constant. Thus,

Kpp(u,v) = afzKp,g(u, v).

Totally geodesic Riemannian isometric immersions f : (M, g) — (N, h) preserve
sectional curvature:

Ky(u,v) =

Kp(u,v) = Kq(df (u),df (v)), q=f(p).
In particular, sectional curvature is invariant under Riemannian isometries of equidi-

mensional Riemannian manifolds. In the case when M is 2-dimensional, K, (u,v) =
K,, is the Gaussian curvature of M.

Gauss-Bonnet formula. Our next goal is to connect areas of triangles to
curvature.

THEOREM 2.21 (Gauss-Bonnet formula). Let (M, g) be a Riemannian surface
with the Gaussian curvature K(p),p € M and the area form dA. Then for every
2-dimensional triangle A C M with geodesic edges and vertex angles o, 3,7,

/K(p)dA:(oz+ﬂ+7)f7r.

In particular, if K(p) is constant equal r, we get
—kArea(A) =7 — (a+ B+ 7).
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The quantity m — (o + 8 + ) is called the angle deficit of the triangle A.

Manifolds of bounded geometry. A (complete) Riemannian manifold M
is said to have bounded geometry if there are constants a,b and € > 0 so that:

1. Sectional curvature of M varies in the interval [a, b].

2. Injectivity radius of M is > e.

The numbers a,b,e are called geometric bounds on M. For instance, every
compact Riemannian manifold M has bounded geometry, every covering space of
M (with pull-back Riemannian metric) also has bounded geometry.

THEOREM 2.22 (See e.g. Theorem 1.14, [Att94]). Let M be a Riemannian
manifold of bounded geometry with geometric bounds a,b,e. Then for every x € M
and 0 < r < €/2, the exponential map

exp, : B(0,r) = B(z,r) C M
is an L-bi-Lipschitz diffeomorphism, where L = L(a,b,¢).

This theorem also allows one to refine the notion of partition of unity in the
context of Riemannian manifolds of bounded geometry:

LEMMA 2.23. Let M be a Riemannian manifold of bounded geometry and let
U ={B; = B(x;,r;) : i € I} a locally finite covering of M by metric balls so that
InjRady(x;) > 2r; for every i and

B <SCZ‘, Z’I’Q) NB <:ijirj) = @, Vi 7&]

Then U admits a smooth partition of unity {n; : i € I} which, in addition, satisfies
the following properties:

1. n; =1 on every ball B(x;, 5 ).

2. Every smooth functions n; is L—Lipschitz for some L independent of i.

Curvature and volume.

Below we describe without proof certain consequences of uniform lower and
upper bounds on the sectional curvature on the growth of volumes of balls, that
will be used in the sequel. The references for the result below are [BCO1, Section
11.10], [CGT82|, |[Gro86|, [G60]. See also [GHLO4|, Theorem 3.101, p. 140.

Below we will use the following notation: For x € R, A.(r) and Vi (r) will
denote the area of the sphere, respectively the volume of the ball of radius r, in
the n—dimensional space of constant sectional curvature . We will also denote by
A(x,r) the area of the geodesic sphere of radius r and center x in a Riemannian
manifold M. Likewise, V' (x, ) will denote the volume of the geodesic ball centered
at x and of radius r in M.

THEOREM 2.24 (Bishop—Gromov—Giinther). Let M be a complete n—dimensional
Riemannian manifold.

(1) Assume that the sectional curvature on M is at least a. Then, for every
point x € M :

o A(x,r) < Au(r) and V(x,r) < Vo (r).
v

A(z,r) (z,r)

. , y no.
The functions r — .00 and r — V. Gre non-increasing
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(2) Assume that the sectional curvature on M is at most b. The, for every
x € M with injectivity radius p, = InjRady(x):
e For allr € (0,py), we have A(z,r) = Ap(r) and V(z,r) = Vi(r).

o The functions r — ‘:(:(’Q and r — ‘;(:ET’;) are non-decreasing on

(O,px) .

The results (1) in the theorem above are also true if the Ricci curvature of M
is at least (n — 1)a.

Theorem 2.24 follows from infinitesimal versions of the above inequalities (see
Theorems 3.6 and 3.8 in [Cha06]). A consequence of the infinitesimal version of
Theorem 2.24, (1), is the following theorem which will be useful in the proof of
quasi-isometric invariance of positivity of the Cheeger constant:

THEOREM 2.25 (Buser’s inequality [Bus82], [Cha06], Theorem 6.8). Let M be
a complete n—dimensional manifold with sectional curvature at least a. Then there
erists a positive constant A depending on n,a and r > 0, such that the following
holds. Given a hypersurface H C M and a ball B(xz,r) C M such that B(z,7) \ H
is the union of two open subsets O10y separated by H, we have:

min [Vol(O1), Vol(O2)] < Mrea[H N B(z,r)].

2.1.7. Harmonic functions. For the detailed discussion of the material in
this section we refer the reader to [Li04] and [SY94].

Let M be a Riemannian manifold. Given a smooth function f : M — R, we
define the energy of f as the integral

E(f) = /M df PV = /M VPV

Here the gradient vector field V f is obtained by dualizing the differential 1-form
df using the Riemannian metric on M. Note that energy is defined even if f only
belongs to the Sobolev space Wllof (M) of functions differentiable a.e. on M with
locally square-integrable partial derivatives.

THEOREM 2.26 (Lower semicontinuity of the energy functional). Let (f;) be a
sequence of functions in VVllof(M) which converges (in Wllof(M)) to a function f.
Then

B(f) <lim inf E(f)

DEFINITION 2.27. A function h € Wllof is called harmonic if it is locally energy-

minimizing: For every point p € M and a small metric ball B = B(p,r) C M,

E(h|B) gE(U), VUB%RaubB:th

Equivalently, for every relatively compact open subset Q2 C M with smooth

boundary
E(h|B) < E(u), Yu:Q — R, ulsga = hlsa.

It turns out that harmonic functions A on M are automatically smooth and,
moreover, satisfy the equation Ah = 0, where A is the Laplace—Beltrami operator
on M:

Ay = divVu
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Here for a vector field X on M, the divergence div X is a function on M satisfying
div XdV = LxdV,
where Lx is the Lie derivative along the vector field X:
Lx : QF(M) — QF(M),
Lx(w) =ixdw+ d(ixw),
x QY M) = QY M), ix(w)(X1,. .., Xe) =w(X, X1,..., X))
In local coordinates (assuming that M is n-dimensional):

divX = Zf@m (\/@Xl)

where

9| = det((gi;)),

and
n

, du
Ty =Yg 2
T €j
j=1
and (¢) = (gi;) ™!, the inverse matrix of the metric tensor. Thus,
- Ju
Au=Y L ( I Vgl o )
S5 Vg 833
In terms of the Levi—Civita connection V on M,
A(u) = TTQCG(H(U))v H(u)(Xla XJ) = invXj (u) - VVXin (U),
Trace(H) = Z g Hyj,
i,j=1
where X;, X; are vector fields on M.

If M = R™ with the flat metric, then A is the usual Laplace operator:

Au_Za 2u

THEOREM 2.28 (Yau’s gradient estimate). Suppose that M™ is a complete n-
dimensional Riemannian manifold with Ricci curvature > a. Then for every har-
monic function h on M, every x € M with InjRad(x) > e,

|Vh(z)| < h(z)C(e, n).

THEOREM 2.29 (Compactness property). Suppose that (f;) is a sequence of
harmonic functions on M so that there exists p € M for which the sequence (f;(p))
is bounded. Then the family of functions (f;) is precompact in Wlif(]\/[) Further-
more, every limit of a subsequence in (f;) is a harmonic function.

THEOREM 2.30 (Maximum Principle). Let Q C M be a relatively compact
domain with smooth boundary and h : M — R be a harmonic function. Then h|Q
attains mazimum on the boundary of Q0 and, moreover, if h|Q) attains its mazimum
at a point of ), then h is constant.
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2.1.8. Alexandrov curvature and CAT(x) spaces. In the more general
setting of metric spaces it is still possible to define a notion of (upper and lower
bound for the) sectional curvature, which moreover coincide with the standard ones
for Riemannian manifolds. This is done by comparing geodesic triangles in a metric
space to geodesic triangles in a model space of constant curvature. In what follows,
we only discuss the metric definition of upper bound for the sectional curvature,
the lower bound case is similar but less used.

For a given k € R, we denote by X, the model surface of constant curvature
k. If kK = 0 then X, is the Euclidean plane, if x < 0 then X,; will be discussed in
detail in Chapter 7, it is the upper half-plane with the rescaled hyperbolic metric:

2 2
X, = (UZ, |m—1d“;y“;‘ly) .

If kK > 0 then X is the 2-dimensional sphere S (0,

metric induced from R3.

ﬁ) in R? with the Riemannian

Let X be a geodesic metric space, and let A be a geodesic triangle in X. Given
2r

k > 0 we say that A is k—compatible if its perimeter is at most NG By default,

every triangle is k—compatible for k < 0.
We will prove later on (see §7.10) the following:

LEMMA 2.31. Let k € R and let a < b < ¢ be three numbers such that ¢ < a-+b
and a +b+c < 2—\/% if kK > 0. Then there exists a geodesic triangle in X, with
lengths of edges a,b and c, and it is unique up to congruence.

Therefore, for every x € R and every k—compatible triangle A = A(A, B,C) C

X with vertices A, B,C € X and lengths a, b, ¢ of the opposite sides, there exists a
triangle (unique, up to congruence)

A(A,B,C) C X,
with the side-lengths a,b,c. The triangle A(A, B, C) is called the s-—comparison
triangle or a k—Alexandrov triangle.
_ For every point P on, say, the side [AB] of A, we define the k—comparison point
P € [A, B], so that

d(A,P) =d(A, P).
Thus, for P € [A, B],Q € [B, C] we define k—comparison points P,Q e A.

DEFINITION 2.32. We say that the triangle A is CAT (k) if it is k—compatible
and for every pair of points P and () on the triangle, their x—comparison points
P, Q satisfy

distx, (P,Q) > distx (P, Q) .

DEFINITION 2.33. (1) A CAT(k)-domain in X is an open convex set
U C X, and such that all the geodesic triangles entirely contained in U
are CAT (k).

(2) We say that X has Alezandrov curvature at most x if it is covered by
CAT(k)-domains.
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Note that a C AT (k)-domain U for x > 0 must have diameter strictly less than
. Otherwise, one can construct geodesic triangles in U with two equal edges and

$h

K
e third reduced to a point, with perimeter >

The point of Definition 2.33 is that it applies to non-Riemannian metric spaces
where such notions as tangent vectors, Riemannian metric, curvature tensor cannot
be defined, while one can still talk about curvature being bounded from above by
K.
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PROPOSITION 2.34. Let X be a Riemannian manifold. Its Alexandrov curvature
is at most k if and only if its sectional curvature in every point is < K .

PRrOOF. The “if” implication follows from the Rauch-Toponogov comparison
theorem (see [dC92, Proposition 2.5]). For the “only if” implication we refer to
[Rin61] or to [GHLO04, Chapter III]. O

DEFINITION 2.35. A metric space X is called a C AT (k)-space if the entire X
is a CAT(k)-domain. We will use the definition only for x < 0. A metric space X
is said to be a CAT(—o0)-space if X is a CAT(k)-space for every k.

Note that for the moment we do not assume X to be metrically complete.
This is because there are naturally occurring incomplete CAT'(0) spaces, called
Euclidean buildings, which, nevertheless, are geodesically complete (every geodesic
segment is contained in a complete geodesic). On the other hand, Hilbert spaces
provide natural examples of complete CAT(0) metric spaces.

EXERCISE 2.36. Let X be a simplicial tree with a path-metric d. Show that
(X,d) is CAT(—o0).

In the case of non-positive curvature there exists a local-to-global result.

THEOREM 2.37 (Cartan-Hadamard Theorem). If X is a simply connected com-
plete metric space with Alexandrov curvature at most k for some k < 0, then X is
a CAT(k)-space.

We refer the reader to [Bal95] and [BH99] for proofs of this theorem, and a
detailed discussion of C AT (k)-spaces, with x < 0.

DEFINITION 2.38. Simply-connected complete Riemannian manifolds of sec-
tional curvature < 0 are called Hadamard manifolds. Thus, every Hadamard man-
ifold is a CAT(0) space.

An important property of C AT (0)-spaces is convezity of the distance function.
Suppose that X is a geodesic metric space. We say that a function F : X x X — R
is convez if for every pair of geodesics «(s),8(s) in X (which are parameterized
with constant, but not necessarily unit, speed), the function

f(s) = Fla(s), B(s))

is a convex function of one variable. Thus, the distance function dist of X is convex,
whenever for every pair of geodesics [ag, a1] and [bg, b1] in X, the points a5 € [ag, a1]
and bs € [bo, b1] such that dist(ag, as) = sdist(ag, a1) and dist(bg, bs) = sdist(bg, by)
satisfy

(2.3) dist(as, bs) < (1 — s)dist(ag, bo) + sdist(a1,b1) .
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Note that in the case of a normed vector space X, a function f: X x X — R
is convex if and only if the sup-graph

{(z,y,t) € X* xR f(z,y) >t}
is convex.

PROPOSITION 2.39. A geodesic metric space X is CAT(0) if and only if the
distance on X is convetr.

ProOF. Consider two geodesics [ag, bg] and [a1,b1] in X. On the geodesic
[ao, b1] consider the point ¢, such that dist(ag, ¢s) = sdist(ag, b1) . The fact that the
triangle with edges [ao, a1], [ao, b1] and [a1, b1] is CAT'(0) and the Thales theorem in
R?, imply that dist(as, cs) < sdist(a1,b1). The same argument applied to the trian-
gle with edges [ag, b1], [ao, Do), [bo, b1], implies that dist(cs, bs) < (1 — s)dist(aqg, bo)-
The inequality (2.3) follows from

dist(as, bs) < dist(as, ¢s) + dist(cs, bs) .

ay
as

o

by

FI1GURE 2.1. Argument for convexity of the distance.

Conversely, assume that (2.3) is satisfied.

In the special case when ay = a;, this implies the comparison property in
Definition 2.32 when one of the two points P, @ is a vertex of the triangle. When
- s . dist(A,P) _ dist(B,Q)

ag = by, (2.3) again implies the comparison property when Tet(A D) = dsi(B0) -

We now consider the general case of two points P € [A, B] and @ € [B, C] such

that g:tgffg = s and gi:gggg =t with s < t. Consider B’ € [A, B] such that
dist[A, B'] = $dist[A, B]. Then, according to the above, dist(B’,C) < dist(B’, C),
and dist(P, Q) < tdist(B’,C) < tdist(B', C) = dist(P, Q). 0

COROLLARY 2.40. Every CAT(0)-space X is uniquely geodesic.
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Proor. It suffices to apply the inequality (2.3) to any geodesic bigon, that is,
in the special case when ag = by and a; = b;. [l

2.1.9. Cartan’s fixed point theorem. Let X be a metric space and A C X
be a subset. Define the function

p(@) = pale) = sup d*(z,a).
acA

PROPOSITION 2.41. Let X be a complete CAT(0) space. Then for every bounded
subset A C X, the function p = p4 attains unique minimum in X.

Proor. Consider a sequence (z,) in X such that

Jim p(zn) =r = inf p(z).

We claim that the sequence (z,) is Cauchy. Given € > 0 let x = z;,2" = x; be
points in this sequence such that

r<p(z)<r+e r<pl)<r+e
Let p be the midpoint of [z,2'] C X; hence, r < p(p). Let a € A be such that
p(p) — e < d*(p,a).

Consider the Euclidean comparison triangle T = T'(#, #', a) for the triangle T'(z, 2’, ).
In the Euclidean plane we have (by the parallelogram identity (1.2)):

d*(z,7') + 4d%(a, p) = 2 (d*(a, &) + d*(a, 7)) .
Applying the comparison inequality for the triangles T" and T, we obtain:
d(a,p) < d(a,p).
Thus:
d(z,2')* +4(r — e) < &*(z,2) + 4d*(a,p) < 2 (d*(a,z) + d*(a,2")) <

2(p(z) + p(')) < 4r + 4e.

It follows that
d(z,z')?* < 8e
and, therefore, the sequence (x,) is Cauchy. By completeness of X, the function

p attains minimum in X; the same Cauchy argument implies that the point of
minimum is unique. ([

As a corollary, we obtain a fixed-point theorem for isometric group actions
on complete C'AT'(0) spaces, which was first proven by Cartan in the context of
Riemannian manifolds of nonpositive curvature:

THEOREM 2.42. Let X be a complete CAT(0) metric space and G ~ X be a
group acting isometrically with bounded orbits. Then G fizes a point in X.

PRrROOF. Let A denote a bounded orbit of G in X and let p4 be the correspond-
ing function on X. Then, by uniqueness of the minimum point m of p4, the group
G will fix m. O
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COROLLARY 2.43. 1. Every finite group action on a complete C AT(0) space
has a fized point. For instance, every action of a finite group on a tree or on a
Hilbert space fixes a point.

2. If G is a compact group acting isometrically and continuously on a Hilbert
space H, then G fixes a point in H.

2.1.10. Ideal boundary, horoballs and horospheres. In this section we
define the ideal boundary of a metric space. This is a particularly significant object
when the metric space is CAT(0), and it generalizes the concept introduced for
non-positively curved simply connected Riemannian manifolds by P. Eberlein and
B. O’Neill in [EO73, Section 1].

Let X be a geodesic metric space. Two geodesic rays p; and py in X are called
asymptotic if they are at finite Hausdorff distance; equivalently if the function
t — dist(p1(t), p2(t)) is bounded on [0, o).

Clearly, being asymptotic is an equivalence relation on the set of geodesic rays
in X.

DEFINITION 2.44. The ideal boundary of a metric space X is the collection of
equivalence classes of geodesic rays. It is usually denoted either by 9., X or by
X (00).

An equivalence class o € 9, X is called an ideal point or point at infinity of X,
and the fact that a geodesic ray p is contained in this class is sometimes expressed
by the equality p(o0) = a.

The space of geodesic rays in X has a natural compact-open topology, or,
equivalently, topology of uniform convergence on compacts (recall that we regard
geodesic rays as maps from [0,00) to X). Thus, we topologize 0,.X by giving it
the quotient topology 7.

EXERCISE 2.45. Every isometry g : X — X induces a homeomorphism ¢ :
O X — 050 X.

This exercise explains why we consider rays emanating from different points of
X: otherwise most isometries of X would not act on 0,,X.

Convention. From now on, in this section, we assume that X is a complete
CAT(0) metric space.

LEMMA 2.46. If X is locally compact then for every point x € X and every
point a € 0o X there exists a unique geodesic ray p with p(0) = z and p(c0) = «.
We will also use the notation [z, «) for the ray p.

PROOF. Let r : [0,00) — X be a geodesic ray with r(co) = «. For every
n € N, according to Corollary 2.40, there exists a unique geodesic g,, joining = and
r(n). The convexity of the distance function implies that every g, is at Hausdorff
distance dist(z,7(0)) from the segment of r between r(0) and r(n).

By the Arzela-Ascoli Theorem, a subsequence g, of geodesic segments con-
verges in the compact-open topology to a geodesic ray p with p(0) = z. Moreover,
p is at Hausdorff distance dist(x,r(0)) from r.

Assume that p; and ps are two asymptotic geodesic rays with p;(0) = p2(0) =
x . Let M be such that dist(p1(t), p2(t)) < M, for every t > 0. Consider ¢ € [0, 00),
and € > 0 arbitrarily small. Convexity of the distance function implies that

dist(pa (1), pa(t)) < edist(p1 (t/2), pa(t/€)) < eM.
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It follows that dist(p1(¢), p2(t)) = 0 and, hence, p; = pa. O

In particular, for a fixed point p € X one can identify the set X := X L1 0,o X
with the set of geodesic segments and rays with initial point p. In what follows,
we will equip X with the topology induced from the compact-open topology on the
space of these segments and rays.

EXERCISE 2.47. (1) Prove that the embedding X — X is a homeomor-
phism to its image.
(2) Prove that the topology on X is independent of the chosen basepoint p.
In other words, given p and ¢ two points in X, the map [p,z] — [g, 2]
(with = € X) is a homeomorphism.

(3) In the special case when X is a Hadamard manifold, show that for every
point p € X, the ideal boundary 0, X is homeomorphic to the unit sphere
S in the tangent space T,M wvia the map v € S C T,M — exp,(Ryv) €
0o X .

An immediate consequence of the Arzela—Ascoli Theorem is that X is compact.

Consider a geodesic ray r : [0,00) — X, and an arbitrary point z € X . The
function ¢ — dist(x,r(t)) — t is decreasing (due to the triangle inequality) and
bounded from below by —dist(x,r(0)). Therefore, there exists a limit

(2.4) fr(z) == tlgélo [dist(z,r(t)) — t] .

DEFINITION 2.48. The function f,. : X — R thus defined, is called the Buse-
mann function for the ray r.

For the proof of the next lemma see e.g. [Bal95], Chapter 2, Proposition 2.5.

LEMMA 2.49. If r1 and ro are two asymptotic rays then f. — fr, is a constant
function.

In particular, it follows that the collections of sublevel sets and the level sets of
a Busemann function do not depend on the ray r, but only on the point at infinity
that r represents.

EXERCISE 2.50. Show that f, is linear with slope —1 along the ray ». In
particular,

A fr(t) = —oo.
DEFINITION 2.51. A sublevel set of a Busemann function, f,~!(—oc,a] is called
a (closed) horoball with center (or footpoint) a = r(c0); we sometime denote such
a set B(a). A level set f,"!(a) of a Busemann function is called a horosphere with
footpoint «, it is denoted H (). Lastly, an open sublevel set f!(—oc,a) is called
an open horoball with footpoint o = r(o0), and denoted B(«).

LEMMA 2.52. Letr be a geodesic ray and let B be the open horoball f!(—o0,0).
Then B = ;5o B(r(t),t) .
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PRrROOF. Indeed, if for a point z, f.(z) = lim;_,oo[dist(z,7(t)) — ] < 0, then for
some sufficiently large ¢, dist(x,r(t)) —t < 0. Whence = € B(r(¢),t).

Conversely, suppose that « € X is such that for some s > 0, dist(z,7(s)) — s =
ds < 0. Then, because the function ¢ — dist(x,r(t)) — t is decreasing, it follows
that for every ¢t > s,

dist(z,7(t)) —t < ds.
Whence, f.(x) < ds <O0. O

LEMMA 2.53. Let X be a CAT(0) space. Then every Busemann function on
X is convex and 1-Lipschitz.

Proor. Note that distance function on any metric space is 1-Lipschitz (by the
triangle inequality). Since Busemann functions are limits of normalized distance
functions, it follows that Busemann functions are 1-Lipschitz as well. (This part
does not require CAT'(0) assumption.) Similarly, since distance function is convex,
Busemann functions are also convex as limits of normalized distance functions. [

Furthermore, if X is a Hadamard manifold, then every Busemann function f,
is smooth, with gradient of constant norm 1, see [BGS85].

LEMMA 2.54. Assume that X is a complete CAT(0) space. Then:
e Open and closed horoballs in X are convez sets.
e A closed horoball is the closure of an open horoball.

PRrROOF. The first property follows immediately from the convexity of Buse-
mann functions. Let f = f, be a Busemann function. Consider the closed horoball

B={x: f(x) <t}
Since this horoball is a closed subset of X, it contains the closure of the open
horoball

B={x: f(x) <t}
Suppose now that f(z) = t. Since lims_, f($) = —o0, there exists s such that
f(r(s)) < t. Convexity of f implies that

fy) <fl@)=t, Vyez,r(s)]\{z}.

Therefore, = belongs to the closure of the open horoball B, which implies that B
is the closure of B. O

EXERCISE 2.55. 1. Suppose that X is the Euclidean space R™, r is the geodesic
ray in X with 7(0) = 0 and '(0) = u, where u is a unit vector. Show that

fr(z) = —2 - u.

In particular, closed (resp. open) horoballs in X are closed (resp. open) half-spaces,
while horospheres are hyperplanes.

2. Construct an example of a proper CAT(0) space and an open horoball
B C X, B # X, so that B is not equal to the interior of the closed horoball B.
Can this happen in the case of Hadamard manifolds?
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2.2. Bounded geometry

In this section we review several notions of bounded geometry for metric spaces.

2.2.1. Riemannian manifolds of bounded geometry.

DEFINITION 2.56. We say a Riemannian manifold M has bounded geometry if
it is connected, it has uniform upper and lower bounds for the sectional curvature,
and a uniform lower bound for the injectivity radius InjRad(x) (see Section 2.1.3).

Probably the correct terminology should be “uniformly locally bounded geom-
etry”, but we prefer shortness to an accurate description.

A connected Riemannian manifold without boundary, so that the isometry
group of M acts cocompactly on M (see section 3.1.1), has bounded geometry.

REMARK 2.57. In the literature the condition of bounded geometry on a Rie-
mannian manifold is usually weaker, e.g. that there exists L > 1 and R > 0 such
that every ball of radius R in M is L-bi-Lipschitz equivalent to the ball of radius
R in R™ (|[Gro93], §0.5.A3) or that the Ricci curvature has a uniform lower bound
(|[Cha06], [Cha01]).

For the purposes of this book, the restricted condition in Definition 2.56 suffices.

In what follows we keep the notation V,(r) from Theorem 2.24 to designate
the volume of a ball of radius r in the n—dimensional space of constant sectional
curvature k.

LEMMA 2.58. Let M be complete n—dimensional Riemannian manifold with
bounded geometry, let a < b and p > 0 be such that the sectional curvature is at
least a and at most b, and that at every point the injectivity radius is larger than p.

(1) For every 6 > 0, every d—separated set in M is ¢p-uniformly discrete, with

o(r) = V‘é’“&;‘) , where X is the minimum ofg and p .

(2) For every 2p > 6 > 0 and every mazimal 0—separated set N in M, the

Vo (%)

multiplicity of the covering {B(x,6) | v € N} is at most — OF
v(2

Proor. (1) Let S be a d—separated subset in M.
According to Theorem 2.24, for every point x € S and radius r» > 0 we have:

Va(r +X) > Vol [Bu(w, 7 + V)] > card [B(x,) N S] Vi(\).

This implies that card [B(z,r)N5S] < V”V(sz\'))‘ ) whence S with the induced

metric is ¢-uniformly discrete, with the required ¢.

(2) Let F be a subset in N such that (), B(z,0) is non-empty. Let y be
a point in this intersection. Then the ball B (y,32) contains the disjoint union
U,er B (2,3) , whence

Va (325> > Vol [BM (y, 325)] > card F'V, (g) .
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2.2.2. Metric simplicial complexes of bounded geometry. Let X be a
simplicial complex and d a path-metric on X. Then (X, d) is said to be a metric
simplicial complex if the restriction of d to each simplex is isometric to a Euclidean
simplex. The main example of a metric simplicial complex is a generalization of a
graph with the standard metric described below.

Let X be a connected simplicial complex. As usual, we will often conflate X
and its geometric realization. Metrize each k-simplex of X to be isometric to the
standard k-simplex AF in the Euclidean space:

AF = RO N {zo+... 4 x, =1}

Thus, for each m-simplex o™ and its face o, the inclusion o — ¢™ is an isometric
embedding. This allows us to define a length-metric on X so that each simplex is
isometrically embedded in X, similarly to the definition of the standard metric on a
graph. Namely, a piecewise-linear (PL) path p in X is a path p : [a,b] — X, whose
domain can be subdivided in finitely many intervals [a;, a;+1] so that p|a;, a;+1] is
a piecewise-linear path whose image is contained in a single simplex of X. Lengths
of such paths are defined using metric on simplices of X. Then

d(z,y) = ilgf length(p)

where the infimum is taken over all PL paths in X connecting = to y. The metric
d is then a path-metric; we call this metric the standard metric on X.

EXERCISE 2.59. Verify that the standard metric is complete and that X is a
geodesic metric space.

DEFINITION 2.60. A metric simplicial complex X has bounded geometry if it is
connected and if there exist L > 1 and N < oo so that:
e every vertex of X is incident to at most N edges;
e the length of every edge is in the interval [L™1, L].
In particular, the set of vertices of X with the induced metric is a uniformly
discrete metric space.

Thus, a metric simplicial complex of bounded geometry is necessarily finite-
dimensional.

EXAMPLES 2.61. e If Y is a finite connected metric simplicial complex,
then its universal cover (with the pull-back path metric) has bounded
geometry.

e A connected simplicial complex has bounded geometry if and only if there
is a uniform bound on the valency of the vertices in its 1-skeleton.

Metric simplicial complexes of bounded geometry appear naturally in the con-
text of Riemannian manifolds with bounded geometry. Given a simplicial complex
X, we will equip it with the standard metric, where each simplex is isometric to a
Euclidean simplex with unit edges.

THEOREM 2.62 (See Theorem 1.14, [Att94]). Let M be an n-dimensional
Riemannian manifold of bounded geometry with geometric bounds a,b,e. Then
M admits a triangulation X of bounded geometry (whose geometric bounds de-
pend only on n,a,b,e) and an L-bi-Lipschitz homeomorphism f : X — M, where
L= L(n,a,b,e).

52



Another procedure of approximation of Riemannian manifolds by simplicial
complexes will be described in Section 5.3.
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CHAPTER 3

Algebraic preliminaries

3.1. Geometry of group actions

3.1.1. Group actions. Let GG be a group or a semigroup and E be a set. An
action of G on E on the left is a map
p:GxE—E,  u(g.a)=g(a),
so that
(1) /’l’(]‘ﬂ :L') =T
(2) w(g192,x) = u(g1, (g2, x)) for all g1,g2 € G and z € E.
REMARK 3.1. If; in addition, G is a group, then the two properties above imply
that
plg,p(g ta)) ==
forallge Gandz e E.

An action of G on E on the right is a map
prExG—E, plag)=(a)g,
so that
(1) /L(xa 1) =Z;
(2) w(z,9192) = w(p(z,g1),92) for all g1,g2 € G and z € E.

Note that the difference between an action on the left and an action on the
right is the order in which the elements of a product act.

If not specified, an action of a group G on a set F is always to the left, and it
is often denoted G ~ E.

If F is a metric space, an isometric action is an action so that u(g,-) is an
isometry of E for each g € G.

A group action G ~ X is called free if for every z € X, the stabilizer of x in

G,
G:={g9€G:g(x) =1}

is {1}.

Given an action p: G~ X, amap f: X — Y is called G—invariant if

f (g, @) = f(x), VgeG,zeX

Given two actions 4 : G ~» X and v : G ~ Y, amap f: X — Y is called

G—equivariant if

f(u(g,z) =v(g, f(z)), VgeG,xzeX.

In other words, for each g € G we have a commutative diagram,
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A topological group is a group G equipped with the structure of a topological
space, so that the group operations (multiplication and inversion) are continuous
maps. If G is a group without specified topology, we will always assume that G is
discrete, i.e., is given the discrete topology.

If G is a topological group and F is a topological space, a continuous action of
G on F is a continuous map u satisfying the above action axioms.

A topological group action p : G ~ X is called proper if for every compact
subsets K7, Ko C X, the set

GKl,Kz Z{QEG:g(Kl)ﬂKz 75@} c@G

is compact. If G has discrete topology, a proper action is called properly discontin-
uwous action, as Gk, k, is finite.

EXERCISE 3.2. Suppose that X is locally compact and G ~ X is proper. Show
that the quotient X/G is Hausdorff.

A topological action G ~ X is called cocompact if there exists a compact C' C X
so that
G-C:= U gC = X.
geG
EXERCISE 3.3. If G ~ X is cocompact then X/G (equipped with the quotient
topology) is compact.
The following is a converse to the above exercise:

LEMMA 3.4. Suppose that X is locally compact and G ~ X is such that X/G
is compact. Then G acts cocompactly on X.

ProOOF. Let p : X — Y = X/G be the quotient. For every x € X choose a
relatively compact (open) neighborhood U, C X of z. Then the collection

{p(Uw)}J;EX

is an open covering of Y. Since Y is compact, this open covering has a finite
subcovering

{p(Uy, :i=1,...,n}

C:= CJ c(Uy,)
i=1

is compact in X and projects onto Y. Hence, G- C' = X. O

The union

In the context of non-proper metric space the concept of cocompact group
action is replaced with the one of cobounded action. An isometric action G ~ X is
called cobounded if there exists D < oo such that for some point x € X,

U 9(B(x,D)) = X.
geG
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Equivalently, given any pair of points xz,y € X, there exists ¢ € G such that
dist(g(z),y) < 2D. Clearly, if X is proper, the action G ~ X is cobounded if and
only if it is cocompact. We call a metric space X quasi-homogeneous if the action
Isom(X) ~ X is cobounded.

Similarly, we have to modify the notion of a properly discontinuous action: An
isometric action G ~ X on a metric space is called properly discontinuous if for
every bounded subset B C X, the set

Gpp={9€G:9(B)NB#0}
is finite. Assigning two different meaning to the same notation of course, creates
ambiguity, the way out of this conundrum is to think of the concept of proper
discontinuity applied to different categories of actions: Topological and isometric.

In the former case we use compact subsets, in the latter case we use bounded
subsets. For proper metric spaces, both definitions, of course, are equivalent.

3.1.2. Lie groups. References for this section are [Hel01, OV90, War83|.

A Lie group is a group G which has structure of a smooth manifold, so that
the binary operation G x G — G and inversion g — ¢!, G — G are smooth.
Actually, every Lie group G can be made into a real analytic manifold with real
analytic group operations. We will assume that G is a real n-dimensional manifold,
although one can also consider complex Lie groups.

EXAMPLE 3.5. Groups GL(n,R), SL(n,R), O(n), O(p, q) are (real) Lie groups.
Every countable discrete group (a group with discrete topology) is a Lie group.

Here O(p, q) is the group of linear isometries of the quadratic form

2 2 2 2
Y+ Ty =Xy — T Ty

of signature (p,q). The most important, for us, case is O(n,1) = O(1,n). The
group PO(n,1) = O(n,1)/ £+ I is the group of isometries of the hyperbolic n-space.

EXERCISE 3.6. Show that the group PO(n,1) embeds in O(n, 1) as the sub-
group stabilizing the future light cone

x%+...+zi—zi+1>0, Tpt1 > 0.

The tangent space V = T.G of a Lie group G at the identity element e € G
has structure of a Lie algebra, called the Lie algebra g of the group G.

ExaMPLE 3.7. 1. The Lie algebra sl(n,C) of SL(n,C) consists of trace-free
n X n complex matrices. The Lie bracket operation on sl(n,C) is given by

[A, B] = AB — BA.

2. The Lie algebra of the unitary subgroup U(n) < GL(n,C) equals the space
of skew-hermitian matrices

u(n) = {A € Mat,(C): A = —A*}.

3. The Lie algebra of the orthogonal subgroup O(n) < GL(n,R) equals the
space of skew-symmetric matrices

o(n) = {A € Mat,(R) : A= —AT}.

EXERCISE 3.8. u(n) @ iu(n) = Mat,(C), is the Lie algebra of the group
GL(n,C).
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THEOREM 3.9. For every finite-dimensional real Lie algebra g there ewists
unique, up to isomorphism, simply-connected Lie group G whose Lie algebra is
isomorphic to g.

Every Lie group G has a left-invariant Riemannian metric. Indeed, pick a
positive-definite inner product (-,-), on V = T.G. For every g € G we consider
the left multiplication L, : G — G, Ly(z) = gx. Then L, : G — G is a smooth
map and the action of G on itself via left multiplication is simply-transitive. We
define the inner product (-,-), on TyG as the image of (-,-), under the derivative
Dg:T.G — T4G.

Every Lie group G acts on itself via inner automorphisms
p(g)(x) = grg™*.
This action is smooth and the identity element e € G is fixed by the entire group G.
Therefore G acts linearly on the tangent space V' = T.G at the identity e € G. The
action of G on V is called the adjoint representation of the group G and denoted
by Ad. Therefore we have the homomorphism

Ad: G — GL(V).

LEMMA 3.10. For every connected Lie group G the kernel of Ad: G — GL(V)
is contained in the center of G.

PRrROOF. There is a local diffeomorphism
exp: V> G

called the exponential map of the group G, sending 0 € V to e € G. In the case
when G = GL(n,R) this map is the ordinary matrix exponential map. The map
exp satisfies the identity

gexp(v)g™" = exp(Ad(g)v), YveV,geG.

Thus, if Ad(g) = Id then g commutes with every element of G of the form
exp(v),v € V. The set of such elements is open in G. Now, if we are willing
to use a real analytic structure on G then it would immediately follow that g be-
longs to the center of G. Below is an alternative argument. Let g € Ker(Ad). The
centralizer Z(g) of g in G is given by the equation

Z(g) ={h e G:[h,g] =1}.

Since the commutator is a continuous map, Z(g) is a closed subgroup of G. More-
over, as we observed above, this subgroup has nonempty interior in G (containing
e). Since Z(g) acts transitively on itself by, say, left multiplication, Z(g) is open
in G. As G is connected, we conclude that Z(g) = G. Therefore kernel of Ad is
contained in the center of G. O

THEOREM 3.11 (E. Cartan). FEwvery closed subgroup H of a Lie group G has
structure of a Lie group so that the inclusion H — G is an embedding of smooth
manifolds.

A Lie group G is called simple if G contains no connected proper normal sub-
groups. Equivalently, a Lie group G is simple if its Lie algebra g is simple, i.e., g is
nonabelian and contains no ideals.
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ExamPLE 3.12. The group SL(2,R) is simple, but its center is isomorphic to
Zs.

Thus, a simple Lie group need not be simple as an abstract group. A Lie group
G is semisimple if its Lie algebra splits as a direct sum

g= 69?:191.’

where each g; is a simple Lie algebra.
3.1.3. Haar measure and lattices.

DEFINITION 3.13. A (left) Haar measure on a topological group G is a countably
additive, nontrivial measure p on Borel subsets of G satisfying:

(1) u(gE) = u(E) for every g € G and every Borel subset E C G.
(2) p(K) is finite for every compact K C G.
(3) Every Borel subset E C G is outer regular:

w(E) =inf{u(U): E C U, U is open in G}
(4) Every open set E C G is inner regular:
w(E) =sup{u(U): U C E, U is open in G}

By Haar’s Theorem, see [Bou63], every locally compact topological group G
admits a Haar measure and this measure is unique up to scaling. Similarly, one
defines right-invariant Haar measures. In general, left and right Haar measures are
not the same, but they are for some important classes of groups:

DEFINITION 3.14. A locally compact group G is unimodular if left and right
Haar measures are constant multiples of each other.

Important examples of Haar measures come from Riemannian geometry. Let
X be a homogeneous Riemannian manifold, G is the isometry group. Then X has a
natural measure w defined by the volume form of the Riemannian metric on X. We
have the natural surjective map G — X given by the orbit map g — ¢(0), where
o € X is a base-point. The fibers of this map are stabilizers G, of points z € X.
Arzela-Ascoli theorem implies that each subgroup G, is compact. Transitivity of
the action G ~ X implies that all the subgroups G, are conjugate. Setting K = G,
we obtain the identification X = G/K. Now, let u be the pull-back of w under the
projection map G — X. By construction, p is left-invariant (since the metric on X
is G-invariant).

DEFINITION 3.15. Let G be a topological group with finitely many connected
components and p a Haar measure on G. A lattice in G is a discrete subgroup
I’ < G so that the quotient Q = I'\G admits a finite G—invariant measure (for the
action to the right of G on @) induced by the Haar measure. A lattice I" is called
uniform if the quotient ) is compact.

If G is a Lie group then the measure above can also be obtained by taking a
Riemannian metric on G which is left-invariant under G' and right-invariant under
K, the maximal compact subgroup of G. Note that when G is unimodular, the
volume form thus obtained is also right-invariant under G.

Thus if one considers the quotient X := G/K, then X has a Riemannian metric
which is (left) invariant under G. Hence, T is a lattice if and only if I acts on X
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properly discontinuously so that vol(T" \ X) is finite. Note that the action of I on
X is a priori not free.

THEOREM 3.16. A locally compact second countable group G is unimodular
provided that it contains a lattice.

Proo¥F. For arbitrary g € G consider the push-forward v = Ry(u) of the (left)
Haar measure ;¢ on G here R, is the right multiplication by g:

v(E) = u(Eg).
Then v is also a left Haar measure on G. By the uniqueness of Haar measure,
v = cp for some constant ¢ > 0.

LEMMA 3.17. Every discrete subgroup I' < G admits a measurable fundamental
set, i.e., a measurable subset of D C G such that

U =G, p(DND)=0, ¥yel\L
~yel

ProOF. Since I' < G is discrete, there exists an open neighborhood V of 1 € G
such that I'NV = {1}. Let U C V be another open neighborhood of 1 € G such
that UU~' C V. Then for v € T we have

ywu=v,uelUu ecU=>y=vuvtleclU=y=1.

In other words, I'-images of U are pairwise disjoint. Since G is a second countable,
there exists a countable subset

E={¢g€G:ieN}
so that
Clearly, each set

W, :=Ugn \ | JTUg:

<n
is measurable, and so is their union

D= G W,.
n=1

Let us verify that D is a measurable fundamental set. First, note that for every
x € G there exists the least n such that x € Ug,,. Therefore,

¢= (Ugn\ UUgZ).
n=1 i<n
Next,

D= fj (FUgn\ UFUgi> =

n=1 <n
r-\J (Ugn\UUgi> > U (Ugn\UUgl) =G.
n=1 <n n=1 <n
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Therefore, I' - D = G. Next, suppose that
reyDND.

Then, for some n, m
x €W, NyWy,.
If m < n then
YW CT | Ug;
i<n
which is disjoint from W,,, a contradiction. Thus, W,, N yW,, = 0 for m < n and
all v e I. If n < m then

W Ny Wy =7~ (YW, N W) = 0.
Thus, n = m, which implies that
Ugn NYUGgn #D=>UN~AU £ =~v=1.
Thus, for all y e T\ {1}, DN D = 0. O
Let D C G be a measurable fundamental set for a lattice I' < G. Then
0 < u(D) = p(T\G) < o0

since I is a lattice. For every g € G, Dg is again a fundamental set for I' and, thus,
w(D) = p(Dg). Hence, u(D) = u(Dg) = cv(D). Tt follows that ¢ = 1. Thus, p is
also a right Haar measure. O

3.1.4. Geometric actions. Suppose now that X is a metric space. We
will equip the group of isometries Isom(X) of X with the compact-open topology,
equivalent to the topology of uniform convergence on compact sets. A subgroup
G C Isom(X) is called discrete if it is discrete with respect to the subset topology.

EXERCISE 3.18. Suppose that X is proper. Show that the following are equiv-
alent for a subgroup G C Isom(X):

a. G is discrete.

b. The action G ~ X is properly discontinuous.

c. For every z € X and an infinite sequence g; € G, lim;_,, d(z, g;(x)) = oc.

Hint: Use Arzela—Ascoli theorem.

DEFINITION 3.19. A geometric action of a group G on a metric space X is an
isometric properly discontinuous cobounded action G ~ X.

For instance, if X is a homogeneous Riemannian manifold with the isometry
group G and I" < (G is a uniform lattice, then I' acts geometrically on X. Note that
every geometric action on a proper metric space is cocompact.

LEMMA 3.20. Suppose that a group G acts geometrically on a proper metric
space X. Then G\X has a metric defined by

(3.1)  dist(a,b) = inf{dist(p, q) ; p € Ga, q € Gb} = inf{dist(a, q) ; ¢ € Gb},

where @ = Ga and b= Gb.
Moreover, this metric induces the quotient topology of G\X.
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PrOOF. The infimum in (3.1) is attained, i.e. there exists g € G such that
dist(a, b) = dist(a, gb).
Indeed, take gg € G arbitrary, and let R = dist(a, gb). Then
dist(a,b) = inf{dist(a,q) ; ¢ € GbN B(a, R)}.
Now, for every gb € B(a, R),
995 ' B(a, R) N B(a, R) # 0.

Since G acts properly discontinuously on X, this implies that the set GbN B(a, R)
is finite, hence the last infimum is over a finite set, and it is attained. We leave it
to the reader to verify that dist is the Hausdorff distance between the orbits G - a
and G - b. Clearly the projection X — G\ X is a contraction. One can easily check
that the topology induced by the metric dist on G\ X coincides with the quotient
topology. [

3.2. Complexes and group actions

3.2.1. Simplicial complexes. As we expect the reader to be familiar with
basics of algebraic topology, we will discuss simplicial complexes and (in the next
section) cell complexes only very briefly.

We will use the notation X to denote the i-th skeleton of the simplicial
complex X. A gallery in an n-dimensional simplicial complex X is a chain of n-

simplices o1, ..., 0k so that o; N o;+1 is an n — 1-simplex for every i = 1,...,k — 1.
Let o, 7 be simplices of dimensions m and n respectively with the vertex sets
o) = {vo, .-y Um}, 70 = {wo, ..., wp}

The product o x 7, of course, is not a simplex (unless nm = 0), but it admits a
standard triangulation, whose vertex set is

0@ x 7O,

This triangulation is defined as follows. Pairs u;; = (v;, w;) are the vertices of o x 7.
Distinct vertices
(uimjov s ’u’ilmjk)

span a k-simplex in o x 7 if and only if jo < ... < ji.

A homotopy between simplicial maps fo,f1 : X — Y is a simplicial map
F : X x I — Y which restricts to f; on X x {i},i = 0,1. The tracks of the
homotopy F' are the paths p(t) = F(x,t),z € X.

Let X be a simplicial complex. Recall that besides usual cohomology groups
H*(X;A) (with coefficients in a ring A that the reader can assume to be Z or
Zs), we also have cohomology with compact support H*(X, A) which are defined
as follows. Consider the usual cochain complex C*(X; A). We say that a cochain
o € C*(X; A) has compact support if it vanishes outside of a finite subcomplex in
X. Thus, in each chain group C*(X; A) we have the subgroup C*(X; A) consisting
of compactly supported cochains. Then the usual coboundary operator § satisfies

§:CH(X; A) - CH(X; A).

The cohomology of the new cochain complex (C¥(X;A),d) is denoted HX(X; A)
and is called cohomology of X with compact support. Maps of simplicial complexes
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no longer induce homomorphisms of H*(X; A) since they do not preserve the com-
pact support property of cochains; however, proper maps of simplicial complexes
do induce natural maps on H}. Similarly, maps which are properly homotopic
induce equal homomorphisms of H} and proper homotopy equivalences induce iso-
morphisms of H}. In other words, H} satisfies the functoriality property of the
usual cohomology groups as long as we restrict to the category of proper maps.

3.2.2. Cell complexes. A cell complex (or CW complex) X is defined as the
increasing union of subspaces denoted X (or X"), called n-skeleta of X. The
0-skeleton X (9 of X is a set with discrete topology. Assume that X (™~1 is defined.
Let,

Un = I_IjeJD;L,
a (possibly empty) disjoint union of closed n-balls D. Suppose that for each D?
we have a continuous attaching map e; : D] — X =1 This defines a map e =
e" : U, — X1 and an equivalence relation z = y = e(z), z € U,y € X1,
We then declare X to be the quotient space of X (=1 U U, with the quotient
topology with respect to the above equivalence relation. We will use the notation
D7 /e; the image of D™ in X", i.e., the quotient D'/ =. We then equip

X::UXn

neN

with the weak topology, where a subset C' C X is closed if and only if the intersection
of C' with each skeleton is closed (equivalently, intersection of C' with the image
of each D™ in X is closed). By abuse of terminology, both the balls D? and their
projections to X are called n-cells in X. Similarly, we will conflate X and its
underlying topological space.

EXERCISE 3.21. A subset K C X is compact if and only if is closed and
contained in a finite union of cells.

Regular and almost regular cell complexes. A cell complex X is said to
be regular if every attaching map e; is 1-1. For instance, every simplicial complex
is a regular cell complex. A regular cell complex is called triangular if every cell
is naturally isomorphic to a simplex. (Note that X itself need not be simplicial
since intersections of cells could be unions of simplices.) A cell complex X is almost
reqular if the boundary S~ ! of every cell D7 is given structure of a regular cell
complex K; so that the attaching map e; is 1-1 on every cell in S"~'. Almost
regular 2-dimensional cell complexes (with a single vertex) appear naturally in the
context, of group presentations, see Definition 4.79.

Barycentric subdivision of an almost regular cell complex. Our goal
is to (canonically) subdivide an almost regular cell complex X so that the result is
a triangular regular cell complex X’ =Y where every cell is a simplex. We define
Y as an increasing union of regular subcomplexes Y, (where Y;, ¢ Y™ but, in
general, is smaller).

First, set Yy := X(©). Suppose that Y;,_; € Y(*=1) is defined, so that |Y,,_;| =
X =1 Consider attaching maps e; : oD} — X (=1 We take the preimage of
the regular cell complex structure of Y,,_; under e; to be a refinement L; of the
regular cell complex structure K; on S"~!. We then define a regular cell complex
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M; on D7 by conning off every cell in L; from the origin o € D7. Then cells in M;
are the cones Cone,, (s), where s’s are cells in Lj;.

o

subdivide

FIGURE 3.1. Barycentric subdivision of a 2-cell.

Since, by the induction assumption, every cell in Y,,_1 is a simplex, its preimage
s in 8"~ is also a simplex, this Cone,(s) is a simplex as well. We then attach
each cell D} to Y, by the original attaching map e;. It is clear that the new
cells Cone,, (s) are embedded in Y,, and each is naturally isomorphic to a simplex.

Lastly, we set
Y = U Y,,.

Second barycentric subdivision. Note that the complex X’ constructed
above may not be a simplicial complex. The problem is that if x,y are distinct
vertices of L;, their images under the attaching map e; could be the same (a point
z). Thus the edges [0}, ], [0;,y] in Y, 41 will intersect in the set {o;, z}. However,
if the complex X was regular, this problem does not arise and X’ is a simplicial
complex. Thus in order to promote X to a simplicial complex (whose geometric
realization is homeomorphic to | X|), we take the second barycentric subdivision X"
of X: Since X’ is a regular cell complex, the complex X’ is naturally isomorphic
to a simplicial complex.

G-cell complexes. Let X be a cell complex and G be a group. We say that
X is a G-cell complez (or that we have a cellular action G ~ X) if G acts on X by
homeomorphisms and for every n we have a G-action G ~ U, so that the attaching
map e” is G-equivariant.

DEFINITION 3.22. A cellular action G ~ X is said to be without inversions if
whenever g € G preserves a cell s in X, it fixes this cell pointwise.

An action G ~ X on a simplicial complex is called simplicial if it sends simplices
to simplices and is linear on each simplex.

Assuming that X is naturally isomorphic to a simplicial complex and G ~ X
is without inversions, without loss of generality we may assume that G ~ X is
linear on every simplex in X.

The following is immediate from the definition of X", since barycentric subdi-
visions are canonical:
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LEMMA 3.23. Let X be an almost regular cell complex and G ~ X be an action
without inversions. Then G ~ X induces a simplicial action without inversions
G X",

LEMMA 3.24. Let X be a simplicial complex and G ~ X be a free simplicial
action. Then this action is properly discontinuous on X (in the weak topology).

Proor. Let K be a compact in X. Then K is contained in a finite union of
simplices o1, ...,0% in X. Let F C G be the subset consisting of elements g € G so
that gK N K # (). Then, assuming that F is infinite, it contains distinct elements
g, h such that g(o) = h(o) for some o € {01,...,0,}. Then f := h~lg(o) = 0.
Since the action G ~ X is linear on each simplex, f fixes a point in ¢. This
contradicts the assumption that the action of G on X is free. O

3.2.3. Borel construction. Recall that every group G admits a classifying
space E(G), which is a contractible cell complex admitting a free cellular action
G ~ E(G). The space E(G) is far from being unique, we will use the one obtained
by Milnor’s Construction, see for instance [Hat02, Section 1.B]. A benefit of this
construction is that E(G) is a simplicial complex and the construction of G ~ E(G)
is canonical. Simplices in F(G) are ordered tuples of elements of g: [go, . .., gn] is an
n-simplex with the obvious inclusions. To verify contractibility of £ = E(G), note
that each i + 1-skeleton E‘*! contains the cone over the i-skeleton E?, consisting
of simplices of the form

[17907~-~7gn]7907~-~7gn €G.
(The point [1,...,1] € E*! is the tip of this cone.) Therefore, the straight-line

homotopy to [1,...,1] gives the required contraction.
The group G acts on E(G) by the left multiplication

9% (90, 9n] = 990, -, 99n]

Clearly, this action is free and, moreover, each simplex has trivial stabilizer. The
action G ~ E(G) has two obvious properties that we will be using;:

1. If G is finite then each skeleton F(G)! is compact.

2. If G; < G5 then there exists an equivariant embedding F(G1) — E(G2).

We will use only these properties and not the actual construction of E(G) and
the action G ~ E(G).

Suppose now that X is a cell complex and G ~ X is a cellular action without
inversions. Our next goal is to replace X with a new cell complex X which admits
a homotopy-equivalence p : X — X so that the action G ~ X lifts (via p) to
a free cellular action G ~ X. The construction of G ~ X is called the Borel
Construction. We first explain the construction in the case when X is a simplicial
complex since the idea is much clearer in this case.

For each simplex o0 € X consider its (pointwise) stabilizer G, < G. Clearly, if
o1 C 09 then

Gy < Gy
For each simplex o define )?g := o0 X E(G,). The group G, acts naturally on )/(:,,.
Whenever o1 C Supp(o2) we have the natural embedding E(G,,) < E(G,,) and
hence embeddings

Xy, =01 X B(Ggy) D 01 X B(Gyy) C Xy,
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Henceforth, we glue )?02 to )A(al by identifying the two copies of the product sub-
complex o1 X E(G,,). Let X denote the regular cell complex resulting from these
identifications.

For general cell complexes we have to modify the above construction. Define
the support Supp(o) of an n-cell o in X to be the smallest subcomplex in X whose
underlying space contains the image of S"~! under the attaching map of o. Since
G acts on X without inversions, for every o1 C Supp(o2),

Go, < Go,

where G, is the stabilizer of ¢ in G. As before, for each n-dimensional cell o define
)?U := D™ x F(G,). The group G, acts on )?(, preserving the product structure
and fixing D" pointwise. Whenever oy C Supp(o2) we have the natural embedding
E(Gy,) <= E(G,,) and hence embeddings

)?gl =01 X E(G,,) D 01 x E(G4,) C Supp(o2) x E(Gy,).

At the same time, we have the attaching map e,, : 9D™ — Supp(c2) and, thus the
attaching map

€oy = €gy X Id : OD™ x E(G,,) — Supp(o2) X E(G,,)

Here n is the dimension of the cell o5. We now define X by induction on skeleta of
X. We begin with X, obtained by replacing each O-cell o in X with X,. Assume
that Xn 1 is constructed by glumg spaces XT, where 7’s are cells in X1, For
each n-cell o the attaching map €, defined above will yield an attaching map

OD™ x E(Gy) = Xp_1.

We then glue the spaces )/(\], to )/(\'n_l via these attaching maps. We have a natural
projection p : X — X which corresponds to the projection

X, = D" x E(G,) — D"

for each n-cell o in X. Since each D" is contractible, it follows that p restricts to
a homotopy-equivalence

X, = X

for every n. Naturality of the construction ensures that the action G ~ X lifts to
an action G X it is clear from the construction that for each cell o, the stablhzer
of X, in G is G,. Since G, acts freely on E(G,), it follows that the action G ~ X
is free. Suppose now that G ~ X is properly discontinuous. Then, G, is finite
for each o and, thus X, has finite i-skeleton for each i. Moreover, if X/G were
compact, then the action of G on each i-skeleton of X is compact as well.

The construction of the complex X and the action G ~ X is called the Borel
construction. One application of the Borel construction is the following

LEMMA 3.25. Suppose that G ~ X is a cocompact properly discontinuous ac-
tion. Then there exists a properly discontinuous, cellular, free action G ~ X which
is cocompact on each skeleton and so that X is homotopy-equivalent to X.
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3.2.4. Groups of finite type. If G is a group admitting a free properly
discontinuous cocompact action on a graph I', then G is finitely generated, as, by the
covering theory, G = w1 (I'/G) /p.(m1(T")), where p : I' — I'/G is the covering map.
Groups of finite type F,, are higher-dimensional generalizations of this example.

DEFINITION 3.26. A group G is said to have type F,,, 1 < n < oo, if it admits
a free properly discontinuous cellular action on an n — 1-connected n-dimensional
cell complex Y, which is cocompact on each skeleton.

Note that we allow the complex Y to be infinite-dimensional.
EXERCISE 3.27. A group G is finitely-presented if and only if it has type Fs.
In view of Lemma 3.25, we obtain:

COROLLARY 3.28. A group G has type ¥, if and only if it admits a properly
discontinuous cocompact cellular action on an n — 1-connected n-dimensional cell
complex X, which is cocompact on each skeleton.

PrROOF. One direction is obvious. Suppose, therefore, that we have an action
G ~ X as above. We apply Borel construction to this action and obtain a free
properly discontinuous action G ~ X which is cocompact on each skeleton of X.
If n=o00,weletY := X. Otherwise, we let Y denote the n-skeleton of X. Recall
that the inclusion Y < X induces monomorphisms of all homotopy groups =;,
j <n—1. Since X is n — 1-connected, the same holds for X and hence Y. O

COROLLARY 3.29. Ewery finite group has type F .

PRrROOF. Start with the action of G on a complex X which is a point and then
apply the above corollary. ([l

3.3. Subgroups

Given two subgroups H, K in a group G we denote by HK the subset
{hk; he H ke K} CG.

Recall that a normal subgroup K in G is a subgroup such that for every g € G,
gKg~! = K (equivalently gK = Kg). We use the notation K <1 G to denote that
K is a normal subgroup in G. When either H or K is a normal subgroup, the set
HK defined above becomes a subgroup of G.

A subgroup K of a group G is called characteristic if for every automorphism
¢: G — G, ¢(K) = K. Note that every characteristic subgroup is normal (since
conjugation is an automorphism). But not every normal subgroup is characteristic.

ExamPLE 3.30. Let G be the group (Z2, +). Since G is abelian, every subgroup
is normal. But, for instance, the subgroup Z x {0} is not invariant under the
automorphism ¢ : Z2 — Z2 | ¢(m,n) = (n,m).

DEFINITION 3.31. A subnormal descending seriesindexsubnormal descending
series in a group G is a series

G=No>Ni>--->N,>---
such that N;y; is a normal subgroup in N; for every ¢ > 0.
If all V; are normal subgroups of G then the series is called normal.

A subnormal series of a group is called a refinement of another subnormal series
if the terms of the latter series all occur as terms in the former series.
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The following is a basic result in group theory:

LemMA 3.32. If G is a group, N < G, and A <« B < G, then BN/AN s
isomorphic to B/A(BNN).

DEFINITION 3.33. Two subnormal series
G=Ay>A1>...>A,={1} and G=By> B >...> B,, = {1}

are called isomorphic if n = m and there exists a bijection between the sets of
partial quotients {A4;/A4,11 |i=1,...,n—1}and {B;/B;41|i=1,...,n— 1} such
that the corresponding quotients are isomorphic.

LEMMA 3.34. Any two finite subnormal series
G=Hy>H,>...>H,={1} and G=Ko> K, >...> Ky, = {1}
possess isomorphic refinements.
PRrROOF. Define H;; = (K; N H;)H; 1. The following is a subnormal series
Hyoy=H; >Hy >...2 Hyy = Hiy 1.

When inserting all these in the series of H; one obtains the required refinement.
Likewise, define K, = (Hs; N K, )K, 1 and by inserting the series

Ko=K.2Kn2...2 Ky =K,

in the series of K., we define its refinement.
According to Lemma 3.32

Hij/Hijpr = (KO Hi) Higy /(K VHy) Hiy ~ KO H; /(K O H ) (KGN Higq) .
Similarly, one proves that Kji/Kji+1 ~ KJ n Hz/(K]+1 n HZ)(Kj N Hi+1). O

DEFINITION 3.35. The center Z(G) of a group G is defined as the subgroup
consisting of elements h € G so that [h,g] =1 for each g € G.

It is easy to see that the center is a characteristic subgroup of G.

DEFINITION 3.36. A group G is a torsion group if all its elements have finite
order.

A group G is said to be without torsion (or torsion-free) if all its non-trivial
elements have infinite order.

Note that the subset TorG = {g € G | g of finite order} of the group G,

sometimes called the torsion of G, is in general not a subgroup.

DEFINITION 3.37. A group G is said to have property * wvirtually if a finite
index subgroup H of G has the property *.
The following properties of finite index subgroups will be useful.

LEMMA 3.38. If N < H and H < G, N of finite index in H and H finitely
generated, then N contains a finite index subgroup K which is normal in G.
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PRrooF. By hypothesis, the quotient group F' = H/N is finite. For an arbitrary
g € G the conjugation by g is an automorphism of H, hence H/gNg~! is isomorphic
to F. A homomorphism H — F' is completely determined by the images in F' of
elements of a finite generating set of H. Therefore there are finitely many such
homomorphisms, and finitely many possible kernels of them. Thus, the set of
subgroups gNg~!, g € G, forms a finite list N, Ny,.., N. The subgroup K =
ﬂgeG gNg~! = NN N;N---N Ngis normal in G and has finite index in N, since
each of the subgroups Ny, ..., Ny has finite index in H. O

PROPOSITION 3.39. Let G be a finitely generated group. Then:
(1) For every n € N there exist finitely many subgroups of index n in G.

(2) FEvery finite index subgroup H in G contains a subgroup K which is finite
index and characteristic in G.

PrOOF. (1) Let H < G be a subgroup of index n. We list the left cosets of H:
H:gl 'H792'H7'°'7gn'H7

and label these cosets by the numbers {1,...,n}. The action by left multiplication
of G on the set of left cosets of H defines a homomorphism ¢ : G — S, such that
¢(G) acts transitively on {1,2,...,n} and H is the inverse image under ¢ of the
stabilizer of 1 in S,. Note that there are (n — 1)! ways of labeling the left cosets,
each defining a different homomorphism with these properties.

Conversely, if ¢ : G — S, is such that ¢(G) acts transitively on {1,2,...,n}
then G/¢~1(Stab (1)) has cardinality n.

Since the group G is finitely generated, a homomorphism ¢ : G — S, is deter-
mined by the image of a generating finite set of GG, hence there are finitely many
distinct such homomorphisms. The number of subgroups of index n in H is equal
to the number 7,, of homomorphisms ¢ : G — S,, such that ¢(G) acts transitively
on {1,2,...,n}, divided by (n — 1)L

(2) Let H be a subgroup of index n. For every automorphism ¢ : G — G,
©(H) is a subgroup of index n. According to (1) the set {¢(H) | ¢ € Aut (G)} is
finite, equal {H, Hy, ..., Hi}. It follows that

K = ﬂ ©H)=HNH N...NHy.
peAut (G)

Then K is a characteristic subgroup of finite index in H hence in G. O

Let S be a subset in a group G, and let H < G be a subgroup. The following
are equivalent:

(1) H is the smallest subgroup of G containing S';

(2) H=sca,<cCrs
(3) H= {8182"-Sn ;neN,s; € Sor 3;1 € S for every i € {1,2,...,71}}.
The subgroup H satisfying any of the above is denoted H = (S) and is said
to be generated by S. The subset S C H is called a generating set of H. The
elements in S are called generators of H.
When S consists of a single element z, (S) is usually written as (z); it is the
cyclic subgroup consisting of powers of z.
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We say that a normal subgroup K < G is normally generated by a set R C K
if K is the smallest normal subgroup of G which contains R, i.e.

We will use the notation
for this subgroup.

3.4. Equivalence relations between groups

DEFINITION 3.40. (1) Two groups G1 and G» are called co-embeddable if
there exist injective group homomorphisms G; — G2 and G2 — G;.

(2) The groups G and G2 are commensurable if there exist finite index sub-
groups H; < G;, ¢ = 1,2, such that H; is isomorphic to Hs.

An isomorphism ¢ : Hy — Hs is called an abstract commensurator of Gy
and Gs.

(3) We say that two groups G1 and G are virtually isomorphic (abbreviated
as VI) if there exist finite index subgroups H; C G; and finite normal
subgroups F; < H;, i = 1,2, so that the quotients Hy/F; and Hs/F» are
isomorphic.

An isomorphism ¢ : Hy/Fy — Hy/Fs is called a virtual isomorphism of
G1 and G2. When Gy = Ga, ¢ is called virtual automorphism.

ExAMPLE 3.41. All countable free groups are co-embeddable. However, a free
group of infinite rank is not virtually isomorphic to a free group of infinite rank.

PROPOSITION 3.42. All the relations in Definition 3.40 are equivalence relation
between groups.

PRrROOF. The fact that weak commensurability is an equivalence relation is
immediate. It suffices to prove that virtual isomorphism is am equivalence relation.
The only non-obvious property is transitivity. We need

LEMMA 3.43. Let Fy, F5 be normal finite subgroups of a group G. Then their
normal closure F = ((F, F3)) (i.e., the smallest normal subgroup of G containing
Fy and Fy) is again finite.

Proor. Let f1 : G — G1 = G/F1, fo : G1 — G1/f1(F») be the quotient maps.
Since the kernel of each f1, fo is finite, it follows that the kernel of f = fy 0 f7 is
finite as well. On the other hand, the kernel of f is clearly the subgroup F. O

Suppose now that G is VI to G and G5 is VI to G3. Then we have
F,<H; <G, |G;: Hi| <o0,|F;| <00, i=1,2,3,
and
F)<H) < Go,|Gs : H)| < 00, |Fj| < 00,
so that
Hy/F\ = Hy/F,, Hy/F, = H;3/F3.
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The subgroup HY := Hy N H} has finite index in G3. By the above lemma, the
normal closure in HY
K2 = <<F2 n Hé/,FQ/ n Hé/>>
is finite. We have quotient maps
fi : Hél — Cl = fz(Hg) < Hz/Fz,Z = 1,3,

with finite kernels and cokernels. The subgroups E; := f;(K3), are finite and normal
in C;, i =1,3. We let H/, F! C H; denote the preimages of C; and E; under the
quotient maps H; — H;/F;, i = 1,3. Then |F]| < o0,|G; : Hl| < o0,i = 1,3.
Lastly,

H{/F = Ci/E; = Hy |Ko,i=1,3.
Therefore, G1, G are virtually isomorphic. O

Given a group G, we define VI(G) as the set of equivalence classes of virtual
automorphisms of G with respect to the following equivalence relation. Two virtual
automorphisms of G, ¢ : Hi/F\ — Ha/F» and ¢ : H{/F| — Hj/F;, are equivalent
if for ¢ = 1, 2, there exist HZ, a finite index subgroup of H; N H/, and F a normal
subgroup in H; containing the intersections H; N F; and H; N F/, such that ¢ and
1) induce the same automorphism from H 1 /F1 to H2 / Fg.

Lemma 3.43 implies that the composition induces a binary operation on VI(G),
and that VI(G) with this operation becomes a group, called the group of virtual
automorphisms of G.

Let Comm(G) be the set of equivalence classes of abstract commensurators
of G with respect to an equivalence relation defined as above, with the normal
subgroups F; and F) trivial. As in the case of VI(G), the set Comm/(G), endowed
with the binary operation defined by the composition, becomes a group, called the
abstract commensurator of the group G.

Let T be a subgroup of a group G. The commensurator of I in G, denoted by
Commg(T), is the set of elements g in G such that the conjugation by g defines an
abstract commensurator of I': gI'g~! NT has finite index in both I and gl'g~!

EXERCISE 3.44. Show that Commg(T) is a subgroup of G.
EXERCISE 3.45. Show that for G = SL(n,R) and T' = SL(n,Z), Commg(T)
contains SL(n, Q).
3.5. Commutators, commutator subgroup

DEFINITION 3.46. The commutator of two elements h,k in a group G is
[h, k] = hkR™'E7T.

Note that:
e two elements h, k commute (i.e., hk = kh) if and only if [h, k] = 1.
o hk = [h, klkh:

Thus, the commutator [, k] ‘measures de degree of non-commutativity’ of the
elements h and k. In Lemma 7?7 we will prove some further properties of commu-
tators.

Let H, K be two subgroups of G. We denote by [H, K] the subgroup of G
generated by all commutators [h, k] with h € H, k € K.
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DEFINITION 3.47. The commutator subgroup (or derived subgroup) of G is the
subgroup G’ = [G, G]. As above, we may say that the commutator subgroup G’ of
G ‘measures the degree of non-commutativity’ of the group G.

A group G is abelian if every two elements of G commute, i.e., ab = ba for all
a,beqG.

EXERCISE 3.48. Suppose that S is a generating set of G. Then G is abelian if
and only if [a,b] =1 for all a,b € S.

PROPOSITION 3.49. (1) G’ is a characteristic subgroup of G;
(2) G is abelian if and only if G' = {1};
(3) Gup = G/G" is an abelian group (called the abelianization of G );

(4) if o : G = A is a homomorphism to an abelian group A, then ¢ factors
through the abelianization: Given the quotient map p : G — Gy, there
exists a homomorphism @ : Gq, — A such that ¢ = pop.

PRrROOF. (1) The set S = {[z,y] | =,y € G} is a generating set of G’ and for
every automorphism ¢ : G — G, ¢¥(S) = S.

(2) follows from the equivalence zy = yx < [z,y] = 1, and (3) is an immediate
consequence of (2).

(4) follows from the fact that ¢(S) = {1}. O

Recall that the finite dihedral group of order 2n, denoted by Ds, or Iz(n), is
the group of symmetries of the regular Euclidean n-gon, i.e. the group of isometries
of the unit circle S C C generated by the rotation r(z) = e*+ z and the reflection
s(z) = z. Likewise, the infinite dihedral group D is the group of isometries of Z
(with the metric induced from R); the group Do, is generated by the translation
t(z) = © 4+ 1 and the symmetry s(z) = —z.

EXERCISE 3.50. Find the commutator subgroup and the abelianization for the
finite dihedral group Da,, and for the infinite dihedral group D...

EXERCISE 3.51. Let S, (the symmetric group on n symbols) be the group of
permutations of the set {1,2,...,n}, and A, C S,, be the alternating subgroup,
consisting of even permutations.

(1) Prove that for every n & {2,4} the group A, is generated by the set of
cycles of length 3.

(2) Prove that if n > 3, then for every cycle o of length 3 there exists p € S,
such that o2 = pop~ .

(3) Use (1) and (2) to find the commutator subgroup and the abelianization
for A, and for S,,.

(4) Find the commutator subgroup and the abelianization for the group H of
permutations of Z defined in Example 4.7.
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Note that it is not necessarily true that the commutator subgroup G’ of G
consists entirely of commutators {[z,y] : z,y € G} (see [Vav] for some finite group
examples). However, occasionally, every element of the derived subgroup is indeed
a single commutator. For instance, every element of the alternating group A, < S,
is the commutator in S, see [Ore51].

This leads to an interesting invariant (of geometric flavor) called the commu-
tator norm (or commutator length) ¢.(g) of g € G’, which is the least number k so
that g can be expressed as a product

g= [xlayl] e [xkayk)L
as well as the stable commutator norm of g:
g n
lim sup M
n— 00 n

See [Bav91, Cal08] for further details. For instance, if G is the free group on
two generators (see Definition 4.16), then every nontrivial element of G’ has stable
commutator norm greater than 1.

3.6. Semi-direct products and short exact sequences
Let G;,i € I, be a collection of groups. The direct product of these groups,
denoted
¢=]]¢:

iel
is the Cartesian product of sets GG; with the group operation given by

(ai) - (bi) = (aib;).

Note that each group G; is the quotient of G by the (normal) subgroup

II &

Jen{i}
A group G is said to spit as a direct product of its normal subgroups N; <
G,i=1,...,k, if one of the following equivalent statements holds:
e G=N;---Nyand N, N N; = {1} for all i # j;
e for every element g of G there exists a unique k-tuple (nq,...,nx),n; €

N;,i=1,...,k such that g =nq ---ny.
Then, G is isomorphic to the direct product Ny X ... x Ni. Thus, finite direct
products G can be defined either extrinsically, using groups N; as quotients of G,
or intrinsically, using normal subgroups N; of G.

Similarly, one defines semidirect products of two groups, by taking the above
intrinsic definition and relaxing the normality assumption:

DEFINITION 3.52. (1) (with the ambient group as given data) A group G
is said to split as a semidirect product of two subgroups N and H, which
is denoted by G = N x H if and only if N is a normal subgroup of G, H
is a subgroup of GG, and one of the following equivalent statements holds:

e G=NHand NN H ={1}

e G=HN and NN H ={1};
e for every element g of G there exists a unique n € N and h € H such

that g = nh;
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e for every element g of G there exists a unique n € N and h € H such
that g = hn;
e there exists a retraction G — H, i.e., a homomorphism which re-
stricts to the identity on H, and whose kernel is V.
Observe that the map ¢ : H — Aut (N) defined by ¢(h)(n) = hnh™!,
is a group homomorphism.

(2) (with the quotient groups as given data) Given any two groups N and H
(not necessarily subgroups of the same group) and a group homomorphism
¢ : H — Aut (N), one can define a new group G = N x, H which is a
semidirect product of a copy of N and a copy of H in the above sense,
defined as follows. As a set, N x, H is defined as the cartesian product
N x H. The binary operation * on G is defined by

(n1, h1) * (ng2, ha) = (n1p(h1)(n2), hiha), Vni,ne € N and hy,he € H.

The group G = N %, H is called the semidirect product of N and H
with respect to .

REMARKS 3.53. (1) If a group G is the semidirect product of a normal
subgroup N with a subgroup H in the sense of (1) then G is isomorphic
to N X, H defined as in (2), where

o(h)(n) = hnh™t.

(2) The group N %, H defined in (2) is a semidirect product of the normal
subgroup N1 = N x {1} and the subgroup H = {1} x H in the sense of
(1).

(3) If both N and H are normal subgroups in (1) then G is a direct product
of N and H.

If  is the trivial homomorphism, sending every element of H to the
identity automorphism of NV, then N x4 H is the direct product N x H.

Here is yet another way to define semidirect products. An ezact sequence is a
sequence of groups and group homomorphisms

Pn—1 Pn
...Gn,1 — Gn —>Gn+1...

such that Imy, 1 = Kery, for every n. A short exact sequence is an exact
sequence of the form:

(3.2) 1y — N5 a6 % H— (1),

In other words, ¢ is an isomorphism from N to a normal subgroup N’ <t G and v
descends to an isomorphism G/N’ ~ H.

DEFINITION 3.54. A short exact sequence splits if there exists a homomorphism
o : H — G (called a section) such that

Yoo =1Id.
When the sequence splits we shall sometimes write it as
1-N—-G3 H-1.

Then, every split exact sequence determines a decomposition of G as the semidirect
product o(N) x o(H). Conversely, every semidirect product decomposition G =
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N x H defines a split exact sequence, where ¢ is the identity embedding and
1 : G — H is the retraction.

EXAMPLES 3.55. (1) The dihedral group Dsy, is isomorphic to Zj, 1, Zs,

where p(1)(k) =n — k.

(2) The infinite dihedral group D is isomorphic to Z X, Zs, where ¢(1)(k) =
—k.

(3) The permutation group S, is the semidirect product of A, and Z; =
{id, (12)}.

(4) The group (Aff(R), o) of affine maps f : R — R, f(z) = az + b, with
a € R* and b € R is a semidirect product R x, R*, where ¢(a)(z) = az.

PROPOSITION 3.56. (1) Every isometry ¢ of R™ is of the form ¢(x) =
Az + b, where b € R"™ and A € O(n).

(2) The group Isom(R"™) splits as the semidirect product R™ x O(n), with the
obvious action of the orthogonal O(n) on R™.

Sketch of proof of (1). For every vector a € R™ we denote by T, the translation
of vector a, x — x + a.
If ¢(0) = b then the isometry 1) = T_; o ¢ fixes the origin 0. Thus it suffices to
prove that an isometry fixing the origin is a linear map in O(n). Indeed:
e an isometry of R™ preserves straight lines, because these are bi-infinite
geodesics;
e an isometry is a homogeneous map, i.e. ¥(Av) = Ap(v); this is due to the
fact that (for 0 < A < 1) w = A\v is the unique point in R™ satisfying

d(0,w) 4+ d(w,v) = d(0,v).

e an isometry map is an additive map, i.e. ¥)(a + b) = ¥(a) + 1(b) because
an isometry preserves parallelograms.

Thus, 1 is a linear transformation of R", ¢(z) = Ax for some matrix A. Or-
thogonality of the matrix A follows from the fact that the image of an orthonormal
basis under ¢ is again an orthonormal basis. a

EXERCISE 3.57. Prove statement (2) of Proposition 3.56. Note that R™ is
identified to the group of translations of the n-dimensional affine space via the map
b— Tb.

In sections 3.10 and 3.11 we discuss semidirect products and short exact se-
quences in more detail.

3.7. Direct sums and wreath products

Let X be a non-empty set, and let G = {G, | © € X} be a collection of groups
indexed by X. Consider the set of maps Map(X,G) with finite support, i.e.,

Mapy(X,G)=={f: X = | | Go; f(2) € Ga, f(z) # 1a,

zeX
for only finitely many x € X}.
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DEFINITION 3.58. The direct sum @, y G is defined as Mapy (X, G), endowed
with the pointwise multiplication of functions:

(f-9)(x) = f(z)-g(x), Vo e X.

Clearly, if A, are abelian groups then @,y A, is abelian.
When G, = G is the same group for all x € X, the direct sum is the set of
maps

Mapy(X,G) :={f: X = G| f(z) # 1¢ for only finitely many « € X} ,
and we denote it either by @,y G or by G®¥.

If, in this latter case, the set X is itself a group H, then there is a natural
action of H on the direct sum, defined by

v: H— Aut <@ G> ,o(R)f(x) = f(htz), Vo € H.

heH

Thus, we define the semi-direct product

(@a) "'

heH

DEFINITION 3.59. The semidirect product (B, .y G) X, H is called the wreath
product of G with H, and it is denoted by G H. The wreath product G = Z 1 Z
is called the lamplighter group.

3.8. Group cohomology

The purpose of this section is to introduce cohomology of groups and to give
explicit formulae for cocycles and coboundaries in small degrees. We refer the
reader to [Bro82b, Chapter ITI, Section 1] for the more thorough discussion.

Let G be a group and let M, N be left G-modules; then Homg (M, N) de-
notes the subspace of G-invariants in the G-module Hom(M, N), where G acts on
homomorphisms « : M — N by the formula:

(gu)(m) = g - u(g~"m).

If C. is a chain complex and A is a G-module, then Homg(Cy, A) is the chain
complex formed by subspaces Homg(Ck, A) in Hom(Cy, A). The standard chain
complez C, = C,(G) of G with coeflicients in A is defined as follows:

Cv(G) = Z® Hfzo G, is the G-module freely generated by (k + 1)-tuples
(g0, ---,gx) of elements of G with the G-action given by

g-(g0,---59%) = (990, - - - 9gk)-

The reader should think of each tuple as spanning a k-simplex. The boundary
operator on this chain complex is the natural one:

k
8/6(907 e agk) = Z(_l)l(g()v cee 7.@% .- 'gk?)a

i=0
where §; means that we omit this entry in the tuple. Then C, = C.(G) is the
simplicial chain complex of the simplicial complex defining the Milnor’s classifying
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space EG of the group G (see Section 3.2.3). The dual cochain complex C* is
defined by:

C* = Hom(Ci, A),  6(f)((90,-- -+ 9r+1)) = f(Ort1(g0, - - grt1)), f € CF.

Suppose for a moment that A is a trivial G-module. Then, for BG = (EG)/G,
the simplicial cochain complex C*(BG, A) is naturally isomorphic to the subcom-
plex of G-invariant cochains in C*(G, A), i.e., the subcomplex (C*(G,A))Y =
Homg(Cy, A). If Ais anontrivial G-module then the Homg(Cl, A) is still isomor-
phic to a certain natural cochain complex based on the simplicial complex C,(BGQ)
(cochain complex with twisted coefficients, or coefficients in a certain sheaf), but
the definition is more involved and we will omit it.

DEFINITION 3.60. The cohomology groups of G with coefficients in the G-
module A are defined as H*(G, A) := H.(Homg(C,, A)). In other words,

H*(G,A) = Ker(6,)/Im(6x_1), H'(G,A) = Z' (G, A)/B'(G, A).
In particular, if A is a trivial G-module, then H*(G, A) = H*(BG, A).

So far, all definitions looked very natural. Our next step is to reduce the
number of variables in the definition of cochains by one using the fact that cochains
in Hom¢(Cy, A) are G-invariant. The drawback of this reduction, as we will see,
will be lack of naturality, but the advantage will be new formulae for cohomology

groups which are useful in some applications.
By G-invariance, for f € Homg(Cy, A) we have:

f(gos--r91) =90 f(L,95 91,90 g1)

In other words, it suffices to restrict cochains to the set of (k + 1)-tuples where the
first entry is 1 € G. Every such tuple has the form

(1391791923 cees g1 gk)
(we will see below why). The latter is commonly denoted

[911g2] - - - 19k]-
Note that computing the value of the coboundary,

Ok—1f(1,91,9192, -, 91~ gr) = On—1f([91]g2] - - - |9&])

we get
ok—1f(L, 91,9192, .91 gK) =
flar, - gvg0) = f(L 192, 91 gk) + f(L,91, 919295, - 91 g) — ... =
g1 f(Lg2, .. 92 gr) — f(l9192]93] - - - |gx]) + f([91]9293]94] - - - [gk]) — - .. =
g1 - f(lg2l- - -|g]) = f(lg192193] - - - |gr]) + f([g1|9295|94] - - - |gr]) — - -
Thus,
Or—1f([g1lg2]---lgk]) = g1 - f(lg2l .- |gk]) — F(lg1921g5] - - - gx])+

f(lg119293194] - - - 1gk]) — - -

Then, we let C* (k > 1) denote the abelian group of functions f sending k-tuples
[g1] .. .|gk] of elements of G to elements of A; we equip these groups with the above
coboundary homomorphisms d;. For k = 0, we have to use the empty symbol [ ],
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f([]) = a € A, so that such functions f are identified with elements of A. Thus,
Cy = A and the above formula for §y reads as:

do:a—cqy, callg]) =9 -a—a.

The resulting chain complex (C,,d,) is called the inhomogeneous bar complex of G
with coefficients in A. We now compute the coboundary maps § for this complex
for small values of k:

(1) do:a— fo, fa([9]) =g -a—a.

(2) 01(f)([g1,92]) = 91 - f(lg2]) — f(lg192]) + f([g1])-

(3) 02(/f)([9192193]) = g1 - f(lg2lgs]) — f(lg1921g5]) + f(l91lg9295]) — f([g1lg2])-

Therefore, spaces of coboundaries and cocycles for (C., 6,) in small degrees are

(we now drop the bar notation for simplicity):

(1) BYG,A) ={fa:G— AVae Alfslg) =g -a—a}.
(2) Zl(G A)={f:G — Alf(g192) = f(91) + 91 f(g2)}.
(3) BQ(G A)) ={h:GxG— AFf: G — A h(g1,92) = f(g1) — f(9192) +

f(g2)}-
(4) ZQ(G A) ={f: GxG = Algi - f(g2,93) — [(91,92) = f(9192,93) —
f(91,9293)}-

Let us look at the definition of Z'(G, A) more closely. In addition to the left
action of G on A, we define a trivial right action of G on A: a-g = a. Then a
function f: G — A is a 1-cocycle if and only if

flg192) = f(g1) - 92 + g1 - f(g2)-

The reader will immediately recognize here the Leibnitz formula for the derivative
of the product. Hence, 1-cocycles f € Z'(G, A) are called derivations of G with
values in A. The 1-coboundaries are called principal derivations. If A is trivial as
a left G-module, then, of course, all principal derivations are zero and derivations
are just homomorphisms G — A.

Nonabelian derivations. The notions of derivation and principal derivation
can be extended to the case when the target group is nonabelian; we will use the
notation N for the target group with the binary operation x and g-n for the action
of G on N by automorphisms, i.e.,

g-n=p(g)(n), where p:G — Aut(N) is a homomorphism.
DEFINITION 3.61. A function d: G — N is called a derivation if

d(9192) = d(g1) * g1 - d(g2), V91,92 € G.

A derivation is called principal if it is of the form d = d,,, where

dn(g) =n"" * (g n).
The space of derivations is denoted Der(G, N) and the subspace of principal deriva-
tions is denoted Prin(G, N) or, simply, P(G, N).

EXERCISE 3.62. Verify that every principal derivation is indeed a derivation.

EXERCISE 3.63. Verify that every derivation d satisfies
. d(1) =

o dig ) =g [dg)] .
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We will use derivations in the context of free solvable groups in Section ?7.
In section (§3.10) we will discuss derivations in the context of semidirect products,
while in §3.11 we explain how 2nd cohomology group H?(G,A) can be used to
describe central co-extensions.

Nonabelian cohomology. We would like to define the 1-st cohomology
HY(G, N), where the group N is nonabelian and we have an action of G on N.
The problem is that neither Der(G, N) nor Prin(G, N) is a group, so taking quo-
tient Der(G, N)/Prin(G, N) makes no sense. Nevertheless, we can think of the
formula

[ f4da,a €A,
in the abelian case (defining action of Prin(G, A) on Der(G, A)) as the left action
of the group A on Der(G, A):
a(f)=f", fg)=-a+flg+ (g a)

The latter generalizes in the nonabelian case, the group N acts to the left on
Der(G,N) by

n(f)=1f, fg)=n""xflg)*(g-n)
Then, one defines H'(G, N) as the quotient

N\Der(G,N).

EXAMPLE 3.64. 1. Suppose that G-action on N is trivial. Then Der(G,N) =
Hom(G,N) and N acts on homomorphisms f : G — N by postcomposition with
inner automorphisms. Thus, H!(G, N) in this case is

N\Hom(G, N),

the set of conjugacy classes of homomorphisms G — N.

2. Suppose that G = Z = (1) and the action ¢ of Z on N is arbitrary. We
have 1 := ¢(1) € Aut(N). Then H'(G, N) is the set of twisted conjugacy classes
of elements of N: Two elements m1, mo € N are said to be in the same n-twisted
conjugacy class if there exists n € N so that

mg =n"txmy xn(n).

Indeed, every derivation d € Der(Z, N) is determined by the image m = d(1) € N.
Then two derivations d; so that m; = d;(1) (i = 1,2) are in the same N-orbit if
mi,ms are in the same n-twisted conjugacy class.

3.9. Ring derivations

Our next goal is to extend the notion of derivation in the context of (noncom-
mutative) rings. Typical rings that the reader should have in mind are integer group
TINgSs.

Group rings. The (integer) group ring ZG of a group G is the set of formal
sums geG Mg 95 where m, are integers which are equal to zero for all but finitely
many values of g. Then ZG is a ring when endowed with the two operations:

ngg—l—ang: Z(mg+n9)9

geG geG geG

e addition:

79



e multiplication defined by the convolution of maps to Z, that is

Zmaa+2nbb: Z Z meny | G-

acG beG geG \ab=g

According to a Theorem of G. Higman [Hig40], every group ring is an integral
domain. Both Z and G embed as subsets of ZG by identifying every m € Z with
mlg and every g € G with 1g. Every homomorphism between groups ¢ : G — H
induces a homomorphism between group rings, which by abuse of notation we shall
denote also by ¢. In particular, the trivial homomorphism o : G — {1} induces a
retraction o : ZG — Z, called the augmentation. If the homomorphism ¢ : G — H
is an isomorphism then so is the homomorphism between group rings. This implies
that an action of a group G on another group H (by automorphisms) extends to
an action of G on the group ring ZH (by automorphisms).

Let L be aring and M be an abelian group. We say that M is a (left) L-module
if we are given a map

(lym)—L-m,Lx M — M,
which is additive in both variables and so that
(33) (41 *62) -m:€1 . (42 ~m),

where * denotes the multiplication operation in L.
Similarly, the ring M is the right L-module if we are given an additive in both
variables map
(m,£) = m-6, M x L — M,
so that
(3.4) m - (fl *gg) = (mél) -Zg.
Lastly, M is an L-bimodule if M has structure of both left and right L-module.

DEFINITION 3.65. Let M be an L-bimodule. A derivation (with respect to this
bimodule structure) is a map d : L — M so that:
(1) d(ty + £3) = d(61) + d(¢s),
(2) d(€1 *82) = d(gl) . 62 + 61 . d([g)
The space of derivations is an abelian group, which will be denoted Der(L, M).

Below is the key example of a bimodule that we will be using in the context
of derivations. Let G, H be groups, ¢ : G — Bij(H) is an action of G on H by
set-theoretic automorphisms. We let L := ZG, M := ZH, where we regard the ring
M as an abelian group and ignore its multiplicative structure.

Every action ¢ : G ~ H determines the left L-module structure on M by:

(Z aigi) ) (Z bihi) = Zaibigi ~hi, a; € Z,bj €7,
i J i,J

where g - h = ¢(g)(h) for g € G,h € H. We define the structure of right L-module
on M by:
(m,f) = mo(f) = o()m, o(f) eZ
where o : L — Z is the augmentation of ZG = L.
Derivations with respect for the above group ring bimodules will be called group
ring derivations.
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EXERCISE 3.66. Verify the following properties of group ring derivations:
(P1) d(1g) =0, whence d(m) = 0 for every m € Z;

(P2) d(g™") = —g~"-d(9);

(P3) d(g1---gm) = D1y (g1 gi-1) - d(gi)o(gis1 - gm) -

(Ps4) Every derivation d € Der(ZG,ZH) is uniquely determined by its values d(z)
on generators z of G.

Fox Calculus. We now consider the special case when G = H = FYy, is
the free group on the generating set X. In this context, theory of derivations was
developed in [Fox53].

LEMMA 3.67. Every map d: X — M = ZG extends to a group ring derivation
d € Der(ZG,M).
Proor. We set
diz™) = -z~ ' d(z), VexeX
and d(1) = 0. We then extend d inductively to the free group G by
d(yu) = d(y) +y - d(u),
where y = 2 € X or y = 2~ ! and yu is a reduced word in the alphabet X U X 1.
We then extend d by additivity to the rest of the ring L = ZG. In order to verify
that d is a derivation, we need to check only that
d(uwv) = d(u) + u - d(v),
where u,v € Fx. The verification is a straightforward induction on the length of

the reduced word u and is left to the reader. O

NotaTIiON 3.68. To each generator z; € X we associate a derivation 0;, called
Foz derivative, defined by 0;z; = 0;; € Z C ZG. In particular,

Oi(z; ) = —a;t.

PROPOSITION 3.69. Suppose that G = F,. is free group of rank r < oo. Then
every derivation d € Der(ZG,ZG) can be written as a sum

d= Z k;0;, where k; = d(x;) € Z.
i=1
Furthermore, Der(ZG,ZQ) is a free abelian group with the basis 0;,i = 1,...,r.

PROOF. The first assertion immediately follows from Exercise 3.66 (part (Py)),
and from the fact that both sides of the equation evaluated on z; equal k;. Thus,
the derivations 0;,7 = 1,...,k generate Der(ZG,ZG). Independence of these gen-
erators follows from 0;x; = ;5. O

3.10. Derivations and split extensions
Components of homomorphisms to semidirect products.

DEFINITION 3.70. Let G and L be two groups and let N, H be subgroups in G.

(1) Assume that G = N x H. Every group homomorphism F : L — G
splits as a product of two homomorphisms F = (f, f2), f1 : L = N and
fo: L — H, called the components of F.
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(2) Assume now that G is a semidirect product N x H. Then every homo-
morphism F': L — G is determines (and is determined by) a pair (d, f),
where

e f: L — H is a homomorphism (the composition of F' and the re-
traction G — H);

e amap d =dp : L — N, called derivation associated with F. The
derivation d is determined by the formula

F(6) = d(0) f(£).
EXERCISE 3.71. Show that d is indeed a derivation.

EXERCISE 3.72. Verify that for every derivation d and a homomorphism f :
L — H there exists a homomorphism F': L — G with the components d, f.

Extensions and co-extensions.
DEFINITION 3.73. Given a short exact sequence
{1} — N —G—H — {1},
we call the group G an extension of N by H or a co-extension of H by N.

Given two classes of groups A and B, the groups that can be obtained as
extensions of N by H with N € A and H € B, are called A-by-B groups (e.g.
abelian-by-finite, nilpotent-by-free etc.).

Two extensions defined by the short exact sequences
1y — N, 25 G 2 1 — {1}
(i = 1,2) are equivalent if there exist isomorphisms
fi: N1 = Noy, fo:Gy— Ge, f3:Hy — Ho

that determine a commutative diagram:

1 > N1 Gl H1 > 1
h f2 f3
1 > N2 G2 H2 > 1

We now use the notion of isomorphism of exact sequences to reinterpret the
notion of split extension.

PROPOSITION 3.74. Consider a short exact sequence
(3.5) I-N5GE5Q—1.
The following are equivalent:
(1) the sequence splits;

(2) there ezists a subgroup H in G such that the projection w restricted to H
becomes an isomorphism.

(3) the extension G is equivalent to an extension corresponding to a semidirect
product N x Q;

(4) there emists a subgroup H in G such G =N x H.
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PROOF. It is clear that (2) = (1).

(1) = (2): Leto:Q — o(H) C G be a section. The equality 7o o = idg
implies that 7 restricted to H is both surjective and injective.

The implication (2) = (3) is obvious.

(3) = (2):  Assume that there exists H such that 7|y is an isomorphism.
The fact that it is surjective implies that G = NH. The fact that it is injective
implies that H NN = {1}.

(2) = (4):  Since 7 restricted to H is surjective, it follows that for every
g € G there exists h € H such that m(g) = w(h), hence gh~! € Kerm = Im ..

Assume that g € G can be written as g = t(n1)hy = t(n2)hsa, with ny,ne € N
and hy,he € H. Then w(hy) = w(h2), which, by the hypothesis that 7 restricted to
H is an isomorphism, implies h; = hy, whence ¢(n1) = ¢(n2) and n; = ny by the
injectivity of ¢.

(4) = (2):  The existence of the decomposition for every g € G implies that
m restricted to H is surjective.

The uniqueness of the decomposition implies that H N Im¢ = {1}, whence 7
restricted to H is injective. O

REMARK 3.75. Every sequence with free nonabelian group @ splits: Construct
a section o : @ — G by sending each free generator x; of @ to an element z; € G
so that 7(Z;) = x;. In particular, every group which admits an epimorphism to a
free nonabelian group F', also contains a subgroup isomorphic to F.

EXAMPLES 3.76. (1) The short exact sequence
1—2Z)" — 2" — 75 — 1
does not split.

(2) Let F,, be a free group of rank n (see Definition 4.16) and let F) be its
commutator subgroup (see Definition 3.47). Note that the abelianization
of F,, as defined in Proposition 3.49, (3), is Z™. The short exact sequence

1—F,—F, —7Z"—1

does not split.

From now on, we restrict to the case of exact sequences
(3.6) 1-A5G5Q—1,

where A is an abelian group. Recall that the set of derivations Der(Q, A) has
natural structure of an abelian group.

REMARKS 3.77. (1) The short exact sequence (3.6) uniquely defines an
action of @ in A. Indeed G acts on A by conjugation and, since the kernel
of this action contains A, it defines an action of Q on A. In what follows
we shall denote this action by (¢,a) — ¢-a, and by ¢ the homomorphism
@ — Aut(A) defined by this action.

(2) If the short exact sequence (3.6) splits, the group G is isomorphic to
Ax, Q.
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Classification of splittings.

Below we discuss classification of all splittings of short exact sequences (3.6)
which do split. We use the additive notation for the binary operation on A. We
begin with few observations. From now on, we fix a section oy and, hence, a
semidirect product decomposition G = A x ). Note that every splitting of a short
exact sequence (3.6), is determined by a section o : Q@ — G. Furthermore, every
section o : Q — G is determined by its components (d,,7) with respect to the
semidirect product decomposition given by o( (see Remark 3.70). Since 7 is fixed,
a section o is uniquely determined by its derivation d,. Conversely, every derivation
d € Der(Q, A) determines a section o, so that d = d,. Thus, the set of sections of
(3.6) is in bijective correspondence with the abelian group of derivations Der(Q, A).

Our next goal is to discuss the equivalence relation between different sections
(and derivations). We say that an automorphism « € Aut(G) is a shearing (with
respect to the semidirect product decomposition G = Ax Q) if «(A) = A, a|]A = Id
and « projects to the identity on ). Examples of shearing automorphisms are
principal shearing automorphisms, which are given by conjugations by elements
a € A. Tt is clear that shearing automorphisms act on splittings of the short exact
sequence (3.6).

EXERCISE 3.78. The group of shearing automorphisms of G is isomorphic to the
abelian group Der(Q, A): Every derivation d € Der(Q, A) determines a shearing
automorphism a = a4 of G by the formula

alaxq) = (a+d(q)) xq
which gives the bijective correspondence.

In view of this exercise, the classification of splittings modulo shearing auto-
morphisms yields a very boring answer: All sections are equivalent under the group
of shearing transformations. A finer classification of splittings is given by the fol-
lowing definition. We say that two splittings o1, 09 are A-conjugate if they differ
by a principal shearing automorphism:

a2(q) = ao1(q)a™!,¥g € Q,

where a € A. If dy, dy are the derivations corresponding to the sections oy, 09, then

(d2(9),q9) = (a,1)(d1(q),9)(—a,1) & d2(q) = di(q) — [¢-a — al.

In other words, di, ds differ by the principal derivation corresponding to a € A.
Thus, we proved the following

PROPOSITION 3.79. A-conjugacy classes of splittings of the short exact sequence
(3.6) are in bijective correspondence with the quotient

Der(Q. A)/Prin(Q, A),
where Prin(Q, A) is the subgroup of principal derivations.
Note that Der(Q,A) = Z1(Q, A), Prin(Q,A) = BY(Q,A) and the quotient

Der(Q, A)/Prin(Q, A) is H'(Q, A), the first cohomology group of Q with coeffi-
cients in the ZQ—-module A.

Below is another application of H'(Q, A). Let L be a group and F : L — G =
A x @ be a homomorphism. The group G, of course, acts on the homomorphisms
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F by postcomposition with inner automorphisms. Two homomorphisms are said to
be conjugate if they belong to the same orbit of this G-action.

LEMMA 3.80. 1. A homomorphism F : L — G is conjugate to a homomorphism
with the image in Q if and only if the derivation dr of F is principal.

2. Furthermore, suppose that F; : L — G are homomorphisms with components
(di,m),i = 1,2. Then Fy and Fy are A-conjugate if and only if [di] = [do] €
HY(L, A).

PROOF. Let ¢ = ga € G,a € A,q € Q. If (qa)F(¢)(qa)~* € @, then
aF(f)a=! € Q. Thus, for (1) it suffices to consider A-conjugation of homomor-
phisms F : L — G. Hence, (2) = (1). To prove (2) we note that the composition
of F' with an inner automorphism defined by a € A has the derivation equal to
dp — dg, where d, is the principal derivation determined by a. O

3.11. Central co-extensions and 2-nd cohomology

We restrict ourselves to the case of central co-extensions (a similar result holds
for general extensions with abelian kernels, see e.g. [Bro82b]). In this case, A is
trivial as a G-module and, hence, H*(G, A) = H*(K(G,1), A). This cohomology
group can be also computed as H*(Y, A), where G = 71 (Y) and Y is k+ 1-connected
cell complex.

Let G be a group and A an abelian group. A central co-extension of G by A is
a short exact sequence

14560561
where ¢(A) is contained in the center of G. Choose a set-theoretic section s : G —
G,s(1) = 1,705 = Id. Then, the group G is be identified (as a set) with the direct
product A x G. With this identification, the group operation on G has the form

(avg) : (bvh) = (a+b+f(g,h),gh),

where f(1,1) = 0 € A. Here the function f : G x G — A measures the failure of s
to be a homomorphism:

-1
f(g,h) = s(g)s(h) (s(gh)) .

Not every function f: G x G — A corresponds to a central extension: A function

f gives rise to a central co-extension if and only if it satisfies the cocycle identity:

f(g.h) + f(gh, k) = f(h, k) + f(g,hk).
In other words, the set of such functions is the abelian group of cocycles Z%(G, A),
see §3.8. We will refer to f simply as a cocycle.
Two central co-extensions are said to be equivalent if there exist an isomorphism
7 making the following diagram commutative:

1 - A - G4 - G > 1
id T id
1 > A - Gy > G > 1

For instance, a co-extension is trivial, meaning equivalent to the product A x G,
if and only if the central co-extension splits. We will use the notation E(G, A) to
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denote the set of equivalence classes of co-extensions. In the language of cocycles,
r1 ~ 1o if and only if
Ji—f2=dc,
where ¢c: G — A, and
dc(g, h) = c(g) + c(h) — c(gh)
is the coboundary, ¢ € B?(G, A). Recall that H*(G,A) = Z*(G,A)/B?*(G, A) is
the 2-nd cohomology group of G with coeflicients in A.
The set E(G, A) has natural structure of an abelian group, where the sum of
two co-extensions
A= G -5G
is defined by

G3 ={(g1,92) € G1 x Ga|r1(g1) = r2(g2)} — G,

r(g1,92) = r1(91) = r2(g2). The kernel of this co-extension is the subgroup A
embedded diagonally in G; X Ga. In the language of cocycles f : G x G — A, the
sum of co-extensions corresponds to the sum of cocycles and the trivial element is
represented by the cocycle f = 0.

To summarize:

THEOREM 3.81 (See Chapter IV in [Bro82b].). There exists an isomorphism
of abelian groups

H?*(K(G,1),A) = H*(G, A) = E(G, A).

Co-extensions and group presentations. Below we describe the isomor-
phism in Theorem 3.81 in terms of generators and relators, which will require
familiarity with some of the material in Chapter 4.

Start with a presentation (X|R) of the group G and let Y2 denote the corre-
sponding presentation complex (see Definition 4.80). Embed Y2 in a 3-connected
cell complex Y by attaching appropriate 3-cells to Y2. Then H2(Y, A) = H%(G, A).
Each cohomology class [¢] € H?(G, A) is realized by a cocycle ¢ € Z2(Y, A), which
will assigns elements of A to each 2-cell in Y. The 2-cells ¢; of Y are indexed by the
defining relators R;,i € I, of G. By abusing the notation, we set ((R;) := ((c;), so
that ((R; ') = —((c;). Given such ¢, define the group G' = G by the presentation

G= <X~' =XUAa,z] =1,Va € A Ve € X;Ri(C(R;)) L =1,i¢ I>.

In particular, if w is a word in the alphabet X, which is a product of conjugates of
the relators Rfj,tj = #£1, then

(37) w - thg(cij) =1
j

in G.

Clearly, we have the epimorphism 7 : G — G which sends every a € A C X to
1 € G. We need to identify the kernel . We have a homomorphism ¢ : A — G,
defined by @ — a € A C X,a € A. Furthermore, 1(A) is a central subgroup of G,
hence, Ker(r) = 1(A), since the homomorphism  amounts to dividing G by A.

We next show that ¢ is injective. Let Y denote the presentation complex Y
for G; the homomorphism r : G — G is induced by the map F : Y — Y which
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collapses each loop corresponding to a € A to the vertex of Y and sends 2-cells
corresponding to the relators [z, a],z € X, to the base-point in Y. So far we did
not use the assumption that ¢ is a cocycle, i.e., that ((0) = 0 whenever o is the
boundary o a 3-cycle in Y. Suppose that ¢(a) =1 € G,a € A. Then the loop «
in Y corresponding to a bounds a 2-disk & in Y. The image of this disk under f
is a spherical 2-cycle o in Y since F' is constant on «. The spherical cycle o is
null-homologous since Y is 2-connected, o = 9¢, £ € C3(Y, A). Since ( is a cocycle,
0 = ¢(0¢) = ((o). Thus, equation (3.7), implies that a = ((¢) = 0 in A. This
means that ¢ is injective.

Suppose the cocycle ¢ is a coboundary, ¢ = dn, where n € C1(Y1, A), ie., n
yields a homomorphism 7’ : G — A,/ (x;) = aj. We then define a map s: G — G
by s(xr) = xrar. Then relations R; = ((R;) imply that s(R;) = 1 in G, so the
co-extension defined by ( splits and, hence, is trivial.

We, thus, have a map from H2(Y, A) to the set E(G, A).

If, ¢ € Z2(Y, A) maps to a trivial co-extension G — G of G by A, this means
that we have a section s : G — G. Then, for every generator x € X of the group G,
we have s(zy) = zpag, for some ay € A. Thus, we define a 1-cochain n € C1(Y1, A)
by n(zx) = ay, where we identify xj, with a 1-cell in Y'!. Then the same arguments
as above, run in the reverse, imply that ¢ = én and, hence [(] =0 € H*(Y, A).

ExampLE 3.82. Let G be the fundamental group of a genus p > 1 closed
oriented surface S. Take the standard presentation of G, so that S is the (aspherical)
presentation complex. Let A = Z and take [(] € H%(G,Z) = H?(S,Z) be the class
Poincaré dual to the fundamental class of S. Then for the unique 2-cell ¢ in S
corresponding to the relator

R= [ah bl] T [a;ﬂabp]?
we have ((c) = —1 € Z. The corresponding group G has the presentation
<a1, bl, <oy Qp, bpﬂf‘ [al, bl} cee [(Lp, bp}t, [ai,t], [b“t],l = ].7 e ,p> .

The conclusion, thus, is that a group G with nontrivial 2-nd cohomology group
H?(G, A) admits nontrivial central co-extensions with the kernel A. How does one
construct groups with nontrivial H?(G, A)? Suppose that G admits an aspherical
presentation complex Y so that x(G) = x(Y) > 2. Then for A = Z, we have

The universal coefficients theorem then shows that if A is an abelian group which
admits an epimorphism to Z, then H?(G, A) # 0 provided that x(Y) > 2 as before.
3.12. Residual finiteness

Even though, studying infinite groups is our primary focus, questions in group
theory can be, sometimes, reduced to questions about finite groups. Residual finite-
ness is the concept that (sometimes) allows such reduction.

DEFINITION 3.83. A group G is said to be residually finite if

ﬂ G; = {1},

where {G; : i € I} is the set of all finite-index subgroups in G.
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Clearly, subgroups of residually finite groups are also residually finite. In con-
trast, if G is an infinite simple group, then G cannot be residually-finite.

LEMMA 3.84. A finitely generated group G is residually finite if and only if for
every g € G\ {1}, there exists a finite group ® and a homomorphism ¢ : G — @,

so that ©(g) # 1.

PROOF. Suppose that G is residually finite. Then, for every g € G \ {1} there
exists a finite-index subgroup G; < G so that g ¢ G;. Since G is finitely generated,
it contains a normal subgroup of finite index N; < G, so that N; < G;. Indeed, we

can take
€S

where S is a finite generating set of G and G¥ denotes the subgroup zG;z~!. Then
N; is invariant under all inner automorphisms of G and, hence, is normal in G.
Clearly, g ¢ N; and |G : N;| < co. Now, setting ® := G/N;, we obtain the required
homomorphism ¢ : G — ®.

Conversely, suppose that for every g # 1 we have a homomorphism ¢4 : G —
®,, where @, is a finite group, so that ¢, (g) # 1. Setting N, := Ker(ypg,), we get

() Ny ={1}.
geG

The above intersection, of course, contains the intersection of all finite index sub-
groups in G. O

ExamMPLE 3.85. The group G = GL(n,Z) is residually finite. Indeed, we take
subgroups G, < G, G, = Ker(pp), ¢p : G = GL(n,Zy)). If g € G is a nontrivial
element, we consider its nonzero off-diagonal entry g;; # 0. Then g;; # 0 mod p,
whenever p > |g;;|. Thus, pp(g9) # 1 and G is residually finite.

COROLLARY 3.86. Free group of rank 2 Fy is residually finite. Fvery free group
of (at most) countable rank is residually finite.

Proor. We will see in Example 4.38 that F» embeds in SL(2,Z). Furthermore,
every free group of (at most) countable rank embeds in F,. Now, the assertion
follows from the above example. O

The simple argument for GL(n,Z) is a model for a proof of a harder theorem:

THEOREM 3.87 (A. I. Mal’cev [Mal40]). Let G be a finitely generated subgroup
of GL(n, R), where R is a commutative ring with unity. Then G is residually finite.

Mal’cev’s theorem is complemented by the following result, known as Selberg
Lemma [Sel60]:

THEOREM 3.88 (Selberg Lemma). Let G be a finitely generated subgroup of
GL(n, F), where F is a field of characteristic zero. Then G contains a torsion-free
subgroup of finite indez.

We refer the reader to [Rat94, §7.5] and [Nic]| for the proofs. Note that Selberg
Lemma fails for fields of positive characteristic, see e.g. [Nic].

3.13. Appendix by B. Nica: Proofs of Malcev’s Theorem and Selberg
Lemma
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CHAPTER 4

Finitely generated and finitely presented groups

4.1. Finitely generated groups
A group which has a finite generating set is called finitely generated.

REMARK 4.1. In French, the terminology for finitely generated groups is groupe
de type fini. On the other hand, in English, group of finite type is a much stronger
requirement than finite generation (typically, this means that the group has type

F..).

EXERCISE 4.2. Show that every finitely generated group is countable.

EXAMPLES 4.3. (1) The group (Z,+) is finitely generated by both {1}
and {—1}. Also, any set {p,q} of coprime integers generates Z.
(2) The group (Q,+) is not finitely generated.

EXERCISE 4.4. Prove that the transposition (12) and the cycle (12...n) gen-
erate the permutation group S,.

REMARKS 4.5. (1) Every quotient G of a finitely generated group G is
finitely generated; we can take as generators of G the images of the gen-
erators of G.

(2) If N is a normal subgroup of G, and both N and G/N are finitely gen-
erated, then G is finitely generated. Indeed, take a finite generating set
{n1,..,n;} for N, and a finite generating set {g1 N, ..g, N} for G/N. Then

{gisn; = 1<i<m},1<j<k}}

is a finite generating set for G.

REMARK 4.6. If N is a normal subgroup in a group G and G is finitely gener-
ated, it does not necessarily follow that N is finitely generated (not even if G is a
semidirect product of N and G/N).

ExampLE 4.7. Let H be the group of permutations of Z generated by the
transposition ¢ = (01) and the translation map s(i) = i+ 1. Let H; be the group of
permutations of Z supported on [—i,4] = {—i,—i+1,...,0,1,...,i— 1,i}, and let
H,, be the group of finitely supported permutations of Z (i.e. the group of bijections
fZ — Z such that f is the identity outside a finite subset of Z),

o0
H,=|JH.
=0

Then H, is a normal subgroup in H and H/H, ~ Z, while H,, is not finitely
generated.
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Indeed from the relation s¥ts=% = (kk+1), k € Z, it immediately follows that
H,, is a subgroup in H. It is likewise easy to see that sFH;s~F H,, ), whence
s*H,s~* c H, for every k € 7.

If g1,..., gk is a finite set generating H,,, then there exists an ¢ € N so that all
g;’s are in H;, hence H,, = H;. On the other hand, clearly, H; is a proper subgroup
of H,,.

EXERCISE 4.8. 1. Let F be a non-abelian free group (see Definition 4.16). Let
¢ : ' — Z be any non-trivial homomorphism. Prove that the kernel of ¢ is not
finitely generated.

2. Let F be a free group of finite rank with free generators x1,...,x,; set
G := F x F. Then G has the generating set

{(xi,1), (L,z;): 1 <4,j <n}.

Define homomorphism ¢ : G — Z sending every generator of G to 1 € Z. Show that

the kernel K of ¢ is finitely generated. Hint: Use the elements (x;, x;l), (xix;17 1),

(1,1}1‘1‘;1), 1 <i,5 <n, of the subgroup K.
We will see later that a finite index subgroup of a finitely generated group is
finitely generated (Lemma 4.75 or Theorem 5.29).

Below we describe a finite generating set for the group GL(n,Z). In the proof
we use elementary matrices N; ; = I, + E; ; (1 # j); here I, is the identity n x n
matrix and the matrix Fj; ; has a unique non-zero entry 1 in the intersection of the
i—th row and the j—th column.

PROPOSITION 4.9. The group GL(n,Z) is generated by

0 0 0o ... O 1 0 1 0 0 0
1 0 o ... 0 0 1 0 0 0 0
0 1 o ... 0 O 0 0 1 0 0
S1 = S2 =
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1
1 1 0 0 0 -1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 O 0 0 1 0 0
S3 = S4 =
0 0 o ... 1 0 0 0 o ... 1 0
0 0 o ... O 1 0 0 o ... O 1

PrOOF. Step 1. The permutation group S, acts (effectively) on Z™ by per-
muting the basis vectors; we, thus, obtain a monomorphism ¢ : S, — GL(n,Z),
so that ¢(12...n) = s1, ¢(12) = sp. Consider now the corresponding action of
S, on n X n matrices. Multiplication of a matrix by s; on the left permutes rows
cyclically, multiplication to the right does the same with columns. Multiplication
by s3 on the left swaps the first two rows, multiplication to the right does the same
with columns. Therefore, by multiplying an elementary matrix A by appropriate
products of sq, sfl and s, on the left and on the right, we obtain the matrix s3. In
view of Exercise 4.4, the permutation (12...n) and the transposition (12) gener-
ate the permutation group S,,. Thus, every elementary matrix N;; is a product of
31,51_1732 and s3.
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Let d; denote the diagonal matrix with the diagonal entries (1,...,1,—1,1,...1),
where —1 occurs in j-th place. Thus, d; = s4. The same argument as above, shows
that for every d; and s = (1j) € Sy, sd;js = di. Thus, all diagonal matrices d;
belong to the subgroup generated by s1,s2 and s4.

Step 2. Now, let g be an arbitrary element in GL(n,Z). Let a4, ..., a, be the
entries of the first column of g. We will prove that there exists an element p in
(s1, ..., 84) C GL(n,Z), such that pg has the entries 1,0,...,0 in its first column.
We argue by induction on k = Ci(g) = |a1|+ - -+ |a,|. Note that k > 1. If k =1,
then (aq,...,a,) is a permutation of (+1,0,...,0); hence, it suffices to take p in
(s1, s2,54) permuting the rows so as to obtain 1,0,...,0 in the first column.

Agsume that the statement is true for all integers 1 < i < k; we will prove
it for k. After to permuting rows and multiplying by d; = s4 and ds, we may
assume that a; > ap > 0. Then N;2dag has the following entries in the first
column: a; —ag, —as, as, ... a,. Therefore, Cy (N1,2d2g) < Ci(g). By the induction
assumption, there exists an element p of (s1, ..., s4) such that pN; 2dag has the
entries of its first column equal to 1,0, ...,0. This proves the claim.

Step 3. We leave it to the reader to check that for every pair of matrices
A,B € GL(n — 1,R) and row vectors L = (I1,...,l,—1) and M = (mq,...,Mp_1)

(o 5) (o %)=(o"i5")

Therefore, the set of matrices

1 L ne
{(O A);AEGL(n—l,Z),LEZ 1}

is a subgroup of GL(n,Z) isomorphic to Z"~* x GL(n — 1,7Z).

Using this, an induction on n and Step 2, one shows that there exists an element
pin (s1,...,s4) such that pg is upper triangular and with entries on the diagonal
equal to 1. It, therefore, suffices to prove that every integer upper triangular matrix
as above is in (s, ...s4). This can be done for instance by repeating the argument
in Step 2 with multiplications on the right. ([

The wreath product (see Definition 3.59) is a useful construction of a finitely
generated group from two finitely generated groups:

EXERCISE 4.10. Let G and H be groups, and S and X be their respective
generating sets. Prove that G H is generated by
{(fs>1H) ‘ s € S} U {(fl,l’) | S X}’

where fs: H — G is defined by fs(1g) = s, fs(h) =1¢, Vh # 1.
In particular, if G and H are finitely generated then so is Gt H .

EXERCISE 4.11. Let G be a finitely generated group and let S be an infinite
set of generators of G. Show that there exists a finite subset F' of S so that G is
generated by F.

EXERCISE 4.12. An element g of the group G is a non-generator if for every
generating set S of G, the complement S\ {g} is still a generating set of G.
(a) Prove that the set of non-generators forms a subgroup of G. This subgroup
is called the Frattini subgroup.
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(b) Compute the Frattini subgroup of (Z, +).

(c) Compute the Frattini subgroup of (Z",+). (Hint: You may use the fact
that Aut(Z") is GL(n,Z), and that the GL(n, Z)-orbit of e; is the set of
vectors (ki,...,k,) in Z™ such that ged(ky, ..., k,) = 1.)

DEFINITION 4.13. A group G is said to have bounded generation property (or
is boundedly generated) if there exists a finite subset {t1,...,t,} C G such that
every g € G can be written as g = t]fltgz ootk where ki, ko, ..., ky, are integers.

m

Clearly, all finitely generated abelian groups have the bounded generation prop-
erty, and so are all the finite groups. On the other hand, the nonabelian free f
groups, which we will introduce in the next section, obviously, do not have the
bounded generation property. For other examples of boundedly generated groups
see Proposition 77.

4.2. Free groups

Let X be a set. Its elements are called letters or symbols. We define the set
of inverse letters (or inverse symbols) X' = {a™' | a € X}. We will think of
X UX~! as an alphabet.

A word in X U X~ is a finite (possibly empty) string of letters in X U X1
i.e. an expression of the form

€1 €2

€k
a; a;; a;

where a; € X,¢; = £1; here 2! = z for every € X. We will use the notation 1 for
the empty word (the one which has no letters).

Denote by X* the set of words in the alphabet X U X!, where the empty
word, denoted by 1, is included. For instance,

alagaflagagal e X"

The length of a word w is the number of letters in this word. The length of the
empty word is 0.

A word w € X* is reduced if it contains no pair of consecutive letters of the
L or a='a. The reduction of a word w € X* is the deletion of all pairs of

Lor a=lta.

form aa™
consecutive letters of the form aa™

For instance,

1, agal,alagafl
are reduced, while
agalaflag

is not reduced.

More generally, a word w is cyclically reduced if it is reduced and, in addition,
the first and the last letters of w are not inverses of each other.

We define an equivalence relation on X* by w ~ w’ if w can be obtained from
w’ by a finite sequence of reductions and their inverses, i.e., the relation ~ on X*
is generated by

uaiai_lv ~ U, uai_laz-v ~ Uv

where u,v € X*.

PROPOSITION 4.14. Any word w € X* is equivalent to a unique reduced word.
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PROOF. Euwistence. ~ We prove the statement by induction on the length of a
word. For words of length 0 and 1 the statement is clearly true. Assume that it is
true for words of length n and consider a word of length n+ 1, w = a1 - - - apan11,
where a; € X UX !, According to the induction hypothesis there exists a reduced
word u = by -+ - by, with b; € X U X ! such that a - ant1 ~ u. Then w ~ aqu. If
a1 # b1_1 then aju is reduced. If a1 = b1_1 then aju ~ by - - - b, and the latter word
is reduced.

Uniqueness.  Let F(X) be the set of reduced words in X U X~!. For every
a € X UX~! we define a map L, : F(X) — F(X) by

foabyeoby if a#b,
La(bl bk)_{ bg"'bk if a=b1_1.

For every word w = a; - - - a,, define L,, = Lo, o---0 L,, . For the empty word
1 define L, = id. It is easy to check that L, o L,—1 = id for every a € X U X!,
and to deduce from it that v ~ w implies L, = L.

We prove by induction on the length that if w is reduced then w = L,,(1). The
statement clearly holds for w of length 0 and 1. Assume that it is true for reduced
words of length n and let w be a reduced word of length n+1. Then w = au, where
a € XUX ! and uis a reduced word that does not begin with a~!, i.e. such that
Lo(u) = au. Then L, (1) = Ly 0 Ly, (1) = Ly(u) = au = w.

In order to prove uniqueness it suffices to prove that if v ~ w and v,w are
reduced then v = w. Since v ~ w it follows that L, = L,,, hence L, (1) = L, (1),
that is v = w. |

EXERCISE 4.15. Give a geometric proof of this proposition using identification
of w € X* with the set of edge-paths p,, in a regular tree T of valence 2|X]|,
which start at a fixed vertex e. The reduced path p* in T corresponding to the
reduction w* of w is the unique geodesic in T' connecting e to the terminal point of
p. Uniqueness of w* then translates to the fact that a tree contains no circuits.

Let F(X) be the set of reduced words in X U X ~!. Proposition 4.14 implies
that X*/ ~ can be identified with F(X).

DEFINITION 4.16. The free group over X is the set F(X) endowed with the
product defined by: w *w’ is the unique reduced word equivalent to the word ww’'.
The unit is the empty word.

The cardinality of X is called the rank of the free group F(X).

The set F(X) with the product defined in Definition 4.16 is indeed a group.
The inverse of a reduced word

by

-1

—€ —€k—1 —€
w T =a,; *a ceean
k

. a.:
Tk—1 11

It is clear that ww ™! project to the empty word 1 in F.
REMARK 4.17. A free group of rank at least two is not abelian. Thus free

non-abelian means free of rank at least two.

The free semigroup F*(X) with the generating set X is defined in the fashion
similar to F(X), except that we only allow the words in the alphabet X (and not
in X 1), in particular the reduction is not needed.
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PROPOSITION 4.18 (Universal property of free groups). A map ¢ : X — G
from the set X to a group G can be extended to a homomorphism ® : F(X) — G
and this extension is unique.

PROOF. Existence. The map ¢ can be extended to a map on X UX ~! (which
we denote also @) by p(a™!) = p(a)~!.
For every reduced word w = a; - - - a,, in F(X) define

<I>(a1 ) = go(al) T @(an)~

Set ®(e) := 1, the identity element of G. We leave it to the reader to check that ®
is a homomorphism.

Uniqueness. Let ¥ : F(X) — G be a homomorphism such that ¥(z) = ¢(z
for every # € X. Then for every reduced word w = a; ---ay in F(X), ¥(w)

~

ol

V(ar) - W(an) = @(ar) - - - plan) = ®(w).
COROLLARY 4.19. Ewvery group is the quotient of a free group.
PrOOF. Apply Proposition 4.18 to the group G and the set X = G. O

LEMMA 4.20. A short evact sequence 1 — N — G > F(X) — 1 always splits.
In particular, G contains a subgroup isomorphic to F(X).

PRrROOF. Indeed, for each z € X consider choose an element ¢,, € G projecting to
x; the map x — t, extends to a group homomorphism s : F(X) — G. Composition
r o s is the identity homomorphism F(X) — F(X) (since it is the identity on
the generating set X). Therefore, the homomorphism s is a splitting of the exact
sequence. Since 7 o s = Id, s a monomorphism. O

COROLLARY 4.21. Ewvery short exact sequence 1 — N — G — Z — 1 splits.

4.3. Presentations of groups

Let G be a group and S a generating set of G. According to Proposition 4.18,
the inclusion map i : S — G extends uniquely to an epimorphism 7g : F(S) = G.
The elements of Ker g are called relators (or relations) of the group G with the
generating set S.

N.B. In the above by an abuse of language we used the symbol s to designate
two different objects: s is a letter in F'(S), as well as an element in the group G.

If R={r;|iel} C F(S) is such that Ker wg is normally generated by R (i.e.
((R)) = Kermg) then we say that the ordered pair (S, R), usually denoted (S|R),
is a presentation of G. The elements r € R are called defining relators (or defining
relations) of the presentation (S|R).

By abuse of language we also say that the generators s € S and the relations
r =1, r € R, constitute a presentation of the group G. Sometimes we will write
presentations in the form

(siyiellr;=1,5¢€J)
where
S=A{ziticr, R={rj}jes.

If both S and R are finite then the pair S, R is called a finite presentation of G.

A group G is called finitely presented if it admits a finite presentation. Sometimes
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it is difficult, and even algorithmically impossible, to find a finite presentation of a
finitely presented group, see [BW11].

Conversely, given an alphabet S and a set R of (reduced) words in the alphabet
S we can form the quotient

G:=F(5)/((R)-
Then (S|R) is a presentation of G. By abusing notation, we will often write
G = (S|R)

if G is a group with the presentation (S|R). If w is a word in the generating set S,
we will use [w] to denote its projection to the group G. An alternative notation for
the equality

is
V=g w.

Note that the significance of a presentation of a group is the following:

e every element in G can be written as a finite product z; - - - z,, with x; €
SuS—t = {st!:s5¢€ 8}, ie., as a word in the alphabet S U S™!;

e a word w = z1 --- 2, in the alphabet S U S™! is equal to the identity in
G, w =g 1, if and only if in F(S) the word w is the product of finitely
many conjugates of the words r; € R, i.e.,

m
— Us
w = | Iri
i=1

for some m € N, u; € F(S) and r; € R.
Below are few examples of group presentations:

EXAMPLES 4.22. (1) (a1,...,an | [ai,a;],1 <4,j <n)is a finite presen-
tation of Z™;

(2) <x, y |z y?, yxy:v) is a presentation of the finite dihedral group Da, ;

(3) <x7 y | 22,93 [z, y]> is a presentation of the cyclic group Zg .

Let (X|R) be a presentation of a group G. Let H be a group and ¢ : X — H
be a map which “preserves the relators”, i.e., ¥(r) = 1 for every r € R. Then:

LEMMA 4.23. The map 1 extends to a group homomorphism ¢ : G — H.

PrOOF. By the universal property of free groups, the map ¢ extends to a
homomorphism ¢ : F(X) — H. We need to show that ((R)) is contained in
Ker(¢). However, ((R)) consists of products of elements of the form grg~!, where
g € F,r € R. Since ¢(grg~') = 1, the claim follows. O

EXERCISE 4.24. The group P Zs has presentation

reX
<x € X|z% [x,9],Vr,y € X>.
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PROPOSITION 4.25 (Finite presentability is independent of the generating set).
Assume that a group G has finite presentation (S | R), and let (X | T) be an arbi-
trary presentation of G, so that X is finite. Then there exists a finite subset Ty C T
such that (X | Ty) is a presentation of G.

PRroOOF. Every element s € S can be written as a word as(X) in X. The map
isx : S = F(X), isx(s) = as(X) extends to a unique homomorphism p : F(S) —
F(X). Moreover, since mx o igx is an inclusion map of S to F(X), and both mg
and 7y op are homomorphisms from F(S) to G extending the map S — G, by the
uniqueness of the extension we have that mg = wx o p. This implies that Ker wx
contains p(r) for every r € R.

Likewise, every « € X can be written as a word b,(S) in S, and this defines
amap ixs : X — F(5),ixs(x) = by(S), which extends to a homomorphism
q: F(X)— F(S). A similar argument shows that 7g o ¢ = 7x.

For every © € X, mx(p(q(z))) = ms(q(x)) = mx (x). This implies that for every
r € X, 2 p(q(z)) is in Kermy.

Let N be the normal subgroup of F(X) normally generated by

{p(r) | r € RyU{z"'p(q(z)) |z € X}.
We have that V < Kerwx. Therefore, there is a natural projection
proj: F(X)/N — F(X)/Kernx .

Let p: F(S) — F(X)/N be the homomorphism induced by p. Since p(r) =1
for all » € R, it follows that p(Kermg) = 1, hence p induces a homomorphism
p: F(S)/Kermg — F(X)/N.

The homomorphism ¢ is onto. Indeed, F(X)/N is generated by elements of
the form N = p(q(z))N, and the latter is the image under ¢ of g(z) Ker 7g.

Consider the homomorphism proj o ¢ : F(S)/Kerns — F(X)/Kermx. Both
the domain and the target groups are isomorphic to G. Each element x of the
generating set X is sent by the isomorphism G — F(S)/Kermg to q(z)Ker7g.
The same element x is sent by the isomorphism G — F(X)/Kernx to zKermx.
Note that

proj o ¢ (g(z) Kermg) = proj(zN) = x Ker rx.

This means that modulo the two isomorphisms mentioned above, the map projo ¢
is idg. This implies that ¢ is injective, hence, a bijection. Therefore, proj is also
a bijection. This happens if and only if N = Kernwx. In particular, Kermy is
normally generated by the finite set of relators

R={p(r) |r € R}U{z""p(q(x)) | v € X}.
Since R = ((T')), every relator p € R can be written as a product
I
i€l,

with v; € F(X),t; € T and I, finite. It follows that Ker mx is normally generated
by the finite subset

Ty = | J{tili eI}
pER
of T. O
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Proposition 4.25 can be reformulated as follows: if G is finitely presented, X is
finite and
1> N—-FX)—-G—1

is a short exact sequence, then N is normally generated by finitely many elements
ni,...,nk. This can be generalized to an arbitrary short exact sequence:

LEMMA 4.26. Consider a short exact sequence
(4.1) 1-N—>KS5G—1, withK finitely generated.

If G is finitely presented, then N is normally generated by finitely many elements
Ni,...,Nk € N.

PROOF. Let S be a finite generating set of K; then S = 7(S) is a finite gener-
ating set of G. Since G is finitely presented, by Proposition 4.25 there exist finitely
many words 71,...,7; in S such that

(S 1r1(S),....mu(9))
is a presentation of G.

Consider n; = r;(S), an element of N by the assumption.

Let n be an arbitrary element in N and w(S) a word in S such that n = w(S) in
K. Then w(S) = 7(n) = 1, whence in F(S) the word w(S) is a product of finitely
many conjugates of r1,...,r,. When projecting such a relation via F(S) — K we
obtain that n is a product of finitely many conjugates of nq, ..., ng. O

PROPOSITION 4.27. Suppose that N a normal subgroup of a group G. If both
N and G/N are finitely presented then G is also finitely presented.

PrOOF. Let X be a finite generating set of V and let Y be a finite subset of
G such that Y = {yN | y € Y} is a generating set of G/N. Let (X | r1,...,7%) be
a finite presentation of N and let (Y | p1,..., pn) be a finite presentation of G/N.
The group G is generated by S = X UY and this set of generators satisfies a list
of relations of the following form

(4.2) ri(X)=1,1<i<k, p;(Y)=u;(X), 1 <j<m,

(4.3) 2 =0y (X), 2V = wyy(X)
for some words u;, Vyy, Way in S.

We claim that this is a complete set of defining relators of G.

All the relations above can be rewritten as ¢(X,Y) = 1 for a finite set T of
words ¢t in S. Let K be the normal subgroup of F(S) normally generated by T

The epimorphism 7g : F'(S) — G defines an epimorphism ¢ : F(S)/K — G.
Let wK be an element in Kerp, where w is a word in S. Due to the set of
relations (4.3), there exist a word w;(X) in X and a word ws(Y") in Y, such that

Applying the projection 7 : G — G/N, we see that 7(p(wK)) = 1, ie.,
m(p(w2(Y)K)) = 1. This implies that wy(Y") is a product of finitely many conju-
gates of p;(Y'), hence wy(Y)K is a product of finitely many conjugates of u;(X)K,
by the second set of relations in (4.2). This and the relations (4.3) imply that
w1 (X)w2(Y)K = v(X)K for some word v(X) in X. Then the image p(wK) =
p(v(X)K) is in N; therefore, v(X) is a product of finitely many conjugates of
relators 7;(X). This implies that v(X)K = K.
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We have thus obtained that Ker ¢ is trivial, hence ¢ is an isomorphism, equiv-
alently that K = Kermg. This implies that Kerwg is normally generated by the
finite set of relators listed in (4.2) and (4.3). O

We continue with a list of finite presentations of some important groups:

EXAMPLES 4.28. (1) Surface groups:
G = <a17 b17 L ,an,anal, bl] e [a'ru bn]> )

is the fundamental group of the closed connected oriented surface of genus
n, see e.g. [Mas91].

(2) Right—angled Artin groups (RAAGs). Let G be a finite graph with the
vertex set V = {x1,...,2,} and the edge set E consisting of the edges
{[xs, z;]}s,;. Define the right—angled Artin group by

Ag := (V|[@i, 2], whenever [z;,z;] € E).

Here we commit a useful abuse of notation: In the first instance [z;, ;]
denotes the commutator and in the second instance it denotes the edge of
G connecting z; to x;.

EXERCISE 4.29. a. If G contains no edges then Ag is a free group on
n generators.
b. If G is the complete graph on n vertices then

Ag =7,
(3) Coxeter groups. Let G be a finite simple graph. Let V and E denote be

the vertex and the edge set of G respectively. Put a label m(e) € N\ {1}
on each edge e = [z;,z;] of G. Call the pair

I':=(G,m: E—N\{1})
a Cozeter graph. Then I' defines the Coxeter group Cr:
Cr = <:cl € Va2, (:cixj)m(e), whenever there exists an edge e = [:ci,:cj]> .
See [Dav08] for the detailed discussion of Coxeter groups.

(4) Artin groups. Let T be a Coxeter graph. Define

Ar:=(z; € V| wzz;--- = wjz;--- , whenever e = [x;,z;] € E ).
——— ——
m(e) terms  m(e) terms

Then Ar is a right-angled Artin group if and only if m(e) = 2 for every
e € E. In general, Cr is the quotient of Ar by the subgroup normally
generated by the set

{222, €V}
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(5) Shephard groups: Let T' be a Coxeter graph. Label vertices of T' with
natural numbers n,,z € V(I'). Now, take a group, a Shepherd group, Sr
to be generated by vertices z € V(I'), subject to Artin relators and, in
addition, relators

z", xe V().
Note that, in the case n, = 2 for all z € V(T'), the group which we obtain

is the Coxeter group Cr. Shephard groups (and von Dyck groups below)
are complex analogues of Coxeter groups.

(6) Generalized von Dyck groups: Let T be a labeled graph as in the previous
example. Define a group Dr to be generated by vertices 2 € V(T'), subject
to the relators

2™ xe V(D)
(x/y)m(e)’ €= [x,y] € E(F)

If T consists of a single edge, then Dr is called a von Dyck group. Every
von Dyck group Dr is an index 2 subgroup in the Coxeter group Ca,
where A is the triangle with edge-labels p, ¢, r, which are the vertex-edge
labels of T'.

(7) Integer Heisenberg group:

H2n+1(Z) = <$17~" y Ly Yly e ooy Yny 2 |
[, 2] = L, [y;, 2] = L [ws, 2] = 1, [yisyy) = L, i, 5] = 2%, 1 <, j < ).

(8) Baumslag—Solitar groups:
BS(p,q) = <a,b|ab7"a_1 = bq>.

EXERCISE 4.30. Show that Ha,1(Z) is isomorphic to the group appearing in
Example 7?7, (77?).

OPEN PROBLEM 4.31. It is known that all (finitely generated) Coxeter groups
are linear, see e.g. [Bou02]. Is the same true for all Artin groups, Shephard groups,
generalized von Dyck groups? Note that even linearity of Artin Braid groups was
unknown prior to [Big01]. Is it at least true that all these groups are residually
finite?

An important feature of finitely presented groups is provided by the following
theorem, see e.g. [Hat02]:

THEOREM 4.32. FEwvery finitely generated group is the fundamental group of a
smooth compact manifold of dimension 4.

Presentations G = (X|R) provide a ‘compact’ form for defining the group G.
They were introduced by Max Dehn in the early 20-th century. The main problem
of the combinatorial group theory is to derive algebraic information about G from
its presentation.

Algorithmic problems in the combinatorial group theory.
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Word Problem. Let G = (X|R) be a finitely-presented group. Construct a
Turing machine (or prove its non-existence) that, given a word w in the generating
set X as its input, would determine if w represents the trivial element of G, i.e., if

w € {(R)).

Conjugacy Problem. Let G = (X|R) be a finitely-presented group. Con-
struct a Turing machine (or prove its non-existence) that, given a pair of word v, w
in the generating set X, would determine if v and w represent conjugate elements
of G, i.e., if there exists g € G so that

To simplify the language, we will state such problems below as: Given a finite
presentation of G, determine if two elements of G are conjugate.

Simultaneous Conjugacy Problem. Given n-tuples pair of words

(vla"~7vn)7 (wl,...,’wn)

in the generating set X and a (finite) presentation G = (X|R), determine if there
exists g € G so that

[wi] = ¢ Yvilg,i =1,...,7n.

Triviality Problem. Given a (finite) presentation G = (X|R) as an input,
determine if G is trivial, i.e., equals {1}.

Isomorphism Problem. Given two (finite) presentations G; = (X;|R;),i =
1,2 as an input, determine if G; is isomorphic to Ga.

Embedding Problem. Given two (finite) presentations G; = (X;|R;),i =
1,2 as an input, determine if G; is isomorphic to a subgroup of Gs.

Membership Problem. Let G be a finitely-presented group, hy,...,hx € G
and H, the subgroup of G generated by the elements h;. Given an element g € G,
determine if g belongs to H.

Note that a group with solvable conjugacy or membership problem, also has
solvable word problem. It was discovered in the 1950-s in the work of Novikov,
Boone and Rabin [Nov58, Boo57, Rab58] that all of the above problems are al-
gorithmically unsolvable. For instance, in the case of the word problem, given a finite
presentation G = (X|R), there is no algorithm whose input would be a (reduced)
word w and the output YES is w =¢ 1 and NO if not. Fridman [Fri60] proved
that certain groups have solvable word problem and unsolvable conjugacy problem.
We will later see examples of groups with solvable word and conjugacy problems
but unsolvable membership problem (Corollary 8.143). Furthermore, there are ex-
amples [BHO5] of finitely-presented groups with solvable conjugacy problem but
unsolvable simultaneous conjugacy problem for every n > 2.

Nevertheless, the main message of the geometric group theory is that under
various geometric assumptions on groups (and their subgroups), all of the above
algorithmic problems are solvable. Incidentally, the idea that geometry can help
solving algorithmic problems also goes back to Max Dehn. Here are two simple
examples of solvability of word problem:

PROPOSITION 4.33. Free group F' of finite rank has solvable word problem.
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PrOOF. Given a word w in free generators z; (and their inverses) of F we
cancel recursively all possible pairs z;z; L x; 12, in w. Eventually, this results in a
reduced word w’. If w’ is nonempty, then w represents a nontrivial element of F,
if w’ is empty, then w =1 in F. O

PROPOSITION 4.34. Ewvery finitely-presented residually-finite group has solvable
word problem.

PROOF. First, note that if ® is a finite group, then it has solvable word problem
(using the multiplication table in ® we can “compute”’ every product of generators
as an element of ® and decide if this element is trivial or not). Given a residually
finite group G with finite presentation (X|R) we will run two Turing machines
Ty, T, simultaneously:

The machine T; will look for homomorphism ¢ : G — §,,, where S, is the
symmetric group on n letters (n € N): The machine will try to send generators
T1,...,Tm of G to elements of S, and then check if the images of the relators in
G under this map are trivial or not. For every such homomorphism, 77 will check
if p(g) =1 or not. If T3 finds ¢ so that ¢(g) # 1, then g € G is nontrivial and the
process stops.

The machine T5 will list all the elements of the kernel N of the quotient homo-
morphism F,,, — G: It will multiply conjugates of the relators r; € R by products
of the generators z; € X (and their inverses) and transforms the product to a re-
duced word. Every element of N is such a product, of course. We first write g € G
as a reduced word w in generators x; and their inverses. If T5 finds that w equals
one of the elements of N, then it stops and concludes that g =1 in G.

The point of residual finiteness is that, eventually, one of the machines stops
and we conclude that g is trivial or not. a

Laws in groups.

DEFINITION 4.35. An identity (or law) is a non-trivial reduced word w =
w(xy,...,Ty,) in n letters x1,...,x, and their inverses. A group G is said to sat-
isfy the identity (law) w(xq,...,x,) = 1 if the equality is satisfied in G whenever
x1,...,T, are replaced by arbitrary elements in G.

EXAMPLES 4.36 (groups satisfying a law). (1) Abelian groups. Here the
law is

1 1

w(x1,T2) = 12227 Ty .
(2) Solvable groups, see (77?).
(3) Free Burnside groups. The free Burnside group

B(n,m) = <x1, .oy, | W™ for every word w in xfd, . ,J;f1> )

It is known that these groups are infinite for sufficiently large m (see
[Ady79], [O1'91], [Iva94], [Lys96|, [DG] and references therein).

Note that free nonabelian groups (and, hence, groups containing them) do not
satisfy any law.
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4.4. Ping-pong lemma. Examples of free groups

LeEmMA 4.37 (Ping—pong, or Table—tennis, lemma). Let X be a set, and let
g: X = X and h: X — X be two bijections. If A, B are two non-empty subsets of
X, such that A ¢ B and

g"(A) C B for everyn € Z\ {0},
h™(B) C A for every m € Z\ {0},

then g, h generate a free subgroup of rank 2 in the group Bij(X) with the binary
operation given by composition o.

PROOF. Step 1. Let w be a non-empty reduced word in {g, g~ ', h,h~'}. We
want to prove that w is not equal to the identity in Bij(X). We begin by noting
that it is enough to prove this when

(4.4) w=g"th"g"h"™ . g™, withn; € Z\{0}Vje {1,...,k}.
Indeed:

o If w = h™ig"2hns ... gk h"k+1 then gwg~! is as in (4.4), and gwg~! #
id = w # id.

o If w = g"th™2gmshm | g™ h™+1 then for any m # —nq, g"wg™ ™ is as
in (4.4).

o If w = h™g™h" ... g™ then for any m # ng, ¢"wg™™ # id is as in
(4.4).

Step 2. If wis as in (4.4) then
w(A) C g"hMgthm™ L g™ 2R (B) C g™ R g™ L g™ (A) C ... C

g"(A) C B.
If w = id, then it would follow that A C B, a contradiction. O

EXAMPLE 4.38. For any integer k£ > 2 the matrices

1k 10
9:(0 1>andh:<k 1)

generate a free subgroup of SL(2,Z).

1st proof. The group SL(2,7Z) acts on the upper half plane H? = {2 € C | $(z) > 0}
by linear fractional transformations z — Zzzidb . The matrix g acts as a horizontal
translation z — z + k, while

(D)

Therefore h acts as represented in Figure 4.1, where h sends the interior of the disk
bounded by C to the exterior of the disk bounded by C’. We apply Lemma 4.37 to
g, h and the subsets A and B represented below, i.e. A is the strip

k k
{zcH? : —§<Rez<§}
and B is the complement of its closure, that is
k k
B={:cH : Rez<f§ orRez>§}.
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Hence ¢"(A) C B and h™(B) C A for all n # 0. Therefore, the claim follows from
lemma 4.37.

h

EvN

-k/2 —Q/Q\\‘,//\\\_///2/k k/2

Fi1GURE 4.1. Example of ping-pong.

2nd proof. The group SL(2,7Z) also acts linearly on R?, and we can apply Lemma
4.37 to g, h and the following subsets of R?

A:{(i):m<w}aMB:{(z):M>W@.

REMARK 4.39. The statement in the Example above no longer holds for k£ = 1.
Indeed, in this case we have

= () (DG (5,

Thus, (g-*hg=1)? = I, and, hence, the group generated by g, h is not free.

(]

Lemma 4.37 extends to the case of several bijections as follows.
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LeEMMA 4.40 (The generalized Ping-pong lemma). Let X be a set, and let
gi + X = X, i€ {1,2,...,k}, be bijections. Suppose that Ay,..., A are non-
empty subsets of X, such that Uf:z A; ¢ Ay and that for every i € {1,2,...,k}

ar UAj C A, for everyn € Z\ {0}.
JF#i
Then g1, ..., gi generate a free subgroup of rank k in the group of bijections Bij(X).

ProoF. Consider a non-trivial reduced word w in {gfﬂ, e ,gfcﬂ}. As in the
proof of Lemma 4.37, without loss of generality we may assume that the word w
begins with g¢ and ends with g%, where a,b € Z \ {0}. We apply w to ULQ A,
and obtain that the image is contained in A; . If w = id in Bij(X), it would that
U?:g A; C Ay, a contradiction. O

4.5. Ping-pong on a projective space

We will frequently use Ping-Pong lemma in the case when X is a projective
space. Since this application of the ping-pong argument is the key for the proof of
the Tits” Alternative, we explain it here in detail.

Let V be a finite dimensional space over a normed field K, which is either R, C
or has discrete norm and uniformizer 7, as in §1.7. We endow the projective space
P(V) with the metric d as in §1.8.

LEMMA 4.41. Every g € GL(n,K) induces a bi-Lipschitz transformation of
2
P(K"™) with Lipschitz constant < \‘Zi‘lm
g and

where ay,...,a, are the singular values of

la1] = ... = |an].

PROOF. According to the Cartan decomposition ¢ = kdk’ and since all ele-
ments in the subgroup K act by isometries on the projective space, it suffices to

prove the statement when g is a diagonal matrix A with diagonal entries a1, ..., a,
which are arranged in the order as above. We will do the computation in the
case K = R and leave the other cases to the reader. Given nonzero vectors
x=(x1,-..,2n),y = (Y1, -.,Yn), We obtain:
gz A gy| = | Zaiajﬂcﬂj@i Aej] < fag]?| leazﬂ = lax |z Ay,
1<j i<j

gz =Y aiai|"? = lanllzl, gyl > lanlly
%

and, hence,

d(glz], gly]) < = d([=], [y))-

lan|? |2| - [yl lan|?
O

Let g be an element in GL(n,K) such that with respect to some ordered basis
{u1,...,u,}, the matrix of ¢ is diagonal with diagonal entries A1,. .., A, satisfying

|>\1| > |)\2‘ > ‘)\3| = ... 2 ‘)\n—1| > |>\n‘ >0.

Let us denote by A(g) and by H(g) the projection to P(K™) of the span of
{u1}, respectively of the span of {us,...,u,}. Note that then A(g~') and H(g~ 1)
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are the respective projections to P(K") of the span of {u,}, respectively, of the
span of {uy,...,u,_1}. Obviously, A(g) € H(g~') and A(¢g~ ') € H(g).

LEMMA 4.42. Assume that g and h are two elements in GL(n,K) as above,
which are diagonal with respect to bases {u1,...,un}, {v1,...,v,} respectively. As-
sume also that the points A(g*™1) are not in H(h) U H(h™'), and A(h*') are not
in H(g) U H(g™"). Then there exists a positive integer N such that gV and h™
generate a free non-abelian subgroup of GL(n,K).

PROOF. We first claim that for every € > 0 there exists N = N(e) such that for
every m > N, g*™ maps the complement of the e-neighborhood of H(¢g*') inside
the ball of radius ¢ and center A(g*!).

According to Lemma 4.41, it suffices to prove the statement when {uq, ..., u,}
is the standard basis {e1, ..., e, } of V (since we can conjugate g to a matrix diagonal
with respect to the standard basis). In particular, A(g*?!) is either [e1] or [e,]. In
the former case we take f(z) = x - ey, in the latter case, take f(z) = x - e,, so that
Ker(f) = H = H(g*"). Then, for a unit vector v = (z1,...,2,) € V, according to
Exercise 1.80, dist([v], [H]) = | f(v)|. To simplify the notation, we will assume that
f(x) = x - e1, since the other case is obtained by relabeling. Then,

[U] ¢NE(H(9:H)) <~ |$1| > e

We have
g0 Aer] = [ Y APwie Aer] < Vol M [v] = vl
i1
while
lg™ vl = [Ac]™ |21l

which implies that

lgmol T ] A T e

d(gm[v],[el]) _ |gm’U/\61| < \/ﬁ |)‘2‘m < \/ﬁ (Iij:)

The latter quantity converges to zero as m — oo, since |A1| > |A2|. Thus, for all
large m, d(g™[v], [e1]) < . The same claim holds for h*!.

Now consider ¢ > 0 such that for every a € {g,¢g '} and be € {h,h™'} the
points A(a) and A(B*!) are at distance at least 2¢ from H(a). Let N be large
enough so that g™ maps the complement of the e-neighborhood of H(g*!) inside
the ball of radius ¢ and center A(g*!), and h*" maps the complement of the
e-neighborhood of H(h*1!) inside the ball of radius ¢ and center A(h*1).

Let A := B(A(g),e) U B(A(g~Y),e) and B := B(A(h),e) U B(A(h™1),¢).
Clearly, "V (A) C B and h*™(B) C A for every k € Z. Hence by Lemma 4.37, gV
and kY generate a free group. O

4.6. The rank of a free group determines the group. Subgroups

PROPOSITION 4.43. Two free groups F(X) and F(Y) are isomorphic if and
only if X and Y have the same cardinality.

PROOF. A bijection ¢ : X — Y extends to an isomorphism ® : F(X) — F(Y)
by Proposition 4.18. Therefore, two free groups F'(X) and F(Y') are isomorphic if
X and Y have the same cardinality.

Conversely, let ® : F(X) — F(Y) be an isomorphism. Take N(X) < F(X), the
subgroup generated by the subset {g?; g € F(X)}; clearly, N is normal in F(X).
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Then, ®(N (X)) = N(Y) is the normal subgroup generated by {h?; h € F(Y)}. It
follows that ® induces an isomorphism ¥ : F(X)/N(X) — F(Y)/N(Y).

LEMMA 4.44. The quotient F := F/N is isomorphic to A = Z?X, where
F=F(X).

PrROOF. Recall that A has the presentation
(z € X|2?, [z, y),Va,y € X),

see Exercise 4.24. We now prove the assertion of the lemma. Consider the map
n : F — A sending the generators of F' to the obvious generators of A. Thus,
7(g) = m(g~?!) for all g € F. We conclude that for all g,h € X,

1 =n((hg)®) = n([g, h]),

and, therefore, F is abelian.

Since A satisfies the law a? = 1 for all a € A, it is clear that n = ¢ o 7, where
7 : F — [ is the quotient map. We next construct the inverse 1) to ¢. We define 1
on the generators x € X of A: ¢(x) = & = w(x). We need to show that 1) preserves
the relators of A (as in Lemma 4.23): Since F is abelian, [1)(x),%(y)] = 1 for all
x,y € X. Moreover, ¥(x)? = 1 since F also satisfies the law g = 1. It is clear that
¢, are inverses to each other. O

Thus, F(X)/N(X) is isomorphic to Z§~, while F(Y)/N(Y) is isomorphic to
Z$Y . Tt follows that Zg~ = Z$Y as Z,-vector spaces. Therefore, X and Y have
the same cardinality, by uniqueness of the dimension of vector spaces. O

REMARK 4.45. Proposition 4.43 implies that for every cardinal number n there
exists, up to isomorphism, exactly one free group of rank n. We denote it by Fi,.

THEOREM 4.46 (Nielsen—Schreier). Any subgroup of a free group is a free group.

This theorem will be proven in Corollary 4.70 using topological methods; see
also [LS77, Proposition 2.11].

PROPOSITION 4.47. The free group of rank two contains an isomorphic copy of
Fy. for every finite k and k = N,.

PROOF. Let z,y be the two generators of F5. Let S be the subset consisting
of all elements of Fy of the form zj := y*zy~*, for all k € N. We claim that the
subgroup (S) generated by S is isomorphic to the free group of rank Y.

Indeed, consider the set A of all reduced words with prefix y*z. With the
notation of Section 4.2, the transformation L., : F» — F5 has the property that
L, (A;) C Ay for every j # k. Obviously, the sets Ay, k& € N, are pairwise
disjoint. This and Lemma 4.40 imply that {L,, ; k € N} generate a free subgroup
in Bij(F3), hence so do {zy ; k € N} in F;. O

4.7. Free constructions: Amalgams of groups and graphs of groups

4.7.1. Amalgams. Amalgams (amalgamated free products and HNN exten-
sions) allow one to build more complicated groups starting with a given pair of
groups or a group and a pair of its subgroups which are isomorphic to each other.
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Amalgamated free products. As a warm-up we define the free product of

groups G = (X1|R1), G2 = (X3|R2) by the presentation:
Gl*G2:<G1,G2| >
which is a shorthand for the presentation:
(X1 U X3|R1 URy).

For instance, the free group of rank 2 is isomorphic to Z * Z.

More generally, suppose that we are given subgroups H; < G; (i = 1,2) and an
isomorphism

(725 : Hl — H2
Define the amalgamated free product
Gl *H 2 H, Gg = <Gl,G2|¢(h)h_1,h S H1> .
In other words, in addition to the relators in G1,Go we identify ¢(h) with h for
each h € Hy. A common shorthand for the amalgamated free product is
G1*xp G

where H & H; = H, (the embeddings of H into G; and G2 are suppressed in this

notation).

HNN extensions. This construction is named after G. Higman, B. Neumann
and H. Neumann who first introduced it in [HNN49]. It is a variation on the
amalgamated free product where G; = G». Namely, suppose that we are given a
group G, its subgroups H;, Ho and an isomorphism ¢ : H; — Hs. Then the HNN
extension of G via ¢ is defined as

Gxmy~p, = (G, tltht ™" = ¢(h),Vh € Hy).
A common shorthand for the HNN extension is
G*H

where H = H; = H, (the two embeddings of H into G are suppressed in this
notation).

EXERCISE 4.48. Suppose that H; and Hy are both trivial subgroups. Then
G’*ng}]2 =G x*7Z.

4.7.2. Graphs of groups. In this section, graphs are no longer assumed to
be simplicial, but are assumed to connected. The notion of graphs of groups is
a very useful generalization of both the amalgamated free product and the HNN
extension.

Suppose that I' is a graph. Assign to each vertex v of I' a vertex group G;
assign to each edge e of I an edge group G.. We orient each edge e so it has the
initial and the terminal (possibly equal) vertices e_ and ey . Suppose that for each
edge e we are given monomorphisms

Gep 1Ge = Geyy e 1 Ge — Ge_.
REMARK 4.49. More generally, one can allow non-injective homomorphisms
Ge = Ge,,Ge = Ge_,

but we will not consider them here.

€4
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The graph I' together with the collection of vertex and edge groups and the
monomorphisms ¢, is called a graph of groups G.

DEFINITION 4.50. The fundamental group w(G) = m1(G) of the above graph of
groups is a group G satisfying the following:

1. There is a collection of compatible homomorphisms G, — G,G, — G,v €
V(I'),e € E(I'), so that whenever v = e, we have the commutative diagram

N

2. The group G is universal with respect to the above property, i.e., given any
group H and a collection of compatible homomorphisms G, - H,G. — H, there
exists a unique homomorphism G — H so that we have commutative diagrams

AN

Note that the above definition easily implies that 7(G) is unique (up to an iso-
morphism). For the existence of 7(G) see [Ser80] and discussion below. Whenever
G = 7(G), we will say that G determines a graph of groups decomposition of G.
The decomposition of G is called trivial if there is a vertex v so that the natural
homomorphism G, — G is onto.

for all v € V(T).

ExaMPLE 4.51. 1. Suppose that the graph T' is a single edge e = [1,2],
d)e_ (Ge) = H1 < Gl, ¢8+(Ge) = H2 g GQ. Then

W(g) ~ Gy *H, = Hy Gs.

2. Suppose that the graph T is a single loop e = [1,1], ¢._(G.) = H1 < Gy,
¢e, (Ge) = Hy < Gy. Then

m(G) = G1*m,~H, -

Once this example is understood, one can show that for every graph of groups
G, m(G) exists by describing this group in terms of generators and relators in
the manner similar to the definition of the amalgamated free product and HNN
extension. In the next section we will see how to construct 71 (G) using topology.

4.7.3. Converting graphs of groups to amalgams. Suppose that G is a
graph of groups and G = m1(G). Our goal is to convert G in an amalgam decom-
position of G. There are two cases to consider:

1. Suppose that the graph I" underlying G contains a oriented edge e = [v1, v2]
so that e separates I' in the sense that the graph I obtained form I' by removing
e (and keeping vi,vs) is a disjoint union of connected subgraphs I'; U 'y, where
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v; € V(). Let G; denote the subgraph in the graph of groups G, corresponding to
I';,2=1,2. Then set

G; :=7m(G;),i=1,2, G3:=0G,.

We have composition of embeddings G — G,, — G; — G. Then the universal
property of m(G;) and 71 (G) implies that G & Gy *¢, G2: One simply verifies that
G satisfies the universal property for the amalgam G *¢, Ga.

2. Suppose that T" contains an oriented edge e = [v1, v3] so e does not separate
I'. Let I'; :=T", where I" is obtained from I'" by removing the edge e as in Case 1.
Set G := m1(G1) as before. Then embeddings

Ge — Gy, i =1,2
induce embeddings G, — G; with the images H;, Hy respectively. Similarly to the
Case 1, we obtain
G = Gixg, = Gixp,~n,
where the isomorphism H; — Hj is given by the composition
Hl — Ge — HQ.

Clearly, G is trivial if and only if the corresponding amalgam G xg, G2 or
Gixq, is trivial.

4.7.4. Topological interpretation of graphs of groups. Let G be a graph
of groups. Suppose that for all vertices and edges v € V(I') and e € E(T") we
are given connected cell complexes M,,, M, with the fundamental groups G,,G.
respectively. For each edge e = [v, w] assume that we are given a continuous map
fey + M — M., which induces the monomorphism ¢., . This collection of spaces
and maps is called a graph of spaces

Gur = {My, Me, fey, : Me = M,y :v e V(T),e€ E(I)}.

In order to construct Gy, starting from G, recall that each group G admits a
cell complex K (G, 1) whose fundamental group is G and whose universal cover is
contractible, see e.g. [Hat02]. Given a group homomorphism ¢ : H — G, there
exists a continuous map, unique up to homotopy,

f:K(H,1) = K(G,1)

which induces the homomorphism ¢. Then one can take M, := K(G,,1), M, :=
K(Ge,1), etc.

To simplify the picture (although this is not the general case), the reader can
think of each M, as a manifold with several boundary components which are home-
omorphic to M.,, M,,, ..., where e; are the edges having v as their initial or final
vertez. Then assume that the maps f., are homeomorphisms onto the respective
boundary components.

For each edge e form the product M, x [0, 1] and then form the double mapping
cylinders for the maps f._ , i.e. identify points of M, x {0} and M. x {1} with their
images under f._ and f., respectively.

Let M denote the resulting cell complex. It then follows from the Seifert—Van
Kampen theorem [Mas91] that

THEOREM 4.52. The group w1 (M) is isomorphic to 7(G).
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This theorem allows one to think of the graphs of groups and their fundamental
groups topologically rather than algebraically. Given the above interpretation, one
can easily see that for each vertex v € V(I') the canonical homomorphism G, —
7(G) is injective.

EXAMPLE 4.53. The group F(X) is isomorphic to m1 (ViexSh).

4.7.5. Graphs of groups and group actions on trees. An action of a
group G on a tree T is an action G ~ T so that each element of G acts as an
automorphism of T, i.e., such action is a homomorphism G — Aut(T). A tree T
with the prescribed action G ~ T'is called a G—tree. An action G ~ T is said to be
without inversions if whenever g € G preserves an edge e of T', it fixes e pointwise.
The action is called trivial if there is a vertex v € T fixed by the entire group G.

REMARK 4.54. Later on, we will encounter more complicated (non-simplicial)
trees and actions.

Our next goal is to explain the relation between the graph of groups decompo-
sitions of G and actions of GG on simplicial trees without inversions.

Suppose that G = 7(G) is a graph of groups decomposition of G. We associate
with G a graph of spaces M = Mg as above. Let X denote the universal cover
of the corresponding cell complex M. Then X is the disjoint union of the copies
of the universal covers M,, M, x (0,1) of the complexes M, and M, x (0,1). We
will refer to this partitioning of X as the tiling of X. In other words, X has the
structure of a graph of spaces, where each vertex/edge space is homeomorphic to
M,,v € V(T'), M, x [0,1],e € E(T'). Let T denote the graph corresponding to X:
Each copy of M, determines a vertex in T and each copy of M, x [0,1] determines
an edge in 7.

EXAMPLE 4.55. Suppose that I' is a single segment [1,2], M; and M, are
surfaces of genus 1 with a single boundary component each. Let M, be the circle.
We assume that the maps f., are homeomorphisms of this circle to the boundary
circles of My, Ms. Then, M is a surface of genus 2. The graph T is sketched in
Figure 4.2.

The Mayer—Vietoris theorem, applied to the above tiling of X, implies that
0= H(X,Z) = Hi(T,Z). Therefore, T = T(G) is a tree. The group G = 71 (M)
acts on X by deck-transformations, preserving the tiling. Therefore we get the
induced action G ~ T. If g € G preserves some M, x (0,1), then it comes from the
fundamental group of M.. Therefore such g also preserves the orientation on the
segment [0,1]. Hence the action G ~ T is without inversions. Observe that the
stabilizer of each M, in G is conjugate in G to m1(M,) = G,,. Moreover, T/G =T.

ExaMPLE 4.56. Let G = BS(p, q) be the Baumslag-Solitar group described in
Example 4.28, (8). The group G clearly has the structure of a graph of groups since
it is isomorphic to the HNN extension of Z,

Lk H,2H,

where the subgroups Hy, Ho C Z have the indices p and ¢ respectively. In order to
construct the cell complex K (G, 1) take the circle S' = M,, the cylinder S* x [0, 1]
and attach the ends to this cylinder to M, by the maps of the degree p and ¢
respectively. Now, consider the associated G—tree T. Its vertices have valence
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FIGURE 4.2. Universal cover of the genus 2 surface.

p+ q: Each vertex v has ¢ incoming and p outgoing edges so that for each outgoing
edge e we have v = e_ and for each incoming edge we have v = e;. The vertex
stabilizer G, & Z permutes (transitively) incoming and outgoing edges among each
other. The stabilizer of each outgoing edge is the subgroup H; and the stabilizer
of each incoming edge is the subgroup Hs. Thus the action of Z on the incoming
vertices is via the group Z/q and on the outgoing vertices via the group Z/p.

outgoing
incoming

FIGURE 4.3. Tree for the group BS(2,3).

LEMMA 4.57. G ~ T is trivial if and only if the graph of groups decomposition
of G is trivial.

PROOF. Suppose that G fixes a vertex v € T. Then m (M,) = G, = G, where
v € T' is the projection of ©. Hence the decomposition of G is trivial. Conversely,
suppose that G, maps onto G. Let & € T be the vertex which projects to v. Then
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71(M,) is the entire 71 (M) and hence G preserves My. Therefore, the group G
fixes 0. O

Conversely, each action of G on a simplicial tree T yields a realization of G
as the fundamental group of a graph of groups G, so that 7' = T(G). Here is the
construction of G. Furthermore, a nontrivial action leads to a nontrivial graph of
groups.

If the action G ~ T has inversion, we replace T with its barycentric subdivision
T'. Then the action G ~ T’ is without inversions. If G ~ T were nontrivial, so
is G ~ T'. Thus, from now on, we assume that G acts on T without inversions.
Then the quotient 7'/G is a graph I': V(I') = V(T')/G and E(T') = E(T)/G. For
every vertex 0 and edge € of T' let G5 and G¢ be their respective stabilizes in G.
Clearly, whenever € = [0, W], we get the embedding

Gé — G{,.

If g € G maps oriented edge é = [0,w] to an oriented edge &' = [/, @'], we obtain
isomorphisms

G{, — Gﬁ/, Gﬁ) — Gﬁ,q Gé — Gé/
induced by conjugation via g and the following diagram is commutative:

Ge Gs

Ge Gy

We then set G, := G5, G, := Gg, where v and e are the projections of ¥ and edge
€ to T'. For every edge e of T' oriented as e = [v,w], we define the monomorphism
G. — G, as follows. By applying an appropriate element g € G as above, we can
assume that € = [0,w]. Then We define the embedding G, — G, to make the
diagram

commutative. The result is a graph of groups G. We leave it to the reader to verify
that the functor (G ~ T) — G described above is just the reverse of the functor
G — (G T)for G with G = m1(G). In particular, G is trivial if and only if the
action G ~ T is trivial.

DEFINITION 4.58. G — (G ~ T) — G is the Bass—Serre correspondence be-
tween realizations of groups as fundamental groups of graphs of groups and group
actions on trees without inversions.

We refer the reader to [SW79] and [Ser80] for further details.
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4.8. Cayley graphs

Finitely generated groups may be turned into geometric object as follows. Given
a group G and its generating set S, one defines the Cayley graph of G with respect
to S. This is a symmetric directed graph Cayleyy;, (G, S) such that

e its set of vertices is G;
e its set of oriented edges is (g, gs), with s € S.

Usually, the underlying non-oriented graph Cayley(G,S) of Cayleyy;, (G, S),
i.e. the graph such that:

e its set of vertices is G
e its set of edges consists of all pairs of elements in G, {g,h}, such that
h =gs, with s € S,
is also called Cayley graph of G with respect to S.
By abusing notation, we will also use the notation [g,h] = gh for the edge
{g,h}.
Since S is a generating set of G, it follows that the graph Cayley(G,.S) is
connected.
One can attach a color (label) from S to each oriented edge in Cayley;, (G, S):
the edge (g, gs) is labeled by s.
We endow Cayley (G, S) with the standard length metric (where every edge has
unit length). The restriction of this metric to G is called the word metric associated
to S and it is denoted by distg or dg.

NoTATION 4.59. For an element ¢ € G and a generating set S we denote
dists(1, g) by |g|s, the word norm of g. With this notation, dists(g, h) = |¢g~ h|s =
[h~gls.

CONVENTION 4.60. In this book, unless stated otherwise, all Cayley graphs are
for finite generating sets S.

Much of the discussion in this section though remains valid for arbitrary gen-
erating sets, including infinite ones.

REMARK 4.61. 1. Every group acts on itself by left multiplication:
GxG—G,(g,h)— gh.
This action extends to any Cayley graph: if [z, xs] is an edge of Cayley(G, S) with

the vertices z, xs, we extend g to the isometry
g: |z, zs] = [gx, gxs]

between the unit intervals. Both actions G ~ G and G ~ Cayley(G, S) are isomet-
ric. It is also clear that both actions are free, properly discontinuous and cocompact
(provided that S is finite): The quotient Cayley(G,S)/G is homeomorphic to the
bouquet of n circles, where n is the cardinality of S.

2. The action of the group on itself by right multiplication defines maps

R,:G— G, Ry(h)=hg

that are in general not isometries with respect to a word metric, but are at finite
distance from the identity map:

dist(id(h), Rg(h)) = |g]s -

113



EXERCISE 4.62. Prove that the word metric on a group G associated to a
generating set S may also be defined

(1) either as the unique maximal left-invariant metric on G such that
dist(1,s) = dist(1,s ') =1,Vs € S;

(2) or by the following formula: dist(g, h) is the length of the shortest word
w in the alphabet S U S~! such that w = ¢g~*h in G.

Below are two simple examples of Cayley graphs.
EXAMPLE 4.63. Consider Z? with set of generators
S={a=(1,0),b=(0,1),a " = (-1,0),b~" = (0,-1)}.

The Cayley graph Cayley(G,S) is the square grid in the Euclidean plane: The
vertices are points with integer coordinates, two vertices are connected by an edge
if and only if either their first or their second coordinates differ by +1. See Figure
44

FIGURE 4.4. Cayley graph of Z2.

The Cayley graph of Z? with respect to the set of generators {£(1,0),4(1,1)}
has the same set of vertices as the above, but the vertical lines must be replaced
by diagonal lines.

EXAMPLE 4.64. Let G be the free group on two generators a,b. Take S =
{a,b,a=t,b=1}. The Cayley graph Cayley(G, S) is the 4-valent tree (there are four
edges incident to each vertex).

See Figure 4.5.
THEOREM 4.65. Fundamental group of every connected graph I is free.
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FIGURE 4.5. Free group.

PROOF. By axiom of choice, I' contains a maximal subtree A C I". Let I
denote the subdivision of T" where very edge e in £ = E(T") \ E(A) is subdivided in
3 sub-edges. For every such edge e let ¢’ denote the middle 3rd. Now, add to A all
the edges in E(I") which are not of the form ¢’ (e € £), and the vertices of such
edges, of course, and let 7" denote the resulting tree. Thus, we obtain a covering of
I by the simplicial tree 7" and the subgraph I'¢ consisting of the pairwise disjoint
edges ¢ (e € &), and the incident vertices. To this covering we can now apply
Seifert—Van Kampen Theorem and conclude that G = 71 (T) is free, with the free
generators indexed by the set £. O

COROLLARY 4.66. A connected graph is simply connected if and only if the
graph is a tree.

COROLLARY 4.67. 1. Every free group F(X) is the fundamental group of the
bouquet B of | X| circles. 2. The universal cover of B is a tree T, which is isomor-
phic to the Cayley graph of F(X) with respect to the generating set X .

Proor. 1. By Theorem 4.65, G = m1(B) is free; furthermore, the proof also
shows that the generating set of G is identified with the set of edges of B. We
now orient every edge of B using this identification. 2. The universal cover T' of
B is a simply-connected graph, hence, a tree. We lift the orientation of edges of
B to orientation of edges of T. The group F(X) = m1(B) acts on T by covering
transformations, hence, the action on the vertex V(T') set of T is simply-transitive.
Therefore, we obtain and identification of V(T') with G. Let v be a vertex of T. By
construction and the standard identification of 7 (B) with covering transformations
of T, every oriented edge e of B lifts to an oriented edge € of T of the form [v, w].
Conversely, every oriented edge [v, w] of T projects to an oriented edge of B. Thus,
we labeled all the oriented edges of T with generators of F'(X). Again, by the
covering theory, if an oriented edge [u, w] of T is labeled with a generator = € F(X),
then x sends u to w. Thus, T is isomorphic to the Cayley graph of F(X). d

COROLLARY 4.68. A group G is free if and only if it can act freely by automor-
phisms on a simplicial tree T'.
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PRrooOF. By the covering theory, G = 1 (I') where I' = T'/G. Now, Theorem
4.65, G = m1(T) is free. See [Ser80] for another proof and more general discussion
of group actions on trees. (]

REMARK 4.69. The concept of a simplicial tree generalizes to the one of a real
tree. There are non-free groups acting isometrically and freely on real trees, e.g.,
surface groups and free abelian groups. Rips proved that every finitely generated
group acting freely and isometrically on a real tree is a free product of surface
groups and free abelian groups, see e.g. [Kap01] for a proof.

COROLLARY 4.70 (Nielsen—Schreier). Every subgroup H of a free group F is
itself free.

PRrROOF. Realize the free group F as the fundamental group of a bouquet Bof
circles; the universal cover T' of B is a simplicial tree. The subgroup H < F also
acts on 7T freely. Thus, H is free. |

EXERCISE 4.71. Let G and H be finitely generated groups, with S and X
respective finite generating sets.

Consider the wreath product G H as defined in Definition 3.59, endowed with
the finite generating set canonically associated to S and X described in Exercise
4.10. For every function f : H — G denote by supp f the set of elements h € H
such that f(h) # 1¢.

Let f and g be arbitrary functions from H to G with finite support, and h, k
arbitrary elements in H. Prove that the word distance in G? H from (f, h) to (g, k)
with respect to the generating set mentioned above is

(4.5)  dist((f.h),(g,k)) = Y_ dists(f(x),g(x)) + Length(suppg ™" f :h, k).
reH

where Length(supp g~ !f;h, k) is the length of the shortest path in Cayley(H, X)

starting in h, ending in k& and whose image contains the set suppg~'f.

Thus we succeeded in assigning to every finitely generated group G a met-
ric space Cayley(G,S). The problem, however, is that this assignment G —
Cayley(G, S) is far from canonical: different generating sets could yield completely
different Cayley graphs. For instance, the trivial group has the presentations:

(| ), {aa), <a,b|ab7ab2>,...,

which give rise to the non-isometric Cayley graphs:

. el D

FIGURE 4.6. Cayley graphs of the trivial group.

The same applies to the infinite cyclic group:
In the above examples we did not follow the convention that S = S—!.

Note, however, that all Cayley graphs of the trivial group have finite diameter;
the same, of course, applies to all finite groups. The Cayley graphs of Z as above,
although they are clearly non-isometric, are within finite distance from each other
(when placed in the same Euclidean plane). Therefore, when seen from a (very)
large distance (or by a person with a very poor vision), every Cayley graph of a
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FIGURE 4.7. Cayley graphs of Z = (z|) and Z = (z,y|zy™').

finite group looks like a “fuzzy dot”; every Cayley graph of Z looks like a “fuzzy
line,” etc. Therefore, although non-isometric, they “look alike”.

EXERCISE 4.72. (1) Prove that if S and S are two finite generating sets of
G then the word metrics distg and distg on G are bi-Lipschitz equivalent,
i.e. there exists L > 0 such that

1
(4.6) fdists(g,g’) < distg(g,¢') < Ldists(g,4'),Vg,q' € G.

(2) Prove that an isomorphism between two finitely generated groups is a
bi-Lipschitz map when the two groups are endowed with word metrics.

CONVENTION 4.73. From now on, unless otherwise stated, by a metric on a
finitely generated group we mean a word metric coming from a finite generating
set.

EXERCISE 4.74. Show that the Cayley graph of a finitely generated infinite
group contains an isometric copy of R, i.e. a bi-infinite geodesic. Hint: Apply
Arzela-Ascoli theorem to a sequence of geodesic segments in the Cayley graph.

On the other hand, it is clear that no matter how poor your vision is, the Cayley
graphs of, say, {1}, Z and Z? all look different: They appear to have different
“dimension” (0, 1 and 2 respectively).

Telling apart the Cayley graph Cayley, of Z? from the Cayley graph Cayley,
of the Coxeter group

A= A(4,4,4) := (a,b,c|a®,b%, 3, (ab)*, (bc)?, (ca)®)

seems more difficult: They both “appear” 2-dimensional. However, by looking at
the larger pieces of Cayley; and Cayley,, the difference becomes more apparent:
Within a given ball of radius R in Cayley,, there seems to be less vertices than in
Cayley,. The former grows quadratically, the latter grows exponentially fast as R
goes to infinity.

The goal of the rest of the book is to make sense of this “fuzzy math”.

In Section 5.1 we replace the notion of an isometry with the notion of a quasi-
isometry, in order to capture what different Cayley graphs of the same group have
in common.
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LEMMA 4.75. A finite index subgroup of a finitely generated group is finitely
generated.

PRrOOF. It follows from Theorem 5.29. We give here another proof, as the set
of generators of the subgroup found here will be used in future applications.

Let G be a group and S a finite generating set of G, and let H be a finite index
subgroup in G. Then G = H U |_]f:1 Hyg; for some elements g; € G. Consider

R= max |gils -
Then G = HB(1, R). We now prove that X = HN B(1,2R+1) is a generating set
of H.

Let h be an arbitrary element in H and let g9 = 1,91,...,9, = h be the
consecutive vertices on a geodesic in Cayley(G, S) joining 1 and h. In particular,
this implies that distg(1,h) = n.

For every 1 < i < n — 1 there exist h; € H such that distg(g;, h;) < R. Set
ho = 1 and h,, = h. Then distg(h;, hix1) < 2R + 1, hence h;11 = h;z; for some
x; € X, for every 0 < i < n—1. It follows that h = h,, = z122 - - x,, whence X
generates H and |h|x < |h|s = n. O

4.9. Volumes of maps of cell complexes and Van Kampen diagrams

The goal of this section is to describe several notions of volumes of maps and to
relate them to each other and to the word reductions in finitely-presented groups.
It turns out that most of these notions are equivalent, but, in few cases, there subtle
differences.

Recall that in section 2.1.4 we defined volumes of maps between Riemannian
manifolds. More generally, the same definition of volume of a map applies in the
context of Lipschitz maps of Euclidean simplicial complexes, i.e., simplicial com-
plexes where each k-simplex is equipped with the metric of the Euclidean simplex
where every edge has unit length. In order to compute n-volume of a map f, first
compute volumes of restrictions f|A;, for all n-dimensional simplices and then add
up the results.

4.9.1. Simplicial and combinatorial volumes of maps. Suppose that
X,Y are simplicial complexes equipped with standard metrics and f : X = Y
is a simplicial map, i.e., a map which sends every simplex to simplex so that the
restriction is linear. Then the n-dimensional simplicial volume sVol, (f) of f is just
the number of n-dimensional simplices in the domain X. Note that this, somewhat
strange, concept, is independent of the map f but is, nevertheless, useful. The more
natural concept is the one of the combinatorial volume of the map f, namely,

Volu(f) = 3 LVol(f(4)
A n

where the sum is taken over all n-simplices in X and ¢, is the volume of the

Euclidean simplex with unit edges. In other words, cVol, counts the number of

n-simplices in X which are not mapped by f to simplices of lower dimension.
Both definitions extend in the context of cellular maps of cell-complexes.
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DEFINITION 4.76. Let X,Y be n-dimensional almost regular cell complexes. A
cellular map f : X — Y is said to be regular if for every n-cell o in X either:

(a) f collapses o, i.e., f(o) C Y1 or

(b) f maps the interior of 0 homeomorphically to the interior of an n-cell in Y.

For instance, simplicial map of simplicial complexes is regular.

We define the combinatorial n-volume c¢Vol,,(f) of f to be the total number of
n-cells in X which are not collapsed by f. The combinatorial 2-volume is called area.
Thus, this definition agrees with the notion of combinatorial volume for simplicial
maps.

Geometric volumes of maps. Similarly, suppose that X Y are regular n-
dimensional cell complexes. We define smooth structure on each open n-cell in
X and Y by using the identification of these cells with the open n-dimensional
Euclidean balls of unit volume, coming from the regular cell complex structure on
X and Y.

We say that a cellular map f : X — Y is smooth if for every y € Y which
belongs to an open n-cell, f is smooth at every x € f~!(y). At points z € f~1(y)
for such y we have a continuous function |J;(x)|. We declare |J;(z)| to be zero at
all points # € X which map to Y(»~1. Then we again define the geometric volume
Vol(f) by the formula (2.2) where the integral is taken over all open n-cells in X.
We extend this definition to the case where f is not smooth over some open m-cells
by setting Vol(f) = oo in this case. In the case when n = 2, Vol(f) is called the
area of f and denoted Area(f).

We now assume that X is an n-dimensional finite regular cell complex and
Z C X is a subcomplex of dimension n — 1. The example we will be primarily
interested in is when X is the 2-disk and Z is its boundary circle.

LeEmMA 4.77 (Regular cellular approximation). After replacing X with its sub-
division if necessary, every cellular map f : X — Y is homotopic, rel. Z, to a
smooth reqular map h : X —'Y so that

Vol(h) = cVol,(h) < cVol,(f)
i.e., the geometric volume equals the combinatorial volume for the map h.

ProOF. First, without loss of generality, we may assume that f is smooth. For
each open n-cell ° in Y we consider components U of f~1(c°). If for some U and
p € o°, f(U) C 0°\ p, then we compose f|cl(U) with the retraction of o to its
boundary from the point p. The resulting map f; is clearly cellular, homotopic to
f rel. Z and its n-volume is at most the n-volume of f (for both geometric and
combinatorial volumes). Moreover, for every component U of f; ! (c°), f1(U) = o°.
We let m(f1,0) denote the number of components of f~1(c°).

Our next goal is to replace fi with a new (cellular) map f2 so that fo is 1-1 on
each U as above. By Sard’s theorem, for every n-cell ¢ in Y there exists a point
p = p, € 0° which is a regular value of f;. Let V =V, C ¢° be a small closed ball
whose interior contains p and so that f; is a covering map over V. Let p, : 0 — o
denote the retraction of o to its boundary which sends V' diffeomorphically to o°
and which maps o \ V to the boundary of 0. Let p: Y — Y be the map whose
restriction to each closed n-cell ¢ is p, and whose restriction to Y (1) is the
identity map. Then we replace fi with the composition fy := po fi. It is clear that
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the new map fs is cellular and is homotopic to f; rel. Z. Moreover, f, is a trivial
covering over each open n-cell in Y. By construction, we have:

(4.7) Vol (f2) =Y m(f1,0)Voln(0) =Y m(fa,0)Voln(c) < Volu(f),

where the sum is taken over all n-cells ¢ in Y. Furthermore, for each n-cell o,
f5 1(0°) is a disjoint union of open n-balls, each of which is contained in an open
n-cell in X. Moreover, the restriction of fs to the boundary of each of these balls
factors as the composition
€09

where ¢ is a homeomorphism to the Euclidean ball B” and e, : 9B® — Y (=1
is the attaching map of the cell . We then subdivide the cell complex X so that
the closure of each f; '(c°) is a cell. Then h := f, is the required regular map.
The required equality (and inequality) of volumes is an immediate corollary of the
equation (4.7). O

4.9.2. Topological interpretation of finite-presentability.

LEMMA 4.78. A group G is isomorphic to the fundamental group of a finite cell
complex Y if and only if G is finitely-presented.

PROOF. 1. Suppose that G has a finite presentation
(X|IRY = (x1, -, Tp|T1, oy i) -

We construct a finite 2-dimensional cell-complex Y, as follows. The complex Y
has unique vertex v. The 1-skeleton of Y is the n-rose, the bouquet of n circles
Y1y -+, 7Yn with the common point v, the circles are labeled x4, ..., z,. Observe that
the free group Fx is isomorphic to 1 (Y1, v) where the isomorphism sends each x;
to the circle in Y'! with the label ;. Thus, every word w in X* determines a based
loop Ly, in Y'! with the base-point v. In particular, each relator r; determines a loop
a; := L,,. We then attach 2-cells o1,...,0, to Y! using the maps a; : S* — Y1
as the attaching maps. Let Y be the resulting cell complex. It is clear from the
construction that Y is almost regular.

We obtain a homomorphism ¢ : Fx — 71(Y!) — 71(Y). Since each r; lies in
the kernel of this homomorphism, ¢ descends to a homomorphism v : G — 71 (Y).
It follows from the Seifert-Van Kampen theorem that 1 is an isomorphism.

2. Suppose that Y is a finite complex with G 2 71 (Y"). Pick a maximal subtree
T C Y'! and let X be the complex obtained by contracting 7' to a point. Since T’
is contractible, the resulting map Y — X (contracting T to a point v € X°) is a
homotopy-equivalence. The 1-skeleton of X is an n-rose with the edges v1,...,7n
which we will label z1,...,z,. It is now again follows from Seifert-Van Kampen
theorem that X is a presentation complex for a finite presentation of G: The
generators x; are the loops «; and the relators are the 2-cells (or, rather, their
attaching maps S* — X1). O

DEFINITION 4.79. The complex Y constructed in this proof is called the pre-
sentation complez of G associated with the presentation (X|R).

DEFINITION 4.80. The 2-dimensional complex Y constructed in the first part
of the above proof is called the presentation complex of the presentation

(X1, oy Tp|r1y e )
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4.9.3. Van Kampen diagrams and Dehn function. Van Kampen di-
agrams of relators. Suppose that (X|R) is a (finite) presentation of a group G
and Y be the corresponding presentation complex. Suppose that w € ((R)) < Fx
is a relator in this presentation. Then w corresponds to a null-homotopic loop A,
in the 1-skeleton Y of V. Let f : D> — Y be an extension of A, : S* — Y. By
the cellular approximation theorem (see e.g. [Hat02]), after subdivision of D? as
a regular cell complex, we can assume that f is cellular. Note, however, that some
edges in this cell complex structure on D? will be mapped to vertices and some
2-cells will be mapped to 1-skeleton. A Van Kampen diagram if an convenient (and
traditional) way to keep track of these dimension reductions.

DEFINITION 4.81. We say that a contractible finite planar regular cell complex
K is a tree-graded disk (a tree of discs or a discoid) provided that every edge of
K is contained in the boundary of K. In other words, K is obtained from a finite
simplicial tree by replacing some vertices with 2-cells, which is why we think of K
as a “tree of discs”.

F1GURE 4.8. Example of tree-graded disk.

LEMMA 4.82. For every w as above, there exists a tree-graded disk K, a regular
cell complex structure K on D?, a regular cellular map f: K — Y extending Ay,
and cellular maps h: K - Y,k : K — K so that: f = ho k.

ProOOF. Write w as a product
W=v]- Vg, U :uiriui_l,i: 1,...,k,
where each r; € R is a defining relator. Then the circle S! admits a regular cell
complex structure so that A, sends each vertex to the unique vertex v € Y and
for every edge «;, the based loop f|a; represents the word v; € Fx. Moreover, the
arcs a; are cyclically ordered on S! in order of appearance of v; in w. Furthermore,
each «; is subdivided in 3 arcs a:r, Bi,; so that the loop f|oz?E represents ufﬂ and
f|Bi represents 7;. We then construct a collection of pairwise disjoint arcs 7; C D?
which intersect S* only at their end-points: For each pair a;”, a; we connect the
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end-points of ;" to that of a; by arcs €. The result is a cell-complex structure
K on D? where every vertex is in S'. There three types of 2-cells in K:

1 Cells A; bounded by bigons v; Ue;,
2 Cells B; bounded by rectangles ozj' UetUa; Ue,
3 The rest, not containing any edges in S*.

We now collapse each 2-cell of type (3) to a point, collapse each 2-cell of type
(2) to an edge e; (so that ozii map homeomorphically onto this edge while ef map
to the end-points of e;). Note that o@t with their orientation inherited from S?
define two opposite orientations on e;.

The result is a tree-graded disk K and a collapsing map r : K — K. We define
amap h: K' = Y so that ho /-e|oz?E = A\, +1 while hok|B; = \,,. Lastly, we extend
h to the 2-cells C; := k(4;) in K: h: C; "5 Y are the 2-cells corresponding to the
defining relators r;. O

DEFINITION 4.83. A map h: K — Y constructed in the above lemma is called
a Van Kampen diagram of w in Y.

The combinatorial area cArea(h) of the Van Kampen diagram h : K — Y is
the number of 2-cells in K, i.e., the number k of relators r; used to describe w as
a product of conjugates of defining relators. The (algebraic) area of the loop A in
Y, denoted A(w), is

min cArea(h)
hiK—Y

where the minimum is taken over all Van Kampen diagrams of w in Y. Alge-
braically, the area A(w) is the least number of defining relators in the represen-
tation of w as the product of conjugates of defining relators. This explains the
significance of this notion of area: It captures the complexity of the word problem
for the presentation (X|R) of the group G.

We identify all open 2-cells in Y with open 2-disks of unit area. Our next
goal is to convert arbitrary disks that bound L, to Van Kampen diagrams. Let
f : D? = Y be a cellular map extending \,, where D? is given structure of a
regular cell complex W. By Lemma 4.77, we can replace f with a regular cellular
map f1 : D? — Y, which is homotopic to f rel. Z := dD?, so that cArea(f;) =
Area(f1) < Area(f).

We use the orientation induced from D? on each 2-cell in W. Pick a base-point
x € 0D? which is a vertex of W. Let o4,...,0,, be the 2-cells in W. For each
2-cell ¢ = o; of W we let p, denote a path in W) connecting x to do. Then,
by attaching the “tail” p, to each do (whose orientation is induced from o) we
get an oriented loop 7, based at z. By abusing the notation we let 7, denote the
corresponding elements of 7, (W), 2). We let A\ € 71 (W™ z) denote the element
corresponding to the (oriented) boundary circle of D?. We leave it to the reader to
verify that the group 7T1(W(1), x) is freely generated by the elements 7, and that A

is the product
1=
o

(in some order) of the elements 7, where each 7, appears exactly once. (This can
be shown, for instance, by induction on the number of 2-cells in W.) We renumber
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the 2-cells in W so that the above product has the form
HTU =Ty, - -Top,
(e

For each o; set ¢; := m(f1)(75,) € m (Y y), y = fi(z). Then, the element
71(f1)(\) € 1 (YD y) (represented by the loop A, ) is the product

in the group m (Y1), y). For every 2-cell o; of W either o; is collapsed by f; or not.
In the former case, ¢; represents a trivial element of the free group 7 (Y (1), ). Tn
the latter case, ¢; has the form

UiTj(3) Uy !
where 7;;) € R is one of the defining relators of the presentation (X|R) and the
word u; € Fx corresponds to the loop fi(ps,). Therefore, we can eliminate the
elements of the second type from the product (4.8) while preserving the identity

w=¢; P € Fx.
This product decomposition, as we observed above, corresponds to a Van Kampen

diagram h : K — Y. The number k is nothing but the combinatorial area of the
map f1 above. We conclude

PRrOPOSITION 4.84 (Combinatorial area equals geometric area equals algebraic
area).
A(w) = min{cArea(f) = Area(f)|f : D* = Y},
where the minimum is taken over all reqular cellular maps f extending the map
A : ST = YO,

DEFINITION 4.85 (Dehn function). Let G be a group with finite presentation
(X|R) and the corresponding presentation complex Y. The Dehn function of G
(with respect to the finite presentation (X|R)) equals

Dehn(n) := max{A(w) : |lw| < n}
where w’s are elements in X* representing trivial words in G. Geometrically speak-
ing,
Dehn(n) = max min{cArea(f)|f: D* =Y, floD* = \}
AEN)<n
where \’s are homotopically trivial regular cellular maps of the triangulated circle
to Y and f’s are regular cellular maps of the triangulated disk D? to Y.
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CHAPTER 5

Coarse geometry

5.1. Quasi-isometry

We now define an important equivalence relation between metric spaces: the
quasi-isometry. The quasi-isometry has two equivalent definitions: one which is easy
to visualize and one which makes it easier to understand why it is an equivalence
relation. We begin with the first definition, continue with the second and prove
their equivalence.

DEFINITION 5.1. Two metric spaces (X, distx) and (Y, disty ) are quasi-isometric
if and only if there exist A C X and B C Y, separated nets, such that (A,distx)
and (B, disty) are bi-Lipschitz equivalent.

EXAMPLES 5.2. (1) A metric space of finite diameter is quasi-isometric
to a point.
(2) The space R™ endowed with a norm is quasi-isometric to Z™ with the
metric induced by that norm.

Historically, quasi-isometry was introduced in order to formalize the relation-
ship between some discrete metric spaces (most of the time, groups) and some
“non-discrete” (or continuous) metric spaces like for instance Riemannian manifolds
etc. A particular instance of this is the relationship between hyperbolic spaces and
certain hyperbolic groups.

When trying to prove that the quasi-isometry relation is an equivalence rela-
tion, reflexivity and symmetry are straightforward, but when attempting to prove
transitivity, the following question naturally arises:

QUESTION 5.3 (|Gro93], p. 23). Can a space contain two separated nets that
are not bi-Lipschitz equivalent?

THEOREM 5.4 (|BK98]). There exists a separated net N in R? which is not
bi-Lipschitz equivalent to Z2.

OPEN QUESTION 5.5 ([BK02]). When placing a point in the barycenter of each
tile of a Penrose tiling, is the resulting separated net bi-Lipschitz equivalent to Z2?

A more general version of this question: embed R? into R" as a plane P with
irrational slope and take B, a bounded subset of R™ with non-empty interior. Con-
sider all z € Z™ such that z + B intersects P. The projections of all such z on P
compose a separated net. Is such a net bi-Lipschitz equivalent to Z2?

Fortunately there is a second equivalent way of defining the fact that two metric
spaces are quasi-isometric, which is as follows. We begin by loosening up the
Lipschitz concept.
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DEFINITION 5.6. Let X,Y be metric spaces. A map f : X — Y is called
(L, C)—coarse Lipschitz if

(5.1) disty (f(x), f(2')) < Ldistx (z,2') + C

for all z,2’ € X. A map f: X — Y is called an (L, C)—quasi-isometric embedding
if

(5.2) LM istx (z,2") — C < disty (f(x), f(2')) < Ldistx (z,2') + C

for all z,2’ € X. Note that a quasi-isometric embedding does not have to be an
embedding in the usual sense, however distant points have distinct images.

If X is a finite interval [a,b] then an (L,C)—quasi-isometric embedding ¢ :
X — Y is called a quasi-geodesic (segment). If a = —oo or b = +oo then q is called
quasi-geodesic ray. If both a = —oo and b = 400 then q is called quasi-geodesic
line. By abuse of terminology, the same names are used for the image of q.

An (L, C)—quasi-isometric embedding is called an (L, C')—quasi—isometry if it
admits a quasi-inverse map f : Y — X which is also an (L, C')-quasi-isometric
embedding so that:

(5.3) distx (ff(z),z) < C, disty(ff(y),y) <C

forallze X,y eY.
Two metric spaces X,Y are quasi-isometric if there exists a quasi-isometry
X =Y.

We will abbreviate quasi-isometry, quasi—isometric and quasi-isometrically to

QI

EXERCISE 5.7. Let f; : X — X be maps so that f3is (L3, A3) coarse Lipschitz
and dist(f2,idx) < Az. Then

dist(f3 o f1, f3o fa,0f1) < LAz + As.

DEFINITION 5.8. A metric space X is called quasi-geodesic if there exist con-
stants (L, A) so that every pair of points in X can be connected by an (L, A)—quasi-
geodesic.

In most cases the quasi—isometry constants L,C do not matter, so we shall
use the words quasi—isometries and quasi-isometric embeddings without specifying
constants.

EXERCISE 5.9. (1) Prove that the composition of two quasi-isometric em-
beddings is a quasi-isometric embedding, and that the composition of two
quasi-isometries is a quasi-isometry.

(2) Prove that quasi-isometry of metric spaces is an equivalence relation.

Some quasi-isometries X — X are more interesting than others. The boring
quasi-isometries are the ones which are within finite distance from the identity:

DEFINITION 5.10. Given a metric space (X, dist) we denote by B(X) the set
of maps f: X — X (not necessarily bijections) which are bounded perturbations of
the identity, i.e. maps such that

dist(f,idx) = sup dist(f(x), ) is finite.

reX
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In order to mod out the semigroup of quasi-isometries X — X by B(X), one
introduces a group QI(X) defined below. Given a metric space (X, dist), consider
the set QI(X) of equivalence classes of quasi-isometries X — X, where two quasi-
isometries f, g are equivalent if and only if dist(f, g) is finite. In particular, the set
of quasi-isometries equivalent to idx is B(X). It is easy to see that the composition
defines a binary operation on QI(X), that the quasi-inverse defines an inverse in
this group, and that QI(X) is a group when endowed with these operations.

DEFINITION 5.11. The group (QI(X), o) is called the group of quasi-isometries
of the metric space X.

There is a natural homomorphism Isom(X) — QI(X). In general, this homo-
morphism is not injective. For instance if X = R then the kernel is the full group
of translations R™. Similarly, the entire group G = Z™ x F, where F is a finite
group, maps trivially to QI(G). In general, kernel K of G — QI(G) is a subgroup
such that for every k € K the G-centralizer of k has finite index in G, see Lemma
?7?. Thus, every finitely generated subgroup in K is virtually central. In particular,
if G = K then G is virtually abelian.

QUESTION 5.12. Is the subgroup K < G always virtually central? Is it at least
true that K is always virtually abelian?

The group VI(G) of virtual automorphisms of G defined in Section 3.4 maps

naturally to QI(G) since every virtual isomorphism ¢ of G (¢ : Gy = G2, where
Gh1, Gy are finite-index subgroups of G) induces a quasi-isometry f; : G — G.
Indeed, ¢ : G; — G- is a quasi-isometry. Since both G; C G are nets, ¢ extends to
a quasi-isometry fy : G — G.

EXERCISE 5.13. Show that the map ¢ — f4 projects to a homomorphism
VI(G) = QI(G).

When G is a finitely generated group, QI(G) is independent of the choice
of word metric. More importantly, we will see (Corollary 5.62) that every group
quasi-isometric to G admits a natural homomorphism to QI(G).

EXERCISE 5.14. Show that if f : X — Y is a quasi-isometric embedding such
that f(X) is r-dense in Y for some r < oo then f is a quasi-isometry.

Hint: Construct a quasi-inverse f to the map f by mapping a point y € Y to
x € X such that

disty (f(z),y) <.

ExaMPLE 5.15. The cylinder X = S™ x R with a product metric is quasi-
isometric to Y = R; the quasi-isometry is the projection to the second factor.

EXAMPLE 5.16. Let A : R — R be an L-Lipschitz function. Then the map
f:R=R% f(z) = (2,h(z))

is a QI embedding.
Indeed, f is v/1 + L2-Lipschitz. On the other hand, clearly,

dist(x, y) < dist(f(z), f(y))
for all z,y € R.
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EXAMPLE 5.17. Let ¢ : [1,00) — R4 be a differentiable function so that
Jim olr) =0
and there exists C' € R for which |r¢/(r)| < C for all r. For instance, take ¢(r) =
log(r). Define the function F : R? \ B(0,1) — R?\ B(0,1) which in the polar
coordinates takes the form
(r,0) = (r,0 + @(r)).

Hence F' maps radial straight lines to spirals. Let us check that F' is L—-bi-Lipschitz
for L = v/1 + C2. Indeed, the Euclidean metric in the polar coordinates takes the
form

ds® = dr? + r*d6>.
Then
F*(ds®) = ((r¢/(r))? + 1)dr? + 1°d”
and the assertion follows. Extend F' to the unit disk by the zero map. Therefore,
F:R? - R?, is a QI embedding. Since F is onto, it is a quasi-isometry R? — R2.
EXERCISE 5.18. If f,g: X — Y are within finite distance from each other, i.e.

supdist(f(z),g(z)) < o0
and f is a quasi-isometry, then g is also a quasi-isometry.
PROPOSITION 5.19. Two metric spaces (X,distx) and (Y,disty) are quasi-

isometric in the sense of Definition 5.1 if and only if there exists a quasi-isometry
f: X Y.

PROOF. Assume there exists an (L, C')—quasi-isometry f : X — Y. Let 6 =
L(C+1) and let A be a é—separated e-net in X. Then B = f(A) is a 1-separated
(Le 4+ 2C)-net in Y. Moreover for any a,a’ € A,

disty (f(a), f(a")) < Ldistx(a,a’) + C < (L + C) distx (a,a’)

)
and
. / 1. / 1 C . /
disty (f(a), f(a')) > Zdlstx(a,a )—C = (L - 5) distx (a,a’) =

1 ) ,
mdlst){ (a, a ) .

It follows that f restricted to A and with target B is bi-Lipschitz.

Conversely, assume that A C X and B C Y are two e—separated d—nets, and
that there exists a bi-Lipschitz map g : A — B which is onto. We define a map
f: X =Y as follows: for every z € X we choose one a, € A at distance at most §
from z and define f(z) = g(ay)-

N.B. The axiom of choice makes here yet another important appearance, if we
do not count the episodic appearance of Zorn’s Lemma, which is equivalent to the
axiom of choice. Details on this axiom will be provided later on. Nevertheless, when
X is proper (for instance X is a finitely generated group with a word metric) there
are finitely many possibilities for a,, so the axiom of choice need not be assumed,
in the finite case it follows from the Zermelo—Fraenkel axioms.
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Since f(X) = g(A) = B it follows that Y is contained in the e—tubular nei-
ghborhood of f(X). For every z,y € X,

disty (f(x), f(y)) = disty (9(az), g(ay)) < Ldistx (az, ay) < L(distx (z,y) + 2¢).
Also

disty (f(x), f(y)) = disty (9(az), g(ay)) = %distx(am,ay) > %(distx(x,y) —2e).

Now the proposition follows from Exercise 5.14. O

Below is yet another variation on the definition of quasi-isometry, based on
relations.

First, some terminology: Given a relation R C X x Y, for z € X let R(x)
denote {(x,y) € X xY : (x,y) € R}. Similarly, define R(y) for y € Y. Let mx, 7y
denote the projections of X x Y to X and Y respectively.

DEFINITION 5.20. Let X and Y be metric spaces. A subset R C X x Y is
called an (L, A)—quasi-isometric relation if the following conditions hold:

1. Each z € X and each y € Y are within distance < A from the projection of
R to X and Y, respectively.

2. For each z,2' € mx(R)

dist gaus (my (R(z)), 7y (R(z"))) < Ldist(z, 2') + A.
3. Similarly, for each y,y’ € wy (R)
dist raus (7x (R(y)), mx (R(y"))) < Ldist(y, y') + A.

Observe that for any (L, A)—quasi-isometric relation R, for all pair of points
xz,2' € X, and y € R(x),y € R(a’) we have
%dist(ac,x') —
The same inequality holds for all pairs of points y,y’ € Y, and z € R(y), 2z’ € R(y’).

In particular, by using the axiom of choice as in the proof of Proposition 5.19,
if R is an (L, A)—quasi-isometric relation between nonempty metric spaces, then
it induces an (Lj, A;)—quasi-isometry X — Y. Conversely, every (L, A)—-quasi-
isometry is an (Ls, As)—quasi-isometric relation.

< dist(y,v') < Ldist(x, 2') + A.

s

In some cases, in order to show that a map f: X — Y is a quasi-isometry, it
suffices to check a weaker version of (5.3). We discuss this weaker version below.

Let X,Y be topological spaces. Recall that a (continuous) map f: X — Y is
called proper if the inverse image f~1(K) of each compact in Y is a compact in X.

DEFINITION 5.21. A map f : X — Y between proper metric spaces is called
uniformly proper if f is coarse Lipschitz and there exists a function ¢ : Ry — R
such that diam(f~!(B(y, R))) < ¥(R) for each y € Y, R € R,. Equivalently, there
exists a proper continuous function 1 : Ry — R, such that dist(f(z), f(z')) >
n(dist(x, 2')).

The functions ¥ and n are called upper and lower distortion function, respec-
tively.

For instance, the following function is L-Lipschitz, proper, but not uniformly
proper:

f(z) = (x|, arctan(z)).
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EXERCISE 5.22. 1. Composition of uniformly proper maps is again uniformly
proper.

2. If f1, fa: X = Y are such that dist(f1, f2) < oo and f; is uniformly proper,
then so is fo.

LEMMA 5.23. Suppose that Y is a geodesic metric space, f : X — Y is a
uniformly proper map whose image is r-dense in Y for some r < oco. Then f is a
quasi-isometry.

PRrooOF. Construct a quasi-inverse to the map f. Given a point y € Y pick
a point f(y) := z € X such that dist(f(x),y) < r. Let us check that f is coarse
Lipschitz. Since Y is a geodesic metric space it suffices to verify that there is a
constant A such that for all y,y’ € Y with dist(y,y’) < 1, one has:

dist(f(y), f(¥)) < A.

Pick ¢t > 2r + 1 which is in the image of the lower distortion function 7. Then take
Aentt). -
It is also clear that f, f are quasi-inverse to each other. ([l

LEMMA 5.24. Suppose that G is a finitely generated group equipped with word
metric and G ~ X is a properly discontinuous isometric action on a metric space
X. Then for every o € X the orbit map f : G — X, f(g9) = g - o, is uniformly
proper.

ProOOF. 1. Let S denote the finite generating set of G and set
L= .
max(d(s(o), 0)

Then for every g € G, ds(gs,g) = 1, while

d(gs(0),g(0)) = d(s(0),0) < L.
Therefore, f is L-Lipschitz.
2. Define the function

n(n) = min{d(go,0) : |g| = n}.
Since the action G ~ X is properly discontinuous,
lim n(n) = co.
n—oo

We extend 7 linearly to unit intervals [n,n + 1] C R and retain the notation n for
the extension. Thus, n : Ry — R, is continuous and proper. By definition of the
function 7, for every g € G,

d(f(g), f(1)) = d(go,0) = n(d(g,1)).
Since G acts on itself and on X isometrically, it follows that
d(f(g), f(h)) = n(d(g, ), Vg,heG.
Thus, the map f is uniformly proper. ([

Coarse convergence.

DEFINITION 5.25. Suppose that X is a proper metric space. A sequence (f;)
of maps X — Y is said to coarsely uniformly converge to a map f: X — 'Y on
compacts, if:
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There exists a number R < co so that for every compact K C X, there exits
ix so that for all i > ik,

Ve e K, d(fi(x),f(z)) <R.

PROPOSITION 5.26 (Coarse Arzela—Ascoli theorem.). Fiz real numbers L, A
and D and let X,Y be proper metric spaces so that X admits a separated R-net.
Let f; : X =Y be a sequence of (L1, A1)-Lipschitz maps, so that for some points
20 € X,y0 € Y we have d(f(z),yo) < D. Then there exists a subsequence (f;,),
and a (La, Ag)-Lipschitz map f: X =Y, so that

lim f, = f.
k—o0

Furthermore, if the maps f; are (L1, A1) quasi-isometries, then f is also an (L3, As)
quasi-isometry.

ProoF. Let N C X be a separated net. We can assume that o € N. Then the
restrictions f;|N are L’-Lipschitz maps and, by the usual Arzela-Ascoli theorem,
the sequence (f;]IN) subconverges (uniformly on compacts) to an L’ -Lipschitz map
f: N =Y. We extend f to X by the rule: For x € X pick 2’ € N so that
d(z,2") < R and set f(z) := f(2'). Then f : X — Y is an (Lg, A2)-Lipschitz.
For a metric ball B(zg,r) C X,r > R, there exists i, so that for all i > i, and
all z € N N B(zo,r), we have d(f;(z), f(z)) < 1. For arbitrary z € K, we find
' € NN B(zg,r+ R) so that d(a’,z) < R. Then

d(fi(x), f(x)) < d(fi(2'), f(z')) < Li(R+1) + A.

This proves coarse convergence. The argument for quasi-isometries is similar. [

5.2. Group-theoretic examples of quasi-isometries

We begin by noting that given a finitely generated group G endowed with a
word metric the space B(G) is particularly easy to describe. To begin with it
contains all the right translations R, : G — G, R4(x) = zg (see Remark 4.61).

LEMMA 5.27. In a finitely generated group (G,distg) endowed with a word
metric, the set of maps B(G) is consisting of piecewise right translations. That
is, given a map f € B(G) there exist finitely many elements hq,..., h, in G and
a decomposition G =Ty UTy U ... UT, such that f restricted to T; coincides with
Ry, .

i

PROOF. Since f € B(G) there exists a constant R > 0 such that for every
x € G, dist(z, f(z)) < R. This implies that = f(z) € B(1, R). The ball B(1, R) is
a finite set. We enumerate its distinct elements {hq, ..., h,}. Thus for every z € G
there exists h; such that f(x) = xh; = Rp,(x) for some i € {1,2,...,n}. We define
T; ={z € X ; f(x) = Rp,(x)}. If there exists € T; N Tj then f(x) = zh; = zh;,
which implies h; = h;, a contradiction. O

The main example of quasi-isometry, which partly justifies the interest in such
maps, is given by the following result, proved in the context of Riemannian mani-
folds first by A. Schwarz [Sva55] and, 13 years later, by J. Milnor [Mil68]. At the
time, both were motivated by relating volume growth in universal covers of compact
Riemannian manifolds and growth of their fundamental groups. Note that in the
literature it is at times this theorem (stating the equivalence between the growth
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function of the fundamental group of a compact manifold and that of the universal
cover of the manifold) that is referred to as the Milnor-Schwarz Theorem, and not
Theorem 5.29 below.

In fact, it had been observed already by V.A. Efremovich in [Efr53| that two
growth functions as above (i.e. of the volume of metric balls in the universal cover of
a compact Riemannian manifold, and of the cardinality of balls in the fundamental
group with a word metric) increase at the same rate.

REMARK 5.28 (What is in the name?). Schwarz is a German-Jewish name
which was translated to Russian (presumably, at some point in the 19-th century)
as [IIBapir. In the 1950-s, the AMS, in its infinite wisdom, decided to translate
this name to English as Svarc. A. Schwarz himself eventually moved to the United
States and is currently a colleague of the second author at University of California,
Davis. See http://www.math.ucdavis.edu/~schwarz/bion.pdf for his mathematical
autobiography. The transformation

Schwarz — IIIBapm — Svarc
is a good example of a composition of a quasi-isometry and its quasi-inverse.

THEOREM 5.29 (Milnor-Schwarz). Let (X, dist) be a proper geodesic metric
space (which is equivalent, by Theorem 1.29, to X being a length metric space
which is complete and locally compact) and let G be a group acting geometrically
on X. Then:

(1) the group G is finitely generated;
(2) for any word metric dist,, on G and any point x € X, the map G — X
given by g — gx s a quasi-isometry.

PrOOF. We denote the orbit of a point y € X by Gy. Given a subset A in X
we denote by G A the union of all orbits Ga with a € A.

Step 1: The generating set.

As every geometric action, the action G ~ X is cobounded: There exists a
closed ball B of radius D such that GB = X. Since X is proper, B is compact.
Define

S={seG;s#1,sBNB#0}.
Note that S is finite because the action of G is proper, and that S~! = S by the
definition of S.

Step 2: Outside of the generating set.

Now consider inf{dist(B,gB) ; g € G\ (SU{1})}. For some g € G'\ (SU{1})
the distance dist(B,gB) is a positive constant R, by the definition of S. The set
H of elements h € G such that dist(B,hB) < R is contained in the set {g €
G ; gB(z,D+ R)NB(z, D + R) # 0}, hence it is finite. Now inf{dist(B,¢B) ; g €
G\ (SU{1})} = inf{dist(B,gB) ; g € H\ (SU{1})} and the latter infimum is over
finitely many positive numbers, therefore there exists hg € H \ (S U{1}) such that
dist(B, hoB) realizes that infimum, which is therefore positive. Let then 2d be this
infimum. By definition dist(B, gB) < 2d implies that g € S U {1}.

Step 3: G is finitely generated.

Consider a geodesic [z, gz] and k = { Then there exists a finite

dist(z,gx)
—r .
sequence of points on the geodesic [z, gz], yo = =, y1,- -, Yk, Ye+1 = g such that
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dist(y;, yi+1) < d for every i € {0,...,k}. For every i € {1,...,k} let h; € G
be such that y; € h;B. We take hg = 1 and hyyq = g. As dist(B,h; 'hiy1B) =
dist(h; B, hiy1B) < dist(y;, yir1) < d it follows that h;lhi+1 =s; € S, that is
hiv1 = h;s;. Then g = hyy1 = 5081 - - sg. We have thus proved that G is generated
by S, consequently G is finitely generated.

Step 4: The quasi-isometry.

Since all word metrics on G are bi-Lipschitz equivalent it suffices to prove (2)
for the word metric distg, where S is the finite generating set found as above
for the chosen arbitrary point xz. The space X is contained in the 2D-tubular
neighborhood of the image Gx of the map defined in (2). It therefore remains to
prove that the map is a quasi-isometric embedding. The previous argument proved
that |g|ls < k+1 < Ldist(z, gz) + 1. Now let [gls = m and let w = s} --- s}, be a
word in S such that w = g in G. Then, by the triangle inequality,

dist(z, gr) = dist(x, s} - - s/, x) < dist(w, s12) + dist(s]z, s}shx) + ...+

m
+dist(s) -+ sl @, 8y sl w) = Zdist(x, siz) < 2Dm = 2D|g|s .
i=1

We have, thus, obtained that for any g € G,
ddists(1, g) — d < dist(z, gx) < 2dists(1,9) -

Since both the word metric distg and the metric dist on X are left-invariant
with respect to the action of G, in the above argument, 1 € G can be replaced by
any element h € G. O

COROLLARY 5.30. Given M a compact connected Riemannian manifold, let M
be its universal covering endowed with the pull-back Riemannian metric, so that the
fundamental group 71 (M) acts isometrically on M.

Then the group 71 (M) is finitely generated, and the metric space M is quasi-
isometric to m (M) with some word metric.

A natural question to ask is whether two infinite finitely generated groups G and
H that are quasi-isometric are also bi-Lipschitz equivalent. In fact, this question
was asked in [Gro93], p. 23. We discuss this question in Chapter ?7.

COROLLARY 5.31. Let G be a finitely generated group.

(1) If Gy is a finite index subgroup in G then Gy is also finitely generated;
moreover the groups G and Gy are quasi-isometric.

(2) Given a finite normal subgroup N in G, the groups G and G/N are quasi-
1sometric.

PRrOOF. (1) is a particular case of Theorem 5.29, with Go = G and X a Cayley
graph of G.

(2) follows from Theorem 5.29 applied to the action of the group G on a Cayley
graph of the group G/N. O
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LeEMMA 5.32. Let (X, dist;), i = 1,2, be proper geodesic metric spaces. Suppose
that the action G ~ X s geometric with respect to both metrics disty, disty. Then
the identity map

id : (X, dist;) — (X, dists)

1S a quasi-isometry.

PRrROOF. The group G is finitely generated by Theorem 5.29, choose a word
metric distg on G corresponding to any finite generating set. Pick a point xg € X;
then the maps

fi + (G, distg) — (X, dist;), fi(g) = g(xo)
are quasi-isometries, let f; denote their quasi-inverses. Then the map
id : (X, dist;) — (X, disto)
is within finite distance from the quasi-isometry foo f;. [

COROLLARY 5.33. Let disty,diste be as in Lemma 5.82. Then any geodesic ~y
with respect to the metric disty is a quasi-geodesic with respect to the metric dists.

LEMMA 5.34. Let X be a proper geodesic metric space, G ~ X is a geometric
action. Suppose, in addition, that we have an isometric properly discontinuous
action G ~ X' on another metric space X' and a G-equivariant coarsely Lipschitz
map [ : X — X'. Then f is uniformly proper.

PRrROOF. Pick a point p € X and set o := f(p). We equip G with a word metric
corresponding to a finite generating set S of G; then the orbit map ¢ : g — g(p), ¢ :
G — X is a quasi-isometry by Milnor—Schwarz theorem. We have the second orbit
map ¢ : G — X', ¥(g) = g(p). The map ¢ is uniformly proper according to Lemma
5.24. We leave it to the reader to verify that

dist(f o ¢,9) < 0.

Thus, the map f o ¢ is uniformly proper as well (see Exercise 5.22). Taking ¢ :
X — @, a quasi-inverse to ¢, we see that the composition

fopod
is uniformly proper too. Since
dist(fogo ¢, f) < oo,
we conclude that f is also uniformly proper. O

Let G ~ X,G ~ X' be isometric actions and let f : X — X’ be a quasi-
isometric embedding. We say that f is (quasi) equivariant if for every g € G

dist(go f, fog) <C,
where C' < oo is independent of G.

LEMMA 5.35. Suppose that X, X' are proper geodesic metric spaces, G,G" are
groups acting geometrically on X and X' respectively and p : G — G’ is an isomor-
phism. Then there exists a p—equivariant quasi-isometry f: X — X',
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Proor. Pick points z € X, 2’ € X’. According to Theorem 5.29 the maps
GG zrz—=X, G—-G 22X
are quasi-isometries; therefore the map

f:Ga— G a,  f(gz):=plg)r
is also a quasi-isometry.

We now define a G—equivariant projection 7 : X — X such that 7(X) =G - z,
and 7 is at bounded distance from the identity map on X. We start with a closed
ball B in X such that GB = X. Using the axiom of choice, pick a subset A of B
intersecting each orbit of G in exactly one point. For every y € X, there exists a

unique g € G such that gy € A. Define 7(y) = g~ 'x. Clearly distx(y,7(y)) =

dist(gy, z) < diam(B).
Then the map f below is a p—equivariant quasi-isometry:

- .
[ X—=>X,f=fom,
since f is a composition of two equivariant quasi-isometries. ([

COROLLARY 5.36. Two virtually isomorphic (VI) finitely generated groups are
quasi-isometric (QI).

PrROOF. Let G be a finitely generated group, H < G a finite index subgroup
and F < H a finite normal subgroup. According to Corollary 5.31, G is QI to H/F.
Recall now that two groups G1, Go are virtually isomorphic if there exist finite
index subgroups H; < G; and finite normal subgroups F; < H;, i = 1,2, so that
H,/F, & Hy/F,. Since G; is QI to H;/F;, we conclude that Gy is QI to Ga. O

The next example shows that VI is not equivalent to QI.

ExaMPLE 5.37. Let A be a matrix diagonalizable over R in SL(2,7Z) so that
A? £ I. Thus the eigenvalues A\, \™! of A have absolute value # 1. We will use the
notation Hyp(2,Z) for the set of such matrices. Define the action of Z on Z? so
that the generator 1 € Z acts by the automorphism given by A. Let G4 denote the
associated semidirect product G4 := Z% x4 Z. We leave it to the reader to verify
that Z? is a unique maximal normal abelian subgroup in G 4. By diagonalizing the
matrix A, we see that the group G4 embeds as a discrete cocompact subgroup in
the Lie group

Sols =R* xp R

where

t
D(t)z[% eot],teR.

In particular, G4 is torsion-free. The group Sols has its left-invariant Riemannian
metric, so G 4 acts isometrically on Sols regarded as a metric space. Hence, every
group G4 as above is QI to Sols. We now construct two groups Ga,Gp of the
above type which are not VI to each other. Pick two matrices A, B € Hyp(2,Z) so
that for every n,m € Z\ {0}, A™ is not conjugate to B™. For instance, take

2 1 3 2
o[ 1] 0-[13)
(The above property of the powers of A and B follows by considering the eigenvalues

of A and B and observing that the fields they generate are different quadratic
extensions of Q.) The group G4 is QI to G p since they are both QI to Sols. Let us
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check that G4 is not VI to Gg. First, since both G 4, G are torsion-free, it suffices
to show that they are not commensurable, i.e., do not contain isomorphic finite
index subgroups. Let H = H 4 be a finite index subgroup in G4. Then H intersects
the normal rank 2 abelian subgroup of G4 along a rank 2 abelian subgroup L 4.
The image of H under the quotient homomorphism G4 — G 4/Z? = Z has to be
an infinite cyclic subgroup, generated by some n € N. Therefore, H 4 is isomorphic
to Z2 X 4n Z. For the same reason, Hp = 72 xpm Z. It is easy to see that an
isomorphism H4 — Hp would have to carry L, isomorphically to Lg. However,
this would imply that A™ is conjugate to B™. Contradiction.

EXAMPLE 5.38. Another example where QI does not imply VI is as follows.
Let S be a closed oriented surface of genus n > 2. Let G; = m1(S) x Z. Let M
be the total space of the unit tangent bundle UT'(S) of S. Then the fundamental
group Gy = 71 (M) is a nontrivial central extension of 7 (95):

1=27Z— Gy —=m(S) =1,

Gy = <a1,b1, ey Gy Dy tl[an, D1] - - A, bRt 2 [ag, 8], [bis ] i =1, .. 7n> )
We leave it to the reader to check that passing to any finite index subgroup in G,
does not make it a trivial central extension of the fundamental group of a hyperbolic
surface. On the other hand, since 71 (.9) is hyperbolic, the groups G; and G are
quasi-isometric, see section 8.14.

Another example of quasi-isometry is the following.

EXAMPLE 5.39. All non-abelian free groups of finite rank are quasi-isometric
to each other.

PRrROOF. We present two proofs: One is algebraic and the other is geometric.

1. Algebraic proof. We claim that all free groups F,,,2 < n < oo groups are
commensurable. Indeed, let a,b denote the generators of F. Define the epimor-
phism p,,, : F» — Z,, by sending a to 1 and b to 0. Then the kernel K, of p,, has
index m in F. Then K, is a finitely generated free group F'. In order to compute
the rank of F, it is convenient to argue topologically. Let R be a finite graph with
the (free) fundamental group m1(R). Then x(R) = 1 —b;(R) = 1 — rank (71 (R)).
Let Ry be such a graph for Fy, then xy(R2) = 1—2 = —1. Let R — R5 be the m-fold
covering corresponding to the inclusion F,, < Fy. Then x(R) = mx(R2) = —m.
Hence, rank (F) = 1 — x(R) = 14+ m. Thus, for every n = 14+ m > 2, we have
a finite-index inclusion F;,, — F5. Since commensurability is a transitive relation
which implies quasi-isometry, the claim follows.

2. Geometric proof. The Cayley graph of F, with respect to a set of n
generators and their inverses is the regular simplicial tree of valence 2n.

We claim that all regular simplicial trees of valence at least 3 are quasi-isometric.
We denote by Ti the regular simplicial tree of valence k and we show that 73 is
quasi-isometric to Ty for every k > 4.

We define a piecewise-linear map q : 73 — T as in Figure 5.1: Sending all
edges drawn in thin lines isometrically onto edges and collapsing each edge-path of
length k — 3 (drawn in thick lines) to a single vertex. The map q thus defined is
surjective and it satisfies the inequality

1
T3 dist(z,y) — 1 < dist(q(x), q(y)) < dist(z,y).
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G

FI1GURE 5.1. All regular simplicial trees are quasi-isometric.

5.3. Metric version of the Milnor—Schwarz Theorem

In the case of a Riemannian manifold, or more generally a metric space, without
a geometric action of a group, one can still use a purely metric argument and create
a discretization of the manifold/space, that is a simplicial graph quasi-isometric to
the manifold. We begin with a few simple observations.

LEMMA 5.40. Let X and Y be two discrete metric spaces that are bi-Lipschitz
equivalent. If X is uniformly discrete then so is Y.

PRrROOF. Assume f: X — Y is an L-bi-Lipschitz bijection,, where L > 1, and
assume that ¢ : R — R is a function such that for every r > 0 every closed ball
B(z,7) in X contains at most ¢(r) points. Every closed ball B(y, R) in Y is in
1-to-1 correspondence with a subset of B(f~!(y), LR), whence it contains at most
¢(LR) points. O

Notation: Let A be a subset in a metric space. We denote by G,,(A) the simplicial
graph with set of vertices A and set of edges

{(a1,a2) | a1,a2 € A, 0 < dist(a1,a2) < K} .

In other words, G,;(A) is the 1-skeleton of the Rips complex Rips,.(A).
As usual, we will equip G, (A) with the standard metric.
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THEOREM 5.41. (1) Let (X,dist) be a proper geodesic metric space (equiv-
alently a complete, locally compact length metric space, see Theorem 1.29).
Let N be an e—separated 6—net, where 0 < € < 26 < 1 and let G be the
metric graph Gss(N). Then the metric space (X,dist) and the graph G
are quasi-isometric. More precisely, for all z,y € N we have that

1
(5.4) gdistx(w,y) < distg(z,y) < gdistx(x,y).

(2) If, moreover, (X, dist) is either a complete Riemannian manifold of bounded
geometry or a metric simplicial complex of bounded geometry, then G is a
graph of bounded geometry.

Proor. (1) Let x,y be two fixed points in N. If distx(z,y) < 80 then, by
construction, distg(z,y) = 1 and both inequalities in (5.4) hold. Let us suppose
that distx (z,y) > 8.

The distance distg(x,y) is the length s of an edge-path ejes...es, where x is
the initial vertex of e; and y is the terminal vertex of es. It follows that

1
distg(z,y) = s > %dlstx( x,y) .

The distance dist x (z, y) is the length of a geodesic ¢: [0, distx (z,y)] — X. Let
to = O,tl,tg, N ,tm = distx(x,y)

be a sequence of numbers in [0, dist x (z, y)] such that 5 < ¢;41—t; < 64, for every i €
{0,1,...,m—1}.
Let x; = ¢(t;),4 € {0,1,2,...,m}. For every i € {0,1,2,...,m} there exists

w; € N such that dlstx(a:“wi) 6. We note that wy = x,w,, = y. The choice of
t; implies that
30 < disty (w;, wi+1) < 8, forevery i€ {0,...,m—1}
In particular:
e w; and w; 11 are the endpoints of an edge in G, for every i € {0,...,m—1};
o distx (2, xit1) = dist(wg, wir1) — 28 = dist(w;, wigr1) — %dist(wi,le) =
%dist(wi7 Wit1) -

We can then write

(5.5)
m—1 m—
1
distx (x,y) ; distx (x4, xi11) g ZO dist(w;, wit1) = %m > %distg(x,y).

(2)  According to the discussion following Definition 2.60, the graph G has
bounded geometry if and only if its set of vertices with the induced simplicial
distance is uniformly discrete. Lemma 5.40 implies that it suffices to show that the
set of vertices of G (i.e. the net N) with the metric induced from X is uniformly
discrete.

When X is a Riemannian manifold, this follows from Lemma 2.58. When X
is a simplicial complex this follows from the fact that the set of vertices of X is
uniformly discrete. O
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Note that one can also discretize a Riemannian manifold M (i.e. of replace M
by a quasi-isometric simplicial complex) using Theorem 2.62, which implies:

THEOREM 5.42. Every Riemannian manifold M of bounded geometry is quasi-
isometric to a simplicial complex homeomorphic to M.

5.4. Metric filling functions

In this section we define notions of loops, filling disks and minimal filling area
in the setting of geodesic metric spaces, following [Gro93]. Let X be a geodesic
metric space and § > 0 be a fixed constant. In this present setting of isoperimetric
inequalities, by loops we always mean Lipschitz maps ¢ from the unit circle S' to
X. We will use the notation /x for the length of an arc in X.

A §-loop in X is a triangulated circle S together with a (Lipschitz) map ¢ :
St — X, so that for £x(c(e)) < & for every edge e of the triangulation.

A filling disk of c¢is a pair consisting of a triangulation D of the 2-dimensional
unit disk D? extending the triangulation of its boundary circle S and a map

0:D9 5 X

extending the map ¢ restricted to the set of boundary vertices. Here D(©) is the set
of vertices in D. Sometimes by abuse of language we call the image of the map
also filling disk of c.

We next extend the map 9 to the l-skeleton of D. For every edge e of D
(not contained in the boundary circle) we pick a geodesic connecting the images of
the end-points of e under 0. For every boundary edge e of the 2-disk we use the
restriction of the map 9 to e in order to connect the images of the vertices. The
triangles in X thus obtained are called bricks. The length of a brick is the sum of
the lengths of its edges. The mesh of a filling disk is the maximum of the lengths
of its bricks. By abusing the notation, we will refer to this extension of ? to D)
as a ¢-filling disk as well.

A 6-filling disk of ¢ is a filling disk with mesh at most §. The combinatorial
area of such a disk is just the number of 2-simplices in the triangulation of D?2.

DEFINITION 5.43. The 6-filling area of ¢ is the minimal combinatorial area of a
o-filling disk of ¢. We will use the double notation Ars(c) = P(c,d) for the d-filling

area.

Note that Ars is a function defined on the set € of loops and taking values in
Z,.
We, likewise, define the d-filling radius function as

Tg:Qg)R_‘_,

rs(c) = inf { max distx (0(z), ¢(S)) ; v is a 0 — filling disk of the loop c} .
z€D

Both functions depend on the parameter §, and may take infinite values. In
order to obtain finite valued functions, we add the hypothesis that there exists a
sufficiently large p so that for all § > u, every loop has a §-filling disk. Such spaces
will be called p-simply connected.

EXERCISE 5.44. Show that a geodesic metric space is coarsely simply-connected
in the sense of Definition 6.13 if and only if X is p-simply connected for some p.
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In the sequel we only deal with p-simply connected metric spaces. We occa-
sionally omit to recall this hypothesis.

We can now define the 0-filling function Ars : Ry — Z, Ars(¢) := the maximal
area needed to fill a loop of length at most £. For our convenience, we use in parallel
the notation P(¢,¢) for this function. We will also use the name d-isoperimetric
function for Ars(¢).

To get a better feel for the §-filling function, let us relate Ars with the usual
area function in the case X = R2. Recall (see [Fed69]) that every loop c in R?
satisfies the Euclidean isoperimetric inequality

(5.6) 4 A(c) < £3(c),

where the equality is realized in the case when c is a round circle. Suppose that ¢
is a loop in R? and 9 : DY) — X is a d-filling disk for ¢. Then ? extends to a map
9 : D? = R?, where we extend the restriction of 9 to each 2-simplex ¢ by the least
area disk bounded by the loop d|0o. In view of the isoperimetric inequality (5.6)
he resulting map 0 will have area

52

(5.7) Area(d) < zg:f(aaa) < AT(S(D)Ev
where the sum is taken over all 2-simplices in D. In general, it is impossible to
estimate Ars from above, however, one can do so for carefully chosen maps 0.
Namely, we will think of the map ¢ as a function f of the angular coordinate
6 € [0,27]. Suppose that f is L-Lipschitz. Choose coordinates in R? so that the
origin is ¢(0) and define a function

F(r,0) =rc(0).

Then F is L' = v/1 + 4w2 L-Lipschitz. Subdivide the rectangle [0,1] x [0, 27] (the
domain of F') in subrectangles of width ¢; and height €5 and draw the diagonal in
each rectangle. Then the restriction of F' to the boundary of each 2-simplex of the
resulting triangulation is a 2L/(e; + €3)-brick. Therefore, in order to ensure that F'
is a ¢-filling of the map f, we take:

4L/ 8L’
n= fTLm:f 5 1.

Hence, Ars(c) is at most

1 1+ 472
2nm < 5732@’)2 = TL2.
In terms of the length ¢ of ,
1+4m2 , 2 ,
AT’5(C) < W‘é § (5726 .

Likewise, using the radius function we define the filling radius function as
r:Ry = Ry, r(£) =sup{r(c) ; cloop of length < ¢} .

Two filling functions corresponding to different §’s for a metric space, or, more
generally, for two quasi-isometric metric spaces, satisfy a certain equivalence rela-
tion.
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In a geodesic metric space X that is p-simply connected, if p < §; < do then
one can easily see, by considering partitions of bricks of length at most Jo into
bricks of length at most §; that

A5, (€) < As, (£) < As, (61) As, (0)

and that
75, (£) < 16,(€) < 15,(01) 75, (£) -

EXERCISE 5.45. (1) Prove that if two geodesic metric spaces X;, i = 1,2,
are coarsely simply connected and quasi-isometric, then their filling func-
tions, respectively their filling radii, are asymptotically equal. Hint: Sup-
pose that f : X; — X is an (L, A)-quasi-isometry. Start with a 1-loop
¢, : S' — Xi, then fill-in ¢ = f oc in X, using a y-disk Dy, where
0o = L + A; then compose D, with quasi-inverse to f in order to fill-in
the original loop ¢; using a d;-disk Dy, where §; = Lj; + A. Now, argue
that Ars, (¢) < Ars,(c2)).

(2) Prove that for a finitely presented group G the metric filling function
for an arbitrary Cayley graph I'¢ and the Dehn function have the same
order. Hint: It is clear that Dehn(f) < Ar,(¢), where p is the length
of the longest relators of G. Use optimal Van Kampen diagrams for a
loop ¢ of length ¢, to construct u-filling disks in I'¢ whose area is <
Dehn(f) +4(£+1).

Note that one can also define Riemannian filling functions in the context of
simply-connected Riemannian manifolds M: Given a Lipschitz loop ¢ in M one de-
fines Area(c) to be the least area of a disk in M bounding c. Then the isoperimetric
function I Py () of the manifold M is

TPy (¢) = sup{A(c) : length(c) < ¢}

where ¢(c) is the length of c¢. Then, assuming that M admits a geometric action of
a group G, we have

Ars(0) = Dehn(€) = IPy(4),
see [BT02].

The order of the filling function of a metric space X is also called the filling
order of X. Besides the fact that it is a quasi-isometry invariant, the interest of
the filling order comes from the following result, a proof of which can be found for
instance in [Ger93].

PROPOSITION 5.46. In a finitely presented group G the following statements
are equivalent.

(S1) G has solvable word problem.

(S2) the Dehn function of G is recursive.

(S3) the filling radius function of G is recursive.

L

)

If in a metric space X the filling function Ar(¢) satisfies Ar(¢) < £ or £ or e
it is said that the space X satisfies a linear, quadratic or exponential isoperimetric
inequality.

Filling area in Rips complex. Suppose that X is p-connected. Instead of
filling closed curves in X by §-disks, one can fill in polygonal loops in P = Ripss(X)
with simplicial disks. Let ¢ be a d-loop in X. Then we have a triangulation of the
circle S' so that diam(c(de)) < & for every edge e of the triangulation. Thus,
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we define a loop ¢5 in P by replacing arcs ¢(de) with edges of P connecting the
end-points of these arcs. Then

dc — length(cs) = dlength(cs) > length(c)
since every edge of P has unit length. It is clear that for § > 0 the map

14
{loops in X of length < ¢} — {loops in P of length < 5}

CH> C§

is surjective. Furthermore, every §-disk D which fills in ¢ yields a simplicial map
D5 : D?> — P which is an extension of ¢5: The maps D and Ds agree on the vertices
of the triangulation of D?, and for every 2-simplex o in D? the map Ds|o is the
canonical linear extension of D|o(®) to the simplex (of dimension < 2) in P spanned
by the vertices D(c(?)). Furthermore, area is preserved by this construction:

cArea(Ds) = Ars(D).
This construction produces all simplicial disks in P bounding ¢; and we obtain
cArea(cs) = Ars(c).

Summarizing all this, we obtain

14

ARipsg (X) (6) = AT(S(E)

The same argument applies to the filling radius and we obtain:

OBSERVATION 5.47. Studying filling area and filling radius functions in X (up
to the equivalence relation =) is equivalent to studying combinatorial filling area
and filling radius functions in Ripss(X).

Besikovitch inequality. The following proposition relates filling areas of
curvilinear quadrilaterals in X to the product among of separation of their sides.

PROPOSITION 5.48 (The quadrangle or Besikovitch inequality). Let X be a
u—simply connected geodesic metric space and let § > p.

Consider a loop ¢ € Qx and its decomposition c(Sl) = ayUasUazUay into four
consecutive paths. Then, with the notation d; = dist(a1,as3) and dy = dist(as, ay)
we have that

2
Ars(¢) = Ldyds .

PRrROOF. Let @ : D) — X be a filling disk of ¢ realizing the filling area.
Consider a map 3 : X — R? defined by

B(x) = (dist(z, a1) , dist(z, a)) .

Since each of its components is a 1-Lipschitz map, the map /3 is v/2-Lipschitz.
The image (1) is a vertical segment connecting the origin to a point (0, y;), with
y1 = da, while () is a horizontal segment connecting the origin to a point (3, 0),
with zo > dy . Similarly, the image S(«as) is a path to the right of the vertical line
x = d; and S(a4) another path above the horizontal line y = dy. Thus, the rectangle
R with the vertices (0,0), (d1,0), (d1,d2), (0,ds2) is separated from infinity by the
curve B¢(S1) (see Figure 5.2). In particular, the image of any extension F of 300
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to D? contains the rectangle R. Thus, A(F) > A(R) = dyds, hence, by inequality
(5.7),
2
d1d2 < EAT\/i(S(BOC)

Furthermore, since /3 is v/2-Lipschitz,
Ar g5(Boc) < 2Ars(c).
Putting this all together, we get

Ars(c) 2 ldldg

as required. O

L B(ay)
| o] /ﬁ_/’\__/x
(€3] —ﬁ% y=d>
[0 %]
Blow) z=d B(as)
a2 (x270)
Blae)

FIGURE 5.2. The map 5.

Besikovitch’s inequality generalizes from curvilinear quadrilaterals to curvi-
linear triangles: This generalization below is has interesting applications to o-
hyperbolic spaces. We first need a definition which would generalize the condition
of separation of the opposite edges of a curvilinear quadrilateral.

DEFINITION 5.49. Given a topological triangle T', i.e. a loop ¢ composed of a
concatenation of three paths 71,72, 73, the minimal size (minsize) of T is defined as
minsize(T) = inf{diam{yh Y2, 93} P Yi €T, i=1, 273} .

ProrosITION 5.50 (Minsize inequality). Let X be a pu—simply connected geo-
desic metric space and let § > p.
Given a topological triangle T € §2, we have that

2n [minsize(T)]? .

Ars(c) 2 52

143



PROOF. As before, define a /2-Lipschitz map 3 : X — R2,
5(58) = (ﬁl(x)a62(z)) = (diSt(xaTl)v diSt(‘TaTQ))

and note that, as in the proof of Besikovitch’s inequality, 8 maps 71, 72 to coordinate
segments, while the restriction of 8 to 73 satisfies:

mln(ﬂl(.’ﬂ),ﬂz(l‘)) 2 m,
where m = minsize(T). Therefore, the loop 8 o ¢ separates from infinity the square
Q@ with the vertices (0,0), (m,0), (m,m), (0,m). Then, as before,

2 0
< —
m* < 27TAr(c)

and claim follows. O

The Dehn function/area filling function can be generalized to higher dimensions
and n-Dehn functions, which give information about the way to fill topological
spheres S™ with topological balls B"™! (|Gro93, Chapter 5|, [ECH92, Chapter
10], [Pap00]). The following result was proven by P. Papasoglou:

THEOREM 5.51 (P. Papasoglou, [Pap00]). The second Dehn function of a group
of type F3 is bounded by a recursive function.

The condition FP3 is a 3-dimensional version of the condition of finite pre-
sentability of a group: A group G is of type F3 if there exists a finite simplicial
complex K with G = m(K) and m2(K) = 0. A basic sphere in the 2-dimensional
skeleton of K is the boundary of an oriented 3-simplex together with a path con-
necting its vertex to a base-point v in K.

This theorem represents a striking contrast with the fact that there are finitely-
presented groups with unsolvable word problem and, hence, Dehn function which
is not bounded above by any recursive function.

The idea of the proof of Theorem 5.51 is to produce an algorithm which, given
n € N, finds in finite time an upper bound on the number NV of basic spheres o,
so that (in 7o (K, v))

N
E g =0,
i=1

where o is a spherical 2-cycle in K which consists of at most n 2-dimensional
simplices. The algorithm only gives a recursive bound of the second Dehn function,
because the filling found by it might be not the smallest possible.

The above algorithm does not work for the ordinary Dehn function since it
would require one to recognize which loops in K are homotopically trivial.

5.5. Summary of various notions of volume and area

(1) Vol(f) is the Riemannian volume of a map; geometric volume of a smooth
map of regular cell-complexes. For n = 2, Vol(f) = Area(f).

(2) Combinatorial volume: ¢Vol,(f), the number of n-simplices in the domain
not collapsed by f. For n =2, cVoly(f) = cArea(f).

(3) Simplicial volume: sVol,(f) is the number of n-simplices in the domain

of f.
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(4) Combinatorial area: A(w), minimal filling combinatorial area for a triv-
ial word w (algebraic area); algebraically speaking, it equals area of the
minimal van Kampen diagram with the given boundary loop w.

(5) Coarse area: Ars(c), the o-filling area of a d-loop ¢ in a coarsely simply-
connected metric space X.

(6) Dehn function: Dehng(n), the Dehn function of a presentation complex
Y of a group G.

(7) Isoperimetric function IPs(¢) of a simply-connected Riemannian mani-
fold M.

Summary of relationships between the volume/area concepts:

(1) Functions Dehng(n) and IPy({) are approxzimately equivalent to each
other, provided that G acts geometrically on M; both functions are QI in-
variant, provided that one considers them up to approximate equivalence.

(2) Ars(c) < Areap(c), where P = Ripss(X) and c is the loop in P obtained
from ¢ by connecting “consecutive points” by the edges in P.

5.6. Topological coupling

We first introduce Gromov’s interpretation of quasi-isometry between groups
using the language of topological actions.

Given groups G1, Ga, a topological coupling of these groups is a metrizable lo-
cally compact topological space X together with two commuting cocompact prop-
erly discontinuous topological actions p; : G; ~ X, i = 1,2. (The actions commute
if and only if p1(g1)p2(g2) = p2(g2)p1(g1) for all g; € G;, i = 1,2.) Note that the
actions p; are not required to be isometric. The following theorem was first proven
by Gromov in [Gro93]; see also [d1IHO00, page 98].

THEOREM 5.52. If G1, G4 are finitely generated groups, then Gy is QI to G if
and only if there exists a topological coupling between these groups.

PROOF. 1. Suppose that G; is QI to G2. Then there exists an (L, A) quasi-
isometry ¢ : G; — G5. Without loss of generality, we may assume that q is
L Lipschitz. Consider the space X of such maps G; — G5. We will give X the
topology of pointwise convergence. By Arzela—Ascoli theorem, X is locally compact.

The groups G1, G act on X as follows:

p1(g)(f) == fogr’, pa(g2)(f) i=gaof, feX

It is clear that these actions commute and are topological. For each f € X there
exist g1 € G1,92 € G4 so that

g20 f(1) =1,fog; (1) € B(1L, A).
Therefore, by Arzela—Ascoli theorem, both actions are cocompact. We will check
that po is properly discontinuous as the case of p; is analogous. Let K C X be a

compact subset. Then there exists R < oo so that for every f € K, f(1) € B(1, R).
If go € G4 is such that g o f € K for some f € K, then

(5.8) 92(B(1,R)) N B(1,R) # 0.

Since the action of G2 on itself is free, it follows that the collection of g € G4
satisfying (5.8) is finite. Hence, py is properly discontinuous.

Lastly, the space X is metrizable, since it is locally compact, 2nd countable
and Hausdorff; more explicitly, one can define distance between functions as the
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Gromov—Hausdorff distance between their graphs. Note that this metric is G1—
invariant.

2. Suppose that X is a topological coupling of G; and G;. If X were a
geodesic metric space and the actions of G, G2 were isometric, we would not need
commutation of these action. However, there are examples of QI groups which
do not act geometrically on the same geodesic metric space, see Theorem 5.29.
Nevertheless, the construction of a quasi-isometry below is pretty much the same
as in the proof of Milnor-Schwarz theorem.

Since G; ~ X is cocompact, there exists a compact K C X so that G;- K = X;
pick a point p € K. Then for each g; € G; there exists ¢;(g;) € G;y1 so that
gi(p) € ¢i(g:)(K), here and below ¢ is taken mod 2. We have maps ¢; : G; = Giy1.

a. Let us check that these maps are Lipschitz. Let s € S;, a finite generating
set of GG;, we will use the word metric on G; with respect to S;, i = 1,2. Define C

to be the union
Uz’:LQ U S(K)
SES;

Since p; are properly discontinuous actions, the sets G := {h € G; : h(C)NC # 0}
are finite for ¢ = 1,2. Therefore, the word-lengths of the elements of these sets are
bounded by some L < oo. Suppose now that g;11 = ¢;(g;), s € S;. Then g;(p) €
9i+1(K), 59i(p) € gi;1(K) for some g; | € Gj11. Therefore, sg;11(K)Ngj, 1 (K) # 0
hence gi_+119§+1(K) Ns(K) # (. (This is where we are using the fact that the actions
of G; and G2 on X commute.) Therefore, g;}lg;Jr1 € Ggrl, hence d(gi11,9;,1) < L.
Consequently, ¢; is L-Lipschitz.

b. Let ¢i(g:) = gi+1,Pit1(git1) = gj- Then g;(K) N gj(K) # 0 hence g; 'g; €
G¢. Therefore, dist(¢;+100;, [dg,) < L and ¢; : G; — G, is a quasi-isometry. [

The more useful direction of this theorem is, of course, from QI to a topological
coupling, see e.g. [Sha04, Sau06].

DEFINITION 5.53. Two groups G, G5 are said to have a common geometric
model if there exists a proper quasi-geodesic metric space X such that Gy, G both
act geometrically on X.

In view of Theorem 5.29, if two groups have a common geometric model then
they are quasi-isometric. The following theorem shows that the converse is false:

THEOREM 5.54 (L. Mosher, M. Sageev, K. Whyte, [MSWO03]). Let G; :=
Ly * Ly, Go := Ly * Lq, where p,q are distinct odd primes. Then the groups G1, G2
are quasi-isometric (since they are virtually isomorphic to the free group on two
generators) but do not have a common geometric model.

This theorem, in particular, implies that in Theorem 5.52 one cannot assume
that both group actions are isometric (for the same metric).

5.7. Quasi-actions

The notion of an action of a group on a space is replaced, in the context of
quasi-isometries, by the one of quasi-action. Recall that an action of a group G
on a set X is a homomorphism ¢ : G — Aut(X), where Aut(X) is the group of
bijections X — X. Since quasi-isometries are defined only up to “bounded error”,
the concept of a homomorphism has to be modified when we use quasi-isometries.
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DEFINITION 5.55. Let G be a group and X be a metric space. An (L, A)-quasi-
action of G on X is amap ¢ : G — Map(X, X), so that:

e ¢(g) is an (L, A)-quasi-isometry of X for all g € G.
e d(6(1),idx) < A.
o d(¢(9192), #(91)d(g2)) < A for all g1,92 € G.

Thus, ¢ is “almost” a homomorphism with the error A.

By abusing notation, we will denote quasi-actions by ¢ : G ~ X, even though,
what we have is not an action.

EXAMPLE 5.56. Suppose that G is a group and ¢ : G — R C Isom(R) is a
function. Then ¢, of course, satisfies (1), while properties (2) and (3) are equivalent
to the single condition:

|#(g192) — ¢(g1) — d(g2)] < A.

Such maps ¢ are called quasi-morphisms. and they appear frequently in geometric
group theory, in the context of 2nd bounded cohomology, see e.g. [EF97a]. Many
interesting groups do not admit nontrivial homomorphisms of R but admit un-
bounded quasi-morphisms. For instance, a hyperbolic Coxeter group G does not
admit nontrivial homomorphisms to R. However, unless G is virtually abelian, it
has infinite-dimensional space of equivalence classes quasi-morphisms, where

$1~ @2 = |1 — haf < oo
See [EF97a).

EXERCISE 5.57. Let QI(X) denote the group of (equivalence classes of) quasi-
isometries X — X. Show that every quasi-action determines a homomorphism
¢: G — QI(X) given by composing ¢ with the projection to QI(X).

The kernel of the quasi-action ¢ : G ~ X is the kernel of the homomorphism

@.
EXERCISE 5.58. Construct an example of a geometric quasi-action G ~ R
whose kernel is the entire group G.

We can also define proper discontinuity and cocompactness for quasi-actions
by analogy with isometric actions:

DEFINITION 5.59. Let ¢ : G ~ X be a quasi-action.
1. We say that ¢ is properly discontinuous if for every x € X, R € R, the set

{9 € Gld(z, ¢(g9)(z)) < R}

is finite. Note that if X proper and ¢ is an isometric action, this definition is
equivalent to proper discontinuity of G ~ X.

2. We say that ¢ is cobounded if there exists x € X, R € Ry so that for every
a2’ € X there exists g € G so that d(2’, ¢(g)(z)) < R. Equivalently, there exists R’
so that d(z, ¢(g)(z")) < R.

3. Lastly, we say that quasi-action ¢ is geometric if it is both properly discon-
tinuous and cobounded.

Below we explain how quasi-actions appear in the context of QI rigidity prob-
lems. Suppose that G1,Gs are groups, ¥; : G; ~ X; are isometric actions; for
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instance, X; could be G; or its Cayley graph. Suppose that f : X1 — X» is a quasi-
isometry with quasi-inverse f. We then define a conjugate quasi-action ¢ = f*(1)9)
of G5 on X7 by

(5.9) ¢(g) =fogolf.
More generally, we say that two quasi-actions v; : G ~ X; are quasi-conjugate if
there exists a quasi-isometry f : X7 — Xa, so that ¢; and f*(12) project to the

same homomorphism

LeEMMA 5.60. 1. Under the above assumptions, ¢ = f*(1)2) is a quasi-action.
2. If 1o is geometric, so is ¢.

ProoOF. 1. Suppose that f is an (L, A)-quasi-isometry. It is clear that ¢
satisfies Parts 1 and 2 of the definition, we only have to verify (3):

dist(¢(g192), #(91)P(g92)) = dist(fgrg2f, forffg2f) < LA+ A

in view of Exercise 5.7.

2. In order to verify that ¢ is geometric, one needs to show proper discontinuity
and coboundedness. We will verify the former since the proof of the latter is similar.
Pick x € X, R € R, and consider the set the set

Gy r=1{9€ G=Gqld(z,¢(g9)(x)) < R} C G.

By definition, ¢(g)(x) = fgf(x). Thus, d(z,g(x)) < LR + 2A. Hence, by proper
discontinuity of the action G ~ X3, the set G g is finite. (]

The same construction of a conjugate quasi-action applies if G2 ~ X5 is not
an action, but merely a quasi-action.

EXERCISE 5.61. Suppose that ¢ : G ~ X5 is a quasi-action, f: X; — Xsis a
quasi-isometry and ¢, : G ~ X is the conjugate quasi-action. Then ¢5 is properly
discontinuous (respectively, cobounded, or geometric) if and only if ¢, is properly
discontinuous (respectively, cobounded, or geometric).

COROLLARY 5.62. Let Gy and G be finitely generated quasi-isometric groups
and let f : G1 — G5 be a quasi-isometry. Then:

1. The quasi-isometry f induces (by conjugating actions and quasi-actions on
G2) an isomorphism QI(G2) — QI(G1) and a homomorphism f. : Go — QI(G1)

2. The kernel of f. is quasi-finite: For every K > 0, the set of g € G2 such
that dist(f.(9),1dg,) < K, is finite.

ProoF. To construct f. apply Lemma 5.60 to the isometric action ¥y : Go ~
G>. Quasifiniteness of the kernel of f, follows from proper discontinuity of the
quasi-action Go ~ G;. The isomorphism QI(G2) — QI(G;) is defined via the
formula (5.9). The inverse to this homomorphism is defined by switching the roles
of f and f. O

REMARK 5.63. For many groups G = G1, if h : G — G is an (L, A)-quasi-
isometry, so that dist(f, Idg) < oo, then dist(f, Idg) < D(L, A). For instance, this
holds when G is a non-elementary hyperbolic group, see Lemma 8.86. (This is also
true for isometry groups of irreducible symmetric spaces and Euclidean buildings
and many other spaces, see e.g. [KKL98].) In this situation, quasi-finite kernel of
f+ above is actually finite.
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The following theorem is a weak converse to the construction of a conjugate
quasi-action:

THEOREM 5.64 (B. Kleiner, B. Leeb, [KL09]). Suppose that ¢ : G ~ X7 is a
quasi-action. Then there exists a metric space Xo, a quasi-isometry f : X1 — Xo
and an isometric action 1 : G ~ X, so that [ quasi-conjugates v to ¢.

Thus, every quasi-action is conjugate to an isometric action, but, a priori, on
a different metric space. The key issue of the QI rigidity is:
Can one, under some conditions, take Xo = X719

Most proofs of QI rigidity theorems follow this route:

1. Suppose that groups G, G5 are quasi-isometric. Find a “nice space” X; on
which G; acts geometrically. Take a quasi-isometry f : X7 — Xo = G5, where
1 : G2 ~ Gy is the action by left multiplication.

2. Define the conjugate quasi-action ¢ = f*(¢)) of G2 on Xj.

3. Show that the quasi-action ¢ has finite kernel (or, at least, identify the
kernel, prove that it is, say, abelian).

4. Extend, if necessary, the quasi-action Gy ~ X; to a quasi-action gzg on a
larger space Xl

5. Show that ¢ has the same projection to QI (X1) as a isometric action ¢’ :
Go ~ Xy by verifying, for instance, that X, has very few quasi-isometries, namely,
every quasi-isometry of X is within finite distance from an isometry. (Well, maybe
no all quasi-isometries of X 1, but the ones which extend from X;.) Then conclude
either that Go ~ X; is geometric, or, that the isometric actions of Gy,Gy are
commensurable, i.e., the images of G1, G2 in Isom(f(g) have a common finite-index
subgroup.

We will see how R. Schwarz’s proof of QI rigidity for nonuniform lattices follows
this line of arguments: X; will be a truncated hyperbolic space and X, is the
hyperbolic space itself. The same is true for QI rigidity of higher rank non-uniform
lattices (A. Eskin’s theorem [Esk98]). This is also true for uniform lattices in
the isometry groups of nonpositively curved symmetric spaces other than H™ and
CH™ (P. Pansu, [Pan89|, B. Kleiner and B. Leeb [KL98]; A. Eskin and B. Farb
[EF97b]), except one does not have to enlarge X;. Another example of such
argument is the proof by M. Bourdon and H. Pajot [BP00] and X. Xie [Xie06] of
QI rigidity of groups acting geometrically on 2-dimensional hyperbolic buildings.

5’. Part 5 may fail if X has too many quasi-isometries, e.g. if X; = H" or
X7 = CH". Then, instead, one shows that every geometric quasi-action Go ~ X3
is quasi-conjugate to a geometric (isometric!) action. We will see such a proof in
the case of Sullivan—Tukia rigidity theorem for uniform lattices in Isom(H"),n > 3.
Similar arguments apply in the case of groups quasi-isometric to the hyperbolic
plane.

Not all quasi-isometric rigidity theorems are proven in this fashion. An alterna-
tive route is to show QI rigidity of a certain algebraic property (P) is to show that
it is equivalent to some geometric property (P’), which is QI invariant. Examples of
such proofs are QI rigidity of the class of virtually nilpotent groups and of virtually
free groups. The first property is equivalent, by Gromov’s theorem, to polynomial
growth; the argument in the second case is less direct (see Theorem ?7?), but the
key fact is that geometric condition of having infinitely many ends is equivalent to
the algebraic condition that a group splits over a finite subgroup.
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CHAPTER 6

Coarse topology

The goal of this section is to provide tools of algebraic topology for studying
quasi-isometries and other concepts of the geometric group theory. The class of
metric cell complexes with bounded geometry provides a class of spaces for which
application of algebraic topology is possible.

6.1. Ends of spaces

In this section we review the oldest coarse topological notion, the one of ends
of a topological space. Let X be a connected, locally path-connected topological
space which admits an exhaustion by compact subsets, i.e., an increasing family of
compact subsets {K;};cr, where I is an ordered set,

K, CK;, i<j,

Um:x

iel

so that

The key example to consider is when X is a proper metric space, K; = B(o,1),
i € Nand o € X is a fixed point. We will refer to this as the standard example. (An
important special case to keep in mind is the Cayley graph of a finitely-generated
group, where o is a vertex.) For each K = K; we let K¢ = X \ K.

We then let J denote the set whose elements are connected components of
various K¢. The set J has the partial order: C' < C" iff ¢’ C C. Thus, the “larger”
C’s are the ones which correspond to bigger K’s.

DEFINITION 6.1. The set Ends(X) = ¢(X) of endsof X, is the set of unbounded
(from above) increasing chains in the poset J. Every such chain is called an end of
X.

In the standard example, each end is a sequence of connected nonempty sets
013023033...

where each Cj is a component of K.

Equivalently, since we assumed that X is locally path-connected, each element
of J is an element of the set 7o(K) for some i. Thus, we have the inverse system
of sets {mo(K¢)} indexed by I, where

fij o mo(K5) = mo(KY), i < j,

is the map induced by the inclusion K§ C K. Then there is a natural bijection
between the inverse limit

757 (X) = limm ()
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of this system and the set of ends €(X): Choosing an element o of m(K¥) is
equivalent to choosing the connected component of K{ which gives rise to 0. Note
that if X is a Cayley graph, then each mo(KY) is a finite set.

We say that a family of points (z;)ier, ; € Ci, C; C KF, represents the
corresponding end of X, since each z; represents an element of mo(K7). We will
use the notation x, for this end.

We next topologize e¢(X). We equip each mo(K{) with the discrete topology
(which makes sense in view of the Cayley graph example) and then put the initial
topology on the inverse limit as explained in Section 1.1.

Concretely, one describes this topology as follows. Pick some C' € J, which is
a component of K. Then C' defines a subset e C X, which consists of ends which
are represented by those families (z;) so that, x; € C for all j > i. These sets form
a basis of the inverse limit topology on €(X) described above. Since e(X) is the
inverse limit of sets with discrete topology, the space (X)) is totally disconnected.
Furthermore, clearly, e(X) is Hausdorff.

EXERCISE 6.2. 1. The above topology on ¢(X) defines a compactification X =
X Ue(X) of the topological space X.

2. Let G be a group of homeomorphisms of X. Then the action of G on X
extends to a topological action of G on X.

REMARK 6.3. 1. Some of the sets e could be empty: They correspond to the
sets C' which are relatively compact. This, of course, means that one should discard
such sets C' when thinking about the ends of X.

2. There is a terminological confusion here coming from the literature in differ-
ential geometry and geometric analysis, where X is a smooth manifold: An analyst
would call each set C' an end of X.

EXAMPLE 6.4. 1. Every compact topological space X has empty set of ends.
Conversely, if ¢(X) = 0, then X is compact.

2. If X =R, then €(X) is a 2-point set. If X = R™ n > 2, then ¢(X) is a single
point.

3. If X is a binary (i.e., tri-valent) tree then e(X) is homeomorphic to the
Cantor set.

See Figure 6.1 for an example. The space X in this picture has 5 visibly different
ends: €1, ...,e5. We have K; C Ky C K3. The compact K7 separates the ends €1, €5.
The next compact K> separates €3 from e4. Finally, the compact K3 separates e,
from e5.

Analogously, one defines higher homotopy groups m3° (X, «*®) at infinity of X,
k > 1. We now assume that the set I is the set of natural numbers with the usual
order. For each end z, € €(X) pick a representing sequence (z;);ecs. For each i < j,
pick a path p;; in K connecting z; to ;. The concatenation of such paths is a
proper map p : Ry — X. The proper homotopy class of p is denoted z°®. Given p,
we then have the inverse system of group homomorphisms

Trk(K;wrj) — ’n—k(chvxl)vZ < j7

induced by inclusion maps of the components C; — C;, where z; € C;,z; € X;.
Note that the paths p;; are needed here since we are using different base-points for
the homotopy groups.
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FIGURE 6.1. Ends of X.

The group 73°(X, 2®) then is the inverse limit
@wk (KY, x;).
EXERCISE 6.5. Verify that this construction depends only on z* and not on
the paths p;;.
For the rest of the book, we will not need 7p° for k& > 0.

PROPOSITION 6.6. If f : X — Y is an (L, A)—quasi-isometry of proper geodesic
metric spaces then f induces a homeomorphism ¢(X) — e(Y).

PRrROOF. For geodesic metric spaces, path-connectedness is equivalent to con-
nectedness. Since f is a quasi-isometry, for each bounded subset K C X, the image
f(K) is again bounded. Note that f need not map connected sets to connected
sets since f is not required to be continuous. nevertheless, we have

LEMMA 6.7. The open A’ = A + 1-neighborhood Na/(f(C)) is connected for
every connected subset C C X.

PRroOOF. For points z,2' € C, and every d > 0 there exists a chain zo =
X, X1,y Ty = &', so that z; € C and dist(z;,x;41) < 6,4 =0,...,n— 1. Then we
obtain a chain y; = f(x;), i =0,...,n, so that
diSt(yi,yi+1) < 5/ =Lé + A
It follows that a geodesic segment [y;y;11] is contained in Ny (f(C)). Hence, the

&’—neighborhood of f(C) is path-connected for every § > 0. We conclude that
Na/(f(C)) is connected by taking § = 1. O

Without loss of generality, we may assume that K; = B(o,1) is a closed metric
ball in X and ¢« € N. We define a map e(f) : e(X) — €) as follows. Set
R := A+ 1. Suppose that n € €(X) is represented by a nested sequence (C;),
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where C; is a connected component of X \ K;, K; C X is compact. By reindexing
our system of compacts K;, without loss of generality we may assume that for
each i, Nr(C;) C C;_1. Thus we get a nested sequence of connected subsets
Ngr(f(Ci)) C Y each of which is contained in a connected component V; of the
complement to the bounded subset f(K;—1) C Y. Thus we send 1 to the end
e(f)(n) represented by (V;). By considering the quasi-inverse f to f, we see that

€(f) has the inverse map €(f). It is also clear from the construction that both e(f)

and e(f) are continuous. O

If G is a finitely generated group then the space of ends €(G) is defined to be
the set of ends of its Cayley graph. The previous lemma implies that ¢(G) does
not depend on the choice of a finite generating set and that quasi-isometric groups
have homeomorphic sets of ends.

THEOREM 6.8 (Properties of €(X)). 1. The topological space e(X) is compact,
Hausdorff and totally disconnected; e(X) is empty if and only if X is compact.

2. Suppose that G is a finitely-generated group. Then ¢(G) consists of 0, 1, 2
points or has cardinality of continuum. In the latter case the set ¢(G) is perfect:
FEach point is a limit point.

3. €(G@) is empty iff G is finite. €(G) consists of 2-points iff G is virtually
(infinite) cyclic.

4. |e(@)| > 1 iff G splits nontrivially over a finite subgroup.

COROLLARY 6.9. 1. If G is quasi-isometric to 7 then G contains 7 as a finite
index subgroup.

2. Suppose that G splits nontrivially as G1*Go and G’ is quasi-isometric to G.
Then G’ splits nontrivially as G xp GY (amalgamated product) or as Gixp (HNN
splitting), where F is a finite group.

Note that we already know that ¢(X) is Hausdorff and totally-disconnected.
Compactness of €(X) follows from the fact that each K¢ has only finitely many
components which are not relatively compact. Properties 2 and 3 in Theorem 6.8
are also relatively easy, see for instance [BH99, Theorem 8.32] for the detailed
proofs. The hard part of this theorem is

THEOREM 6.10. If [e(G)| > 1 then G splits nontrivially over a finite subgroup.

This theorem is due to Stallings [Sta68] (in the torsion-free case) and Bergman
[Ber68] for groups with torsion. To this day, there is no simple proof of this
result. A geometric proof could be found in Niblo’s paper [Nib04]. For finitely
presented groups, there is an easier combinatorial proof due to Dunwoody using
minimal tracks, [Dun85]; a combinatorial version of this argument could be found
in [DD89]. In Chapters ?? and ?? we prove Theorem 6.10 first for finitely-presented
and then for all finitely-generated groups. We will also prove QI rigidity of the class
of virtually free groups.

6.2. Rips complexes and coarse homotopy theory

6.2.1. Rips complexes. Let X be a uniformly discrete metric space (see
Definition 1.19). Recall that the R-Rips complex of X is the simplicial complex
whose vertices are points of X; vertices x1, ..., z, span a simplex if and only if

dist(z;, z;) < R, Vi, J.
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For each pair 0 < Ry < Ry < oo we have a natural simplicial embedding
LRy,R, : Ripsg, (X) — Ripsg, (X)
and
LRi,Ry = lRy,R3 O LRy ,R,

provided that Ry < Ry < R3. Thus, the collection of Rips complexes of X forms a
direct system Rips,(X) of simplicial complexes indexed by positive real numbers.

Following the construction in Section 2.2.2, we metrize (connected) Rips com-
plexes Ripsp(X) using the standard length metric on simplicial complexes. Then,
each embedding ¢, g, is isometric on every simplex and 1-Lipschitz overall. Note
that the assumption that X is uniformly discrete implies that Ripsz(X) is a sim-
plicial complex of bounded geometry (Definition 2.60) for every R.

EXERCISE 6.11. Suppose that X = G, a finitely-generated group with a word
metric. Show that for every R, the action of G on itself extends to a simplicial
action of G on Ripsp(G). Show that this action is geometric.

The following simple observation explains why Rips complexes are useful for
analyzing quasi-isometries:

LEMMA 6.12. Let f : X — Y be an (L, A)—coarse Lipschitz map. Then f
induces a simplicial map Ripsp(X) — Ripspp, 4(Y) for each R > 0.

ProOF. Consider an m-simplex ¢ in Ripsgp(X); the vertices of o are distinct
points xg, x1, ..., T, € X within distance < R from each other. Since f is (L, A)-
coarse Lipschitz, the points f(xg),..., f(zm) € Y are within distance < LR+ A
from each other, hence they span a simplex ¢’ of dimension < m in Rips;p, 4(Y).
The map f sends vertices of o to vertices of ¢’; we extend this map linearly to a
map o — o’. It is clear that this extension defines a simplicial map of simplicial
complexes Ripsp(X) — Ripsppy4(Y). O

The idea behind the next definition is that the “coarse homotopy groups” of a
metric space X are the homotopy groups of the Rips complexes Ripsg(X) of X.
Literally speaking, this does not make much sense since the above homotopy groups
depend on R. To eliminate this dependence, we have to take into account the maps

L,«yR.

DEFINITION 6.13. 1. A metric space X is coarsely connected if Rips,.(X) is
connected for some r. (Equivalently, Ripsg(X) is connected for all sufficiently
large R.)

2. A metric space X is coarsely k-connected if for each r there exists R > r so
that the mapping Rips, (X) — Ripsg(X) induces trivial maps of the i-th homotopy
groups

i (Rips,.(X), ) = m;(Ripsg(X), x)
forall0<i< kand z € X.
In particular, X is coarsely simply-connected if it is coarsely 1-connected.

In other words, X is coarsely connected if there exists a number R such that
each pair of points z,y € X can be connected by an R-chain of points z; € X, i.e.,
a finite sequence of points x;, where dist(x;, z;11) < R for each i.

The definition of coarse k-connectedness is not quite satisfactory since it only
deals with “vanishing” of coarse homotopy groups without actually defining these
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groups for general X. One way to deal with this issue is to consider pro-groups
which are direct systems

m;(Rips,.(X)),r € N
of groups. Given such algebraic objects, one can define their pro-homomorphisms,
pro-monomorphisms, etc., see [KK05] where this is done in the category of abelian
groups (the homology groups). Alternatively, one can work with the direct limit of
the homotopy groups.

6.2.2. Direct system of Rips complexes and coarse homotopy.

LEMMA 6.14. Let X be a metric space. Then for r,c < oo, each simplicial
spherical cycle o of diameter < c in Rips,.(X) bounds a disk of diameter < r + ¢
within Rips, .(X).

PROOF. Pick a vertex x € 0. Then Rips, .(X) contains a simplicial cone 7 (o)
over o with vertex at z. Clearly, diam(7) < r + c. O

PROPOSITION 6.15. Let f,g: X — Y be maps within distance < ¢ from each
other, which extend to simplicial maps

f>9 : Rips,. (X) — Rips,,(Y)

Then for r3 = 72 + ¢, the maps f,g : Rips,, — Rips, (Y) are homotopic via a
1-Lipschitz homotopy F : Rips, (X) x I — Rips,.,(Y). Furthermore, tracks of this
homotopy have length < (n + 1), where n = dim(Rips,. (X)).

ProOF. We give the product Rips, (X) x I the standard structure of a sim-
plicial complex with the vertex set X x {0,1} (by triangulating the each k + 1-
dimensional prisms ¢ x I, where o are simplices in X, this triangulation has in
< (k + 1) top-dimensional simplices); we equip this complex with the standard
metric.

The map F' of the zero-skeleton of Rips, (X) x I is, of course, F(z,0) =
f(x), F(z,1) = g(x). Let o C Rips, (X)x I be an i—simplex. Then diam(F(c?)) <
r3 = 73 + ¢, where 0¥ is the vertex set of 0. Therefore, F' extends (linearly) from
0" to a (1-Lipschitz) map F : o — Rips,,(Y) whose image is the simplex spanned
by F(a?).

To estimate the lengths of the tracks of the homotopy F', we note that for each
x € Rips, (X), the path F(z,t) has length < 1 since the interval = x I is covered
by < (n+ 1) simplices, each of which has unit diameter. O

In view of the above lemma, we make the following definition:

DEFINITION 6.16. Maps f,g: X — Y are coarsely homotopic if for all r1,ry so
that f and g extend to

f,9 : Rips, (X) — Rips,,(Y),
there exist r3 and r4 so that the maps
f,9: Rips,, — Rips,, (Y)
are homotopic via a homotopy whose tracks have lengths < r4.

We then say that a map f : X — Y determines a coarse homotopy equivalence
(between the direct systems of Rips complexes of X,Y) if there exists a map ¢ :
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Y — X so that the compositions go f, f o g are coarsely homotopic to the identity
maps.
The next two corollaries, then, are immediate consequences of Proposition 6.15.

COROLLARY 6.17. Let f,g: X — Y be L-Lipschitz maps within finite distance
from each other. Then they are coarsely homotopic.

COROLLARY 6.18. If f : X — Y is a quasi-isometry, then f induces a coarse
homotopy-equivalence of the Rips complezes: Rips,(X) — Rips,(Y).

The following corollary is a coarse analogue of the familiar fact that homotopy
equivalence preserves connectivity properties of a space:

COROLLARY 6.19. Coarse k-connectedness is a QI invariant.

PROOF. Suppose that X’ is coarsely k-connected and f : X — X’ is an L—
Lipschitz quasi-isometry with L-Lipschitz quasi-inverse f : X’ — X. Let v be
a spherical i-cycle in Rips,.(X), 0 < ¢ < k. Then we have the spherical i-cycle
f(v) C Ripsy,.(X’). Since X’ is coarsely k-connected, there exists ' > Lr such
that f(y) bounds a singular (i +1)—disk 3 within Rips,.(X’). Consider now f(3) C
Rips;2,(X). The boundary of this singular disk is a singular i-sphere f(v). Since
fof is homotopic to id within Rips,.,(X), r” > L?r, there exists a singular cylinder
o in Rips,., (X ) which cobounds y and f(7). Note that r”" does not depend on 7. By
combining ¢ and f(3) we get a singular (i + 1)-disk in Rips,.,(X) whose boundary
is 7. Hence X is coarsely k-connected. ]

6.3. Metric cell complexes

We now introduce a concept which generalizes simplicial complexes, where the
notion of bounded geometry does not imply finite-dimensionality.

A metric cell complex is a cell complex X together with a metric d defined
on its O-skeleton X(®. Note that if X is connected, its 1-skeleton X us a
graph, and, hence, can be equipped with the standard metric dist. Then the map
(X© d) — (XM dist) in general need not be a quasi-isometry. However, in the
most interesting cases, coming from finitely-generated groups, this map is actually
an isometry. Therefore, we impose, from now on, the condition:

Axiom 1. The map (X d) — (X, dist) is a quasi-isometry.

Even though this assumption could be avoided in what follows, restricting to
complexes satisfying this axiom will make our discussion more intuitive.

Our first goal to define, using the metric d, certain metric concepts on the entire
complex X. We define inductively a map ¢ which sends cells in X to finite subsets
of X(© as follows. For v € X we set c(v) = {v}. Suppose that c is defined on
X For each i + 1-cell e, the support of e is the smallest subcomplex Supp(e) of
X containing the image of the attaching map of e to X(?). We then set

c(o) = c(Supp(e)).

For instance, for every 1-cell o, ¢(o) consists of one or two vertices of X to which
o is attached.
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REMARK 6.20. The reader familiar with the concepts of controlled topology, see
e.g. [Ped95], will realize that the coarsely defined map ¢ : X — X©) is a control
map for X and (X d) is the control space. In particular, a metric cell complex
is a special case of a metric chain complex defined in [KKO05].

We now say that the diameter diam(co) of a cell o in X is the diameter of ¢(o).

ExAMPLE 6.21. Take a simplicial complex X and restrict its standard metric
to X(©). Then, the diameter of a cell in X (as a simplicial complex) is the same as
its diameter in the sense of metric cell complexes.

DEFINITION 6.22. A metric cell complex X is said to have bounded geometry
if there exists a collections of increasing functions ¢ (r) and numbers Dy < 0o so
that the following axioms hold:

Axiom 2. For each ball B(x,r) C X the set of k-cells o such that c(c) C
B(z,r), contains at most ¢ (r) cells.

Axiom 3. The diameter of each k-cell is at most Dy, = Dy x, k=1,2,3,.....

Axiom 4. Dy := inf{d(z, )|z # 2’ € X} > 0.

Note that we allow X to be infinite-dimensional. We will refer to the function
¢r(r) and the numbers Dy, as geometric bounds on X, and set

(6.1) Dx =sup Dy, x.
k>0

EXERCISE 6.23. 1. Suppose that X is a simplicial complex. Then the two
notions of bounded geometry coincide for X. We will use this special class of
metric cell complexes in Section 6.6.

2. If X is a metric cell complex of bounded geometry and S C X is a
connected subcomplex, then for every two vertices u,v € S there exists a chain
To = Uy X1, .o, Ty = 0, 0 that d(z;,2;41) < D; for every 4. In particular, if X is
connected, the identity map (X, d) — (X1, dist) is D;-Lipschitz.

3. Let X := @ be a finitely-generated group with its word metric, X be the
Cayley graph of G. Then X is a metric cell complex of bounded geometry.

As a trivial example, consider spheres S™ with the usual cell structure (single
0O-cell and single n-cell). Thus, the cellular embeddings S™ <+ S"*1! give rise to an
infinite-dimensional cell complex S°°. This complex has bounded geometry (since
it has only one cell in every dimension). Therefore, the concept of metric cell
complexes is more flexible than the one of simplicial complexes.

EXERCISE 6.24. Let X,Y be metric cell complexes. Then the product cell-
complex X X Y is also a metric cell complex, where we equip the zero-skeleton
X % YO of X xY with the product-metric. Furthermore, if X,Y have bounded
geometry, then so does X x Y.

We now continue defining metric concepts for metric cell complexes. The
(coarse) R-ball B(z, R) centered at a vertex z € X(9 is the union of the cells
o in X so that ¢(o) C B(z, R).

We will say that the diameter diam(S) of a subcomplex S C X is the diameter
of ¢(S). Given a subcomplex W C X, we define the closed R-neighborhood Nr(W)
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of W in X to be the largest subcomplex S C X so that for every o € S, there exists a
vertex 7 € W so that dist gaus(c(v), c(w)) < R. A cellular map f: X — Y between
metric cell complexes is called L-Lipschitz if for every cell o in X, diam(f (o)) < L.
In particular, f : (X(©,d) — (Y(©), d) is L/Dy-Lipschitz as a map of metric spaces.

EXERCISE 6.25. Suppose that f; : X; — X;41 are L;-Lipschitz for i = 1,2.
Show that fo o fi is Ls-Lipschitz with

Ly = Ly max (x5.k(L1))

EXERCISE 6.26. Construct examples of a cellular map f : X — Y between
metric graphs of bounded geometry, so that the restriction f|X(®) is L-Lipschitz
but f is not L’-Lipschitz, for any L’ < occ.

A map f: X — Y of metric cell complexes is called uniformly proper if f is
cellular, L-Lipschitz for some L < oo and f|X(©) is uniformly proper: There exists
a proper monotonically increasing function n(R) so that

n(d(z, ")) < d(f(z), f(z"))
for all z,2’ € X. The function n(R) is called the distortion function of f.

We will now relate metric cell complexes of bounded geometry to simplicial
complexes of bounded geometry:

EXERCISE 6.27. Let X be a finite-dimensional metric cell complexes of bounded
geometry. Then there exists a simplicial complex Y of bounded geometry and a
cellular homotopy-equivalence X — Y which is a quasi-isometry in the following
sense: f and has homotopy-inverse f so that:

1. Both f, f are L-Lipschitz for some L < oo.

2. fof,fof are homotopic to the identity.

3. f: XO 5 y© £y 4 X(O) are quasi-inverse to each other:

d(fof,Id) <A, d(fof Id)<A.
Hint: Apply the usual construction which converts a finite-dimensional CW-

complex to a simplicial complex.

Recall that quasi-isometries are not necessarily continuous. In order to use
algebraic topology, we, thus, have to approximate quasi-isometries by cellular maps
in the context of metric cell complexes. In general, this is of course impossible, since
one complex in question can be, say, 0-dimensional and the other 1-dimensional.
The uniform contractibility hypothesis allows one to resolve this issue.

DEFINITION 6.28. A metric cell complex X is said to be uniformly contractible
if there exists a continuous function ¢(R) so that for every 2 € X(© the map

B(z, R) = B(z, ¥ (R))

is null-homotopic.
Similarly, X is uniformly k-connected if there exists a function ¥y (R) so that
for every z € X(© the map

B(z, R) = B(z, Y1(R))

induces trivial map on 7;, 0 < i < k.
We will refer to v, vy as the contractibility functions of X.
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EXAMPLE 6.29. Suppose that X is a connected metric graph with the standard
metric. Then X is uniformly 0-connected.

In general, even for simplicial complexes of bounded geometry, contractibility
does not imply uniform contractibility. For instance, start with a triangulated 2-
torus T2, let X be an infinite cyclic cover of T2. Of course, X is not contractible,
but we attach a triangulated disk D to X along a simple homotopically nontrivial
loop in X(*). The result is a contractible 2-dimensional simplicial complex Y which
clearly has bounded geometry.

EXERCISE 6.30. Show that Y is not uniformly contractible.

U

FiGURE 6.2. Contructible but not uniformly constructible space.

We will see, nevertheless, in Lemma 6.34, that under certain assumptions (pres-
ence of a cocompact group action) contractibility implies uniform contractibility.

The following proposition is a metric analogue of the cellular approximation
theorem:

PROPOSITION 6.31. Suppose that X,Y are metric cell complexes, where X
is finite-dimensional and has bounded geometry, Y is uniformly contractible, and
f:XO 5 YO is an L-Lipschitz map. Then f admits a (continuous) cellular
extension g : X — Y, which is an L'-Lipschitz map, where L' depends on L and
geometric bounds on the complex X and the uniform contractibility function of Y.
Furthermore, g(X) C N/ (f(X(©)).

PRrROOF. The proof of this proposition is a prototype of most of the proofs which
appear in this chapter. We extend f by induction on skeleta of X. We claim that
(for certain constants Cj,Cj,, i > 0) we can construct a sequence of extensions
fr: X® 5 Y®) 50 that

1. diam(f(o0)) < Cy, for every k-cell o.

2. diam(f(07)) < Cj, for every (k+ 1)-cell 7 in X.

Base of induction. We already have f = fy : X(© — Y(©) satisfying (1) with
Co = 0. If 2,2’ belong to the boundary of a 1-cell 7 in X then dist(f(x), f(z')) <
LD, where Dy = D, x is the upper bound on the diameter of 1-cells in X. This
establishes (2) in the base case.
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Inductively, assume that f = fx was defined on X*, so that (1) and (2) hold.
Let o be a (k + 1)—cell in X. Note that

diam(f(90)) < Cllc—i-l

by the induction hypothesis. Then, using uniform contractibility of Y, we extend
f to o so that diam(f(c)) < Cky1 where Cri1 = ¥(C},). Let us verify that the
extension f: X*+1 — YF+1 gatisfies (2).

Suppose that 7 is a (k + 2)—cell in X. Then, since X has bounded geometry,
diam(7) < Dg42 = Dg4o x. In particular, O is connected and is contained in the
union of at most ¢(Dy42,k + 1) cells of dimension k + 1. Therefore,

diam(f(071)) < Cry1 - (Diga, k+1) =: Cpp.

This proves (2).

Since X is, say, n-dimensional the induction terminates after n steps. The
resulting map f: X — Y satisfies

L' := diam(f(0)) < Imax C;.

for every cell o in X. Therefore, f : X — Y is L’-Lipschitz. The second assertion
of the proposition follows from the definition of C;’s. O

We note that the above proposition can be relativized:

LEMMA 6.32. Suppose that X,Y are metric cell complexes, X is finite-dimen-
sional and has bounded geometry, Y is uniformly contractible, and Z C X is a
subcomplex. Suppose that f : Z — Y is a continuous cellular map which extends to
an L-Lipschitz map f : X© — YO Then f: ZUX©) Y admits a (continuous)
cellular extension g : X — Y, which is an L'-Lipschitz map, where L' depends on
L and geometric bounds on X and contractibility function of Y.

PROOF. The proof is the same induction on skeleta argument as in Proposition
6.31. (Il

COROLLARY 6.33. Suppose that X,Y are as above and fo, f1 : X =Y are L-
Lipschitz cellular maps so that dist(fo, f1) < C in the sense that d(fo(z), f1(z)) < C
forallz € X . Then there exists an L'—Lipschitz homotopy f : X xI — Y between
the maps fo, f1.

ProOF. Consider the map fo U f1 : X x {0,1} — Y, where X x {0,1} is a
subcomplex in the metric cell complex W := X x T (see Exercise 6.24). Then the
required extension f : W — Y of this map exists by Lemma 6.32. O

6.4. Connectivity and coarse connectivity

Our next goal is to find a large supply of examples of metric spaces which are
coarsely k-connected.

LEMMA 6.34. If X is a finite-dimensional m-connected complex which admits
a geometric (properly discontinuous cocompact) cellular group action G ~ X, then
X is uniformly m-connected.

Proor. Existence of geometric action G ~ X implies that X is locally finite.
Pick a base-vertex € X and let 7 < co be such that G-orbit of B(z,r) N X© is
the entire X(©). Therefore, if C C X has diameter < R/2, there exists g € G so
that C’ = g(C) C B(z,r + R).
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Since C' is finite, w1 (C”) is finitely-generated. Thus, simple connectivity of X
implies that there exists a finite subcomplex C” C X so that each generator of
71(C") vanishes in 71 (C"). Consider now m;(C"),2 < ¢ < m. Then, by Hurewicz
theorem, the image of m;(C") in m;(X) = H;(X), is contained in the image of H;(C")
in H;(X). Since C' is a finite complex, we can choose C” above so that the map
H;(C") — H;(C") is zero. To summarize, there exists a finite subcomplex C" in X
containing C’, so that all maps m;(C") — 7;(C") are trivial, 1 < i < m.

Since C” is a finite complex, there exists R’ < oo be such

C" CcB(z,r+ R+ R).

Hence, the map
e (B(z,r + R)) = m(B(z,r + R+ R'))

is trivial for all & < m. Set ¢ (k,r) = p = r + R'. Therefore, if C C X is a
subcomplex of diameter < R/2, then maps

m,(C) = T (N,(C))
are trivial for all &k < m. O

THEOREM 6.35. Suppose that X is a uniformly n-connected metric cell complex
of bounded geometry. Then Z = X is coarsely n-connected.

PRrOOF. Lety:S* — Ripsy(Z) be a spherical m-cycle in Ripsp(Z),0 < k < n.
Without loss of generality (using simplicial approximation) we can assume that ~y
is a simplicial cycle, i.e. the sphere S* is given a triangulation 7 so that + sends
simplices of S* to simplices in Ripsz(Z) and the restriction of y to each simplex is
a linear map.

LEMMA 6.36. There exists a cellular map v : (S*,7) — X which agrees with
on the vertex set of T and so that diam(y'(S*)) < R', where R’ > R depends only
on R and contractibility functions ¥;(k,-) of X, i=0,..., k.

PROOF. We construct 7/ by induction on skeleta of (S¥, 7). The map is already
defined on the 0-skeleton, namely, it is the map v and images of all vertices of T
are within distance < R from each other. Suppose we constructed 4" on i-skeleton
7% of 7 so that diam(y/'(7%)) < R; = R;(R,¢(k,-)). Let o be an i + 1-simplex in 7.
We already have a map 7’ defined on the boundary of ¢ and diam(y'(90)) < R;.
Then, using uniform contractibility of X we extend >’ to o, so that the resulting
map satisfies

diam(y'(0)) < 9 (i + 1, R;),
which implies that the image is contained in B(y(v),2¢(i + 1, R;), where v is a
vertex of . Thus,

diam(y'(7°7') < Rjy1 := R+ (i + 1, Ry).

Now, lemma follows by induction. Figure 6.3 illustrates the proof in the case
k=1. O

Since X is k-connected, the map 7/ extends to a cellular map ~' : D! —
X #+D) where D*t1 is a triangulated disk whose triangulation 7 extends the tri-
angulation 7 of S*. Our next goal is to “push” 7/ to a map +" : D¥*! — Ripsy (2)
relative to the boundary, where we want 7”/|S*. Let o be a simplex D**1. A sim-
plicial map is determined by images of vertices. By definition of the number R/,

162



Y’(4)

FIGURE 6.3.

images of vertices of o under 7/ are within distance < R’ from each other. There-
fore, we have a canonical extension of v/|0(®) to a map o — Ripsg (Z). If 01 C 09,
then v : o1 — Ripsg (Z) agrees with the restriction of 4" : 03 — Ripsg (Z2),
since maps are determined by their vertex values. We thus obtain a simplicial
map D¥*1 — Ripsp/(Z) which, by construction of 4/ and +”, agrees with  on the
boundary sphere.

Thus, the inclusion map Ripsyp(Z) — Ripsp/(Z) induces trivial maps on k-th
homotopy groups, 0 < k < n. O

As a simple illustration of this theorem, consider the case n = 0.

COROLLARY 6.37. If a bounded geometry metric cell complex X is connected,
then X is quasi-isometric to a connected metric graph (with the standard metric).

PROOF. By connectivity of X, for every pair of vertices =,y € Z, there exists
a path p in X connecting x to y, so that p is a concatenation of 1-cells in X.
Since X has bounded geometry diameter of each 1-cell is < R = D;, where D,
is a geometric bound on X as in Definition 6.22. Therefore, consecutive vertices
of X which appear in p are within distance < R from each other. It follows that
I' = Ripsy(Z) is connected. Without loss of generality, we may assume that R > 1.
Then the map ¢ : Z — Ripsy(Z) (sending Z to the vertex set of the Rips complex)
is 1-Lipschitz. It is also clear that this map is a R~ !-quasi-isometric embedding.
Thus, ¢ is an (R, 1)-quasi-isometry. O

We saw, so far, how to go from uniform k-connectivity of a metric cell complex
X to coarse k-connectivity of its O-skeleton. Our main goal now is to go in the
opposite direction. This, of course, may require modifying the complex X. The
simplest instance of the “inverse” relation is

EXERCISE 6.38. Suppose that Z is a coarsely connected uniformly discrete
metric space. Then Z is the 0-skeleton of a connected metric graph I" of bounded
geometry so that the inclusion map is a quasi-isometry. Hint: I' is the 1-skeleton
of a connected Rips complex Ripsy(Z). Bounded valence property comes from the
uniform discreteness assumption on Z.

Below we consider the situation & > 1 in the group-theoretic context, starting
with k£ = 1.
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LEMMA 6.39. Let G be a finitely-generated group with word metric. Then G
is coarsely simply-connected if and only if Ripsp(G) is simply-connected for all
sufficiently large R.

PROOF. One direction is clear, we only need to show that coarse simple con-
nectivity of G implies that Ripsy(G) is simply-connected for all sufficiently large
R. Our argument is similar to the proof of Theorem 6.35. Note that 1-skeleton of
Rips; (G) is just the Cayley graph of G. Using coarse simple connectivity of G, we
find D > 1 such that the map

71 (Rips; (G)) — m (Ripsp(G))

is trivial. We claim that for all R > D the Rips complex Ripsip(G) is simply-
connected. Let v C Ripsyp(G) be a polygonal loop. For every edge v; := [, Tit1]
of v we let 4/ C Rips;(X) denote a geodesic path from x; to x;41. Then, by the
triangle inequality, -/ has length < R. Therefore, all the vertices of +, are contained
in the ball B(z;, R) C G and, hence, they span a simplex in Ripsg(G). Thus, the
paths ~;,~} are homotopic in Ripsp(G) rel. their end-points. Let +' denote the
loop in Rips,; (G) which is the concatenation of the paths «;. Then, by the above
observation, v’ is freely homotopic to v in Ripsg(G). On the other hand, +/ is
null-homotopic in Ripsg(G) since the map

71 (Rips, (G)) — 1 (Rips p(G))
is trivial. We conclude that ~ is null-homotopic in Ripsy(G) as well. O

COROLLARY 6.40. Suppose that G is a finitely generated group with the word
metric. Then G is finitely presented if and only if G is coarsely simply-connected.
In particular, finite-presentability is a QI invariant.

PROOF. Suppose that G is finitely-presented and let Y be its finite presentation
complex (see Definition 4.80). Then the universal cover X of Y is simply-connected.
Hence, by Lemma 6.34, X is uniformly simply-connected and hence by Theorem
6.35, the group G is coarsely simply-connected.

Conversely, suppose that G is coarsely simply-connected. Then, by Lemma
6.39, the simplicial complex Ripsy(G) is simply-connected for some R. The group
G acts on X := Ripsy(G) simplicially, properly discontinuously and cocompactly.
Therefore, by Corollary 3.28, G admits a properly discontinuous, free cocom-
pact action on another simply-connected cell complex Z. Therefore, G is finitely-
presented. (I

We now proceed to k > 2. Recall (see Definition 3.26) that a group G has type
F, (n < o0) if its admits a free cellular action on a cell complex X such that for
each k < n: (1) X*+1 /@ is compact. (2) X*+1) is k-connected.

ExAMPLE 6.41 (See [Bie76b]). Let Fy be free group on 2 generators a,b.
Consider the group G = F§ which is the direct product of Fy with itself n times.
Define a homomorphism ¢ : G — Z which sends each generator a;,b; of G to the
same generator of Z. Let K := Ker(¢). Then K is of type F,,_1 but not of type
F,.

Analogously to Corollary 6.40 we obtain:
THEOREM 6.42 (See 1.C2 in [Gro93]). Type F,, is a QI invariant.
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PROOF. Our argument is similar to the proof of Corollary 6.40, except we
cannot rely on n — 1-connectivity of Rips complexes Ripsyp(G) for large R. If G
has type F,, then it admits a free cellular action G ~ X on some (possibly infinite-
dimensional) n — 1-connected cell complex X so that the quotient of each skeleton
is a finite complex. By combining Lemma 6.34 and Theorem 6.35, we see that the
group G is coarsely n — 1-connected. It remains, then to prove

PROPOSITION 6.43. If G is a coarsely n — 1-connected group, then G has type
F,.

ProoOF. Note that we already proved this statement for n = 2: Coarsely
simply-connected groups are finitely-presented (Corollary 6.40). The proof below
follows [KKO05].

Our goal is to build the complex X on which G would act as required by the
definition of type F,. We construct this complex and the action by induction on
skeleta X(© ¢ ... ¢ X,,_; € X". Furthermore, we will inductively construct cellu-
lar G-equivariant maps f : X @ — Yr, = Ripsg, (@) and equivariant “deformation
retractions” p; : Yz(z? — X § = 0,...,n, which are G-equivariant cellular maps
so that composition h; = p; o fi : X — X is homotopic to the identity for
1=0,...,n—1. We first explain the construction in the case when G is torsion-free
and then show how to modify the construction for groups with torsion.

Torsion-free case. In this case G-action on every Rips complex is free and
cocompact. The construction is by induction on 3.
i=0. Welet X =G, Ry =0 and let fy = po : G — G be the identity map.

1t =1. Welet Ry =1 and let X; = YI(%ll) be the Cayley graph of G. Again
fl =p1 = Id.

i = 2. According to Lemma 6.39, there exists Rs so that Y is simply-connected
for all R > Ry. We then take X5 := Ylg). Again, we let fo = po = Id.

i =i+ 1. Suppose now that 3 <i<n—1, X% f; p; are constructed and R;
chosen; we will construct X+, £ 1, piiq.
We first construct X (+1).

LEMMA 6.44. There are finitely many spherical i-cycles oo, € A’, in X
such that their G-orbits generate m;(X ).

Proor. Let R' > R = R; be such that the map
induces zero map on 7y, k = 0,...,i. Let 7, : S* — (Yg)®),a € A, denote the

attaching maps of the i + 1-cells 7, in Y(Z;H), these maps are just simplicial home-

omorphic embeddings from the boundary S% of the standard i + 1-simplex to the
boundaries of the ¢ + 1-simplices in Ylg,). Since the map H;(Yr) — H;(Yp41) is
zero, the spherical cycles 7., a € A, generate the image of the map

it Hy(Y) — Hy (V).

Since the action of G on Ypg is cocompact, there are finitely many of these spherical
cycles {1,,a € A’}, whose G-images generate the entire image of n;. We then let
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Oq = pi(Ta), € A’. We claim that this finite set of spherical cycles does the job.
Note that for every o € m(}((i))’

[f(o)] = Z Z Zg,a “g([ta)]); g€ G, 240 €Z,

a€cA’ geG

in the group H;(Yr'). Applying the retraction p; and using the fact that h; = p;o f;
is homotopic to the identity, we get

0= Z Zz%a'gqaa)])- O

a€cA geG

We now equivariantly attach i+1-cells 6, , along the spherical cycles g(o4), o €
A’. We let XG+D denote the resulting complex and we extend the G-action to
X+ in obvious fashion. It is clear that G ~ X(+1 is properly discontinuous,
free and cocompact. By the construction X (“t1) is j-connected.

We next construct maps f;+1 and p;;1. To construct the map f;y1 : X0+
YR we extend f;|o1,q t0 01,4 using the fact that the map

Wi(YR) — ﬂi(YR/)

is trivial. We extend f;11 to the rest of the cells 6, ,,a € A’, by G-equivariance.
We extend p; to each g7, using the attaching map gé,. We extend the map to the
rest of YI(;,H) by induction on the skeleta, G-equivariance and using the fact that
X (41 is j-connected. Lastly, we observe that h;y; is homotopic to the identity.
Indeed, for each i + 1-cell g(64), the map f;(go,) is homotopic to g7, in Yr (as
mi(Yr) = m;(YR) is zero) and fi11(97a) = g(64). (Note that we do not claim that
hy, is homotopic to the identity.)

If n < oo, this construction terminates after finitely many steps, otherwise, it
takes infinitely many steps. In either case, the result is n — 1-connected complex X
and a free action G ~ X which is cocompact on each skeleton. This concludes the
proof in the case of torsion-free groups G.

General Case. We now explain what to do in the case when G is not torsion-
free. The main problem is that a group G with torsion will not act freely on its
Rips complexes. Thus, while equivariant maps f; would still exist, we would be
unable to construct equivariant maps p; : Ripsp(G) = X (#), Furthermore, it could
happen that for large R the complex Y is contractible: This is clearly true if G is
finite, it also holds for all Gromov-hyperbolic groups. If were to have f; and p; as
before, we would be able to conclude that X is contractible for large i, while a
group with torsion cannot act freely on a contractible cell complex.

We, therefore, have to modify the construction. For each R we let Zr denote
the barycentric subdivision of Y\ = Ripsz(G)®. Then G acts on Zg without
inversions (see Definition 3.22). Let Zr denote the regular cell complex obtained
by applying the Borel construction to Zg, see section 3.2. The complex 2; is
infinite-dimensional if GG has torsion, but this does not cause problems since at each
step of induction we work only with ﬁnite/\skeleta. The action G ~ Zg lifts to a
free (properly discontinuous) action G ~ Zg which is cocompact on each skeleton.
We then can apply the arguments from the torsion-free case to the /c\ornplexes 21\:5
instead of Ripsp(G). The key is that, since the action of G on Zp is free, the

construction of the equivariant retractions p; : Ylg) — X® goes through. Note also
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that in the first steps of the induction we used the fact that Yy is simply-connected
for sufficiently large R in order to construct X (). Since the projection Zz — Zr
is homotopy-equivalence, 2-skeleton of 21\3 is simply-connected for the same values
of R. (]

This finishes the proof of Theorem 6.42 as well. (I

There are other group-theoretic finiteness conditions, for instance, the condi-
tion FP,, which is a cohomological analogue of the finiteness condition F,,. The
arguments used in this section apply in the context of FP,-groups as well, see
Proposition 11.4 in [KKO05]. The main difference is that instead of metric cell
complexes, one works with metric chain complexes and instead of k-connectedness
of the system of Rips complexes, one uses acyclicity over R.

THEOREM 6.45. Let R be a commutative ring with neutral element. Then the
property of being FP,, over R is QI invariant.

QUESTION 6.46. 1. Is the homological dimension of a group QI invariant?

2. Suppose that G has geometric dimension n < oo. Is there a bounded
geometry uniformly contractible n-dimensional metric cell complex with free G-
action G ~ X7

3. Is geometric dimension QI invariant for torsion-free groups?

Note that cohomological dimension is known to equal geometric dimension,
except there could be groups satisfying

2 =cd(G) < gd(G) < 3,
see [Bro82b]. On the other hand,
cd(G) < hd(G) < cd(G) + 1,

see [Bie76a]. Here cd stands for cohomological dimension, gd is the geometric
dimension and hd is the homological dimension.

6.5. Retractions

The goal of this section is to give a non-equivariant version of the construction
of the retractions p; from the proof of Proposition 6.43 in the previous section.

Suppose that X,Y are uniformly contractible finite-dimensional metric cell
complexes of bounded geometry. Consider a uniformly proper map f : X — Y.
Our goal is to define a coarse left-inverse to f, a retraction p which maps an -
neighborhood of V' := f(X) back to X.

LEMMA 6.47. Under the above assumptions, there exist numbers L, L', A, func-
tion R = R(r) which depend only on the distortion function of f and on the geom-
etry of X andY so that:

1. For everyr € N there exists a cellular L—Lipschitz map p = p, : N.(V) — X
so that dist(p o f,idx) < A. Here and below we equip W) with the restriction of
the path-metric on the metric graph W) in order to satisfy Aziom 1 of metric cell
complezes.

2. po f is homotopic to the identity by an L'—Lipschitz cellular homotopy.

3. The composition h = fop: Np.(V) = V C Ng(V) is homotopic to the
identity embedding id : V — Ngr(V).

4. If r1 <2 then Pro |Nr1 (V) = Pry-
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PRroOOF. Let Dy =0, D1, D3, ... denote the geometric bounds on Y and

max Dy = D < oo.
k>0

Since f is uniformly proper, there exists a proper monotonic function n : Ry — R
so that

n(d(z,2")) < d(f(x), f(2')),Vz,2’ € XO.
Let Ag, A1 denote numbers such that
n(t) >0, Vt> A(),

n(t) > 2r+ Dy, Vt> Ay,

Recall that the neighborhood W := A,.(V) is a subcomplex of Y. For each vertex
y € WO we pick a vertex p(y) := =z € X such that the distance dist(y, f(z))
is the smallest possible. If there are several such points x, we pick one of them
arbitrarily. The fact that f is uniformly proper, ensures that

dist(po f,idxw) < A:= Ay.
Indeed, if p(f(z)) = ’, then f(x) = f(a'); if d(z,2") > Ao, then
0 <n(d(z,2")) <d(f(z), f(2)),

contradicting that f(z) = f(2'). Thus, by our choice of the metric on W(® coming
from W', we conclude that p is A;-Lipschitz.

Next, observe also that for each 1-cell o in W, diam(p(do)) < A;. Indeed,
if 0o = {y1,y2}, d(y1,y2) < Dy by the definition of a metric cell complex. For
yi = f(zi), d(yi,y;) < r. Thus, d(yi,v5) < 2r + Dy and d(z1,22) < A; by the
definition of A;. Now, existence of L-Lipschitz extension p : W — X follows from
Proposition 6.31. This proves (1).

Part (2) follows from Corollary 6.33. To prove Part (3), observe that h = fop :
N, (V) — V is L"-Lipschitz (see Exercise 6.25), dist(h, Id) < r. Now, (3) follows
from Corollary 6.33 since Y is also uniformly contractible.

Lastly, in order to guarantee (4), we can construct the retractions p, by induc-
tion on the values of r and using the extension Lemma 6.32. (]

COROLLARY 6.48. There exists a function a(r) = r so that for every r the
map h = fop: No(V) = Nuy(V) is properly homotopic to the identity, where
V= f(X).

We will think of this lemma and its corollary as a proper homotopy-equivalence
between X and the direct system of metric cell complexes Nr(V), R > 1. Re-
call that the usual proper homotopy-equivalence induces isomorphisms of com-
pactly supported cohomology groups. In our case we get an “approximate isomor-
phism” of H}(X) to the inverse system of compactly supported cohomology groups
H: (Na(V)):

COROLLARY 6.49. 1. The induced maps p}, : H¥(X) — HX(Ng(W)) are in-
jective.
2. The induced maps py are approximately surjective in the sense that the
subgroup coker(pz(R)) maps to zero under the map induced by restriction map
restr : H:(No(r) (V) = HE(NR(V)).
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PRrooF. 1. Follows from the fact that po f is properly homotopic to the identity
and, hence, induces the identity map of H}(X), which means that f* is the right-
inverse to p%.

2. By Corollary 6.48 the restriction map restr equals the map p% o f*. There-
fore, the cohomology group H}(Nary(W)) maps via restr to the image of pp.
The second claim follows. U

6.6. Poincaré duality and coarse separation

In this section we discuss coarse implications of Poincaré duality in the context
of triangulated manifolds. For a more general version of Poincaré duality, we refer
the reader to [Roe03]; this concept was coarsified in [KK05], where coarse Poincaré
duality was introduced and used in the context of metric cell complexes. We will be
working work with metric cell complexes which are simplicial complexes, the main
reason being that Poincaré duality has cleaner statement in this case.

Let X be a connected simplicial complex of bounded geometry which is a
triangulation of a (possibly noncompact) n-dimensional manifold without boundary.
Suppose that W C X is a subcomplex, which is a triangulated manifold (possibly
with boundary). We will use the notation W’ to denote its barycentric subdivision.
We then have the Poincaré duality isomorphisms

P : HY(W) = H,_n(W,0W) = H, (X, X \ W).

Here H} are cohomology groups with compact support. The Poincaré duality
isomorphisms are natural in the sense that they commute with proper embeddings
of manifolds and manifold pairs. Furthermore, the isomorphisms P move cocycles
by uniformly bounded amount: Suppose that ¢ € Z¥(W) is a simplicial cocycle
supported on a compact subcomplex K C W. Then the corresponding relative
cycle Py(¢) € Z,,—x(W,0W) is represented by a simplicial chain in W’ where each
simplex has nonempty intersection with K.

EXERCISE 6.50. If W C X is a proper subcomplex, then H?(W) = 0.

We will also have to use the Poincaré duality in the context of subcomplexes
V' C X which are not submanifolds with boundary. Such V', nevertheless, admits a
(closed) regular neighborhood W = N (V'), which is a submanifold with boundary.
The neighborhood W is homotopy-equivalent to V.

We will present in this section two applications of Poincaré duality to the coarse
topology of X.

Coarse surjectivity

THEOREM 6.51. Let X,Y be uniformly contractible simplicial complexes of
bounded geometry homeomorphic to R™. Then every uniformly cellular proper map
[+ X =Y is surjective.

PROOF. Assume to the contrary, i.e, V = f(X) # Y is a proper subcomplex.
Thus, H?(V) = 0 by Exercise 6.50. Let p : V' — X be a retraction constructed
in Lemma 6.47. By Lemma 6.47, the composition h = po f : X — X is properly
homotopic to the identity. Thus, this map has to induce an isomorphism H*(X) —
H}(X). However, H?(X) = Z since X is homeomorphic to R™, while H? (V) = 0.
Contradiction. O
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COROLLARY 6.52. Let X,Y be as above an f : X(© — YO js ¢ quasi-isometric
embedding. Then f is a quasi-isometry.

ProoOF. Combine Proposition 6.31 with Theorem 6.51. (]

Coarse separation.

Suppose that X is a simplicial complex and W C X is a subcomplex. Consider,
Ng(W), the open metric R-neighborhoods of W in X and their complements Cr
in X.

For a component C' C Cg define the inradius, inrad(C'), of C' to be the supre-
mum of radii of metric balls B(z, R) in X contained in C'. A component C'is called
shallow if inrad(C) is < oo and deep if inrad(C) = oco.

EXAMPLE 6.53. Suppose that W is compact. Then deep complementary com-
ponents of C'r are components of infinite diameter. These are the components
which appears as neigborhoods of ends of X.

A subcomplex W is said to coarsely separate X if there is R such that Ng(W)
has at least two distinct deep complementary components.

EXAMPLE 6.54. The simple properly embedded curve I' in R? need not coarsely
separate R? (see Figure 6.4). A straight line in R? coarsely separates R2.

FIGURE 6.4. A separating curve which does not coarsely separate
the plane.

THEOREM 6.55. Suppose that X, Y are uniformly contractible simplicial com-
plezes of bounded geometry which are homeomorphic to R"~! and R™ respectively.
Then for each uniformly proper cellular map f : X — Y, the image V = f(X)
coarsely separates Y. Moreover, for all sufficiently large R, Y \ Nr(V) has exactly
two deep components.

PrROOF. Actually, our proof will use the assumption on the topology of X only
weakly: To get coarse separation it suffices to assume that H?~!(X) # 0.

Recall that in Section 6.5 we constructed a system of retractions pgr : Ng(V) —
X, R €N, and proper homotopy-equivalences f o p = Id and pr o f|n,v) = Id:
Nr(V) = Nar)(V). Furthermore, we have the restriction maps

restp, r, + H (N, (V) = HZ(Ng,(V)), Ri<Rs.
These maps satisfy
restRr, Ry © PR, = PR,
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by Part 4 of Lemma 6.47. We also have the projection maps
Projry.ry : Hi(Y,Y — Ng,(V)) = H.(Y,Y — Ng,(V)) Ri < Ra.

induced by inclusion maps of pairs (Y,Y — Ng,(V)) = (Y,Y — Ng, (V)). Poincaré
duality in R™ also gives us a system of isomorphisms

P H ™ (Nr(V)) = Hy (X, X \ NR(V)).

By naturality of Poincaré duality we have a commutative diagram:
v P
Hc (NRZ (V)) - H’VL—*(Yv CRZ)
reStRl,Rz pT‘Ole’R2

H (N (V) S Ho (V. Cy)

Let w be a generator of H? !1(X) = R. Given R > 0 consider the pull-back
wg = p{(w) and the relative cycle ogr = P(wgr). Then w, = rest, r(wr) and

or =projrr(or) € H1(Y,C,)

for all » < R, see Figure 6.5. Observe that for every r, w, is non-zero, since
f*op* = id on the compactly supported cohomology of X. Hence, every o, is
nonzero as well.

Contractibility of Y and the long exact sequence of the homology groups of the
pair (Y, C,) implies that

Hl(K Cr) = HO(CT')'
We let 7. denote the image of o, under this isomorphism. Thus, each 7. is rep-
resented by a O-cycle, the boundary of the chain representing o,.. Running the
Poincaré duality in the reverse and using the fact that w is a generator of H?~*(X),
we see that 7, is represented by the difference y,. —y./, where y., y! € C,. Nontrivial-
ity of 7. means that y.., y!/ belong to distinct components C!., C! of C,.. Furthermore,
since for r < R,
projrr(or) = o,
it follows that
CrCCl, CLccl.

Since this could be done for arbitrarily large r, R, we conclude that components
C/,C}" are both deep.

The same argument run in the reverse implies that there are exactly two deep
complementary components. O

We refer to [FS96], [KKO05]| for further discussion and generalization of coarse
separation and coarse Poincaré/Alexander duality.
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FIGURE 6.5. Coarse separation.
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CHAPTER 7

Hyperbolic Space

The real hyperbolic space is the oldest and easiest example of hyperbolic space.
A good reference for hyperbolic spaces in general is [?]. The real-hyperbolic space
has its origin in the following classical question that has challenged the geometers
for nearly 2000 years:

QUESTION 7.1. Does Euclid’s fifth postulate follow from the rest of the axioms
of Euclidean geometry? (The fifth postulate is equivalent to the statement that
given a line L and a point P in the plane, there exists exactly one line through P
parallel to L.)

After a long history of unsuccessful attempts to establish a positive answer to
this question, N.I. Lobachevski, J. Bolyai and C.F. Gauss independently (in the
early 19th century,) developed a theory of non-Euclidean geometry (which we now
call “hyperbolic geometry”), where Euclid’s fifth postulate is replaced by the axiom:

“For every point P which does not belong to L, there are infinitely many lines
through P parallel to L.”

Independence of the 5th postulate from the rest of the Euclidean axioms was
proved by E. Beltrami in 1868, via a construction of a model of the hyperbolic
geometry. In this chapter we will use the unit ball and the upper half-space models
of hyperbolic geometry, the latter of which is due to H. Poincaré.

7.1. Moebius transformations

We will think of the sphere S™ as the 1-point compactification of R™. Ac-
cordingly, we will regard the 1-point compactification of a hyperplane in R" as
a round sphere (of infinite radius) and the 1-points compactification of a line in
R™ as a round circle (of infinite radius). Recall that the inversion in the r-sphere
Y. ={z:||z|]| = r} is the map

7"21'

JE 2$}—>W7 JE(O):OO, JE(OO)ZO

One defines the inversion Jy; in the sphere ¥ = {z : ||z — a|| = r} by the formula
Ta © JET o T—a
where T, is the translation by the vector a. Inversions map round spheres to round

spheres and round circles to circles; inversions also preserve the Euclidean angles,

and the cross-ratio
eyl p-w

m7y’z7w :_ 9
[ = To—a]

see e.g. [Rat94, Theorem 4.3.1]. We will regard the reflection in a Euclidean
hyperplane as an inversion (such inversion fixes o).
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DEFINITION 7.2. A Moebius transformation of R™ (or, rather, S™) is a compo-
sition of finitely many inversions in R™. The group of all Moebius transformations
of R™ is denoted Mob(R™) or Mob(S™).

In particular, Moebius transformations preserve angles, cross-ratios and map
circles to circles and spheres to spheres.

For instance, every translation is a Moebius transformation, since it is the
composition of two reflections in parallel hyperplanes. Every rotation in R™ is the
composition of at most n inversions (reflections), since every rotation in R? is the
composition of two reflections. Every dilation x — Az, A > 0 is the composition of
two inversions in spheres centered at 0.

LEMMA 7.3. The subgroup Mobo, o(R™) of Mob(R™) fizing oo and 0 equals the
group CO(n) =R - O(n).

PROOF. We just observed that CO(n) is contained in Mobs, o(R™). We, thus,
need to prove the opposite inclusion. Consider the coordinate lines L1, ..., L, in
R™. Then every g € Mob,(R™) sends these lines to pairwise orthogonal lines

1, ..., L], through the origin (since Moebius transformations map circles to circles
and preserve angles). By postcomposing g with an element of O(n), we can assume
that g preserves each coordinate line L,, and, furthermore, preserves the orientation
on this line. By postcomposing g with dilation we can also assume that g maps
the unit vector e; to itself. Thus, g maps the unit sphere ¥y to the round sphere
which is orthogonal to the coordinate lines and passes through the point e;. Hence,
d(X1) = £1. We claim that such g is the identity. Indeed, if L is a line through
the origin, then the line g(L) has the same angles with L; as L for each i = 1,...,n.
Thus, g(L) = L for every such L. By considering intersections of these lines with
31, we conclude that g restricts to the identity on ;. It remains to show that g is
the identity on every sphere centered at the origin. Equivalently, we need to show
that ¢ is the identity on the line L;.

Let x € Li be outside of X7 and let L be a line in the zjzs-plane through x
and tangent to X1 at a point y. Then g(L) is also a line through g(x),y, tangent to
3, at y. Since g preserves the orientation on L, g(L) = L and, hence, g(z) = x.
We leave the case of points x € L1 contained inside X1 to the reader. O

EXAMPLE 7.4. Let us construct a Moebius transformation ¢ sending the unit
ball B" = B(0,1) C R" to the upper half-space U™ = R,

RY = {(x1,...7y) : 2, > 0}.

We take o to be the composition of translation « — x + e,, where e, = (0, ...,0, 1),
inversion Jy, where ¥ = 0B", translation x — = — %en and, lastly, the similarity
x — 2x. The reader will notice that the restriction of o to the boundary sphere X

of B”™ is nothing but the stereographic projection with the pole at —e,,.
Note that the map o sends the origin 0 € B™ to the point e, € U™.

Low-dimensional Moebius transformations. Suppose now that n = 2.
The group SL(2,C) acts on the extended complex plane S? = C U oo by linear-
fractional transformations:

(r.1) (

o 2

b az+b
-z = .
d cz+d
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Note that the matrix —I lies in the kernel of this action, thus, the above action
factors through the group PSL(2,C) = SL(2,C)/ £ I. If we identify the complex-
projective line CP! with the sphere S? = C U oo wvia the map [z : w] = z/w, the
above action of SL(2,C) is nothing but the action of SL(2,C) on CP! obtained via
projection of the linear action of SL(2,C) on C?\ 0.

EXERCISE 7.5. Show the group PSL(2,C) acts faithfully on S2.

EXERCISE 7.6. Prove that the subgroup SL(2,R) C SL(2,C) preserves the
upper half-plane U? = {z : Im(z) > 0}. Moreover, SL(2,R) is the stabilizer of U?
in SL(2,C).

EXERCISE 7.7. Prove that any matrix in SL(2,C) is either of the form

a b
0 a!
or it can be written as a product

(20

Hint: If a matrix is not of the first type then it is a matrix
a b
c d
such that ¢ # 0. Use this information and multiplications on the left and on the

right by matrices
1 =z
(o 1)

to create zeroes on the diagonal in the matrix.

LEMMA 7.8. PSL(2,C) is the subgroup Mob(S?) of Moebius transformations
of S? which preserve orientation.

ProoOF. 1. Every linear-fractional transformation is a composition of j : z —
271, translations, dilations and rotations (see Exercise 7.7). Note that j(z) is the
composition of the complex conjugation with the inversion in the unit circle. Thus,
PSL(2,C) C Moby(S?). Conversely, let g € Mob(S?) and zy := g(co). Then
h = joTog fixes the point oo, where 79(2) = z — z9. Let z; = h(0). Then
composition f of h with the translation 71 : 2z — z — 2; has the property that
f(o0) = 00, f(0) = 0. Thus, f € CO(2) and h preserves orientation. It follows that
f has the form f(z) = Az, for some A € C\ 0. Since f, 79,7 — 1,5 are Moebius
transformation, it follows that ¢ is also a Moebius transformation. O

7.2. Real hyperbolic space
Upper half-space model. We equip U™ = R’} with the Riemannian metric

dz?  dx? + ... +dz?
2 _ _ X n
The Riemannian manifold (U™, ds?) is called the n-dimensional hyperbolic space and
denoted H". This space is also frequently called the real-hyperbolic space, in order
to distinguish it from other spaces also called hyperbolic (e.g., complex-hyperbolic

space, quaternionic-hyperbolic space, Gromov-hyperbolic space, etc.). We will use
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the terminology hyperbolic space for H" and add adjective real in case when other
notions of hyperbolicity are involved in the discussion. In case n = 2, we identify
R? with the complex plane, so that U? = {z|Im(z) > 0}, z = = + iy, and

dz? + dy?
ds? = 42
Y
Note that the hyperbolic Riemannian metric ds? on U" is conformally-Euclidean,
hence, hyperbolic angles are equal to the Euclidean angles. One computes hyper-

bolic volumes of solids in H"™ by the formula

dzy...dx,

Vol(Q) = /Q o

Consider the projection to the x,-axis in U™ given by the formula
7w (21, ey ) — (0,..,0,2,).

EXERCISE 7.9. 1. Verify that d,m does not increase the length of tangent
vectors v € T, H" for every x € H".

2. Verify that for a unit vector v € T,H", ||dy7(v)|| = 1 if and only if v is
“vertical”, i.e., it has the form (0, ...,0,v,).

EXERCISE 7.10. Suppose that p = ae,,q = be,,, where 0 < a < b. Let a be the
vertical path «(t) = (1 —t)p + tq, t € [0,1] connecting p to q. Show that « is the
shortest path (with respect to the hyperbolic metric) connecting p to ¢ in H". In
particular, « is a hyperbolic geodesic and

d(p, q) = log(b/a).
Hint: Use the previous exercise.

We note that the metric ds? on H" is clearly invariant under the “horizontal”
Euclidean translations  — = + v, where v = (v1,...,v,-1,0) (since they preserve
the Euclidean metric and the x,-coordinate). Similarly, ds? is invariant under the
dilations

h:x— Az, A >0

since h scales both numerator and denominator in (7.2) by A2, Lastly, ds? is
invariant under Euclidean rotations which fix the x,-axis (since they preserve the
xn-coordinate). Clearly, compositions of such isometries of H™ act transitively on
H", which means that H" is a homogeneous Riemannian manifold.

EXERCISE 7.11. Show that H" is a complete Riemannian manifold. You can
either use homogeneity of H™ or show directly that every Cauchy sequence in H"
lies in a compact subset of H™.

EXERCISE 7.12. Show that the inversion J = Jy in the unit sphere 3 centered
at the origin, is an isometry of H", i.e., ds% = J*(ds®). The proof is easy but
(somewhat) tedious calculation, which is best done using calculus interpretation of
the pull-back Riemannian metric.

EXERCISE 7.13. Show that every inversion preserving H™ is an isometry of
H". To prove this, use compositions of the inversion Jy in the unit sphere with
translations and dilations.
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In order to see clearly other isometries of H"”, it is useful to consider the unit
ball model of the hyperbolic space.

Unit ball model. Consider the open unit Euclidean n-ball B” := {z : |z| < 1}
in R™. We equip B™ with the Riemannian metric

dz? + ...+ d2?

(1 —|z?)?
The Riemannian manifold (B", ds?) is called the unit ball model of the hyperbolic
n-space. What is clear in this model is that the group O(n) of orthogonal trans-
formations of R™ preserves ds% (since its elements preserve |z| and, hence, the
denominator of ds%). The two models of the hyperbolic space are related by the
Moebius transformation o : B™ — U™ defined in the previous section.

ds% =4

EXERCISE 7.14. Show that ds% = o*(ds?). The proof is again a straightforward
calculation similar to the Exercise 7.12. Namely, first, pull-back ds? wvia dilatation
x — 2x, then apply pull-back via the translation z — x — %en, etc. Thus, o is an
isometry of the Riemannian manifolds (B",ds%), (U™, ds?).

LEMMA 7.15. The group O(n) is the stabilizer of 0 in the group of isometries
of (B, ds%).

Proor. Note that if g € Isom(B™) fixes 0, then its derivative at the origin dgg
is an orthogonal transformation u. Thus, h = u~!g € Isom(B") has the property
dho = Id. Therefore, for every geodesic v in H" so that v(0) = 0, dh(+/(0)) = +/(0).
Since geodesic in a Riemannian manifold is uniquely determined by its initial point
and initial velocity, we conclude that h(y(t)) = ~(t) for every ¢t. Since B" is
complete, for every ¢ € B” there exists a geodesic hyperbolic v connecting p to g.
Thus, h(q) = q and, therefore, g = u € O(n). O

COROLLARY 7.16. The stabilizer of the point p = e, € U™ in the group
Isom(H™) is contained in the group of Moebius transformations.

Proor. Note that o sends 0 € B™ to p = e, € U™, and ¢ is Moebius. Thus,
o : B" — U™ conjugates the stabilizer O(n) of 0 in Isom(B", ds%) to the stabilizer
K =07t0(n)o of p in Isom(U™, ds?). Since O(n) C Mob(S™),o € Mob(S™), claim
follows. O

COROLLARY 7.17. a. Isom(H") equals the group Mob(H™) of Moebius trans-
formations of S™ preserving H". b. Isom(H"™) acts transitively on the unit tangent
bundle UH™ of H".

PROOF. a. Since two models of H" differ by a Moebius transformation, it
suffices to work with U™.

1. We already know that the Isom(H"™) N Mob(H™) contains a subgroup acting
transitively on H". We also know, that the stabilizer K of p in Isom(H") is con-
tained in Mob(H™). Thus, given g € Isom(H") we first find h € Mob(H") N
Isom(H") so that &k = hog(p) = p. Since k € Mob(H"), we conclude that
Isom(H") C Mob(H").

2. We leave it to the reader to verify that the restriction homomorphism
Mob(H™) — Mob(S™ 1) is injective. Every g € Mob(S"!) extends to a com-
position of inversions preserving H". Thus, the above restriction map is a group
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isomorphism. We already know that inversions J € Mob(H™) are hyperbolic isome-
tries. Thus, Mob(H") C Isom(H").

b. Transitivity of the action of Isom(H™) on UH"™ follows from the fact that
this group acts transitively on H" and that the stabilizer of p acts transitively on
the set of unit vectors in T}, H". O

LEMMA 7.18. Geodesics in H" are arcs of circles orthogonal to the boundary
sphere of H™. Furthermore, for every such arc o in U™, there exists an isometry
of H™ which carries o to a segment of the x.,-axis.

PRrROOF. It suffices to consider complete hyperbolic geodesics o : R — H"”.
Since o : B™ — U™ sends circles to circles and preserves angles, it again suffices to
work with the upper half-space model. Let « be a hyperbolic geodesic in U™. Since
Isom(H™) acts transitively on UH", there exists a hyperbolic isometry g so that the
hyperbolic geodesic § = g o « satisfies: (0) = p = e,, and the vector 8'(0) has the
form e, = (0, ...,0,1). We already know that the curve y(t) = e’e,, is a hyperbolic
geodesic, see Exercise 7.10. Furthermore, 7/(0) = ¢, and v(0) = p. Thus, 8 =~ isa
(generalized) circle orthogonal to the boundary of H". Since Isom(H") = Mob(H")
and Moebius transformations map circles to circles and preserve angles, lemma
follows. O

COROLLARY 7.19. The space H" is uniquely geodesic, i.e., for every pair of
points in H" there exists a unique unit speed geodesic segment connecting these
points.

PROOF. By the above lemma, it suffices to consider points p,q on the z,-
axis. But, according to Exercise 7.10, the vertical segment is the unique length-
minimizing path between such p and gq. O

COROLLARY 7.20. Let H C H" be the intersection of H" with a round k-sphere
orthogonal to the boundary of H". Then H is a totally-geodesic subspace of H",
i.e., for every pair of points p,q € H, the unique hyperbolic geodesic v connecting
p and q in H", is contained in H. Furthermore, if « : H — H" is the embedding,
then the Riemannian manifold (H,.*ds?) is isometric to HF.

ProOF. The first assertion follows from the description of geodesics in H™. To
prove the second assertion, by applying an appropriate isometry of H", it suffices
to consider the case when H is contained in a coordinate k-dimensional subspace
in R™:

H={0,...,0,Zn—kt1,--,ZTn) : T, > 0}.

Then ) )
dx + ...+ dx
L*d82 —_ n—k+1 n
z
is isometric to the hyperbolic metric on H* (by relabeling the coordinates). O

We will refer to the submanifolds H C H" as hyperbolic subspaces.

EXERCISE 7.21. Show that the hyperbolic plane violates the 5th Euclidean
postulate: For every (geodesic) line L C H? and every point P ¢ L, there are
infinitely many lines through P which are parallel to L (i., disjoint from L).

EXERCISE 7.22. Prove that

e the unit sphere S"~1 is the ideal boundary (in the sense of Definition 2.44)
of the hyperbolic space H" in the unit ball model;
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e the extended Euclidean space R" ! U {oo} = S"~! is the ideal boundary
of the hyperbolic space H" in the upper half-space model.

Note that the Moebius transformation o : B™ — U™ carries the ideal boundary
of B™ to the ideal boundary of U™. Note also that all Moebius transformations
which preserve H™ in either model, induce Moebius transformations of the ideal
boundary of H"™.

It follows from Corollaries 7.20 and 7.33 that H™ has sectional curvature —1,
therefore all the considerations in Section 2.1.8, in particular those concerning the
ideal boundary, apply to it. Later on, in Section 8.9 of Chapter 8, we will give
another more intrinsic definition of ideal boundaries, for metric hyperbolic spaces
in the sense of Gromov.

Lorentzian model of H". We refer the reader to [Rat94] and [Thu97] for
the material below.
Consider the Lorentzian space R™! which is R™*! equipped with the quadratic
form
(@) =i +... +a2 — a2,
Let H denote the upper sheet of the 2-sheeted hyperboloid in R™!:

2 2 2
]+ ...+ x, —xp = —Lxap >0.

Restriction of ¢ to the tangent bundle of H is positive-definite and defines a Rie-
mannian metric ds? on H. We identify the unit ball B in R” with the ball

{(x1,..20,0) s 2] ...+ 22 <1} C R
Let w : H — B™ denote the radial projection from the point —e, 1 1:

1

=tr—(1—-t t= —mm.
m(x) x—( )en+1, T 1

One then verifies that
4dz?
:(H,ds®) > H" = (B", —————
ol > B = (B
is an isometry.
The stabilizer PO(n,1) of H in O(n, 1) acts isometrically on H. Furthermore,

PO(n,1) is the entire isometry group of (H,ds?). Thus, Isom(H") & PO(n,1) C
SO(n,1); in particular, the Lie group Isom(H") is linear.

7.3. Hyperbolic trigonometry

In this section we consider geometry of triangles in the hyperbolic plane. We
refer to [?, Rat94, Thu97] for the proofs of the hyperbolic trigonometric formulae
introduced in this section. Recall that a (geodesic) triangle T = T'(A4, B,C) as
a 1-dimensional object. From the Fuclidean viewpoint, a hyperbolic triangle T
is a concatenations of circular arcs connecting points A, B,C in H?, where the
circles containing the arcs are orthogonal to the boundary of H?. Besides such
“conventional” triangles, it is useful to consider generalized hyperbolic triangles
where some vertices are ideal, i.e., they belong to the ideal boundary of H?. Such
triangles are easiest to introduce by using Euclidean interpretation of hyperbolic
triangles: One simply allows some (or, even all) vertices A, B, C' to be points on the
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boundary circle of H?, the rest of the definition is exactly the same. However, we
no longer allow two vertices which belong to the boundary circle S* to be the same.

The vertices of T which happen to be points of the boundary circle S* are called
the ideal vertices of T. The angle of T at its ideal vertex is just the Euclidean angle.
In general, we will use the notation & = Z4(B, C) to denote the angle of T at a.
From now on, a hyperbolic triangle means either a usual triangle or a triangle where
some vertices are ideal. We still refer to such triangles as triangles in H?, even
though, some of the vertices could lie on the ideal boundary, so, strictly speaking,
an ideal hyperbolic triangle in H? is not a subset of H?. An ideal hyperbolic
triangle, is a triangle where all the vertices are distinct ideal points in H?. The
same conventions will be used for hyperbolic triangles in H".

EXERCISE 7.23. If A is an ideal vertex of a hyperbolic triangle T', then T has
zero angle at A. Hint: It suffices to consider the case when A = 0 and the side
[A, B] of T is contained in the vertical line L. Show that the side [A,C] of T is a
circular arc tangent to L at A.

FI1GURE 7.1. Geometry of a general hyperbolic triangle.

1. General triangles. Consider hyperbolic triangles 7' in H? with the side-
lengths a, b, ¢ and the opposite angles «, 3,7, see Figure 7.1.

a. Hyperbolic Sine Law:

sinh(a)  sinh(b)  sinh(c)
sin(a) - sin(f) B sin(y)
b. Hyperbolic Cosine Law:

(7.3)
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(7.4) cosh(c) = cosh(a) cosh(b) — sinh(a) sinh(b) cos(y)
c. Dual Hyperbolic Cosine Law:

(7.5) cos(y) = — cos(a) cos(B) + sin(a) sin(3) cosh(c)
2. Right triangles. Consider a right-angled hyperbolic triangle with the

hypotenuse ¢, the other side-lengths a,b and the opposite angles a, 3. Then, hy-
perbolic cosine laws become:

(7.6) cosh(c) = cosh(a) cosh(b),
(7.7) cos(a) = sin(fB) cosh(a),
(7.8) cos(a) = EZEE?}

In particular,
cosh(a) sinh(b)

(7.9) cos(ar) = Sinh(c)

3. First variation formula for right triangles. We now hold the side a
fixed and vary the hypotenuse in the above right-angled triangle. By combining
(7.6) and (7.4) we obtain the First Variation Formula:
cosh(a) sinh(b)

sinh(c)
The equation ¢/(0) = cos(a)b’(0) is a special case of the First Variation Formula in
Riemannian geometry, which applies to general Riemannian manifolds.

(7.10) d(0) = b'(0) = cos(a)b'(0).

As an application of the first variation formula, consider a hyperbolic triangle
with vertices A, B, C, side-lengths a,b,c and the angles 3,~ opposite to the sides
b,c. Then

LEMMA 7.24. a+ b — ¢ > ma, where
m = min{|1 — cos(B)|, |1 — cos(¥)|}.

Proor. We let g(t) denote the unit speed parameterizations of the segment
[BC], so that g(0) = C,g(a) = B. Let c(t) denote the distance dist(A4, g(t)) (so
that b = ¢(0),c = ¢(a)) and let 5(t) denote the angle ZAg(t)B. We leave it to the
reader to verify that

11— cos(8()] > m.
Consider the function
fOy=t+b—c(t), f(0)=0, fla)=a+b—c.
By the 1st variation formula,
d(t) = cos(B(t))
and, hence,
f'(t) =1 —cos(B(t)) = m
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Thus,
a+b—c=fla) Z2ma O

EXERCISE 7.25. [Monotonicity of the hyperbolic distance] Let T;,i = 1,2 be
right hyperbolic triangles with vertices A;, B;, C; (where A; or B; could be ideal
vertices) so that A = A; = Ay, [A1, B1] C [A3, Ba], a1 = ag and v; = 2 = 7/2.
See Figure 7.2. Then ay < ay. Hint: Use either (7.8).

In other words, if o(t), 7(¢) are hyperbolic geodesic with unit speed parameter-
izations, so that o(0) = 7(0) = A € H?, then the distance d(o(t), ) from the point
o(t) to the geodesic 7, is a monotonically increasing function of ¢.

B2
Bl
ag
A !
o
C, Cs

FIGURE 7.2. Monotonicity of distance.

7.4. Triangles and curvature of H"

Given points A, B,C € H" we define the hyperbolic triangle T = [A,B,C] =
AABC with vertices A, B, C. We topologize the set Tri(H") of hyperbolic triangles
T in H" by using topology on triples of vertices of T, i.e., a subset topology in (B")3.

EXERCISE 7.26. Angles of hyperbolic triangles are continuous functions on
Tri(H").

EXERCISE 7.27. Every hyperbolic triangle T' in H" is contained in (the com-
pactification of) a 2-dimensional hyperbolic subspace H C H". Hint: Consider a
triangle T' = [A, B, C|], where A, B belong to a common vertical line.

So far, we considered only geodesic hyperbolic triangles, we now introduce their
2-dimensional counterparts. First, let T = T'(A4, B,C) be a generalized hyperbolic
triangle in H2. We will assume that T is nondegenerate, i.e., is not contained
in a hyperbolic geodesic. Such triangle T' cuts H? in several (2, 3 or 4) convex
regions, one of which has the property that its boundary is the triangle T. The
closure of this region is called solid (generalized) hyperbolic triangle and denoted
A = A(A,B,C). Tt T is degenerate, we set A = T. More generally, if T C H"
is a hyperbolic triangle, then the solid triangle bounded by T is the solid triangle
bounded by T in the hyperbolic plane H C H” containing 7. We will retain the
notation A for solid triangles in H".
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EXERCISE 7.28. Let S be a hyperbolic triangle with the sides o;,7 = 1,2, 3.
Then there exists an ideal hyperbolic triangle 7" in H? with the sides 7;,i = 1,2, 3,
bounding solid triangle A, so that S C A and o is contained in the side 7 of T
See Figure 7.3.

FIGURE 7.3. Triangles in the hyperbolic plane.

LEMMA 7.29. Isom(H?) acts transitively on the set of ordered triples of pairwise
distinct points in H?.

PROOF. Let a,b,c € RUoco be distinct points. By applying inversion we send a
to 0o, S0 we can assume a = co. By applying a translation in R we get b = 0. Lastly,
composing a map of the type z — Az, A € R\ 0, we send ¢ to 1. The composition
of the above maps is a Moebius transformation of S' and, hence, equals to the
restriction of an isometry of HZ. O

COROLLARY 7.30. All ideal hyperbolic triangles are congruent to each other.

EXERCISE 7.31. Generalize the above corollary to: Every hyperbolic triangle
is uniquely determined by its angles. Hint: Use hyperbolic trigonometry.

We will use the notation Ti, 3~ to denote unique (up to congruence) triangle
with the angles «, 3, 7.

Given a hyperbolic triangle T' bounding a solid triangle A, the area of T is the

area of A dnd
Area(T) = // ny.
A Y
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Area of a degenerate hyperbolic triangle is, of course, zero. Here is an example of the
area calculation. Consider the triangle 7" = Tj o /2 (which has angles /2,0, a).
We can realize T as the triangle with the vertices 7, 0o, e’. Computing hyperbolic
area of this triangle (and using the substitution x = cos(t), a < t < 7/2), we obtain

dedy m
Area(T :// =——«
@) N 2

For T' = Tj 0,, we subdivide 7' in two right triangles congruent to T o /2 /2 and,
thus, obtain

(7.11) Area(Tpp,q) =T — a.

In particular, area of the ideal triangle equals 7.

LEMMA 7.32. Area(To ) =7 — (a+ B +7).

ProOF. The proof given here is due to Gauss, it appears in the letter from
Gauss to Bolyai, see [?]. We realize T' = T, 3. as a part of the subdivision of
an ideal triangle Ty 0,0 in four triangles, the rest of which are T 0,a/, 10,0, 10,0,4',
where 6/ = 7 — 0 is the complementary angle. See Figure 7.4. Using additivity of
area and equation (7.11), we obtain the area formula for 7. O

FIGURE 7.4. Computation of area of the triangle 7.

Curvature computation. Our next goal is to compute sectional curvature
of H™. Since Isom(H") acts transitively on pairs (p, P), where P C T,M is a 2-
dimensional subspace, it follows that H™ has constant sectional curvature r (see
Section 2.1.6). Since H? C H" is a totally-geodesic isometric embedding (in the
sense of Riemannian geometry), » is the same for H" and H?2.
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COROLLARY 7.33. The Gaussian curvature x of H? equals —1.

PRrROOF. Instead of computing curvature tensor (see e.g. [dC92] for the com-
putation), we will use Gauss-Bonnet formula. Comparing the area computation
given in Lemma 7.32 with Gauss-Bonnet formula (Theorem 2.21) we conclude that
k=—1. (]

Note that scaling properties of the sectional curvature (see Section 2.1.6) imply
that sectional curvature of

(v 225
:I;’I’L

7.5. Distance function on H"

equals —a? for every a > 0.

We begin by defining the following quantities:

a2
(7.12) dist (2, w) = arccosh <1 + M{}) z,w € U?

and, more generally,

P —q?
2pngn
It is immediate that dist(p,q) = dist(q,p) and that dist(p,q) = 0 if and only

if p = q. However, it is, a priori, far from clear that dist satisfies the triangle
inequality.

(7.13) dist (p, ¢) = arccosh <1 + ) p,qeU"

LEMMA 7.34. dist is invariant under Isom(H") = Mob(U™).

ProoOF. First, it is clear that dist is invariant under the group Euc(U™) of
Euclidean isometries which preserve U". Next, any two points in U™ belong to a
vertical half-plane in U™. Applying elements of Euc(U™) to this half-plane, we can
transform it to the coordinate half-plane U? C U™. Thus, the problem reduces to
the case n = 2 and orientation-preserving Moebius transformations of H?. We leave
it to the reader as an exercise to show that the map z — —% (which is an element
of PSL(2,R)) preserves the quantity

|2 — wl
ImzImw

and, hence, dist. Now, the assertion follows from Exercise 7.7 and Lemma 7.8. [
Recall that d(p,q) denotes the hyperbolic distance between points p,q € U™.

PROPOSITION 7.35. dist(p,q) = d(p,q) for all points p,q € H". In particular,
the function dist is indeed a metric on H™.

PROOF. As in the above lemma, it suffices to consider the case n = 2. We can
also assume that p # ¢. First, suppose that p = ¢ and ¢ = ib, b > 1. Then, by
Exercise 7.10,

b
dist(p.q) = [ =lox®), expdlp.q)) =
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On the other hand, the formula (7.12) yields:

—1)2
dist(p, q) = arccosh (1 + (b%)> .

Hence,
edist(p,q) + e—dist(p,q) (b _ 1)2

h(di = =1
cosh(dist(p, q)) 5 + 5

Now, the equality dist(p,q) = d(p, q) follows from the identity
b-—1)2% b+bt

26 2
For general points p,q in H2, by Lemma 7.18, there exists a hyperbolic isometry
which sends p to ¢ and g to a point of the form ib,b > 1. We already know that
both hyperbolic distance d and the quantity dist are invariant under the action of
Isom(H?). Thus, the equality d(p,q) = dist(p,q) follows from the special case of
points on the y-axis. O

1+

EXERCISE 7.36. Deduce from (7.12) that

|2 —wl? |2 —w?
In{l4+ ——— ) <d <ln({l+-———17— In2
n( +21szmw <d(zw) <In +21mzlmw +in

for all points z,w € U2.

7.6. Hyperbolic balls and spheres

Pick a point p € H” and a positive real number R. Then the hyperbolic sphere
of radius R centered at p is the set

Sp(p, R) = {x € H" : d(z,p) = R}.

EXERCISE 7.37. 1. Prove that Sp(e,,R) C H" = U™ equals the Euclidean
sphere of center cosh(R)e,, and radius sinh(R). Hint. It follows immediately from
the distance formula (7.12).

2. Suppose that S = S(x, R) C U™ is a Euclidean sphere with Euclidean radius
R and the center x so that z,, = a. Then S = S} (p, ), where the hyperbolic radius
r equals

% (log(a + R) — log(a — R)) .

Since group generated by dilations and horizontal translations acts transitively
on U", it follows that every hyperbolic sphere is also a Euclidean sphere. A non-
computational proof of this fact is as follows: Since the hyperbolic metric ds% on
B" is invariant under O(n), it follows that hyperbolic spheres centered at 0 in B™
are also Euclidean spheres. The general case follows from transitivity of Isom(H")
and the fact that isometries of H™ are Moebius transformations, which, therefore,
send Euclidean spheres to Euclidean spheres.

LEMMA 7.38. Suppose that B(x1, R1) C B(x2, R2) are hyperbolic balls. Then
Ry < Ry.

ProOF. It follows from the triangle inequality that the diameter of a metric
ball B(z, R) is the longest geodesic segment contained in B(x, R). Therefore, let
v C B(x1,Ry) be a diameter. Then « is contained in B(z3, R2) and, hence, its
length is < 2R,. However, length of v is 2Ry, therefore, R; < Ra. (]
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7.7. Horoballs and horospheres in H”

Consider the unit ball model B™ of H", « a point in the ideal boundary (here
identified with the unit sphere S"~1) and r a geodesic ray with r(c0) = a, i.e.
according to Lemma 7.18, an arc of circle orthogonal to S"~! in o with the other
endpoint z in the interior of B". By Lemma 2.52, the open horoball B(«) defined
by the inequality f,. < 0, where f, is the Busemann function for the ray r, equals
the union of open balls (J;, B(r(t),t). The discussion in Section 7.6, in particular
Exercise 7.37, implies that each ball B(r(¢),t) is a Euclidean ball with center in
a point r(T3) with Ty > t. Therefore, the above union is the open Euclidean ball
with boundary tangent to S"~! at «, and containing the point 2. According to
Lemma 2.54, the closed horoball and the horosphere defined by f,. <0 and f, =0,
respectively, are the closed Euclidean ball and the boundary sphere, both with the
point « removed.

We conclude that the set of horoballs (closed or open) with center « is the same
as the set of Euclidean balls (closed or open) tangent to S"~1 at «, with the point
a removed.

Applying the map o : B® — U™ to horoballs and horospheres in B™, we
obtain horoballs and horospheres in the upper-half space model U™ of H". Be-
ing a Moebius transformation, o carries Euclidean spheres to Euclidean spheres
(recall that a compactified Euclidean hyperplane is also regarded as a Euclidean
sphere). It is then clear that hyperbolic isometries carry horoballs/horospheres to
horoballs/horospheres.

Recall that o(—e,) = co. Therefore, every horosphere in B" centered at —e,,
is sent by o to an n — 1-dimensional Euclidean subspace F of U™ whose compactifi-
cation contains the point co. Hence, E has to be a horizontal Euclidean subspace,
i.e., a subspace of the form

{e €eU" 2, =t}
for some fixed ¢t > 0. Restricting the metric ds? to such E we obtain the Euclidean
metric rescaled by t—2. Thus, the restriction of ds? to every horosphere is isometric
to the flat metric on R™~1.

EXERCISE 7.39. Consider the upper half-space model for the hyperbolic space
H" and the vertical geodesic ray r in H":

r={(0,...,0,z,) : z, > 1}.
Show that the Busemann function f, for the ray r is given by

fr(xr, ..., xn) = —log(zy).

7.8. H" is a symmetric space

A symmetric space is a complete simply connected Riemannian manifold X
such that for every point p there exists a global isometry of X which is a geodesic
symmetry o, with respect to p, that is for every geodesic g through p, o,(g(t)) =
g(—t). Let us verify that such X is a homogeneous Riemannian manifold. Indeed,
given points p,q € X, let m denote the midpoint of a geodesic connecting p to g.
Then o,,(p) = q. Besides being homogeneous, symmetric spaces also admit large
discrete isometry groups: For every symmetric space X, there exists a subgroup
I' C Isom(X) which acts geometrically on X.
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Details on symmetric spaces can be found for instance in [HelO01] and [?].
The rank of a symmetric space X is the largest number r so that X contains a
totally-geodesic submanifold F' C X which is isometric to an open disk in R".

We note that in the unit ball model of H" we clearly have the symmetry o,
with respect to p = 0, namely, o : © — —x. Since H" is homogeneous, it follows
that it has a symmetry at every point. Thus, H™ is a symmetric space.

EXERCISE 7.40. Prove that the linear-fractional transformation o; € PSL(2,R)

defined by +5;, where S; — ( (1)
i

-1 . . .

0 ) fixes ¢ and is a symmetry with respect to
We proved in Section 7.4 that H™ has negative curvature —1. In particular, it

contains no totally-geodesic Euclidean subspaces of dimension > 2 and, thus, H"

has rank 1.

It turns out that besides real-hyperbolic space H", there are three other fami-
lies of rank 1 negatively curved symmetric spaces: CH", n > 2 (complex-hyperbolic
spaces) HH",n > 2 (quaternionic hyperbolic spaces) and OH? (octonionic hyper-
bolic plane). The rank 1 symmetric spaces X are also characterized among symmet-
ric spaces by the property that any two segments of the same length are congruent
in X. Below is a brief discussion of these spaces, we refer to Mostow’s book [?] and
Parker’s survey [?] for a more detailed discussion.

In all four cases, the symmetric X will appear as a projectivization of a certain
cone equipped with a hermitian form (-,-) and the distance function in X will be
given by the formula:

=

(q,p)

(7.14) cosh?(dist(p, q)) = p:j?i@,q)’

—~

where p, g € C represent points in X.

Complex-hyperbolic space. Consider C"*! equipped with the Hermitian

bilinear form
n

(v,w) = Z VW — Vptr1Wnt1-
k=1
The group U(n, 1) is the group of complex-linear automorphisms of C"** preserving
this bilinear form. Consider the negative light cone

C={v:(v,v) <0} cC
Then the complez-hyperbolic space CH" is the projectivization of C'. The group
PU(n,1) acts naturally on X = CH". One can describe the Riemannian metric on
CH™ as follows. Let p € C be such that (p, p) = 1; tangent space at the projection of
p to X is the projection of the orthogonal complement p* in C**!. Let v, w € C**!
be such that (p,v) =0, (p,w). Then set
(v, w)p = —Im (v, w).

This determines a PU (n, 1)-invariant Riemannian metric on X. The corresponding
distance function (7.14) will be G-invariant.

Quaternionic-hyperbolic space. Consider the ring H of quaternions; the
elements of the quaternion ring have the form

g=xz+iy+jz+kw, z,y,z,welR.
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The quaternionic conjugation is given by
g=x—1y—jz—kw
and
lal = (¢0)"/? € Ry,

is the quaternionic norm. A unit quaternions is a quaternion of the unit norm. Let
V be a left n + 1-dimensional free module over H:

V:{q:(q17"~7Qn+l):qm EH}

Consider the quaternionic-hermitian inner product of signature (n,1):

n
<p7 Q> = Z PmGm — Pn+1Gn+1-
m=1
Then the group G = Sp(n, 1) is the group of automorphisms of the module V pre-
serving this inner product. The quotient of V' by the group of nonzero quaternions
H* (with respect to the multiplication action) is the n-dimensional quaternionic-
projective space PV . Analogously to the case of real and complex hyperbolic spaces,
we consider the negative light cone

C={qeV:(gq) <0}

The group G acts naturally on PC' C PV through the group PSp(n, 1) (the quotient
of G by the subgroup of unit quaternions embedded in the subgroup of diagonal
matrices in G). The space PC is called the n-dimensional quaternionic-hyperbolic
space HH"™

Octonionic-hyperbolic plane. One defines octonionic-hyperbolic plane OH?
analogously to HH", only using the algebra O of Cayley octonions instead of quater-
nions. An extra complication comes from the fact that the algebra O is not asso-
ciative, so one cannot talk about free O-modules; we refer the reader to [?, ?] for
the details.

7.9. Inscribed radius and thinness of hyperbolic triangles

Suppose that T is a hyperbolic triangle in the hyperbolic plane H? with the
sides 73,7 = 1,2, 3, so that T bounds the solid triangle A. For a point = € A define
the quantities

and

The goal of this section is to estimate A(T') from above. It is immediate that the
infimum in the definition of A(T) is realized by a point x, € A which is equidistant
from all the three sides of T, i.e., by the intersection point of the angle bisectors.

Define the inscribed radius inrad(T) of T is the supremum of radii of hyperbolic
disks contained in A.

LEMMA 7.41. A(T) = Inrad(T).
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PROOF. Suppose that D = B(X,R) C A is a hyperbolic disk. Unless D
touches two sides of T', there exists a disk D’ = B(X’, R’) C A which contains D
and, hence, has larger radius, see Lemma 7.38. Suppose, therefore, that D C A
touches two boundary edges of T, hence, center X of D belongs to the bisector o
of the corner ABC of T. Unless D touches all three sides of T, we can move the
center X of D along the bisector ¢ away from the vertex B so that the resulting
disk D’ = B(X', R') still touches only the sides [A4, B], [B,C] of T. We claim that
the (radius R’ of D’ is larger than the radius R of D. In order to prove this,
consider hyperbolic triangles [X,Y, B] and [X',Y’, B’], where Y, Y are the points
of tangency between D, D’ and the side [BA]. These right-angled triangles have
the common angle Z,zy and satisfy

d(B,X) < d(B,X').
Thus, the inequality R < R’ follows from the Exercise 7.25. O

Thus, we need to estimate inradius of hyperbolic triangles from above. Recall
that by Exercise 7.28, for every hyperbolic triangle S in H? there exists an ideal
hyperbolic triangle T, so that S C A. Clearly, inrad(S) < inrad(T). Since all ideal
hyperbolic triangles are congruent, it suffices to consider the ideal hyperbolic trian-
gle T in U? with the vertices —1,1, cc. The inscribed circle C' in T has Euclidean
center (0,2) and Euclidean radius 1. Therefore, by Exercise 7.37, its hyperbolic
radius equals log(3)/2. By combining these observations with Exercise 7.27, we
obtain

PROPOSITION 7.42. For every hyperbolic triangle T, A(T) = inrad(T) < @.
In particular, for every hyperbolic triangle in H™, there ewists a point p € H™ so
that distance from p to all three sides of T is < %.

Another way to measure thinness of a hyperbolic triangle T' is to compute
distance from points of one side of T to the union of the two other sides. Let T be
a hyperbolic triangle with sides 7;,j = 1,2, 3. Define

5(T) != max sup d(pa Tj+1 U Tj+2)a
J peT;
where indices of the sides of T are taken modulo 3. In other words, if § = 6(7T)
then each side of T is contained in the J-neighborhood of the union of the other
two sides.

PROPOSITION 7.43. For every geodesic triangle S in H", §(S) < arccosh(v/2).

PRrROOF. First of all, as above, it suffices to consider the case n = 2. Let
0j,7 = 1,2,3 denote the edges of S. We will estimate d(p, o2 Uos) (from above) for
p € 01. We enlarge the hyperbolic triangle S to an ideal hyperbolic triangle T as
in Figure 7.5. For every p € o1, every geodesic segment g connecting p to a point
of 7 U 73 has to cross o9 U o3. In particular,

d(pa o2 U 03) < d(pv T U 7_3)'
Thus, it suffices to show that §(T) < arccosh(v/2) for the ideal triangle T as above.
We realize T as the triangle with the (ideal) vertices A; = 00, A2 = =1, A3 =11in
O H?. We parameterize sides 7; = [A;_1, Aj1+1],j = 1,2,3 modulo 3, according to
their orientation. Then, by the Exercise 7.25, for every ¢,

d(7j(t), 7j-1)
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3 T

FIGURE 7.5. Enlarging hyperbolic triangle S.

is monotonically increasing. Thus,

sup d(r1(t), 72 UTs)
t

is achieved at the point p = 71(t) = i = v/—1 and equals d(p, q), where ¢ = —14+/2i.
Then, using formula 7.13, we get d(p,q) = arccosh(v/2). Note that alternatively,
one can get the formula for d(p,q) from (7.7) by considering the right triangle
[p, ¢, —1] where the angle at p equals /4. a

As we will see in Section 8.1, the above propositions mean that all hyperbolic
triangles are uniformly thin.

7.10. Existence-uniqueness theorem for triangles

Proof of Lemma 2.31. We will prove this result for the hyperbolic plane H?,
this will imply lemma for all £ < 0 by rescaling the metric on H?. We leave the
cases £ > 0 to the reader as the proof is similar. The proof below is goes back to
Euclid (in the case of R?). Let ¢ denote the largest of the numbers a,b, c. Draw a
geodesic v C H? through points x,y so that d(x,y) = c. Then

Y =7 Uz, ¥l Ny,

where 7,,, are geodesic rays emanating from z and y respectively. Now, consider
circles S(z,b) and S(y,a) centered at x,y and having radii b, a respectively. Since
¢ > max(a, b),

Y2 NS(y,a) C{z}, v, NS(x,b) C{y},
while

S(@,b)Nlz,yl=p, S(y,a)N[z,y] =y.
By the triangle inequality on ¢ < a + b, p separates ¢ from y (and ¢ separates x
from p). Therefore, both the ball B(z,b) and its complement contain points of the
circle S(y, a), which (by connectivity) implies that S(z,b) N S(y,a) # . Therefore,
the triangle with the side-lengths a, b, ¢ exists. Uniqueness (up to congruence) of
this triangle follows, for instance, from the hyperbolic cosine law. O
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7.11. Lattices

Recall that a lattice in a Lie group G is a discrete subgroup I' such that the
quotient I' \ G has finite volume. Here, the left-invariant volume form on G is
defined by taking a Riemannian metric on G which is left-invariant under G' and
right-invariant under K, the maximal compact subgroup of G. Thus if X := G/K,
then this quotient manifold has a Riemannian metric which is (left) invariant under
G. Hence, T is a lattice iff " acts on X properly discontinuously so that Vol(T'\ X)
is finite. Note that the action of I on X need not be free. Recall also that a lattice
T is uniform if I' \ X is compact and I" is nonuniform otherwise.

Each lattice is finitely-generated (this is clear for uniform lattices but is not at
all obvious otherwise); in the case of the hyperbolic spaces finite generation follows
from the thick-thin decomposition discussed below. Thus, if I' is a lattice in a
linear Lie group, then, by Selberg lemma 3.88, I' contains a torsion-free subgroup
of finite index. In particular, if T is a lattice in PO(n,1) (which is isomorphic to
the isometry group of the hyperbolic n-space) then T is virtually torsion-free. We
also note that a finite-index subgroup in a lattice is again a lattice. Passing to a
finite-index subgroup, of course, does not affect uniformity of a lattice.

EXAMPLE 7.44. Consider the group G = PO(2,1) and a non-uniform lattice
I' < G. After passing to a finite-index subgroup in I', we may assume that T is
torsion-free. Then the quotient H?/T" is a non-compact surface with the fundamen-
tal group I'. Therefore, I' is a free group of finite rank.

EXERCISE 7.45. Show that groups I' in the above example cannot be cyclic.

Recall that a horoball in H"™ (in the unit ball model) is a domain bounded by
a round Euclidean ball B C H", whose boundary is tangent to the boundary of
H™ in a single point (called the center or footpoint of the horoball). The boundary
of a horoball in H" is called a horosphere. In the upper half-space model, the
horospheres with the footpoint oo are horizontal hyperplanes

{(1‘17 ...,J}n_l,t) : (1‘1, ...733”_1) S Rn_l},
where t is a positive constant.

LEMMA 7.46. Suppose that T' < PO(n,1) is a torsion-free discrete group con-
taining a parabolic element ~v. Then I is a non-uniform lattice.

PrOOF. Recall that every parabolic isometry of H™ has unique fixed point
in the ideal boundary sphere S"~!. By conjugating I' by an isometry of H", we
can assume that v fixes the point oo in the upper half-space model R’} of H".
Therefore, v acts on as a Euclidean isometry on R’}. After conjugating v by a
Euclidean isometry, v has the form

T — Ax + v,

where v € R"™1\ {0} and A is an orthogonal transformation fixing the vector v.
Hence, 7 preserves the Euclidean line L C R"~! (spanned by v) and the restriction
of v to L is the translation z — = 4+ v. Let H denote the hyperbolic plane in H",
which is the vertical Euclidean half-plane above the line L. Again, v acts on H as
the translation x — x + v. We introduce the coordinates (z,y) on H, where z € R
and y > 0. Then for every z = (z,y) € H,

|v]

d(z,vz) < —
(2,72) ”
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where |v] is the Euclidean norm of the vector v. Let ¢, denote the projection of the
geodesic [z, vz] to the hyperbolic manifold M = H"/I'. By sending y to infinity, we
conclude that the (nontrivial) free homotopy class [y] in M = H" /T represented by
~v € T', contains loops ¢, of arbitrarily short length. This is impossible if M were a
compact Riemannian manifold. O

The converse to the above lemma is much less trivial and follows from

THEOREM 7.47 (Thick-thin decomposition). Suppose that T' is a nonuniform
lattice in Isom(H™). Then there exists an (infinite) collection C of open horoballs
C :={By,j € J}, with pairwise disjoint closures, so that

Q:=H"\|J B,
jeJ
is D-invariant and M, := Q/T is compact. Furthermore, every parabolic element
v € T preserves (exactly) one of the horoballs B;.

The proof of this theorem is based on a mild generalization of the Zassenhaus
theorem due to Kazhdan and Margulis, see e.g. [?], [Kap01], [Rat94], [Thu97].

The quotient M, is called the thick part of M = H"/I" and its (noncompact)
complement in M is called the thin part of M. If T is torsion-free, then it acts freely
on H"™ and M has natural structure of a hyperbolic manifold of finite volume. If I"
is not torsion-free, then M is a hyperbolic orbifold. Clearly, when I' < PO(n, 1) is
a lattice, the quotient M = H" /T is compact if and only if C' = .

FIGURE 7.6. Truncated hyperbolic space and thick-thin decomposition.

The set 2 is called a truncated hyperbolic space. The boundary horospheres of
Q are called peripheral horospheres. Since each closed horoballs used to define )
are pairwise disjoint, {2 is contractible. In particular, if I" is torsion-free, then it has
finite type. In general, I is of type F.

Note that the stabilizer I'; of each horosphere 0B; acts on this horosphere
cocompactly with the quotient T; := 0B;/I';. The quotient B;/T'; is naturally
homeomorphic to T xR, this product decomposition is inherited from the foliation
of B; by the horospheres with the common footpoint ¢; and the geodesic rays
asymptotic to &;. If I' is torsion-free, orientation preserving and n = 3, the quotients
T} are 2-tori.
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Observe that a hyperbolic horoball cannot be stabilized by a hyperbolic isom-
etry. Indeed, by working with the upper half-space model of H", we can assume
that the (open) horoball in question is given by

B={(z1,...,2n) : &y > 1}.

Every hyperbolic isometry « stabilizing B would have to fix co and act and a
Euclidean isometry on the boundary horosphere of B. Thus, v is either elliptic or
parabolic. In particular, stabilizers of the horoballs B; in Theorem 7.47 contain no
hyperbolic elements. Since we can assume that T' is torsion-free, we obtain

COROLLARY 7.48. A lattice in PO(n,1) is uniform if and only if it does not
contain parabolic elements.

Arithmetic groups provide a general source for lattices in Lie groups. Recall
that two subgroups I'1,I's of a group G are called commensurable if T’y N 'y has
finite index in I';, 5. Let G be a Lie group with finitely many components.

DEFINITION 7.49. An arithmetic subgroup in G is a subgroup of G commensu-
rable to the subgroup of the form I' := ¢~1(GL(N,Z)) for a (continuous) homo-
morphism ¢ : G — GL(N,R) with compact kernel.

It is clear that every arithmetic subgroup is discrete in G. It is a much deeper
theorem that every arithmetic subgroup is a lattice in a Lie subgroup H < G, see
eg. [?, 7]

Bianchi groups. We now describe a concrete class of non-uniform arithmetic
lattices in the isometry group of hyperbolic 3-space, called Bianchi groups. Let D
denote a square-free negative integer, i.e., an integer which is not divisible by the
square of a prime number. Consider the imaginary quadratic field

QD) ={a+VDb:a,beQ}
in C. Set
w:=+VD, if D=2,3, mod 4
1+vD
wi=——
2
Then the ring of integers of Q(v/D) is
Op ={a+wb:a,beZ}.
For instance, if D = —1, then Op is the ring of Gaussian integers
{a+ib:a,beZ}.
A Bianchi group is the group of the form
SL(2,0p) < SL(2,C)

for some D. Since the ring Op is discrete in C, it is immediate the every Bianchi
subgroup is discrete in SL(2,C). By abusing terminology, one also refers to the
group PSL(2,0p) as a Bianchi subgroup of PSL(2,C).

Bianchi groups T' are arithmetic lattices in SL(2,C); in particular, quotients
H3 /T has finite volume. Furthermore, every arithmetic lattice in SL(2,C) is com-
mensurable to a Bianchi group. We refer the reader to [?] for the detailed discussion
of these and other facts about Bianchi groups.

Commensurators of lattices.

,if D=1, mod 4
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Recall (see §3.4) that the commensurator of a subgroup I' in a group G is the
subgroup Commg(T') < G consisting of elements g € G such that the groups gI'g~*
and I' are commensurable, i.e. [I': gTg~ ' NT| < oo, [gTg~!: gTg™ NT| < cc.

Below we consider commensurators in the situation when I' is a lattice in a Lie
group G.

EXERCISE 7.50. Let I' := SL(2,0p) C G := SL(2,C) be a Bianchi group.
1. Show that Commg(T') C SL(2,Q(w)). In particular, Commg(T') is dense
in G.
2. Show that the set of fixed points of parabolic elements in T" (in the upper
half-space model of H?) is
Q(w) U {00}
3. Show that Commg (') = SL(2,Q(w)).

G. Margulis proved (see [?], Chapter IX, Theorem B and Lemma 2.7; see also
[?], Theorem 6.2.5) that a lattice in a semisimple real Lie group G is arithmetic if
and only if its commensurator is dense in G.

Consider now the case when G is either a Lie group or a finitely-generated
group and I' < G is a finitely-generated subgroup. We note that each element
g € Commg(T') determines a quasi-isometry f : I' — T'. Indeed, the Hausdorff
distance between I' and gI'g~! is finite. Hence the quasi-isometry f is given by
composing g : I' — gI'g~! with the nearest-point projection to I.

The main goal of the remainder of the chapter is to prove the following

THEOREM 7.51 (R. Schwartz [?]). Let I' C G = Isom(H™) be a nonuniform
lattice, n > 3. Then:

(a) For each quasi-isometry f : T — T there exists v € Commg(T) which is
within finite distance from f. The distance between these maps depends only on T’
and on the quasi-isometry constants of f.

(b) Suppose that T',T’ are non-uniform lattices which are quasi-isometric to
each other. Then there exists an isometry g € Isom(H"™) such that the groups T
and gTg~" are commensurable.

(¢) Suppose that T is a finitely-generated group which is quasi-isometric to a
nonuniform lattice I’ above. Then the groups I',T' are virtually isomorphic

Our proof will mostly follow [?].

Note that this theorem fails in the case of the hyperbolic plane (except for the
last part). Indeed, every free group F. of rank > 2 can be realized as a non-uniform
lattice I' acting on HZ2. In view of thick-thin decomposition of the hyperbolic surface
M = H?2/T, T contains only finitely many I'-conjugacy classes of maximal parabolic
subgroups: Every such class corresponds to a component of M \ M.. Suppose now
that » > 3. Then there are atoroidal automorphisms ¢ of F,., so that for every
nontrivial cyclic subgroup C C F,, and every m, ¢™(C) is not conjugate to C,
see e.g. [?]. Therefore, such ¢ cannot send parabolic subgroups of I' to parabolic
subgroups of I'. Hence, the quasi-isometry of F,, given by ¢ cannot extend to a
quasi-isometry H? — H?2. It follows that (a) fails for n = 2. Similarly, one can show
that (b) fails, since commensurability preserves arithmeticity and there are both
arithmetic and non-arithmetic lattices in Isom(H?). All these lattices are virtually
free, hence, virtually isomorphic.
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CHAPTER 8

Gromov-hyperbolic spaces and groups

The goal of this chapter is to define and review basic properties of §-hyperbolic
spaces and word-hyperbolic groups, which are far-reaching generalizations of the
real-hyperbolic space H™ and groups acting geometrically on H". The advantage
of d-hyperbolicity is that it can be defined in the context of arbitrary metric spaces
which need not even be geodesic. These spaces were introduced in the seminal
essay by Mikhail Gromov on hyperbolic groups, although ideas of combinatorial
curvature and (in retrospect) hyperbolic properties of finitely-generated groups are
much older. They go back to work of Max Dehn (on word problem in groups),
Martin Grindlinger (small cancelation theory), Alexandr Ol’shanskii (who used
what we now would call relative hyperbolicity in order to construct finitely-generated
groups with exotic properties) and many others.

8.1. Hyperbolicity according to Rips

We begin our discussion of §-hyperbolic spaces with the notion of hyperbolicity
in the context of geodesic metric spaces, which (according to Gromov) is due to Ilya
(Eliyahu) Rips. This definitions will be then applied to Cayley graphs of groups,
leading to the concept of a hyperbolic group discussed later in this chapter. Rips
notion of hyperbolicity is based on the thinness properties of hyperbolic triangles
which are established in section 7.9.

Let (X, d) be a geodesic metric space. As in section 7.4, a geodesic triangle T'
in X is a concatenation of three geodesic segments 7y, 7o, 73 connecting the points
Ay, As, A3 (vertices of T) in the natural cyclic order. Unlike the real-hyperbolic
space, we no longer have uniqueness of geodesics, thus T is not (in general) deter-
mined by its vertices. We define a measure of the thinness of 7' similar to the one
in Section 7.9 of Chapter 7.

DEFINITION 8.1. The thinness radius of the geodesic triangle T is the number
0(T) := max (sup d(p, Tj+1 U7j+2)> ,
7=1,2,3 \ per,
A triangle T is called 0-thin if 6(T) < 0.

DEFINITION 8.2 (Rips’ definition of hyperbolicity). A geodesic hyperbolic space
X is called é-hyperbolic (in the sense of Rips) if every geodesic triangle 7" in X is
d-thin. A space X which is d-hyperbolic for some ¢ < oo is called Rips—hyperbolic.
In what follows, we will refer to d—hyperbolic spaces in the sense of Rips simply as
being d—hyperbolic.

Below are few simple but important geometric features of §-hyperbolic spaces.
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First, not that general Rips—hyperbolic metric spaces X are by no means
uniquely geodesics. Nevertheless, next lemma shows that geodesics in X between
given pair of points are “almost unique”

LEMMA 8.3. If X is 0—hyperbolic, then every pair of geodesics [z, y], [x, z] with
d(y,z) < D are at Hausdorff distance at most D + 6. In particular, if o, are
geodesic segments connecting points x,y € X, then distgaus(a, 8) < 90.

Proor. Every point p on [z, y] is, either at distance at distance at most ¢ from
[z, z], or at distance at most ¢ from [y, z]; in the latter case p is at distance at most
D + 6 from [z, z]. O

The next lemma, the fellow-traveling property of hyperbolic geodesics sharpens
the conclusion of Lemma 8.3.

LEMMA 8.4. Let «(t), B(t) be geodesics in a §-hyperbolic space X, so that (0) =
B(0) = o and d(a(ty), B(to)) < D for some to > 0. Then for all t € [0,1¢],

d(e(t), (1)) < 2(D + 9).
PRrOOF. By previous lemma, for every t € [0, ] there exists s € [0, to] so that
d(B(t),a(s)) <c=0+D.
By applying the triangle inequality, we see that
[t —s] <e,
hence, d(a(t), 8(t)) < 2¢=2(6+ D). O
The notion of thin triangles generalizes naturally to the concept of thin poly-
gons. A geodesic n-gon in a metric space X is a concatenation of geodesic segments
0i,4 = 1,...,n, connecting points P;,i = 1,...,n, in the natural cyclic order. A

polygon P is called n-thin if every side of P is contained in the n-neighborhood of
the union of the other sides.

EXERCISE 8.5. Suppose that X is a d-hyperbolic metric space. Show that
every n-gon in X is §(n — 2)-thin. Hint: Triangulate an n-gon P by n — 3 diagonals
emanating from a single vertex . Now, use d-thinness of triangles in X inductively.

We next improve the estimate provided by this exercise.

LEMMA 8.6 (thin polygons). If X is d—hyperbolic then every geodesic n-gon in
X is ny-thin for
Nn = 20 log, n.

PrOOF. We prove the estimate on thinness of n-gons by induction on m. For
n < 3 the statement follows from §-thinness of bigons and triangles. Suppose n > 4
and the inequality holds for all m < n — 1. Consider a geodesic n-gon P which has
edges 7; = [A;, A;+1] and consider its edge 7 = 7, of P. We will consider the case
when n is odd, n = 2k + 1, since the other case is similar. We subdivide P in two
k + 1-gons P’, P"” and one triangle T' by introducing the diagonals [A;, Ag41] and
[Ak+1,An]. By the induction hypothesis, P/, P” are n41-thin, while the triangle
T is §-thin. Therefore, 7 is within distance < 741 + d from the union of the other
sides of P. We leave it to the reader to check that

2logy(k+ 1)+ 1 < 2log(n) =2log,(2k+1). O
We now give some examples of Rips—hyperbolic metric spaces.
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ExXAMPLE 8.7. (1) Proposition 7.42 implies that H™ is é-hyperbolic for

(2)

(6)

§ = arccos(v/2).

Suppose that (X,d) is é-hyperbolic and @ > 0. Then the metric space
(X, a-d) is ad-hyperbolic. Indeed, distances in (X, a-d) are obtained from
distances in (X, d) by multiplication by a. Therefore, the same is true for
distances between the edges of geodesic triangles.

Let X, is the model surface of curvature x < 0 as in section 2.1.8. Then
X, is d-hyperbolic for

bx = || *arccos(V2).

Indeed, the Riemannian metric on X, is obtained by multiplying the
Riemannian metric on H? by |/<;|’1/ 2. This has effect of multiplying all
distances in H? by |«|~*/%. Hence, if d is the distance function on H? then
|| ~1/4d is the distance function on X,.

Suppose that X is a CAT'(k)-space where k < 0, see section 2.1.8. Then
X is d,-hyperbolic. Indeed, all triangles in X are thinner then triangles
in X,,. Therefore, given a geodesic triangle T" with edges 7,7 = 1,2,3
and a points P; € 7; we take the comparison triangle T C X, and the
comparison point P, € 7, C T. Since T is 8,-thin, there exists a point
P, € 7,i = 2 ori = 3, so that d(151,15i) < 4,. Let P, € 7; be the
comparison point of P;. Then, by the comparison inequality

d(Pr, P) < d(Pr, P;) < 6.

Hence, T is §,-thin. In particular, if X is a simply-connected complete Rie-
mannian manifold of sectional curvature < x < 0, then X is §,-hyperbolic.
Let X be a simplicial tree, and d be a path-metric on X. Then, by the
Exercise 2.36, X is CAT(—o00). Thus, by (4), X is d.-hyperbolic for every
Sk = ||~/ *arccos(v/2). Since

inf 6, = 0,
K
it follows that X is O-hyperbolic. Of course, this fact one can easily see

directly by observing that every triangle in X is a tripod.
Every geodesic metric space of diameter < § < oo is §-hyperbolic.

EXERCISE 8.8. Let X be the circle of radius R in R? with the induced path-

metric d. Thus, (X, d) has diameter 7R. Show that X is mwR/2-hyperbolic and is
not d-hyperbolic for any § < 7R/2.

Not every geodesic metric space is hyperbolic:

EXAMPLE 8.9. For instance, let us verify that R? is not d-hyperbolic for any 6.

Pick a nondegenerate triangle 7' C R?. Then §(T) = k > 0 for some k. Therefore,
if we scale T by a positive constant ¢, then §(cT) = ck. Sending ¢ — oo, show that
R? is not é-hyperbolic for any § > 0. More generally, if a metric space X contains
an isometrically embedded copy of R?, then X is not hyperbolic.

Here is an example of a metric space which is not hyperbolic, but does not

contain a quasi-isometrically embedded copy of R? either. Consider the wedge X
of countably many circles C; each given with path-metric of overall length 27,
1 € N. We equip X with the path-metric so that each C; is isometrically embedded.
Exercise 8.8 shows that X is not hyperbolic.
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EXERCISE 8.10. Show that X contains no quasi-isometrically embedded copy
of R?. Hint: Use coarse topology.

More interesting examples of non-hyperbolic spaces containing no quasi—isometri-
cally embedded copies of R? are given by various solvable groups, e.g. the Sols
group and Cayley graph of the Baumslag—Solitar group BS(n,1), see [?].

Below we describe briefly another measure of thinness of triangles which can
be used as an alternative definition of Rips—hyperbolicity. It is also related to the
minimal size of the triangle, described in Definition 5.49, consequently it is related
to the filling area of the triangle via a Besikovitch type inequality as described in
Proposition 5.50.

DEFINITION 8.11. For a geodesic triangle T' C X with the sides 71, 72, 73, define
the inradius of T to be

AT = Jof meg, ()

In the case of the real-hyperbolic plane, as we saw in Lemma 7.41, this definition
coincides with the radius of the largest circle inscribed in T'. Clearly, A(T) < §(T)
and

A(T) < minsize(T) < 2A(T) + 1.
It turns out that
(8.1) minsize(T) < 24.

Indeed, let 7,75, 73 be the sides of T, we will assume that 7y is parameterized so
that

71(0) € Im(73), 11 (a1) = Im(12),

where a; is the length of 7y. Then by the intermediate value theorem, applied to
the difference

d(71(t) — Im(72)) — d(11(t) — Im(73))

we conclude that there exists ¢; so that d(m(t1), Im(m2)) = d(m1(t1), Im(73)) < 0.
Taking p1 = 71(¢1) and p; € Im(7;),i = 2,3, the points nearest to p;, we get

d(p1,p2) < 6,d(p1,p3) <9,

hence,
minsize(T) < 2.
8.2. Geometry and topology of real trees
In this section we consider a special type of hyperbolic spaces, the real trees.
DEFINITION 8.12. A O-hyperbolic (geodesic) metric space is called a real tree.

EXERCISE 8.13. 1. Show that every real tree is a CAT(0) space.
2. Show that every real tree is a C AT (k) space for every k.

It follows from Exercise 8.5 that every polygon in a real tree is 0-thin.

LEMMA 8.14. If X is a real tree then any two points in X are connected by a
unique topological arc in X.
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Proor. Let D = d(z,y). Consider a continuous injective map (i.e., a topo-
logical arc) z = a(0),y = a(1). Let o* = [z,y],a* : [0,D] — X be the geodesic
connecting x to y. We claim that the image of « contains the image of a*. Indeed,
we can approximate « by piecewise-geodesic (nonembedded!) arcs

an = [xo, 1)U ... U [zp_1,2n], To=z,2, =y.

Since the n + 1-gon P in X,which is the concatenation of «,, with [y, z] is O-thin,
o C ap. Therefore, the image of « also contains the image of a*. Consider
the continuous map (a*)~! o« : [0,D] — [0, D]. Applying the intermediate value
theorem to this function, we see that the images of o and «* are equal. O

EXERCISE 8.15. Prove the converse to the above lemma.

DEFINITION 8.16. Let T be a real tree and p be a point in 1. The space of
directions at p, denoted X, is defined as the space of germs of geodesics in T
emanating from p, i.e., the quotient X, := R,/ ~, where

R, ={r:[0,a) = T | a>0, risometry, r(0) = p}
and
r1 ~ ro9 <= de > 0 such that 7‘1|[075) = 7“2|[07€).

Simplest examples of real trees are given by simplicial trees equipped with path-
metrics. We will see, however, that other real trees also arise naturally in geometric
group theory.

By Lemma 8.14, for every homeomorphism ¢ : [a,b] — T the image ¢([a, b])
coincides with the geodesic segment [c(a), c(b)]. It follows that we may also define
¥, as the space of germs of topological arcs 3,/ ~, where

Sp={c:[0,a) > T |a>0, chomeomorphism, ¢(0) = p}

and
Cl ~ Cy <= de; > 0,60 >0 such that cl([O,al)) = CQ([O,EQ)).

DEFINITION 8.17. Define valence val(p) of a point p in a real tree T to be the
cardinality of the set ¥,. A branch-point of T is a point p of valence > 3. The
valence of T is the supremum of valences of points in 7T'.

EXERCISE 8.18. Show that val(p) equals the number of connected components
of T'\ {p}.

DEFINITION 8.19. A real tree T is called a—universal if every real tree with
valence at most « can be isometrically embedded into 7.

See [?] for a study of universal trees. In particular, the following holds:

THEOREM 8.20 (|?]). For every cardinal number o > 2 there ezists an o—
universal tree, and it is unique up to isometry.

Fixed-point properties.
Part 1 of Exercise 8.13 together with Corollary 2.43 implies:

COROLLARY 8.21. If G is a finite group acting isometrically on a complete real
tree T', then G fizes a point in T.

DEFINITION 8.22. A group G is said to have Property FA if for every isometric
action G ~ T on a complete real tree T', G fixes a point in 7.

Thus, all finite groups have property FA.
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8.3. Gromov hyperbolicity

One drawback of the Rips definition of hyperbolicity is that it uses geodesics.
Below is an alternative definition of hyperbolicity, due to Gromov, where one needs
to verify certain inequalities only for quadruples of points in a metric space (which
need not be geodesic). Gromov’s definition is less intuitive than the one of Rips,
but, as we will see, it is more suitable in certain situations.

Let (X, dist) be a metric space (which is no longer required to be geodesic). Pick
a base-point p € X. For each z € X set |z|, := dist(z,p) and define the Gromov
product .

(T, y)p = ) ([zlp + [yl — dist(z,y)) -

Note that the triangle inequality immediately implies that (z,y), > 0 for all z, y, p;
the Gromov product measures how far the triangle inequality for the points z,y, p
is from being an equality.

REMARK 8.23. The Gromov product is a generalization of the inner product
in vector spaces with p serving as the origin. For instance, suppose that X = R"
with the usual inner product, p =0 and |v|, := ||v|| for v € R”. Then

1
5 (2 + Ml —le—yl*) ==-v
EXERCISE 8.24. Suppose that X is a metric tree. Then (z,y), is the distance
dist(p,y) from p to the geodesic segment v = [zy].
In general a direct calculation shows that for each point z € X
(pa x)z + (pa y)z < ‘Z|P - (Jj, y)P
with equality
(82) (pa (E)z + (pv y)Z = |Z‘P - (.’E, y)p
if and only d(z, 2) + d(z,y) = d(z,y). Thus, for every z € v = [z, y],
(Z’,y)p = d(Z,p) - (p7 x)z - (pa Z/)z < d(Z,p)
In particular, (z,y), < dist(p,~).

LEMMA 8.25. Suppose that X is d—hyperbolic in the sense of Rips. Then the
Gromov product in X is “comparable” to dist(p,v): For every z,y,p € X and
geodesic v = [z, y],

(z,y)p < dist(p,7) < (z,9)p + 20.

PRrROOF. The inequality (z,y), < dist(p,y) was proved above; so we have to
establish the other inequality. Note that since the triangle A(pzy) is d—thin, for
each point z € v = [z,y] we have

min{(z, p), (y,p)-} < min{dist(z, [p, 2]), dist(z, [p, y])} < 0.
By continuity of the distance function, there exists a point z € ~ such that
(z,p)., (y,p). < 0. By applying the equality (8.2) we get:

2lp — (#,9)p = (p,2)> + (P,y)- < 20.
Since |z|, < dist(p,~y), we conclude that dist(p,7) < (z,y), + 20. O
Now, for a metric space X define a number §, = §,(X) € [0, o0] as follows:
519 = Sup{min((xv Z)Pa (yv Z)P) - (xa y)P}
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where the supremum is taken over all triples of points z,y,z € X.
EXERCISE 8.26. If §, < ¢ then J, < 26 for all ¢ € X.

DEFINITION 8.27. A metric space X is said to be d—hyperbolic in the sense
of Gromov, if 6, < 0 < oo for all p € X. In other words, for every quadruple
xz,y,z,p € X, we have

(xv y)P > min((‘ra Z)P? (yv Z)p) — 0.
EXERCISE 8.28. The real line with the usual metric is 0-hyperbolic in the sense
of Gromov.

EXERCISE 8.29. Gromov—hyperbolicity is invariant under (1, A)-quasi-isometries.

EXERCISE 8.30. Let X be a metric space and N C X be an R-net. Show that
the embedding N < X is an (1, R)-quasi-isometry. In particular, X is Gromov—
hyperbolic if and only if N is Gromov-hyperbolic. In particular, a group (G,ds)
with word metric dg is Gromov-hyperbolic if and only if the Cayley graph I' g of
G is Rips—hyperbolic.

LEMMA 8.31. Suppose that X is d—hyperbolic in the sense of Rips. Then it is
36—hyperbolic in the sense of Gromov. In particular, a geodesic metric space is a
real tree if and only if it is 0-hyperbolic in the sense of Gromouv.

Proor. Consider points z,y,z,p € X and the geodesic triangle T'(zyz) C X
with vertices x,y,z. Let m € [z,y] be the point nearest to p. Then, since the
triangle T'(x, y, z) is 6—thin, there exists a point n € [z, z]U]y, 2] so that dist(n,m) <
0. Assume that n € [y, z]. Then, by Lemma 8.25,

(y,2)p < dist(p, [y, 2]) < dist(p, [x,y]) + 4.

On the other hand, by Lemma 8.25,
diSt(p, [I,y]) < ($7y)17 — 20.

By combining these two inequalities, we obtain
(¥, 2)p < (2,9)p — 30.
Therefore, (z,y), > min ((z, 2)p, (y, 2)p) — 39. O

We now prove the “converse”’ to the above lemma:

LEMMA 8.32. Suppose that X is a geodesic metric space which is d—hyperbolic
in the sense Gromowv, then X is 20—hyperbolic in the sense of Rips.

ProOOF. 1. We first show that in such space geodesics connecting any pair of
points are “almost” unique, i.e., if « is a geodesic connecting = to y and p is a point
in X such that

dist(z, p) + dist(p,y) < dist(z,y) + 28
then dist(p, ) < 20. We suppose that dist(p,x) < dist(p,y). If dist(p,z) >
dist(z,y) then dist(x,y) < 26 and thus min(dist(p, z), p(y)) < 20 and we are done.

Therefore, assume that dist(p,z) < dist(z,y) and let z € « be such that
dist(z,y) = dist(p, y). Since X is d—hyperbolic in the sense Gromov,

(xay)P > min((xa Z)Pa (y’z)p) — 0.
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Thus we can assume that (z,y), > (x,2),. Then
dist(y, p) — dist(z,y) > dist(z,p) — dist(z, z) — 20 <=

dist(z, p) < 24.
Thus dist(p, a) < 20.

2. Consider now a geodesic triangle [z,y,p] C X and let z € [z, y]. Our goal is
to show that z belongs to Nys([p, z] U [p,y]). We have:

(xvy)p > min((m, Z)Pv (y’z)]ﬂ) — 0.

Assume that (z,y), = (z,2), — d. Set a := [p,y]. We will show that z € Nys(a).
By combining dist(x, z) + dist(y, z) = dist(x,y) and (z,y), = (z,2), — 9, we
obtain
dist(y,p) > dist(y, z) + dist(z, p) — 26.
Therefore, by Part 1, z € Nas(a) and hence the triangle T'(z,y, z) is 26—thin. O

COROLLARY 8.33 (M. Gromov, [?], section 6.3C.). For geodesic metric spaces,
Gromouv—hyperbolicity is equivalent to Rips—hyperbolicity.

The drawback is that in this generality, Gromov—hyperbolicity fails to be QI
invariant:

ExaMPLE 8.34 (Gromov-hyperbolicity is not QI invariant ). This example is
taken from [?]. Consider the graph X of the function y = |z|, where the metric
on X is the restriction of the metric on R2. (This is not a path-metric!) Then the
map f: R —= X, f(z) = (z,]z|) is a quasi-isometry:

e ') < d(f (), F(&')) < Vo — ]
Let p = (0,0) be the base-point in X and for ¢t > 0 we let x := (2¢,2t), y := (—2t, 2t)
and z := (t,t). The reader will verify that
. V2
min((x, 2)p, (¥, 2)p) — (z,y)p) =1 (2 — 3) > t.
Therefore, the quantity min((x, 2),, (y,2)p) — (,y)p) is not bounded from above
as t — oo and hence X is not d-hyperbolic for any § < co. Thus X is QI to a
Gromov—hyperbolic space R, but is not Gromov-hyperbolic itself. We will see, as a

corollary of Morse Lemma, (Corollary 8.39), that in the context of geodesic spaces,
Gromov—hyperbolicity is a QI invariant.

8.4. Ultralimits and stability of geodesics in Rips—hyperbolic spaces

In this section we will see that every hyperbolic geodesic metric spaces X
globally resembles a tree. This property will be used to prove Morse Lemmoa,
which establishes that quasi-geodesics in d-hyperbolic spaces are uniformly close
to geodesics.

LEMMA 8.35. Let (X;)ien be a sequence of geodesic d;—hyperbolic spaces with
0; tending to 0. Then for every non-principal ultrafilter w each component of the
ultralimit X, is a metric tree.
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PRrROOF. First, according to Lemma 7?7, ultralimit of geodesic metric spaces is
again a geodesic metric space. Thus, in view of Lemma 8.32, it suffices to verify
that X, is O-hyperbolic in the sense of Gromov (since it will be 0-hyperbolic in the
sense of Rips and, hence, a metric tree). This is one of the few cases where Gromov—
hyperbolicity is superior to Rips—hyperbolicity: It suffices to check hyperbolicity
condition only for quadruples of points.

We know that for every quadruple x;,y;, z;, p; in X;,

(@i, Yi)p: = min((@i, 2i)p,» (Yi> 2i)p,) — Gi-
By taking w-lim of this inequality, we obtain (for every quadruple of points z,, y.,,
Zw, Do 10 Xy):

(Teos Yeo)po, 2 MIN((Teos 200)pes s (Yeos 20)pes )

since w-lim §; = 0. Thus, X, is O-hyperbolic. O

EXERCISE 8.36. Find a flaw in the following “proof” of this lemma: Since X; is
d;-hyperbolic, it follows that every geodesic triangle T; in X is d;-thin. Suppose that
w-lim d(z;, e;) < oo, w-limd(p;, e;) < co. Taking limit in the definition of thinness
of triangles, we conclude that the ultralimit of triangles 7, = w-imT; C X is
0-thin. Therefore, every geodesic triangle in X, is O-thin.

COROLLARY 8.37. Ewvery geodesic in the tree X, is a limit geodesic.

The following fundamental theorem in the theory of hyperbolic spaces is called
Morse Lemma or stability of hyperbolic geodesics.

THEOREM 8.38 (Morse Lemma). There ezists a function 6 = 6(L, A, J), so that
the following holds. If X be a d—hyperbolic geodesic space, then for every (L, A)—
quasigeodesic f : [a,b] = X the Hausdorff distance between the image of f and the
geodesic segment [f(a), f(b)] C X is at most 6.

PROOF. Set ¢ =d(f(a), f(b)). Given quasi-geodesic f and geodesic f* : [0, c] —
X parameterizing [f(a), f(b)], we define two numbers:
Dy = sup d(f(t), Im(f"))

t€la,b]

and

Dy = sup d(f*(t), Im(f)).
t€(0,c]

Then distgqus(Im(f), Im(f*)) is max(Dy, D}). We will prove that Dy is uniformly
bounded in terms of L, A, §, since the proof for D3 is completely analogous.

Suppose that the quantities D; are not uniformly bounded, that is, exists a
sequence of (L, A)—quasigeodesics f,, : [-n,n] — X, in d-hyperbolic geodesic metric
spaces X, such that

lim D, = occ.
n—roo

where D,, = Dy, . Pick points ¢,, € [-n, n] such that
|dist(fn(tn), [f(=n), f(n)]) — Dy| < 1.

As in the definition of asymptotic cones, consider two sequences of pointed metric

spaces
1 1
<Dnmen(tn)> ) <Dn[n’n]vtn) :
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Note that w-lim Dln could be infinite. Let

1
(Xu.n xw) = w-lim (er fn(tn))
Dy,
and
1
The metric space Y is either a nondegenerate segment in R or a closed geodesic ray

in R or the whole real line. Note that the distance from points Im(f,) to Im(f})
in the rescaled metric space D%an is at most 1 + 1/d,,. Each map

1
n. Y, > —X,
In a

is an (L, A/ D,,)—quasi-geodesic. Therefore the ultralimit
Jo =w-lim f, : (K y) - (vaxw)

is an (L, 0)—quasi-isometric embedding, i.e. it is a L-bi-Lipschitz map. In particular
this map is a continuous embedding. Therefore, the image of f,, is a geodesic v in
X, see Lemma 8.14.

On the other hand, the sequence of geodesic segments [f,,(—n), fn(n)] C ﬁXn
also w-converges to a geodesic v* C X, this geodesic is either a finite geodesic
segment or a geodesic ray or a complete geodesic. In any case, by our choice of the
points x,, < is contained in l-neighborhood of the geodesic v* and, at the same
time, v # v* since x,, € v\ v*. This contradicts the fact that X, is a real tree. 0O

Historical Remark. Morse [?] proved a special case of this theorem in the case
of H? where the quasi-geodesics in question where geodesics in another Riemannian
metric on H?, which admits a cocompact group of isometries. Busemann, [?], proved
a version of this lemma in the case of H", where metrics in question were not
necessarily Riemannian. A version in terms of quasi-geodesics is due to Mostow
[?], in the context of negatively curved symmetric spaces, although his proof is
general.

CoROLLARY 8.39 (QI invariance of hyperbolicity). Suppose that X, X’ are
quasi—isometric geodesic metric spaces and X' is hyperbolic. Then X is also hyper-
bolic.

PROOF. Suppose that X’ is ¢’-hyperbolic and f : X — X' is an (L, A)—quasi-
isometry and f’: X’ — X is its quasi-inverse. Pick a geodesic triangle T' C X. Its
image under f is a quasi-geodesic triangle S in X’ whose sides are (L, A)-quasi-
geodesic. Therefore each of the quasi-geodesic sides o; of S is within distance < § =
0(L, A, d") from a geodesic o} connecting the end-points of this side. See Figure 8.1.
The geodesic triangle S* formed by the segments o}, 03,05 is ¢’-thin. Therefore,
the quasi-geodesic triangle f'(S*) C X is € := L§’+ A-thin, i.e. each quasi-geodesic
7; := f'(o}) is within distance < e from the union 7/_,, 7/, . However,

dist paus(Ti, 7)) < LO + 2A.
Putting this all together, we conclude that the triangle T is §-thin with
§=2(LO0+2A)+e=2(LO+24)+ L5+ A. O
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Quasi-geode\sic triangle f(B)

A f(C)

FIGURE 8.1. Image of a geodesic triangle.

Note that in Morse Lemma, we are not claiming, of course, that the distance
d(f(t), f*(t)) is uniformly bounded, only that for every ¢ there exist s and s* so
that

A (b), £(s)) < 6,
and

A (1), £(57)) < 0.
Here s = s(t),s* = s*(t). However, applying triangle inequalities one gets for
B = A + 6 the following estimates:

(8.3) L '%t-B<s<Lt+B
and
(8.4) L7 (t—B) < s* < L(t+ B)

8.5. Quasi-convexity in hyperbolic spaces

The usual notion of convexity does not make much sense in the context of
hyperbolic geodesic metric spaces. For instance, there is an example of a geodesic
Gromov—hyperbolic metric space X where the convex hull of a finite subset is the
entire X. The notion of convex hull is then replaces with

DEFINITION 8.40. Let X be a geodesic metric space and ¥ C X. Then the
quasiconvez hull H(Y) of Y in X is the union of all geodesics [y1,y2] C X, where
y1,y2 €Y.

Accordingly, a subset Y C X is R-quasiconvezr if H(Y) C Ng(Y). A subset Y
is called quasiconvex if it is quasiconvex for some R < oo.

EXAMPLE 8.41. Let X be a d-hyperbolic geodesic metric space. Then thin
triangle property immediately implies:

1. Every metric ball B(z, R) in is §-quasiconvex.

2. let Y; € X be R;-quasiconvex, i = 1,2, and Y1 NY5 # (). Then Y; UY> is
Ry + Ry + d-quasiconvex.

3. Intersection of any family of R-quasiconvex sets is again R-quasiconvex.

An example of a non-quasiconvex subset is a horosphere in H": Its quasiconvex
hull is the horoball bounded by this horosphere.
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The construction of quasiconvex hull could be iterated and, by applying the
fact that quadrilaterals in X are 26-thin, we obtain:

LEMMA 8.42. Let Y C X be a subset. Then H(Y) is 20-quasiconvex in X .

The following results connect quasiconvexity and quasi-isometry for subsets of
Gromov—hyperbolic geodesic metric spaces.

THEOREM 8.43. Let X,Y be geodesic metric spaces, so that X is d-hyperbolic
geodesic metric space. Then for every quasi-isometric embedding f : Y — X, the
image f(Y) is quasiconvex in X.

PROOF. Let y1,y2 € Y and a = [y1,y2] C Y be a geodesic connecting y; to ys.
Since f is an (L, A) quasi-isometric embedding, 8 = f(«) is an (L, A) quasi-geodesic
in X. By Morse Lemma,

diStHaus(Baﬁ*) < R = 9<L7Aa6)7

where §* is any geodesic in X connecting z1 = f(y1) to a2 = f(y2). Therefore,
B* C Ngr(f(Y), and f(Y) is R-quasi-convex. 0

The map f:Y — f(Y) is a quasi-isometry, where we use the restriction of the
metric from X to define a metric on f(Y'). Of course, f(Y) is not a geodesic metric
space, but it is quasi-convex, so applying the same arguments as in the proof of
Theorem 8.39, we conclude that Y is also hyperbolic.

Conversely, let Y C X be a coarsely connected subset, i.e., there exists a
constant ¢ < oo so that the complex Ripsc(Y) is connected for all C' > ¢, where we
again use the restriction of the metric d from X to Y to define the Rips complex.
Then we define a path-metric dy ¢ on Y by looking at infima of lengths of paths in
Ripsc(Y) connecting points of Y. The following is a converse to Theorem 8.43:

THEOREM 8.44. Suppose that Y C X is coarsely connected and Y is quasi-
convez in X. Then the identity map f : (Y,dy o) — (X,distx) is a quasi-isometric
embedding for all C > 2c+ 1.

ProOF. Let C be such that H(Y) C N¢(Y). First, if dy(y,y’) < C then
distx(y,y’) < C as well. Hence, f is coarsely Lipschitz. Let y,y’ € Y and v is a
geodesic in X of length L connecting y,y’. Subdivide v in n = [L] subintervals of
unit intervals and an interval of the length L — n:

[ZO7 21]7 crey [anl, Zn], [Z’rH Z’I’L+1]7

where 29 = y, 2,41 = y'. Since each z; belongs to NV (Y), there exist points y; € Y
so that distx (y;, z;) < ¢, where we take yo = 20, Yn+1 = 2n+1. Then

distx(zi,ziH) < 2c+1 < C

and, hence, z;, z;+1 are connected by an edge (of length C) in Ripsc(Y). Now it is
clear that
dy,c(y,y') < C(n+1) < Cdistx(y,y') + C. O

REMARK 8.45. It is proven in [?] that in the context of subsets of negatively
pinched complete simply-connected Riemannian manifolds X, quasi-convex hulls
Hull(Y') are essentially the same as convex hulls:

There exists a function L = L(C') so that for every C-quasiconvex subset Y C
X

b

H(Y) - HUZZ(Y) C NL(C) (Y)
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8.6. Nearest-point projections

In general, nearest-point projections to geodesics in §-hyperbolic geodesic spaces
are not well defined. The following lemma shows, nevertheless, that they are
coarsely-well defined:

Let v be a geodesic in §-hyperbolic geodesic space X. For a point z € X let
p = my(x) be a point nearest to x.

LEMMA 8.46. Let p’ € v be such that d(x,p’) < d(x,p) + R. Then
d(p,p’) < 2(R+ 20).
In particular, if p,p’ € v are both nearest to x then
d(p,p’) < 46.

Proor. Consider the geodesics a,a’ connecting = to p and p’ respectively.
Let ¢' € o be the point within distance 6 + R from p’ (this point exists unless
d(z,p) < 6 + R in which case d(p,p’) < 2(§ + R) by the triangle inequality). Since
the triangle A(x, p,p’) is 6-thin, there exists a point q € [zp|U[pp’] C [xp]U~y within
distance § from q. If ¢ € v, we obtain a contradiction with the fact that the point
p is nearest to x on v (the point ¢ will be closer). Thus, ¢ € [zp]. By the triangle
inequality

d(z,p') — (R+90) =d(z,q¢') < d(x,q) + § < d(x,p) — d(q,p) + 9.
Thus,
d(q,p) < d(z,p) —d(z,p’) + R+ 25 < R+ 20.
Since d(p’, q) < R+ 25, we obtain d(p’,p) < 2(R + 29). |

This lemma can be strengthened, we now show that the nearest-point projection

to a quasi-geodesic subspace in a hyperbolic space is coarse Lipschitz:

LEMMA 8.47. Let X' C X be an R-quasiconvex subset. Then the nearest-point
projection T = mxs : X — X' is (2,2R + 99)-coarse Lipschitz.

PROOF. Suppose that x,y € X so that d(z,y) = D. Let 2’ = n(x),y’ = 7(y).
Counsider the quadrilateral formed by geodesic segments [z, y]U[y, v'], [v/, 2']U[2/, x].
Since this quadrilateral is 24-thin, there exists a point ¢ € [2/, '] which is within
distance < 26 from |2/, z] U [zy] and [z,y] U [y, y].

Case 1. We first assume that there are points z” € [z,2'],y” € [y, y] so that

d(g,z") < 20,d(q,y") < 20.
Let ¢' € X’ be a point within distance < R from ¢. By considering the paths
[z, 2" U 2", gl Ulg.q],  [y,y"TV " alU]g. ]
and using the fact that 2’ = 7(z),y’ = 7(y), we conclude that
d(z',2") < R+26, d(y,y") < R+ 26.

Therefore,
d(z’',y") < 2R+ 94.

Case 2. Suppose that there exists a point ¢” € [z,y] so that d(q,q”) < 24.
Setting D1 = d(z,q"), D2 = d(y,q"), we obtain

d(z,2") < d(z,¢') < D1+ R+20,d(y,y") < d(y,q') < Do+ R+ 26
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which implies that
d(z',y") < 2D+ 2R + 46.

In either case, d(z’.y") < 2d(x,y) + 2R + 99. O

b: y
28 28 "

_ y

q
R
X’
X’ q7 y7

FIGURE 8.2. Projection to a quasiconvex subset.

8.7. Geometry of triangles in Rips—hyperbolic spaces

In the case of real-hyperbolic space we relied upon hyperbolic trigonometry in
order to study geodesic triangles. Trigonometry no longer makes sense in the con-
text of Rips—hyperbolic spaces X, so instead one compares geodesic triangles in X
to geodesic triangles in real trees, i.e., to tripods, in the manner similar to the com-
parison theorems for C AT (k)-spaces. In this section we describe comparison maps
to tripods, called collapsing maps. We will see that such maps are (1, 149)-quasi-
isometries. We will use the collapsing maps in order to get a detailed information
about geometry of triangles in X.

A tripod T is a metric graph which is the union of three Euclidean line segments
(called legs of the tripod) joined at a common vertex o, called the centroid of T.
By abusing the notation, we will regard a tripod T as a geodesic triangle whose
vertices are the extreme points (leaves) #; of T’; hence, we will use the notation
T =T =T(&, &2, 3)-

REMARK 8.48. Using the symbol ~ in the notation for a tripod is motivated
by the comparison geometry, as we will compare geodesic triangles in d-hyperbolic
spaces with the tripods T: This is analogous to comparing geodesic triangles in

metric spaces to geodesic triangles in constant curvature spaces, see Definition
2.33.

EXERCISE 8.49. Given three numbers a; € Ry, i = 1,2, 3 satisfying the triangle
inequalities a; < aj+ay ({1,2,3} = {4, , k}), there exists a unique (up to isometry)
tripod T' = T, 45,05 With the side-lengths a1, az, as.
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FiGUure 8.3. Collapsing map of triangle to a tripod.

Now, given a geodesic triangle T' = T'(x1, 22, x3) with side-lengths a;,i = 1,2, 3
in a metric space X, there exists a unique (possibly up to postcomposition with an
isometry T'— T') map & to the “comparison” tripod T,

kT =T ="Ta as,as

which is isometric on every edge of T: The map « sends the vertices x; of T" to the
leaves &; of the tripod T. The map k is called the collapsing map for T. We say
that points z,y € T are dual to each other if k(z) = k(y).

EXERCISE 8.50. 1. The collapsing map k preserves the Gromov-products
(T'iv x])xk

2. k is 1-Lipschitz.

Then,

(@i, 25)a), = d(Zk, 5, 75]) = d(Zg, 0).
By taking the preimage of o € T under the maps x|[z;, ;] We obtain points
Tij € [z, 74]
called the central points of the triangle T":
(@, i) = (), Tk)a, -

LeEmMA 8.51 (Approximation of triangles by tripods). Assume that a geodesic
metric space X is d—hyperbolic in the sense of Rips, and consider an arbitrary
geodesic triangle T = A(x1,x2,x3) with the central points x;; € [x;,x;]. Then for
every {i,j,k} = {1,2,3} we have:

1. d(mij7xjk) < 60.

2. draus ([T, Tjil, [25, 2rj]) < 70.

3. Distances between dual points in T are < 149. In detail: Suppose that
aji, a5 1 [0,t] = X (t; = d(z;,zi5) = d(zj, zjk)) are unit speed parameterizations
of geodesic segments [x;,xj;], [z}, z;i]. Then

d(aji(t),ajk(t)) < 146
for all t € [0,t;].
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Proo¥r. The geodesic [z;, ;] is covered by the closed subsets Ns([x;, 7x]) and
Ns([x;,xx]), hence by connectedness there exists a point p on [z;, z;] at distance at
most ¢ from both [z;, zx] and [z}, xx]. Let p’ € [z, 2%] and p” € [z}, )] be points
at distance at most § from p. The inequality

1
(@), 2k)e; = 5 [d(wi,p) + d(p,z5) + d(zi, p') +d(p', o) — d(z;,p") — d(p”, x)]

combined with the triangle inequality implies that
and, hence d(z;;,p) < 20. Then d(z;x,p’) < 39, whence d(z;;, z;) < 60. It remains
to apply Lemma 8.3 to obtain 2 and Lemma 8.4 to obtain 3. (]

We thus obtain
PROPOSITION 8.52. k is a (1,140)-quasi-isometry.

PRrROOF. The map « is a surjective 1-Lipschitz map. On the other hand, Part
3 of the above lemma implies that

d(z,y) — 146 < d(k(z), k(y))

forall z,y € T. (]
Proposition 8.52 allows one to reduce (up to a uniformly bounded error) study
of geodesic triangles in §-hyperbolic spaces to study of tripods. For instance suppose
that m;; € [z;, ;] be points so that
d(mij,mjk) < T
for all 4,7, k. We already know that this property holds for the central points z;;

of T' (with r = 6J). Next result shows that points m;; have to be uniformly close
to the central points:

COROLLARY 8.53. Under the above assumptions, d(m;;,x;;) < r + 144.
PROOF. Since k is 1-Lipschitz,
d(k(mir), £(mjx)) <

for all 4, j, k. By definition of the map &, all three points x(m;;) cannot lie in the

same leg of the tripod T, except when one of them is the center o of the tripod.
Therefore, d(k(m;j),0) < r for all ¢, j. Since & is (1, 146)-quasi-isometry,

d(mij, xi;) < d(k(mak), k(mjx)) + 146 < r+ 146.

DEFINITION 8.54. We say that a point p € X is an R-centroid of a triangle
T C X if distances from p to all three sides of T" are < R.

COROLLARY 8.55. FEwvery two R-centroids of T are within distance at most
d(R) = 4R+ 289 from each other.

PRrROOF. Given an R-centroid p, let m;; € [z;,x;] be the nearest points to p.
Then
d(mij,mjk) < 2R
for all ¢, j, k. By previous corollary,
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Thus, triangle inequalities imply that every two centroids are within distance at
most 2(2R + 140) from each other. O

Let p3 € 12 = [21, 22] be a point closest to x3. Taking R = 2§ and combining
Lemma 8.25 with Lemma 8.46, we obtain:

COROLLARY 8.56. d(ps,x12) < 2(20 4 26) = 60.

We now can define a continuous quasi-inverse % to x as follows: We map
[Z1,Z2] C T isometrically to a geodesic [z1,x2]. We send [o, 3] onto a geodesic
[z12, 23] by an affine map. Since

d(z12,32) < 66

and
d(xs, x32) = d(Z3,0),
we conclude that the map 7 is (1,6)-Lipschitz.

EXERCISE 8.57.
d(k o K, Id) < 326.

8.8. Divergence of geodesics in hyperbolic metric spaces

Another important feature of hyperbolic spaces is the exponential divergence of
its geodesic rays. This can be deduced from the thinness of polygons described in
Lemma 8.6, as shown below. Our arguments are inspired by those in [?].

LEMMA 8.58. Let X be a geodesic metric space, é—hyperbolic in the sense of
Rips’ definition. If [x,y] is a geodesic of length 2r and m is its midpoint then every
path joining x,y outside the open ball B(m,r) has length at least 25 .

PRrooOF. Consider such a path p, of length ¢. Divide it first into two arcs
of length g, then into four arcs of length f etc, until we obtain k arcs of length
2% < 1. Consider the minimal k satisfying this, i.e. k is the integer part |log, ¢]. Let
To = x,x1,...,Tr = Yy be the consecutive points on p obtained after this procedure.
Lemma 8.6 applied to a geodesic polygon with vertices g = x, 21, ..., 2, = y with
[z,y] as an edge, implies that m is contained in the (20k)—-tubular neighborhood
of Uf;ol [€i, x;41], hence in the (20k + 1)—tubular neighborhood of p. However, we
assumed that dist(m,p) > r. Thus,

r<20k+1<2logy b+ 1=(>2%.
O

LEMMA 8.59. Let X be a geodesic metric space, §—hyperbolic in the sense of
Rips’ definition, and let x and y be two points on the sphere S(o, R) such that
dist(z,y) = 2r. Every path joining x and y outside B(o, R) has length at least
W(r) = 2% —3 — 126.

PROOF. Let m € [z,y] be the midpoint. Since d(o, z) = d(o,y), it follows that
m is also one of the center-points of the triangle A(x,y,0) in the sense of Section
8.7. Then, by using Lemma 8.51 (Part 1), we see that d(m,0) < (R — r) + 60.
Therefore, the closed ball B(m,r — 64) is contained in B(o, R). Let p be a path
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joining  and y outside B(o, R), and let [z, z'] and [y, y] be subsegments of [z, y] of
length 66. Lemma 8.58 implies that the path [z/, 2] Up U [y, y’] has length at least
r—65—1
r=gs-1

2

whence p has length at least
255 3 — 125,
O

LEMMA 8.60. Let X be a d—hyperbolic in the sense of Rips, and let x and y
be two points on the sphere S(o,m1 + r2) such that there exist two geodesics [x, 0]
and [y, o] intersecting the sphere S(o,r1) in two points x',y' at distance larger than
146. Then every path joining x and y outside B(o,m1 + 72) has length at least

ro—1

P(ry — 156) = 275 —18 — 124,

PROOF. Let m be the midpoint m of [z,y], since A(z,y,0) is isosceles, m is
one of the centroids of this triangle. Since d(z’,y’) > 144, they cannot be dual
point on A(z,y,0) in the sense of Section 8.7. Let =’ y” € [x,y] be dual to a',y’.
Thus (by Lemma 8.51 (Part 3)),

d(o,2") < ry +148,d(0,2") < 1 + 146.

Furthermore, by the definition of dual points, since m is a centroid of A(z,y,0), m
belongs to the segment [z”,y"”] C [x,y]. Thus, by quasiconvexity of metric balls,
see Section 8.5,

d(m,0) <r;+146 + 6 = r1 + 156.

By the triangle inequality,
r1+ 1y =d(z,0) <r+dm,0) <r+r1+ 155, 19— 156 < 7.
Since the function ¢ in Lemma 8.59 is increasing,
P(ry — 156) < ().

Combining this with Lemma 8.59 (where we take R = r1 +r3), we get the required
inequality. (I

For a more detailed treatment of divergence in metric spaces, see [?, 7, 7, ?,
7, 7.

8.9. Ideal boundaries

We consider the general notion of ideal boundary defined in Section 2.1.10 of
Chapter 1 in the special case when X is geodesic, d—hyperbolic and locally compact
(equivalently, proper).

LEMMA 8.61. For each p € X and each element o € 05X there ewists a
geodesic ray p with initial point p and such that p(c0) = .

PROOF. Let p’ be a geodesic ray from the equivalence class «, with initial point
xo. Consider a sequence of geodesic segments v, : [0,D,] — X, connecting p to
ZTn = p'(n), where D,, = d(p, p'(n)). The d-hyperbolicity of X implies that Im(~v,)
is at Hausdorff distance at most § + dist(p, zp) from [zg, z,], where [z¢, z,] is the
initial subsegment of p'.
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Combining the properness of X with the Arzela-Ascoli theorem, we see that
the geodesic maps ~, subconverge to a geodesic ray p, p(0) = p. Clearly, I'm(p) is
at Hausdorff distance at most ¢ + dist(p, z¢) from Im(p)). In particular, p ~ p. O

Lemma 8.61 is very similar to the result in the case of X CAT(0)-space. The
important difference with respect to that case is that the ray p may not be unique.
Nevertheless we shall still use the notation [p, &) to designate a geodesic (one of the
geodesics) with initial point x in the equivalence class a.

In view of this lemma, in order to understand J,, X it suffices to restrict to the
set Ray,(X) of geodesic rays in X emanating from p € X.

It is convenient to extend the topology 7 defined on d,,X (i.e. the quotient
topology of the compact-open topology on the set of rays) to a topology on X =
X U0 X. Namely, we say that a sequence x,, € X converges to a point £ € 0, X
if a sequence of geodesics [p, x,| converges (uniformly on compacts) to a ray [p, ).
Then 9, X C X is a closed subset. Consider the set Geo,(X) consisting of geodesics
in X (finite or half-infinite) emanating from p. We again quip Geo,(X) with the
compact-open topology. There is a natural quotient map Geo,(X) — X which
sends a finite geodesic or a geodesic ray emanating from p to its terminal point in
X.

COROLLARY 8.62. If X is geodesic, hyperbolic and proper, then X is compact.

PRrROOF. The space Geo,(X) is compact by Arzela-Ascoli theorem. Since a
quotient of a compact is compact, the claim follows. ([l

LEMMA 8.63 (Asymptotic rays are uniformly close). Let p1,pa be asymptotic
geodesic rays in X such that p1(0) = p2(0) = p. Then for each t,

d(p1(t), pa(t)) < 20.

PROOF. Suppose that the rays pi, po are within distance < C' from each other.
Take T > t. Then (since the rays are asymptotic) there exists S € R, such that

d(p1(T), pa(S)) < C.
By d-thinness of the triangle A(pp1(T)p2(S)), the point p;(t) is within distance
< ¢ from a point either on [p, p2(S)] or on [p1(T), p2(S)]. Since the length of
[p1(T), p2(S)] is < C and T > t, it follows that there exists ¢’ such that
dist(pr (1), pa()) < 6.
By the triangle inequality, |t — t'| < §. It follows that dist(p1(¢), p2(t)) < 26. O
COROLLARY 8.64. 0., X is Hausdorff.
PROOF. Let p,,, p), be sequences of rays emanating from p € X, so that p,, ~ pl,
and
lim p, =p, lim pl, =/p.
n—oo n—oo
We claim that p ~ p’. Suppose not. Then there exists a > 0 so that d(p(a), p’(a)) >
20 + 1. For all sufficiently large n
d(pn(a),pla)) <1/2, d(py(a),p'(a)) < 1/2,
while

d(pn(a), py(a)) < 20.
Thus, d(p(a), p'(a)) < 2§ + 1, contradicting our choice of a. O
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EXERCISE 8.65. Show that X is also Hausdorff.

Given a number k > 20, define the topology 7, on Ray,(X)/ ~, where the
basis of neighborhoods of a point p(co) given by

(8.5) Ukn(p) :=={p’ : dist(p'(t), p(t)) < k,t € [0,n]},n € Ry.
LEMMA 8.66. Topologies T and Ty coincide.

ProoOF. 1. Suppose that p; is a sequence of rays emanating from p such that
pi & Ukn(p) for some n. If lim;p; = p’ then p' ¢ Uy, and by Lemma 8.63,
7 (00) # p(o0).

2. Conversely, if for each n, p; € Ui n(p) (provided that j is large enough),
then the sequence p; subconverges to a ray p’ which belongs to each Uy (p). Hence
p'(00) = p(o0). O

LEMMA 8.67. Suppose that p,p’ € Ray,(X) are inequivalent rays. Then for
every sequence t, diverging to oo,

Jim d(p(t:), p'(t:)) = oe.

PROOF. Suppose to the contrary, there exists a divergent sequence t; so that
d(p(t;), p'(t;)) < D. Then, by Lemma 8.4, for every t < t,,

dlp(t), o (1)) < 2(D +9).
Since limt; = oo, it follows that p ~ p’. Contradiction. O

LEMMA 8.68. Let X be a proper geodesic Gromov—hyperbolic space. Then for
each pair of distinct points £,m € 0o X there exists a geodesic v in X which is
asymptotic to both & and 7.

Proor. Consider geodesic rays p, p’ emanating from the same point p € X and
asymptotic to &, n respectively. Since & # 7, by previous lemma, for each R < oo
the set

K(R) :={z € X : dist(z, p) < R, dist(z, p’) < R}
is compact. Consider the sequences z,, := p(n),x,, := p’(n) on p,p’ respectively.
Since the triangles [p, z,, ] ] are d—thin, each segment =y, := [z,, 2] ] contains a
point within distance < ¢ from both [p, z,], [p, 2], i.e. 7, N K(6) # @. Therefore,
by Arzela-Ascoli theorem, the sequence of geodesic segments -, subconverges to a
complete geodesic v in X. Since v C Ns(p U p’) it follows that v is asymptotic to
¢ and 7. (]

EXERCISE 8.69. Suppose that X is d-hyperbolic. Show that there are no com-
plete geodesics v in X so that
a5, 7(=m) = i 1)

Hint: Use the fact that geodesic bigons in X are é-thin.

EXERCISE 8.70 (Ideal bigons are 26-thin). Suppose that «,( are geodesics
in X which are both asymptotic to points £, € 0X. Then distgyaus(a, ) <
25. Hint: For n € N define z,,w, € Im(8) to be the nearest points to x, =
a(n),yn = a(—n). Let [z, yn], [2n, wn] be the subsegments of a, § between x,,, y,
and y,,, z, respectively. Now use the fact that the quadrilateral in X with the edges
[Ty Ynl, [Yns wnl, [Wn, 20], (20, Tn] 18 20-thin.
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We now compute two examples of ideal boundaries of hyperbolic spaces.

1. Suppose that X = H" is the real-hyperbolic space. We claim that J,X
is naturally homeomorphic to the sphere S"~!, the boundary sphere of H" in the
unit ball model. Every ray p € Ray,(X) (which is a Euclidean line segment |o, £),
¢ € S 1) determines a unique point on the boundary sphere S"~!, namely the
point &. Furthermore, we claim that distinct rays p1,p2 € Ray,(X) are never
asymptotic. Indeed, consider the equilateral triangle [o, p1(t), p2(¢)] with the angle
~v > 0 at 0. Then the hyperbolic cosine law (7.4), implies that

cosh(d(py(t), p2(t))) = 1 + sinh?(¢)(1 — cos(v)).

It is clear that this quantity diverges to oo as ¢ — co. We, thus, obtain a bijection
Ray,(X) — 0o (X).

We equip Ray,(X) with the topology given by the initial velocities p’(0) of the
geodesic rays p € Ray,(X). Clearly, the map Ray,(X) — S"~!, sending each ray
p=0,€) to ¢ € S"!is a homeomorphism. It is also clear that the above topology
on Ray,(X) coincides with the compact-open topology on geodesic rays since the
latter depend continuously on their initial velocities. Thus, the composition

S Raye(X) — 00X

is a homeomorphism.

2. Suppose that X is a simplicial tree of finite constant valence val(X) > 3,
metrized so that every edge has unit length. As before, it suffices to restrict to
rays in Ray,(X), where p € X is a fixed vertex. Note that p,p’ € Ray,(X) are
equivalent if and only they are equal. We know that X is 0-hyperbolic. Our claim
then is that 0, X is homeomorphic to the Cantor set. Since we know that J,. X
is compact and Hausdorff, it suffices to verify that 0., X is totally disconnected
and contains no isolated points. Let p € Ray,(X) be a ray. For each n pick a ray
pn € Ray,(X) which coincides with p on [0,n] , but p,(t) # p(t) for all ¢ > n (this
is where we use the fact that val(X) > 3. It is then clear that

lim p, =p

n—oQ

uniformly on compacts. Hence, 0, X has no isolated points. Recall that for k = %,
we have open sets U, ;(p) forming a basis of neighborhoods of p. We also note that
each Uy, x(p) is also closed, since (for a tree X as in our example) it is also given by

{p p(t) =p'(t),t € [0,n]}.
Therefore, 0., X is totally-disconnected as for any pair of distinct points p,p’ €
Ray,(X), there exist open, closed and disjoint neighborhoods U, x(p), U, x(p’) of
the points p, p’. Thus, 0 X is compact, Hausdorff, perfect, consists of at least 2
points and is totally-disconnected. Therefore, O, X is homeomorphic to the Cantor
set.

Gromov topology on X = X Ud,,X. The above definition of X was worked
fine for geodesic hyperbolic metric spaces. Gromov extended this definition to the
case when X is an arbitrary hyperbolic metric space. Pick a base-point p € X.
Gromov boundary dgromovX of X consists of equivalence classes of sequences (z,,)
in X so that limd(p, x,) = oo, where (z,,) ~ (y,) if

i )y = o0
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One then defines the Gromov—product (£,7), € [0, 0] for points &, 7 in Gromov-
boundary of X by

(57 n)p = lim Supn—)oo(xny yn)p

where (z,,) and (y,) are sequences representing £, 7 respectively. Then, Gromov
topologizes X = X U OgromonX by:

lim Ty = Ea g € aG?”omov)(

if and only if

A3, (s £y = 00

It turns out that this topology is independent of the choice of p. In case when X
is also a geodesic metric space, there is a natural map

XU aoo)( —+ XU aGromov‘Xv

which is the identity on X and which sends £ = [p] in 05X to the equivalence class
of the sequence (p(n)). This map is a homeomorphism provided that X is proper.

Hyperbolic triangles with ideal vertices. We return to the case when X is
a d-hyperbolic proper geodesic metric space. We now generalize (geodesic) triangles
in X to triangles where some vertices are in J,, X, similarly to the definitions made
in section 7.3. Namely a (generalized) geodesic triangle in X is a concatenation of
geodesics connecting (consecutively) three points A, B,C in X; geodesics are now
allowed to be finite, half-infinite and infinite. The points A, B, C are called vertices
of the triangle. As in the case of H", we do not allow two ideal vertices of a triangle
T to be the same. By abusing terminology, we will again refer to such generalized
triangles as hyperbolic triangles.

An ideal triangle is a triangle where all three vertices are in 0, X. We topologize
the set Tri(X) of hyperbolic triangles in X by compact-open topology on the set
of their geodesic edges. Given a hyperbolic triangle T = T(A, B,C) in X, we find
a sequence of finite triangles 7; C X whose vertices converge to the respective
vertices of T'. Passing to a subsequence if necessary and taking a limit of the sides
of the triangles T}, we obtain limit geodesics connecting vertices A, B, C of T'. The
resulting triangle T”, of course, need not be equal to T (since geodesics connecting
points in X need not be unique), however, in view of Exercise 8.70, sides of T" are
thin distance < 26 from the respective sides of T. We will say that the sequence of
triangles T; coarsely converges to the triangle T' (cf. Definition 5.25).

EXERCISE 8.71. Every (generalized) hyperbolic triangle 7" in X is 5§-thin. In
particular,

minsize(T) < 49.

Hint: Use a sequence of finite triangles which coarsely converges to 7" and the fact
that finite triangles are §-thin.

This exercise allows one to define a centroid of a triangle T' in X (with sides
7i,4=1,2,3) to be a point p € X so that

d(p, ) <56,i=1,2,3.

More generally, as in Definition 8.54, we say that a point p € X is an R-centroid T'
it p is within distance < R from all three sides of T'.
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LEMMA 8.72. Distance between any two R-centroids of a hyperbolic triangle T
15 at most

r(R,6) = 4R + 320.

PrROOF. Let p, g be R-centroids of T. We coarsely approximate T' by a sequence
of finite triangles T; C X. Then for every € > 0, for all sufficiently large 7, the points
p,q are R+ 20 + e-centroids of T;. Therefore, by Corollary 8.55 applied to triangles
T;

dp,q) < P(R+20+€) =4(R+25 +€) +28) =4R + 325 + 2¢
Since this holds for every e > 0, we conclude that d(p,q) < 4R + 324. O
We thus, define the correspondence

center : Trip(0eoX) — X

which sends every triple of distinct points in 0., X first to the set of ideal triangle
T that they span and then to the set of centroid of these ideal triangles. Then
Lemma 8.72 implies

COROLLARY 8.73. For every & € Trip(0sX),
diam(center(€)) < r(74,6) = 600.

EXERCISE 8.74. Suppose that ~, are geodesics in X which limit to points
Cn,etay € 05X and

im ¢, = ¢, limn, =n,n# C.

Show that geodesics v, subconverge to a geodesic which is asymptotic to both &
and 7.

Use this exercise to conclude:

EXERCISE 8.75. If K C Trip(0-X) is a compact subset, then center(K) is a
bounded subset of X.

Conversely,

EXERCISE 8.76. Let B C X be a bounded subset and K C Trip(0X) is a
subset such that center(K) C B. Show that K is relatively compact in Trip(0ecX).
Hint: For every ¢ € K, every ideal edge of a triangle spanned by £ intersects 56-
neighborhood of B. Now, use Arzela-Ascoli theorem.

Loosely speaking, the two exercises show that the correspondence center is
coarsely continuous (image of a compact is bounded) and coarsely proper (preimage
of a bounded subset is relatively compact).

Cone topology. Suppose that X is a proper geodesic hyperbolic metric space.
Later on, it will be convenient to use another topology on X, called cone topology.
This topology is not equivalent to the topology 7: With few exceptions, X is
noncompact with respect to this topology (even if X = H" n > 2).

DEFINITION 8.77. We say that a sequence x,, € X converges to a point £ =
p(00) € DX in the cone topology if there is a constant C such that z,, € Nc(p)
and the geodesic segments [z1x,] converge to a geodesic ray asymptotic to €.

EXERCISE 8.78. If a sequence z,, converges to { € 0o X in the cone topology,
then it also converges to ¢ in the topology 7 on X.
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As an example, consider X = H™ in the upper half-space model, £ =0 € R™ 1,
L is the vertical geodesic from the origin. Then a sequence z,, € X converges ¢ in
the cone topology if and only if all the points z,, belong to the Euclidean cone with
the axis L and the Euclidean distance from z,, to 0 tends to zero. See Figure 8.4.
This explains the name cone topology.

EXERCISE 8.79. Suppose that a sequence (x;) converges to a point & € Jo,H"
along a horosphere centered at §. Show that the sequence (z;) contains no conver-
gent subsequence in the cone topology on X.

FI1GURE 8.4. Convergence in the cone topology.

8.10. Extension of quasi-isometries of hyperbolic spaces to the ideal
boundary

The goal of this section is to explain how quasi-isometries of Rips—hyperbolic
spaces extend to their ideal boundaries.

We first extend Morse lemma to the case of quasi-geodesic rays and complete
geodesics.

LeEMMA 8.80 (Extended Morse Lemma). Suppose that X is a proper 6—hyperbolic
geodesic space. Let p be an (L, A)—quasigeodesic ray or a complete (L, A)—quasi-
geodesic. Then there is p* which is either a geodesic ray or a complete geodesic in
X so that the Hausdorff distance between Im(p) and Im(p*) is < 6(L, A, ). Here
0 is the function which appears in Morse lemma.

Moreover, there are two functions s = s(t), s* = s*(t) so that

(8.6) L% - B<s<ILt+B
and
(8.7) L™ (t—B)<s* < L(t+ B)

and for every t, d(p(t), p*(s)) < 0, d(p*(t),p(s*)) < 6. Here B=A+0.
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Proor. We will consider only the case of quasigeodesic rays p : [0,00) — X as
the other case is similar. Let p; := p|[0,4], ¢ € N. Consider the sequence of geodesic
segments p; = [p(0)p(i)] as in Morse lemma. By Morse lemma,

diStHaus(pia p:) < Q(La Aa 6)
By properness, the geodesic segments p; subconverge to a complete geodesic ray
p*. It is now clear that

distgaus(p, p*) < 0(L, A, 6).

Estimates (8.6) and (8.7) follow from the estimates (8.3) and (8.4) in the case of
finite geodesic segments. g

COROLLARY 8.81. If p is a quasi-geodesic ray as in the above lemma, there
exists a point £ € O X so that limy_, o, p(t) = &.

PRrROOF. Take & = p*(00). Since d(p(t), Im(p*)) < 0, it follows that
Jim p(t) =& 0O

We will refer to the point 7 as p(co). Note that if p’ is another quasi-geodesic
ray which is Hausdorff-close to p then p(co) = p’(00).

Below is another useful application of the Extended Morse Lemma. Given a
geodesic v in X we let m, : X — 7 denote the nearest-point projection.

PROPOSITION 8.82 (Quasi-isometries commute with projections). There exists
C =C(L,A,d) so that the following holds. Let X be a 6-hyperbolic geodesic metric
space and let f : X — X be an (L, A)-quasi-isometry. Let o be a (finite or infinite)
geodesic in X, and 8 C X be a geodesic which is (L, A,d)-close to f(«). Then the
map f almost commutes with the nearest-point projections mq, mg:

d(f(ma(2),maf(x)) < C, VzelX.

PrOOF. For a (finite or infinite) geodesic v C X consider the triangle A = A,
where one side is v and z is a vertex: The other two sides are geodesics connecting
x to the (finite or ideal) end-points of v. Let ¢ = center(A) € 7 denote a centroid
of A: The distance from ¢ to each side of A is < 64. By Corollary 8.56,

d(e, my(z)) < 214.

Applying f to the centroid ¢(A; o) we obtain a point ¢ € X whose distance to each
side of the quasi-geodesic triangle f(A; o) is < 26L 4+ A. Hence, the distance from
a to each side of the geodesic triangle A, g,y = f(z) is at most R := 20L + A +
D(L, A,9). Hence, a is an R-centroid of A, g. By Lemma 8.72, it follows that

d(a,c(Ay 5)) <8R+ 320.
Since d(m3(y), c(Ay 5)) < 210, we obtain:
d(f(ra(z)),msf(z)) < C:=216 + S8R+ 276 +216L + A. O

Below is the main theorem of this section, which is a fundamental fact of the
theory of hyperbolic spaces:

THEOREM 8.83 (Extension Theorem). Suppose that X and X' are Rips—hyper-
bolic proper metric spaces. Let f : X — X' be a quasi-isometry. Then f admits a
homeomorphic extension foo : 0o X — 0ooX’. This extension is such that the map
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f U fs is continuous at each point n € 05X with respect to the topology 7 on X.
The extension satisfies the following functoriality properties:
1. For every pair of quasi-isometries f; : X; — X;41,1= 1,2, we have

(f20 f1)oo = (f2)o0 © (f1)oo-
2. For every pair of quasi-isometries f1, fo : X — X' satisfying dist(f1, f2) <
00, we have (f2)oo = (f1)oo-

Proor. First, we construct the extension f. Let n € 00X, nn = p(co) where
p is a geodesic ray in X. The image of this ray fop: R, — X’ is a quasi-geodesic
ray, hence we set fo(n) := fp(c0). Observe that fo(n) does not depend on the
choice of a geodesic ray asymptotic to 7.

We will verify continuity for the map foo : oo X — 0oc X and leave the case of
X as an exercise to the reader. Let 7, € 05X be a sequence which converges to
7. Let p, be a sequence of geodesic rays asymptotic to 7, with p,(0) = p(0) = .
Then, by Lemma 8.66, for each a € R, there exists ng such that for all n > ng and
t € [0,a] we have

A(p(t), pu(t)) < 35,

where § is the hyperbolicity constant of X. Let p!, := (f o pn)*, 0’ := (fp)* denote
a geodesic rays given by Lemma 8.80. Thus, for all ¢ € [0, a] there exist s and s,

L_lt - A - 9 g min(s, 571)7
so that
d(fpn(t), pr(sn)) <9,
d(fp(t),p'(s)) <0,
and for all ¢ € [0, al,
d(fpn(t), fo(t)) < 36L + A.
Thus, by the triangle inequalities, for the above s, s,, we get
d(pl,(sn), p'(s)) < C =36L + A+ 26.

Since pl,, p’ are geodesic, |s — s,| < C. In particular, for ¢ = a, and b the corre-
sponding value of s, we obtain
d(p'(b), pr, (b)) < 2C.
By the fellow-traveling property of hyperbolic geodesics, for all u € [0, b],
d(p'(u), py(u)) < k= 2(2C +9).
Since b > L~ 'a — A — 4 and
lim (L7 'a — A —6) = o,
a—r 00
it follows that lim p/,(c0) = p’(c0) in the topology 7%. Since topologies T and 7y
agree, it follows that lim,, foo (&) = foo(§). Hence, fo is continuous.
Functoriality properties (1) and (2) of the extension are clear from the construc-
tion (in view of Morse Lemma). They also follow from continuity of the extension.
Let f be a quasi-inverse of f : X — X ’. Then, by the functoriality prop-
erties, (f)oo is inverse of fo,. Thus, extension of a quasi-isometry X — X’ is a
homeomorphism Ose X — 950 X’ O

EXERCISE 8.84. Suppose that f is merely a QI embedding X — X’. Show that
the continuous extension f, given by this theorem is 1-1.
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REMARK 8.85. The above extension theorem was first proven by Efremovich
and Tikhomirova in [?] for the real-hyperbolic space and, soon afterwards, reproved
by Mostow [?]. We will see later on that the homeomorphisms f., are quasi-
symmetric, in particular, they enjoy certain regularity properties which are critical
for proving QI rigidity theorems in the context of hyperbolic groups and spaces.

We thus obtained a functor from quasi-isometries between Rips—hyperbolic
spaces to homeomorphisms between their boundaries.

The following lemma is a “converse” to the 2nd functoriality property in The-
orem &8.83:

LEMMA 8.86. Let X andY be proper geodesic §—hyperbolic spaces. In addition
we assume that centroids of ideal triangles in X form an R-net in X. Suppose that
fif'+ X =Y are (L, A)—quasi-isometries such that foo = f., Then dist(f, f’) <
D(L, A, R,9),

PrOOF. Let x € X and p € X be a centroid of an ideal triangle T in X, so
that d(z,p) < R. (Recall that p is a centroid of T if p is within distance < 44 from
all three sides of T'). Then, by Lemma 8.80, ¢ = f(p),q' = f'(¢') are C-centroids
of the ideal geodesic triangle S C Y whose ideal vertices are the images of the
ideal vertices of T under f. Here C = 45L + A+ 0(L, A,$). By Lemma 8.72,
d(q,q") < r(C,9). Therefore,

d(f(x), f'(z)) < D(L,A,R,0) = 2(LR+ A) +r(C,5). O

Suppose that X is Gromov-hyperbolic and 9., X contains at least 3 points.
Then X has at least one ideal triangle and, hence, at least one centroid of an ideal
triangle. If, in addition, X is quasi-homogeneous, then centroids of ideal triangles
in X form a net. Thus, the above lemma applies to the real-hyperbolic space and,
as we will sees soon, every non-elementary hyperbolic group.

ExXAMPLE 8.87. The line X = R is 0-hyperbolic, its ideal boundary consists of
2 points. Take a translation f : X — X, f(z) = 2 + a. Then f is the identity
map of {—o00, 00} but there is no bound on the distance from f to the identity.

COROLLARY 8.88. Let X be a Rips—hyperbolic space. Then the map f — foo
(where f : X — X are quasi-isometries) descends to a homomorphism QI(X) —
Homeo(X). Furthermore, under the hypothesis of Lemma 8.86, this homomor-
phism is injective.

In Section 7?7 we will identify the image of this homomorphism in the case
of real-hyperbolic space H", it will be a subgroup of Homeo(S™ 1) consisting of
quasi-Moebius homeomorphisms.

Boundary extension and quasi-actions. In view of Corollary 8.88, we have

COROLLARY 8.89. FEvery quasi-action ¢ of a group G on X extends (by g —
?(9)oo) to an action ¢o, of G on 0o X by homeomorphisms.

LEMMA 8.90. Suppose that X satisfies the hypothesis of Lemma 8.86 and the
quasi-action G ~ X is properly discontinuous. Then the kernel for the action ¢
is finite.
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PRrOOF. The kernel K of ¢, consists of the elements g € G such that the
distance from ¢(g) to the identity is finite. Since ¢(g) is an (L, A)-quasi-isometry
of X, it follows from Lemma 8.86, that

dist(¢(g),id) < D(L, A, R, ).
Since ¢ was properly discontinuous, K is finite. O

Conical limit points of quasi-actions.
Suppose that ¢ is a quasi-action of a group G on a Rips—hyperbolic space X.
A point € € 0, X is called a conical limit point for the quasi-action ¢ if there exists
a sequence g; € G so that ¢(g;)(x) converges to £ in the conical topology. In other
words, for some (equivalently every) geodesic ray v C X asymptotic to &, and some
(equivalently every) point x € X, there exists a constant R < oo so that:
o lim, o0 6(g)(7) = &.
o d(é(gi)(x),v) < R for all 4.

LEMMA 8.91. Suppose that v : G ~ X is a cobounded quasi-action. Then
every point of the ideal boundary Osc X is a conical limit point for ).

PrROOF. Let £ € 0, X and let x; € X be a sequence converging to £ in conical
topology (e.g., we can take x; = (i), where ~ is a geodesic ray in X asymptotic to
€). Fix a point z € X and a ball B = Bg(z) so that for every 2’ € X there exists
g € G so that d(z/, #(g)(x)) < R. Then, by coboundedness of the quasi-action %,
there exists a sequence g; € G so that

d(zi, ¢(9:)(2)) < R.
Thus, £ is a conical limit point of the quasi-action. (Il

COROLLARY 8.92. Suppose that G is a group and f : X — G is a quasi-
isometry, G ~ G is isometric action by left multiplication. Let ¢ : G ~ X be the
quasi-action, obtained by conjugating G~ G via f. Then every point of 05X is a
conical limit point for the quasi-action .

PrOOF. The action G ~ G by left multiplication is cobounded, hence, the
conjugate quasi-action ¥ : G ~ X is also cobounded. O

If ¢ is a topological action of a group G on 0o, X which is obtained by exten-
sion of a quasi-action ¢ of G on X, then we will say that conical limit points of the
action G ™ 05, X are the conical limit points for the quasi-action G ~ X.

8.11. Hyperbolic groups

We now come to the raison d’étre for §-hyperbolic spaces, namely, hyperbolic
groups.

DEFINITION 8.93. A finitely-generated group G is called Gromov—hyperbolic or
word-hyperbolic, or simply hyperbolic if one of its Cayley graphs is hyperbolic.

EXAMPLE 8.94. 1. Every finitely-generated free groups is hyperbolic: Taking
Cayley graphs corresponding to a free generating set, we obtain a simplicial tree,
which is 0-hyperbolic.

2. Finite groups are hyperbolic.
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Many examples of hyperbolic groups can be constructed via small cancelation
theory, see e.g. [?, ?]. For instance, let G be a 1-relator group with the presentation

(X1, xp|w™),

where m > 2 and w is a cyclically reduced word in the generators z;. Then G
is hyperbolic. (This was proven by B. B. Newman in [?, Theorem 3| before the
notion of hyperbolic groups was introduced; Newman proved that for such groups
G Dehn’s algorithm applies, which is equivalent to hyperbolicity, see §8.13.)

Below is a combinatorial characterization of hyperbolic groups among Coxeter
groups. Let I' be a finite Coxeter graph and G = Cr be the corresponding Coxeter
group. A parabolic subgroup of T is the Coxeter subgroup defined by a subgraph A
of I'. It is clear that every parabolic subgroup of G admits a natural homomorphism
to Gj it turns out that such homomorphisms are always injective.

THEOREM 8.95 (G. Moussong [?]). A Cozeter group G is Gromov-hyperbolic
if and only if the following condition holds:

No parabolic subgroup of G is virtually isomorphic to the direct product of two
infinite groups.

In particular, a Coxeter group is hyperbolic if and only if it contains no free
abelian subgroup of rank 2.

PROBLEM 8.96. Is there a similar characterization of Gromov—hyperbolic groups
among Shephard groups and generalized von Dyck groups?

Since changing generating set does not alter the quasi-isometry type of the
Cayley graph and Rips—hyperbolicity is invariant under quasi-isometries (Corollary
8.39), we conclude that a group G is hyperbolic if and only if all its Cayley graphs are
hyperbolic. Furthermore, if groups G, G’ are quasi-isometric then G is hyperbolic if
and only if G’ is hyperbolic. In particular, if G, G’ are virtually isomorphic, then G
is hyperbolic if and only if G’ is hyperbolic. For instance, all virtually free groups
are hyperbolic.

In view of Milnor-Schwarz lemma,

OBSERVATION 8.97. If GG is a group acting geometrically on a Rips—hyperbolic
metric space, then G is also hyperbolic.

DEFINITION 8.98. A group G is called CAT (k) if it admits a geometric action
on a CAT' (k) space.

Thus, every CAT(—1) group is hyperbolic. In particular, fundamental groups
of compact Riemannian manifolds of negative curvature are hyperbolic.
The following is an outstanding open problem in geometric group theory:

OPEN PROBLEM 8.99. Construct a hyperbolic group G which is not a CAT(—1)
or even a CAT(0) group.

DEFINITION 8.100. A hyperbolic group is called elementary if it is virtually
cyclic. A hyperbolic group is called non-elementary otherwise.

Here are some examples of non-hyperbolic groups:

1. Z" is not hyperbolic for every n > 2. Indeed, Z™ is QI to R™ and R" is not
hyperbolic (see Example 8.9).

2. A deeper fact is that if a group G contains a subgroup isomorphic to Z?2
then G is not hyperbolic, see e.g. [BH99].
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3. More generally, if G contains a solvable subgroup S then G is not hyperbolic
unless S is virtually cyclic.

4. Even more generally, for every subgroup S of a hyperbolic group G, the
group S is either elementary hyperbolic or contains a nonabelian free subgroup. In
particular, every amenable subgroup of a hyperbolic group is virtually cyclic. See
e.g. [BH99].

5. Furthermore, if Z < G is a central subgroup of a hyperbolic group, then
either Z is finite, or G/Z is finite.

REMARK 8.101. There are hyperbolic groups which contain non-hyperbolic
finitely-generated subgroups, see Theorem 8.142. A subgroup H < G of a hyper-
bolic group G is called quasiconvez if it is a quasiconvex subset of a Cayley graph
of G. If H < GG is a quasiconvex subgroup , then, according to Theorem 8.44, H is
quasi-isometrically embedded in G and, hence, is hyperbolic itself.

Examples of quasiconvex subgroups are given by finite subgroups (which is
clear) and (less obviously) infinite cyclic subgroups. Let G be a hyperbolic group
with a word metric d. Define the translation length of g € G to be

n
lgll = tim 95,
n—oo n
It is clear that ||g|| = 0 if ¢ has finite order. On the other hand, every cyclic
subgroup (g) C G is quasiconvex and ||g|| > 0 for every g of infinite order, see
Chapter IILT", Propositions 3.10, 3.15 of [BH99].

8.12. Ideal boundaries of hyperbolic groups

We define the ideal boundary 0., G of a hyperbolic group G as the ideal bound-
ary of some (every) Cayley graph of G: It follows from Theorem 8.83, that bound-
aries of different Cayley graphs are equivariantly homeomorphic. Here are two
simple examples of computation of the ideal boundary.

Since 0,,H" = S™~1, we conclude that for the fundamental group G of a closed
hyperbolic n-manifold, ,,G = S"~!. Similarly, if G = F,, is the free group of
rank n, then free generating set S of G yields Cayley graph X = I'g s which is a
simplicial tree of constant valence. Therefore, as we saw in Section 8.9, 0., X is
homeomorphic to the Cantor set. Thus, 0. F;, is the Cantor set.

LEMMA 8.102. Let G be a hyperbolic group and Z = 05,G. Then Z consists of
0, 2 or continuum of points, in which case it is perfect. In the first two cases G is
elementary, otherwise G is non-elementary.

PrOOF. Let X be a Cayley graph of G. If G is finite, then X is bounded and,
hence Z =. Thus, we assume that G is infinite. By Exercise 4.74, X contains a
complete geodesic 7y, thus, Z has at least two distinct points, the limit points of
v. If distgaus(y, X) < oo, X is quasi-isometric to R and, hence, G is 2-ended.
Therefore, G is virtually cyclic by Part 3 of Theorem 6.8.

We assume, therefore, that distga.s(y, X) = co. Then there exists a sequence
of vertices x,, € X so that limdist(z,,vy) = co. Let y,, € v be a nearest vertex to
Zn. Let g, € G be such that ¢,(y,) = e € G. Then applying g, to the union of
geodesics [Ty, yn] Uy and taking limit as n — oo, we obtain a complete geodesic
B C X (the limit of a subsequence g, (7)) and a geodesic ray p meeting § at e, so
that for every x € p, e is a nearest point on v to x. Therefore, p(co) is a point
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different from ~(%00), so Z contains at least 3 distinct points. Let p be a centroid
of a corresponding ideal triangle. Then G -0 is a 1-net in X and, we are, therefore,
in the situation described in Lemma 8.86. Let K denote the kernel of the action
G ~ Z. Then every k € K moves every point in X by < D(1,0,1,4), where D is
the function defined in Lemma 8.86. It follows that K is a finite group. Since G is
infinite, Z is also infinite.

Let £ € Z and let p be a ray asymptotic to £&. Then, there exists a sequence
gn € G so that g,(e) = z,, € p. Let v C X be a complete geodesic asymptotic to
points 7, ¢ different from £. We leave it to the reader to verify that either

lim gn(n) =&,
or

lign gn(C) =g,

Since Z is infinite, we can choose &, 7 so that their images under the given sequence
gn are not all equal to £&. Thus, ¢ is an accumulation point of Z and Z is perfect.
Since Z is infinite, it follows that it has cardinality continuum. O

DEFINITION 8.103. Let Z be a compact and G C Homeo(Z) be a subgroup.
The group G is said to be a convergence group if G acts properly discontinuously on
Trip(Z), where Trip(Z) is the set of triples of distinct elements of Z. A convergence
group G is said to be a uniform if Trip(Z)/G is compact.

THEOREM 8.104 (P. Tukia, [?]). Suppose that X is a proper §-hyperbolic ge-
odesic metric space with the ideal boundary Z = 0., X which consists of at least
3 points. Let G ~ X be an isometric action and G ~ Z be the corresponding
topological action. Then the action G ~ X is geometric if and only if G ~ Z is a
uniform convergence action.

PRrROOF. Recall that we have a correspondence center : Trip(Z) — X sending
each triple of distinct points in Z to the set of centroids of the corresponding ideal
triangles. Furthermore, by Corollary 8.73, for every & € Trip(Z),

diam(center(£)) < 600.

Clearly, the correspondence center is G-equivariant. Moreover, the image of every
compact K in Trip(Z) under center is bounded (see Exercise 8.75).

Assume now that the action G ~ X is geometric. Given a compact subset
K C Trip(Z), suppose that the set

Gk :={g€GlgK N K # 0}

is infinite. Then there exists a sequence &, € K and an infinite sequence g, € G so
that g,(¢,) € K. Then the diameter of the set

E = <U center(&,) U center(gy, (ﬁn))> cX

n

is bounded and each g,, sends some p,, € E to an element of E. This, however,
contradicts proper discontinuity of the action of G on X. Thus, the action G ~
Trip(Z) is properly discontinuous.

Similarly, since G ~ X is cobounded, the G-orbit of some metric ball B(p, R)
covers the entire X. Thus, using equivariance of center, for every § € Trip(Z),
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there exists g € G so that
center(g€) C B = B(z, R+ 600).

Since center1(B) is relatively compact in Trip(Z) (see Exercise 8.76), we con-
clude that G acts cocompactly on Trip(Z). Thus, G C Homeo(Z) is a uniform
convergence group.

The proof of the converse is essentially the same argument run in the reverse.
Let K C Trip(Z) be a compact, so that G-orbit of K is the entire Trip(Z). Then
the set center(K), which is the union of sets of centroids of points ¢’ € K, is a
bounded subset B C X. Now, by equivariance of the correspondence center, it
follows that G-orbit of B is the entire X. Hence, G ~ X is cobounded. The
argument for proper discontinuity of the action G ~ Trip(Z) is similar, we just
use the fact that the preimage of a sufficiently large metric ball B C X under
the correspondence center is nonempty and relatively compact in Trip(Z). Then
proper discontinuity of the action G ~ X follows from proper discontinuity of
G~ Trip(Z). O

COROLLARY 8.105. Every hyperbolic group G acts by homeomorphisms on 0o G
as a uniform convergence group.

The converse to Theorem 8.104 is a deep theorem of B. Bowditch [?]:

THEOREM 8.106. Let Z be a perfect compact Hausdorff space consisting of more
than one point. Suppose that G C Homeo(Z) is a uniform convergence group.

Then G is hyperbolic and, moreover, there exists an equivariant homeomorphism
7 — 05G.

Note that in the proof of Part 1 of Theorem 8.104 we did not really need the
property that the action of G on itself was isometric, a geometric quasi-action (see
Definition 5.59) suffices:

THEOREM 8.107. Suppose that X is a d-hyperbolic proper geodesic metric space.
Assume that there exists R so that every point in X is within distance < R from
a centroid of an ideal triangle in X. Let ¢ : G ~ X be a geometric quasi-action.
Then the extension ¢oo : G — Homeo(Z), Z = 0xX, of the quasi-action ¢ to a
topological action of G on Z is a uniform convergence action.

PROOF. The proof of this result closely follows the proof of Theorem 8.104; the
only difference is that ideal triangles 7' C X are not mapped to ideal triangles by
quasi-isometries ¢(g),g € G. However, ideal quasi-geodesic triangles ¢(g)(T") are
uniformly close to ideal triangles which suffices for the proof. O

8.13. Linear isoperimetric inequality and Dehn algorithm for
hyperbolic groups

Let G be a hyperbolic group, we suppose that I" is a §-hyperbolic Cayley graph
of G. We will assume that 6 > 2 is a natural number. Recall that a loop in T" is
required to be a closed edge-path. Since the group G acts transitively on the vertices
of X, the number of G-orbits of loops of length < 10§ in I' is bounded. We attach
a 2-cell along every such loop. Let X denote the resulting cell complex. Recall that
for a loop v in X, £(v) is the length of v and A(v) is the least combinatorial area
of a disk in X bounding ~, see Section 4.9.
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Our goal is to show that X is simply-connected and satisfies a linear isoperi-
metric inequality. We will prove a somewhat stronger statement. Namely, suppose
that X is a connected 2-dimensional cell complex whose 1-skeleton X' (metrized
to have unit edges) is d-hyperbolic (with ¢ > 2 an integer) and so that for every
loop v of length < 106 in X, A(y) < K < co. Then:

The following theorem was first proven by Gromov in Section 2.3 of [?]:

THEOREM 8.108 (Hyperbolicity implies linear isoperimetric inequality). Under
the above assumptions, for every loop v C X,

(8.8) A(y) < KL(v).

Since the argument in the proof of the theorem is by induction on the length
of ~, the following result is the main tool.

PROPOSITION 8.109. Every loop v in X of length larger than 108 is a product
of two loops, one of length < 100 and another one of length < £(7).

PrROOF. We assume that v is parameterized by its arc-length, and that it has
length n.
Without loss of generality we may also assume that 6 > 2.

Case 1. Assume that there exists a vertex u = 7(¢) such that the vertex
v = y(t + 5J) satisfies d(u,v) < 50. By a circular change of the parameterizations
of v we may assume that ¢ = 0. Let p denote the geodesic [v,u] in X(). We then
obtain two new loops

7 =7([0,58]) Up
and
2 = (=p) Un([59,7]).

Here —p is the geodesic p with the reversed orientation. Since £(p) < £(v([0,54])),
we have £(y1) < 106 and 4(7y2) < €(y1) -

~(t +56)

FIGURE 8.5. Case 1.

Case 2. Assume now that for every ¢, d(v(t),y(t + 50)) = 50, where ¢t + 59 is
considered modulo n. In other words, every sub-arc of « of length 59 is a geodesic
segment.
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Let vg = v(0). Assume that v = v(t) is a vertex on v whose distance to vg is
the largest possible, in particular it is at least 56.

Consider the triangles Ay with the vertices vg,v = v(t), v+ = v(t £ 59). Each
triangle in X(Y is d-thin, therefore, us = ~(t £ (§ + 1)) is within distance < §
of a vertex on one of the sides [vg,v], [vg,v4]. If, say, uy is within < § of some
w € [vg, v4], then

dvo,v) Kr+d+(0+1)=r+20+1,
dvg,vy)=r+s=2r+30—1>r+26+1

where r = d(vg, w), s = d(w, v ). Hence, d(vg, v4+) > d(vg,v) which contradicts our
choice of v as being farthest away from vg. Therefore both uy are within distance
< 6 from the same point on the geodesic [vg, v] and, hence, d(u,,u_) < 25. On the
other hand, the distance between these vertices along the path ~ is 2§ + 2. This
contradicts our working hypothesis that every sub-arc of v of length at most 59 is
a geodesic segment.

We have thus obtained that Case 2 is impossible. O

Proof of Theorem 8.108.
The proof of the inequality (8.8) is by induction on the length of ~.

1. If £(y) < 106 then A(y) < K < K{(%).
2. Suppose the inequality holds for ¢(v) < n, n > 104. If {(y) = n + 1, then
~ is the product of loops 7/,~v” as in Proposition 8.109: £(y") < £(v), £(v") < 106.
Then, inductively,
A() S KUY), AW <K,
and, thus,
A(y) S A(Y) + A(Y") S KU(Y) + K < Kl(v). O

v ="t
vy =t +56) Ui 541 )

§+1

v_ = ~(t — 59)

Vo

FIGURE 8.6. Case 2.
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Below are two corollaries of Proposition 8.109, which was the key to the proof
of the linear isoperimetric inequality.

COROLLARY 8.110 (M. Gromov, [?]). Every hyperbolic group is finitely-presented.

PRrROOF. Proposition 8.109 means that every loop in the Cayley graph of T is
a product of loops of length < 106. Attaching 2-cells to I' along the G-images of
these loops we obtain a simply-connected complex Y on which G acts geometrically.
Thus, G is finitely-presented. O

COROLLARY 8.111 (M. Gromov, [?], section 6.8N). Let Y be a coarsely con-
nected Rips—hyperbolic metric space. Then X satisfies linear isoperimetric inequal-
ity:

Ar,(c) < Kl(c)
for all sufficiently large u and for appropriate K = K(u).

PROOF. Quasi-isometry invariance of isoperimetric functions implies that it
suffices to prove the assertion for I', the 1-skeleton of a connected R-Rips complex
Ripsr(X) of X. By Proposition 8.109, every loop « in I' is a product of < ¢(v)
loops of length < 109, where I' is §-hyperbolic in the sense of Rips. Therefore, for
any p > 106, we get

Arp(v) <L(v). O

Dehn algorithm. A (finite) presentation (X|R) is called Dehn if for every
nontrivial word w representing 1 € G, the word w contains more than half of a
relator. A word w is called Dehn-reduced if it does not contain more than half
of any relator. Given a word w, we can inductively reduce the length of w by
replacing subwords v in w with «’ so that vu~! is a relator so that |u/| < |u].
This, of course, does not change the element g of G represented by w. Since the
length of w is decreasing on each step, eventually, we get a Dehn-reduced word v
representing g € G. Since (X|R) is Dehn, either v = 1 (in which case g = 1) or
v # 1 in which case g # 1. This algorithm is, probably, the simplest way to solve
word problems in groups. It is also, historically, the oldest: Max Dehn introduced
it in order to solve the word problem for hyperbolic surface groups.

Geometrically, Dehn reduction represents a based homotopy of the path in X
represented by the word w (the base-point is 1 € G). Similarly, one defines cyclic
Dehn reduction, where the reduction is applied to the (unbased) loop represented
by w and the cyclically Dehn presentation: If w is a null-homotopic loop in X then
this loop contains a subarc which is more than half of a relator. Again, if G admits
a cyclically Dehn presentation then the word problem in G is solvable.

LEMMA 8.112. If G is §-hyperbolic finitely-presented group then it admits a
finite (cyclically) Dehn presentation.

PrROOF. Start with an arbitrary finite presentation of G. Then add to the list
of relators all the words of length < 100 representing the identity in G. Since the
set of such words is finite, we obtain a new finite presentation of the group G. The
fact that the new presentation is (cyclically) Dehn is just the induction step of the
proof of Proposition 8.108. d

Note, however, that the construction of a (cyclically) Dehn presentation re-
quires solvability of the word problem for G (or, rather, for the words of the length
< 109) and, hence, is not a priori algorithmic. Nevertheless, the word problem in
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d-hyperbolic groups (with known §) is solvable as we will see below, and, hence, a
Dehn presentation is algorithmically computable.

The converse of Proposition 8.108 is true as well, i.e. if a finitely-presented
group satisfies a linear isoperimetric inequality then it is hyperbolic. We shall
discuss this in Section 8.17.

8.14. Central co-extensions of hyperbolic groups and quasi-isometries

We now consider a central co-extension
(8.9) 124—-G-5G—>1
with A a finitely-generated abelian group and G hyperbolic.

THEOREM 8.113. G is QI to A x G.

PrROOF. In the case when A = 7Z, the first published proof belongs to S. Gersten
[?], although, it appears that D.B.A. Epstein and G. Mess also knew this result.
Our proof follows the one in [?]. First of all, since an epimorphism with finite kernel
is a quasi-isometry, it suffices to consider the case when A is free abelian of finite
rank.

Our main goal is to construct a Lipschitz section (which is not a homomor-
phism!) s: G — G of the sequence (8.9). We first consider the case when A 2 Z.
Each fiber r=1(g),g € G, is a copy of Z and, therefore, has a natural order denoted
<. We let ¢ denote the embedding Z = A — G. We let X denote a symmetric
generating set of G and use the same name for its image under s. We let (XIR)
be a finite presentation of G. Let |w| denote the word length with respect to this
generating set, for w € X*, where X'* is the set of all words in X', as in Section 4.2.
Lastly, let @ and w denote the elements of G and G represented by w € X*.

LEMMA 8.114. There ezists C' € N so that for every g € G there exists
r(g) := max{w(—Clw|) : w € X*,w = g}.
Here the mazimum is taken with respect to the natural order on s~1(g).

ProoOF. We will use the fact that G satisfies the linear isoperimetric inequality
Area(a) < K|of
for every o € X* representing the identity in G. We will assume that K € N. For
each R € X" so that R*! is a defining relator for G, the word R represents some
R € A. Therefore, since G is finitely-presented, we define a natural number T' so
that .
((T) = max{R : R*! is a defining relator of G}.

We then claim that for each u € X'* representing the identity in G,
(8.10) (T Area(u)) > a € A.

Since general relators u of G are products of words of the form hRh™!, R € R,
(where Area(u) is at most the number of these terms in the product) it suffices to
verify that for w = h~'Rh,

w < o(T)
where R is a defining relator of G and h € X*. The latter inequality follows from
the fact that the multiplications by A and A~! determine an order isomorphism and
its inverse between r~1(1) and r~1(h).
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Set C':= T K. We are now ready to prove lemma. Let w, v be in X* representing
the same element g € G. Set u := v~!. Then ¢ = wu represents the identity and,
hence, by (8.10),

g =wi < (Clg|) = «(Clw]) + o(Clul).
We now switch to the addition notation for A 2 Z. Then,
w —v < (Clwl]) + «(Clvl),
and
w — (Clw|) < v+ ¢(Clv]).
Therefore, taking v to be a fixed word representing g, we conclude that all the
differences w — ¢(Clw|) are bounded from above. Hence their maximum exists. O

Consider the section s (given by Lemma 8.114) of the exact sequence (8.9). A
word w = wy realizing the maximum in the definition of s is called mazimizing. The
section s, of course, need not be a group homomorphism. We will see nevertheless
that it is not far from being one. Define the cocycle

0(91,92) = 8(91)8(92) - 8(9192)

where the difference is taking place in r~!(g1g2). The next lemma does not use
hyperbolicity of G, only the definition of s.

LEMMA 8.115. The set o(G, X) is finite.
PRrROOF. Let x € X, g € G. We have to estimate the difference
s(g)x — s(gz).

Let w; and ws denote maximizing words for g and gx respectively. Note that the
word wjx also represents gx. Therefore, by the definition of s,

@iae(~C(jwn| + 1)) < da0(~Clua)).
Hence, there exists a € A,a > 0, so that
@1(=C(jr)F(~C)a = Bau(~Cluws)

and, thus

(8.11) s(g)T(—=C)a = s(gx).

Since wox~! represents g, we similarly obtain

(8.12) s(gx)z ' (—C)b = s(g),b > 0,b € A.

By combining equations (8.11) and (8.12) and switching to the additive notation
for the group operation in A we get
a+b=1(2C).
Since a > 0,b > 0, we conclude that —¢(C) < a — +(C) < (C). Therefore, (8.11)
implies that
[s(g)x — s(gz)| < C.

Since the finite interval [—¢(C),¢(C)] in A is a finite set, lemma follows. O

REMARK 8.116. Actually, more is true: There exists a section s’ : G — G
so that ¢/(G,G) is a finite set. This follows from the fact that all (degree > 2)

cohomology classes of hyperbolic groups are bounded (see [?]). However, the proof
is more difficult and we will not need this fact.
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Letting L denote the maximum of the word lengths (with respect to the gen-
erating set X') of the elements in the sets o(G, X),0(X,G), we conclude that the
map s : G — G is (L + 1)-Lipschitz. Given the section s : G — G, we define the
projection ¢ = ¢5 : G — A by
(8.13) P(g) =g—sor(g)

It is immediate that ¢ is Lipschitz since s is Lipschitz.

We now extend the above construction to the case of central co-extensions with

free abelian kernel of finite rank. Let A = H?:l A;, A; =2 7Z. Consider a central

co-extension (8.9). The homomorphisms A — A; induce quotient maps 7; : G — G
with the kernels ] i A;. Each G, in turn, is a central co-extension

(8.14) 124 -G 5G—1.

Assuming that each central co-extension (8.14) has a Lipschitz section s;, we obtain

the corresponding Lipschitz projection ¢; : G; — A; given by (8.13). This yields a
Lipschitz projection

d:G— A D= (P10M1,evey G 0 1).
We now set
s(r(g)) == g — @(9).
It is straightforward to verify that s is well-defined and that it is Lipschitz provided
that each s; is. We thus obtain

COROLLARY 8.117. Given a finitely-generated free abelian group A and a hyper-
bolic group G, each central co-extension (8-9) admits a Lipschitz section s : G — G
and a Lipschitz projection ® : G — A given by

®(g) =g —s(r(9))-
We then define the map
h:GxA—G, hg,a)=s(g)+a)
and its inverse . R
hliG = Gx A, hG) = (r(9), 2(9))-
Since homomorphisms are 1-Lipschitz while the maps r» and ® are Lipschitz, we

conclude that h is a bi-Lipschitz quasi-isometry. ([l

REMARK 8.118. The above proof easily generalizes to the case of an arbitrary
finitely-generated group G and a central co-extension (8.9) given by a bounded 2-nd
cohomology class (see e.g. [?, 7, EF97a]| for the definition): One has to observe
only that each cyclic central co-extension

1= A —>G —G—=1

is still given by a bounded cohomology class. We refer the reader to [?] for the
details.

EXAMPLE 8.119. Let G = Z?, A = Z. Since H*(G,Z) = H*(T?,Z) = Z, the
group GG admits nontrivial central co-extensions with the kernel A, for instance, the
integer Heisenberg group Hs. The group G for such an co-extension is nilpotent
but not virtually abelian. Hence, by Pansu’s theorem (Theorem ?7?), it is not
quasi-isometric to G x A = Z3.
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One can ask if Theorem 8.113 generalizes to other normal co-extensions of
hyperbolic groups G. We note that Theorem 8.113 does not extend, say, to the
case where A is a non-elementary hyperbolic group and the action G ~ A is trivial.
The reason is the quasi-isometric rigidity for products of certain types of groups
proven in [KKL98]. A special case of this theorem says that if G, ..., G,, are non-
elementary hyperbolic groups, then quasi-isometries of the product G = G X...xG,,
quasi-preserve the product structure:

THEOREM 8.120. Let m; : G — Gj,j = 1,...,n be natural projections. Then
for each (L, A)—quasi-isometry f : G — G, there is C = C(G, L, A) < oo, so that,
up to a composition with a permutation of quasi-isometric factors Gy, the map f
is within distance < C' from a product map f1 X ... X f,, where each f; : G; — G;
1S a quasi-isometry.

8.15. Characterization of hyperbolicity using asymptotic cones

The goal of this section is to strengthen the relation between hyperbolicity of
geodesic metric spaces and O-hyperbolicity of their asymptotic cones.

PROPOSITION 8.121 (§2.4, [Gro93|). Let (X,dist) be a geodesic metric space.
Assume that either of the following two conditions holds:
(a) There exists a non-principal ultrafilter w such that for all sequences e =
(en)nen of base-points e, € X and X = (A )nen of scaling constants with
w-lim A\, = 0, the asymptotic cone Cone, (X, e, N) is a real tree.
(b) For every non-principal wltrafilter w and every sequence € = (e,), oy of
base-points, the asymptotic cone Cone, (X, e, (n)) is a real tree.
Then (X, dist) is hyperbolic.

The proof of Proposition 8.121 relies on the following lemma.

LEMMA 8.122. Assume that a geodesic metric space (X,dist) satisfies either
property (a) or property (b) in Proposition 8.121. Then there exists M > 0 such
that for every geodesic triangle A(x,y,z) with dist(y,z) > 1 ,the two edges with
endpoint x are at Hausdorff distance at most Mdist(y, z).

PROOF. Suppose to the contrary that there exist sequences of triples of points
Zny Yn, Zn, such that dist(yn, z,) = 1 and
diStHauS([xn, yn]a [l‘n, ZnD = MndiSt(yna Zn)7
such that M,, — oo. Let a,, be a point on [z, y,] such that

(Sn = diSt(ana [-’I;n; Zn]) = diStHaus([xn7 yn}a [.’En, Zn])
Since 6, > M, it follows that &, — oco.

Suppose condition (a) holds. Consider the sequence of base-points a = (ay),,cy
and the sequence of scaling constants &' = (1/6,),cy- In the asymptotic cone
Cone,, (X, a,d'), the limits of [z,,,y,] and [z,, 2,] are at Hausdorff distance 1.

The triangle inequalities imply that the limits
dist(yn, an) and w.lim dist(zy, ay)

On On
are either both finite or both infinite. It follows that the limits of [z,,y,] and
[, 2] are either two distinct geodesics joining the points x,, = (x,,) and the point

w-lim

235



Yo = (Yn) = 2u(2n), or two distinct asymptotic rays with common origin, or two
distinct geodesics asymptotic on both sides. All these cases are impossible in a real
tree.

Suppose condition (b) holds. Let & = {[d,]| ; n € N}, where [,] is the
integer part of d,,. By Exercise 7?7, there exists w such that w(S) = 1. Consider
(x0)s (yh,), (z1,) and (a!,) defined as follows. For every m in the set S choose an

n € N with |d,,] = m and set (2},,9},, 2, @) = (T, Yn, Zn,y @n ). For m not in S

m? m
make an arbitrary choice for the entries of all four sequences.
In Cone, (X, a’, (m)) the limits w-lim[z],,y,,] and w-lim[z],, /] are as in one
of the three cases discussed in the previous case, all cases being forbidden in a real

tree. 0

PROOF OF PROPOSITION 8.121. Suppose that the geodesic space X is not hyper-
bolic. For every triangle A in X and a point a € A we define the quantity da(a),
which is the distance from a to union of the two sides of A which do not contain a
(if a lies on all three sides then we set €(a) = 0). Then for every n € N there exists
a geodesic triangle A,, = A(zy,, Yn, 2n), and a point a,, on the edge [z,,y,] such
that

dn =da, (an) = n.

For each A,, we then will choose the point a, in A,, which maximizes the function
da, . After relabelling the vertices, we may assume that a, € [z,,2,] and that
dn, = dist(an, [yn, 2zn]) = dist(an,b,), where b, € [yn,zn]. Let &, be equal to
dist(an, [Tn, 2n]) = dist(an, ¢,), for some ¢, € [x,, z,]. By hypothesis §,, > d,, .

Suppose condition (a) is satisfied. In the asymptotic cone K = Cone, (X, a, A),
where @ = (a,) and A = (1/d,,) we look at the limit of A,,. There are two cases:

A) w-lim g—’; < +o00.

By Lemma 8.122, we have that distgqus([an, Tn], [cn, Tn]) < M - §,,. Therefore
the limits of [a,,, z,] and [c,, x,] are either two geodesic segments with a common
endpoint or two asymptotic rays. The same is true of the pairs of segments [ay, yy],
(b, yn] and [by, 24], [cn, 2n], respectively. It follows that the limit w-lim A, is a
geodesic triangle A with vertices z,y, 2 € KU9- K. The point a = w-lima,, € [z,y]
is such that dist(a, [z, 2] U [y, 2]) > 1, which implies that A is not a tripod. This
contradicts the fact that K is a real tree.

B) w-lim 2—" = +o0.

This also implies that
dist(an, 2,)

M = +o00 and w-lim ————= = 4-o0.

dn, dn,

By Lemma 8.122;, we have distgaus([an,Ynl, [bn;¥n]) < M - d,. Thus, the
respective limits of the sequences of segments [x,,y,] and [y,, z,] are either two
rays of origin y = w-limy,, or two complete geodesics asymptotic on one side. We
denote them Ty and 3z, respectively, with y € KU 0K, z, z € K. The limit of
[, 2] is empty (it is “out of sight”).

The choice of a,, implies that any point of [b,, z,,] must be at a distance at most
d,, from [2,,,y,]U [z, z,]. This implies that all points on the ray bz are at distance
at most 1 from zy. It follows that Tg and 7z are either asymptotic rays emanating

w-lim
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from y or complete geodesics asymptotic on both sides, and they are at Hausdorff
distance 1. We again obtain a contradiction with the fact that K is a real tree.

We conclude that the condition in (a) implies that X is §-hyperbolic, for some
0> 0.

Suppose the condition (b) holds. Let S = {|d,,] ; n € N}, and let w be a non-
principal ultrafilter such that w(S) =1 (see Exercise 7?7). We consider a sequence
(A!l) of geodesic triangles and a sequence (a,) of points on these triangles with
the property that whenever m € S, Al = A, and a!, = a,, for some n such that
ldn] = m.

In the asymptotic cone Cone, (X, a’, (m)), with a’ = (a/,,) we may consider the
limit of the triangles (A!,)), argue as previously, and obtain a contradiction to the
fact that the cone is a real tree. It follows that the condition (b) also implies the
hyperbolicity of X. O

REMARK 8.123. An immediate consequence of Proposition 8.121 is an alterna-
tive proof of the quasi-isometric invariance of Rips-hyperbolicity among geodesic
metric spaces: A quasi-isometry between two spaces induces a bi-Lipschitz map
between asymptotic cones, and a topological space bi-Lipschitz equivalent to a real
tree is a real tree.

As a special case, consider Proposition 8.121 in the context of hyperbolic groups:
A finitely-generated group is hyperbolic if and only if every asymptotic cone of
G is a real tree. A finitely-generated group G is called lacunary-hyperbolic if at
least one asymptotic cone of G is a tree. Theory of such groups is developed in
[?], where many examples of non-hyperbolic lacunary hyperbolic groups are con-
structed. Thus, having one tree as an asymptotic cone is not enough to guarantee
hyperbolicity of a finitely-generated group. On the other hand:

THEOREM 8.124 (M.Kapovich, B.Kleiner [?]). Let G be a finitely—presented
group. Then G is hyperbolic if and only if one asymptotic cone of G is a tree.

PROOF. Below we present a of this theorem which we owe to Thomas Delzant.
We will need the following

THEOREM 8.125 (B. Bowditch, [?], Theorem 8.1.2). For every 0 there exists
0" so that for every m there exists R for which the following holds. If Y be an
m-locally simply-connected R-locally 6-hyperbolic geodesic metric space, then Y is
o' -hyperbolic.

Here, a space Y is R-locally d-hyperbolic if every R-ball with the path-metric
induced from Y is §-hyperbolic. Instead of defining m-locally simply-connected
spaces, we note that every simply-connected simplicial complex where each cell is
isometric to a Euclidean simplex, satisfies this condition for every m > 0. We refer
to [?, Section 8.1] for the precise definition. We will be applying this theorem in
the case when § = 1, m =1 and let 6’ and R denote the resulting constants.

We now proceed with the proof suggested to us by Thomas Delzant. Suppose
that G is a finitely-presented group, so that one of its asymptotic cones is a tree.
Let X be a simply-connected simplicial complex on which G acts freely, simplicially
and cocompactly. We equip X with the standard path-metric dist. Then (X, dist)
is quasi-isometric to G. Suppose that w is an ultrafilter, (\,) is a scaling sequence
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converging to zero, and X, is the asymptotic cone of X with respect to this se-
quence, so that X, is isometric to a tree. Consider the sequence of metric spaces
X, = (X, Apdist). Then, since X,, is a tree, by taking a diagonal sequence, there
exists a pair of sequences r,,,d,, with

w-limr, =00, w-limd, =0

so that for w-all n, the every r,-ball in X,, is §,-hyperbolic. In particular, for for
w-all n, every R-ball in X,, is 1-hyperbolic. Therefore, by Theorem 8.125, the space
X, is 0’-hyperbolic for w-all n. Since X, is a rescaled copy of X, it follows that X
(and, hence, G) is Gromov-hyperbolic as well. a

We now continue discussion of properties of trees which appear as asymptotic
cones of hyperbolic spaces.

PROPOSITION 8.126. Let X be a geodesic hyperbolic space which admits a geo-
metric action of a group G. Then all the asymptotic cones of X are real trees where
every point is a branch-points with valence continuum.

Proor. STEP 1. By Theorem 5.29, the group G is finitely generated and
hyperbolic and every Cayley graph I" of G is quasi-isometric to X. It follows that
there exists a bi-Lipschitz bijection between asymptotic cones

® : Cone,, (G,1,A) — Cone, (X, xz, A),

where x is an arbitrary base-point in X, and 1,x denote the constant sequences
equal to 1 € G, respectively to € X. Moreover, ®(1,) = x,,. The map ® thus
determines a bijection between the space of directions X1 in the cone of I and the
space of directions Xz in the cone of X. It suffices therefore to prove that the set
Y1, has the cardinality of continuum. For simplicity, in what follows we denote
the asymptotic cone Cone, (G, 1,A) by G,,.

STEP 2. We show that the geodesic rays joining 1 to distinct points of J,I"
give distinct directions in 1, in the asymptotic cone.

Let p; : [0,00) — T',i = 1,2 be geodesic rays, p;(0) = 1,7 € {1,2}, p1(c0) =
a, p2(00) = B, where a # 8. For every ¢ and s in [0, 00), we consider

a; = w-lim p1(t/A,) and by = w-lim pa(s/\y), ag, bs € T, .
We have
dist(at, bs) = w-lim A, dist(p1 (¢/A\n), p2(s/An)) =

welim [t + s — 20 (o1 (E/ M), p2(s/An))i] =t + s,

because the sequence of Gromov products

(pl(t/)‘n)’ pZ(S/)\n))l

w-converges to a constant. The two limit rays, p§ and p§, of the rays p; and
p2, defined by p¥(t) = at, p%(s) = bs, have only the origin in common and give
therefore distinct directions in 1,,.

We thus have found an injective map from 0,.I" to 1,

STEP 3. We argue that every direction of I, in 1,, is determined by a sequence
of geodesic rays emanating from 1 in I". This argument was suggested to us by P.
Papasoglu.
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An arbitrary direction of I',, in 1, is the germ of a geodesic segment with one
endpoint in 1,,, and this segment is the limit set of a sequence of geodesic segments
of T with one endpoint in 1, with lengths growing linearly in )\i

LEMMA 8.127. Every sufficiently long geodesic segment in a Cayley graph of
a hyperbolic group is contained in the M -neighborhood of a geodesic ray, where M
depends only on the Cayley graph.

ProoF.  According to [?] and to [ECHT92, Chapter 3, §2|, given a Cayley
graph T" of a hyperbolic group G, there exists a finite directed graph G with edges
labeled by the generators of G such that every geodesic segment in I' corresponds to
a path in G. If a geodesic segment is long enough, the corresponding path contains
at least one loop in G. The distance from the endpoint of the path to the last loop
is bounded by a constant M which depends only on the graph G. Let p be the
geodesic ray obtained by going around this loop infinitely many times. The initial
segment is contained in N/ (p). O

We conclude that every direction of I',, in 1, is the germ of a limit ray. We
then have a surjective map from the set of sequences in 0,,G to E[lw]:

{(@n)nen; an € 0} = (aOOF)N - E[lw]'

Steps 2 and 3 imply that for a non-elementary hyperbolic group, the cardinality
of 2[1w] is continuum, . O

A. Dyubina—Erschler and I. Polterovich ([?], [?]) have shown a stronger result
than Proposition 8.126:

THEOREM 8.128 ([?], [?]). Let A be the 280 —universal tree, as defined in The-
orem 8.20.
(a) FEvery asymptotic cone of a non-elementary hyperbolic group is isometric
to A.
(b) Every asymptotic cone of a complete, simply connected Riemannian man-
ifold with sectional curvature at most —k, k > 0 a fized constant, is iso-
metric to A.

A consequence of Theorem 8.128 is that asymptotic cones of non-elementary
hyperbolic groups and of complete, simply connected Riemannian manifold with
strictly negative sectional curvature cannot be distinguished from one another.

8.16. Size of loops

The characterization of hyperbolicity with asymptotic cones allows one to define
hyperbolicity in terms of size of its closed loops, in particular of the size of its
geodesic triangles. Throughout this section X denotes a geodesic metric space.
One parameter that measures the size of geodesic triangles is the minimal size
introduced in Definition 5.49 for topological triangles. Only now, the three arcs
that we consider are the three geodesic edges of the triangles. With this we can
define the minsize function of a geodesic metric space X:

DEFINITION 8.129. The minimal size function,
minsize = minsizex : R}, — R,

minsize(¢) = sup{minsize(A) ; A a geodesic triangle of perimeter < ¢} .
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Note that according to (8.1), if X is d-hyperbolic in the sense of Rips, the
function minsize is bounded by 2§. We will see below that the “converse” is also true,
i.e. when the function minsize is bounded, the space X is hyperbolic. Moreover, M.
Gromov proved [?, §6] that a sublinear growth of minsize is enough to conclude that
a space is hyperbolic. With the characterization of hyperbolicity using asymptotic
cones, the proof of this statement is straightforward:

PRrROPOSITION 8.130. A geodesic metric space X is hyperbolic if and only if
minsize(¢) = o(¥).

PrOOF. Asnoted above, the direct part follows from Lemma 8.51. Conversely,
assume that minsize(¢) = o(¢). We begin by proving that in an arbitrary asymptotic
cone of X every finite geodesic is a limit geodesic, in the sense of Definition ?7.
More precisely:

LEMMA 8.131. Let g = [ax,b,] be a finite geodesic in Cone, (X, e, A) and
assume that a,, = (a;),b, = (b;). Then for every geodesic [a;,b;] C X connecting
a; to b;, w-lim[a;, b;] = g.

PROOF. Let ¢, = (¢;) be an arbitrary point on g. Consider an arbitrary triangle
A, C X with vertices a;, b., ¢;. Let ¢; be the perimeter of A;. Since w-lim \;¢; < oo
and minsize(4A;) = o(¢;), we get

w-lim A;minsize(A;) = 0.
Taking the points x;,y;, z; on the sides of A; realizing the minsize of A;, we con-
clude:
w-lim /\1 diam(xi, Yis Zl) =0.
Let {z,} = w-lim{x;,y;, 2} . Then
dist(ay, by,) < dist(ay,, zw) + dist(zy,, by) <

dist(ay,, zw) + dist(zy, by ) + 2dist(x,,, ¢,) = dist(ay,, ¢, ) + dist(cy, by) -

The first and the last term in the above sequence of inequalities are equal, hence
all inequalities become equalities, in particular ¢, = x,,. Thus ¢, € w-lim[a;, b;]
and lemma follows. O

If one asymptotic cone Cone, (X, e, A) is not a real tree then it contains a
geodesic triangle A which is not a tripod. Without loss of generality we may
assume that the geodesic triangle is a simple loop. By the above lemma, the
geodesic triangle is an ultralimit of a family of geodesic triangles (A;);e; with

perimeters of the order O (A%) The fact that minsize(A;) = o (i) implies that

the three edges of A have a common point, a contradiction.

M. Gromov in [?, Proposition 6.6.F] proved the following version of Proposition
8.130:

THEOREM 8.132. There exists a universal constant €9 > 0 such that if in a
geodesic metric space X all geodesic triangles with length > Ly, for some Lg, have

minsize(A) < g - perimeter(A),
then X 14s hyperbolic.
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Another way of measuring the size of loops in a space X is through their
constriction function. We define the constriction function only for simple loops in
X primarily for the notational convenience, the definition and the results generalize
without difficulty if one considers non-simple loops.

Let A € (0,3). For a simple Lipschitz loop ¢ : S' — X of length ¢, we define
the A\—constriction of the loop ¢ as constry(c), which is the infimum of d(x, y), where
the infimum is taken over all all points x,y separating c¢(S') into two arcs of length
at least AL.

The A—constriction function, constry : Ry — Ry, of a metric space X is defined
as

constry (¢) = sup{constry(c) ; ¢ is a Lipschitz simple loop in X of length < ¢}.
Note that when A < p, constry < constr,, and constr(¢) < £.

PROPOSITION 8.133 ([?], Proposition 3.5). For geodesic metric spaces X the
following are equivalent:

(1) X is —hyperbolic in the sense of Rips, for some § > 0;
(2) there exists A € (0, 1] such that constry(£) = o(() ;
(3) for all X € (0,1] and ¢ > 1,

constry (¢) < 24 [logy (¢ + 286) + 6] + 2.

REMARK 8.134. One cannot obtain a better order than O(log ¢) for the general
constriction function. This can be seen by considering, in the half-space model of
H?3, the horizontal circle of length .

PrOOF. We begin by arguing that (2) implies (1). In what follows we define
limit triangles in an asymptotic cone Cone(X) = Cone,, (X, e, A), to be the triangles
in Cone(X) whose edges are limit geodesics. Note that such triangles a priori need
not be themselves limits of sequences of geodesic triangles in X.

First note that (2) implies that every limit triangle in every asymptotic cone
Cone, (X, e, A) is a tripod. Indeed, if one assumes that one limit triangle is not a
tripod, without loss of generality one can assume that it is a simple triangle. This
triangle is the limit of a family of geodesic hexagons (H;);cs, with three edges of

lengths of order O (/\i) alternating with three edges of lengths of order o (/\i) )
(We leave it to the reader to verify that such hexagons may be chosen to be simple.)

Since constry (H;) = o (/\i) we obtain that w-lim H; is not simple, a contradiction.

It remains to prove that every finite geodesic in every asymptotic cone is a limit
geodesic. Let g([aw,b,]) be a geodesic in a cone Cone, (X, e, A), where a,, = (a;)
and b, = (b;); let ¢, = (¢;) be an arbitrary point on g. By the previous argument
every limit geodesic triangle with vertices ay,, by, c, is a tripod. If ¢, does not
coincide with the center of this tripod then this implies that

dist(ay,, ¢,) + dist(cy, by,) = dist(ay, by),

a contradiction. Thus, ¢, € w-lim[a;, b;] and, hence, g = w-lim[a;, b;].
We thus proved that every geodesic triangle in every asymptotic cone of X is
a tripod, hence every asymptotic cone is a real tree. Hence, X is hyperbolic.
Clearly, (3) implies (2). We will prove that (1) implies (3). By monotonicity
of the constriction function (as a function of A), it suffices to prove (3) for A = 1.
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Consider an arbitrary simple closed Lipschitz curve ¢ : S' — X of length £. We
orient the circle and will use the notation oy, to denote the oriented arc of the
image of ¢ connecting p to q. We denote constri(c) simply by constr. Let x,y, z be
three points on ¢(S') which are endpoints of arcs auy, s, @, in ¢(S') so that the

first two arcs have lenth g . Let t € a,, be the point minimizing the distance to y
in X. Clearly,

R :=dist(y,t) > constr, R <d(x,y), R<d(zv).

The point ¢ splits the arc o , into two sub-arcs a. ¢, oy . Without loss of generality,
we can assume that length of a; , is > g. In partcicular, d(z',t) = 2r > constr.
Let oy, be the maximal subarc of ag, disjoint from the interior of B(y,r) (we
allow z = ). As d(2/,t) > constr, lemma 8.59 implies that

0> fag) > 25 % — 126,

and, thus,
constr < 49 (logy (¢ + 126) + 3) + 2

The inequality in (3) follows. d

8.17. Filling invariants

Recall that for every p-simply connected geodesic metric space X we defined
(in Section 5.4) the filling area function (or, isoperimetric function) A(¢) = Ax ({)
(this function, technically speaking, depends on the choice of p), which computes
upper bound on the areas of disks bounding loops of lengths < £ in X. We also
defined the filling radius function r(¢) which computes upper bounds on radii of
such disks. The goal of this section is to relate both invariants to hyperbolicity of
the sapce X. Recall also that hyperbolicity implies linearity of Ax (¢), see Corollary
8.111.

There is a stronger version of this (converse) statement. This version states
that there is a gap between the quadratic filling order and the linear isoperimetric
order: As soon as the isoperimetric inequality is less than quadratic, it has to be
linear and the space has to be hyperbolic:

THEOREM 8.135 (Subquadratic filling, §2.3, §6.8, [?]). If a coarsely simply-
connected geodesic metric space X the isoperimetric function Ax(f) = o(¢?), then
the space is hyperbolic.

Note that there is a second gap for the possible filling orders of groups.

REMARK 8.136 ([?], [?]). If a finitely presented group G has Dehn function
D(£) = o(£), then G is either free or finite.

Proofs of Theorem 8.135 can be found in [?], [?], [?] and [?]. B. Bowditch
makes use of only two properties of the area function in his proof: The quadrangle
(or Besikovitch) inequality (see Proposition 5.48) and a certain theta—property. In
fact, as we will see below, only the quadrangle inequality or its triangle counterpart,
the minsize inequality (see Proposition5.50) are needed. Also, we will see it suffices
to have subquadratic isoperimetric function for geodesic triangles.

Proof of Theorem 8.185. Let X be a u-simply-connected geodesic metric space and
Ax be its isoperimetric function and minsizey : Ry — Ry be the minsize function,
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see Definition 8.129. According to Proposition 5.50, for every d > p,
52
[minsizex (£)]? < Q—Ax(f),
T
whence Ax(¢) = o(¢) implies minsizex (¢) = o(f). Proposition 8.130 then implies
that X is hyperbolic. [

The strongest known version of the converse to Corollary 8.111 is:

THEOREM 8.137 (Strong subquadratic filling theorem,see §2.3, §6.8 of [?], and
also [?], [?]). Let X be a d-simply connected geodesic metric space. If there exist
sufficiently large N and L € > 0 sufficiently small, such that every loop ¢ in X with
N < Ars(c) < LN satisfies

Ars() < ellength(c))?,
then the space X is hyperbolic.

It seems impossible to prove this theorem using asymptotic cones.

In Theorem 8.137 it suffices to consider only geodesic triangles A instead of all
closed curves, and to replace the condition N < Ars(A) < LN by length (A) >
N. This follows immediately from Theorem 8.132 and the minsize inequality in
Proposition 5.50.

M. Coornaert, T. Delzant and A. Papadopoulos have shown that if X is a com-
plete simply connected Riemannian manifold which is reasonable (see [?, Chapter
6, §1] for a definition of this notion; for instance if X admits a geometric group
action, then X is reasonable) then the constant € in the previous theorem only has

to be smaller than i, see [?, Chapter 6, Theorem 2.1].

In terms of the multiplicative constant, a sharp inequality was proved by S.
Wenger.

THEOREM 8.138 (S. Wenger [?]). Let X be a geodesic metric space. Assume
that there exists € > 0 and ly > 0 such that every Lipschitz loop ¢ of length length(c)
at least £y in X bounds a Lipschitz disk d : D?> — X with

1—¢

Area(d) < length(c)?.

T
Then X is Gromov hyperbolic.

In the Euclidean space one has the classical isoperimetric inequality
1
Area(d) < = length(c)?,
T

with equality if and only if ¢ is a circle and 0 a planar disk.

Note that the quantity Area(d) appearing in Theorem 8.138 is a generalization
of the notion of the geometric area used in this book. If the Lipschitz map ¢ :
D? — X isinjective almost everywhere then Area(¢) is the 2-dimensional Hausdorff
measure of its image. In the case of a Lipschitz map to a Riemannian manifold,
Area(¢) is the area of a map defined in Section 2.1.4. When the target is a general
geodesic metric space, Area(¢) is obtained by suitably interpreting the Jacobian
Jz (@) in the integral formula

Areao) = [ 110(o)].
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Another application of the results of Section 8.16 is a description of asymptotic
behavior of the filling radius in hyperbolic spaces.

ProrosiTION 8.139 ([?], §6, [?], §3). In a geodesic u-simply connected metric
space X the following statements are equivalent:

(1) X is hyperbolic;
(2) the filling radius r(£) = o(¢);
(3) the filling radius r(£) = O(log?).

Furthermore, in (3) one can say that given a loop ¢ : S' — X of length ¢, a
filling disk ® minimizing the area has the filling radius () = O(log¥).

REMARK 8.140. The logarithmic order in (3) cannot be improved, as shown by
the example of the horizontal circle in the half-space model of H3. We note that the
previous result shows that, as in the case of the filling area, there is a gap between
the linear order of the filling radius and the logarithmical one.

Proor. In what follows, we let Ar = Ar,, denote the p-filling area function in
the sense of Section 5.4, defined for loops in the space X.

We first prove that (1) = (3). According to the linear isoperimetric inequality
for hyperbolic spaces (see Corollary 8.111), there exists a constant K depending
only on X such that

(8.15) Ar(c) < Kflx(c)

Here Ar(c) is the p-area of a least-area p-disk 0 : D(®©) — X bounding ¢. Recall
also that the combinatorial length and area of a simplicial complex is the number
of 1-simplices and 2-simpleces respectively in this complex. Thus, for a loop ¢ as
above, we have
lx(¢) < p length(C),

where C is the triangulation of the circle S' so that vertices of any edge are mapped
by ¢ to points within distance < p in X.

Consider now a loop ¢ : St — X of metric length ¢ and a least area u-disk
2 : DO - X filling ¢; thus, Ar(c) < K¥.

Let v € D be a vertex such that its image a = 9(v) is at maximal distance r
from ¢(S*). For every 1 < j < k, with

T
kE=|-
L]
we denfine a subcomplex D; of D: Dj is the maximal connected subcomplex in D

containing v, so that every vertex in D; could be connected to v by a gallery (in
the sense of Section 3.2.1) of 2-dimensional simplices ¢ in D so that

0 (0'(0)> C Bl(a,ju).

For instance D; contains the star of v in D. Let Ar; be the number of 2-simplices
in Dj.

For each j < k — 1 the geometric realization D; of the subcomplex D; is
homeomorphic to a 2-dimensional disk with several disks removed from the interior.
(As usual, we will conflate a simplicial complex and its geometric realization.)
Therefore the boundary D; of D; in D? is a union of several disjont topological
circles, while all the edges of D; are interior edges for D. We denote by s; the
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outermost circle in 0D, i.e., s; bounds a triangulated disk D} C D, so that D; C
D;. Let length(9D;) and length(s;) denote the number of edges of 9D; and of s;
respectively.

By definition, every edge of D; is an interior edge of D;; and belongs to a
2-simplex of D;; ;. Note also that if o is a 2-simplex in D and two edges of o belong
to Dj, then o belongs to D; as well. Therefore,

Arjiq 2 Ary + %length(aDj) > Ar; + élength(sj).
Since 0 is a least area filling disk for ¢ it follows that each disk D|D; is a least area
disk bounding the loop 9[;;. In particular, by the isoperimetric inequality in X,
Arj = Area(D;) < Area(D)) < Klx(0(s;)) < Kplength(s;)
We have thus obtained that

1

It follows that

k
1
KizAr(d) > |1+ —
(o) (+3MK>
whence,
Infl+InK
r<pkt1) <p| — R4

I (1+ 5%

Clearly (3) = (2). It remains to prove that (2) = (1).

We first show that (2) implies that in an every asymptotic cone Cone,, (X, e, )
all geodesic triangles that are limits of geodesic triangles in X (i.e. A = w-lim A;)
are tripods. We assume that A is not a point. Every geodesic triangle A; can be
seen as a loop ¢; : S* — A, and can be filled with a p-disk 0 : DM 5 X of filling
radius r; = r(9;) = o (length (A;)) . In particular, w-lim; \;r; = 0.

Let [z, yil, [yi, z:] and [z;, z;] be the three geodesic edges of A; , and let Z;, 7, Z;
be the three points on S! corresponding to the three vertices x;,;, z;. Consider a
path p; in the 1-skeleton of D with endpoints 3, and Z; such that p, together with
the arc of S' with endpoints 7;,%; encloses a maximal number of triangles with
9;—images in the r;—neighborhood of [y;, z;]. Every edge of p; that is not in S! is
contained in a 2-simplex whose third vertex has 0;,—image in the r;,—neighborhood of
[yi, 2:] U [24, 2;] . The edges in p, that are in S! are either between Z;, 7, or between
T, Zi -

Thus p; has d;,-image p; in the (r; + p)-neighborhood of [y;, ;] U [z, ;] . See
Figure 8.7.

Consider an arbitrary vertex u on S' between 7;,%; and its image u € [y;, 2]
We have that p; C N4 ([yi, u]) UN 40 ([u, 2:]), where [y;,u] and [u, 2;] are sub-
geodesics of [y;, 2] -

By connectedness, there exists a point u’ € p; at distance at most r; + p from
a point u; € [y;,u], and from a point us € [u, z;]. As the three points u;,u, us are
aligned on a geodesic and dist(u1,u2) < 2(r; + p) it follow that, say, dist(uq,u) <
r; + 1, whence dist(u,u’) < 3(r; + ). Since the point & was arbitrary, we have thus

proved that [y;, z;] is in N5, 43,(pi), therefore it is in Ny, 44, ([yi, 7] U [24, 24]) -
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F1GURE 8.7. The path p,; and its image p;.

This implies that in A one edge is contained in the union of the other two. The
same argument done for each edge implies that A is a tripod.

From this, one can deduce that every triangle in the cone is a tripod. In order
to do this it suffices to show that every geodesic in the cone is a limit geodesic.
Consider a geodesic in Cone,, (X, e, X) with the endpoints z,, = (z;) and y, = (v;)
and an arbitrary point z, = (z;) on this geodesic. Geodesic triangles A; with
vertices x;,¥;,z; yield a tripod A, = A(z,,Yw, 2w) in the asymptotic cone, but
since,

dist(zy, 2,,) + dist(zy,, Yo ) = dist(xy,, Yw),
it follows that the tripod must be degenerate. Thus z,, € w-lim[z;, y;] . ([l

Like for the area, for the radius too there is a stronger version of the implication
sublinear radius = hyperbolicity, similar to Theorem 8.137.

PROPOSITION 8.141 (M. Gromov; P. Papasoglou [?]). Let T be a finitely pre-
sented group. If there exists £y > 0 such that

r(0) < —, VO >t

ﬁ7
then the group T" is hyperbolic.

According to [?], the best possible constant expected is not %, but é. Note that
the proof of Proposition 8.141 cannot be extended from groups to metric spaces,
because it relies on the bigon criterion for hyperbolicity [?], which only works for
groups. There is probably a similar statement for general metric spaces, with a
constant that can be made effective for complete simply connected Riemannian
manifolds.
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8.18. Rips construction

The goal of this section is to describe Rips construction which associates a
hyperbolic group with to an arbitrary finite presentation.

THEOREM 8.142 (Rips Construction, I. Rips [?]). Let Q be a group with a finite
presentation (A|R). Then, with such presentation of Q one can associate a short
exact sequence

1o K—=>G—-Q—1

where G is hyperbolic and K 1is finitely generated. Furthermore, the group K in this
construction is finitely-presentable if and only if Q is finite.

Proor. We will give here only a sketch of the argument. Let A = {aq,...,am},
R ={Ry,...,R,}. Fori =1,...,m,j = 1,2, pick even natural numbers r; < s;,
Dij < qij, Uij < Vij, 50 that all the intervals

[7"7;782‘], [ijan]] [Uij,’l)ij],i: 1a"'amaj: 1a2
are pairwise disjoint and all the numbers 7;, s;, D;j, ¢i5, Uij, Vi; are at least 10 times

larger than the lengths of the words Ry,. Define the group G by the presentation P
where generators are a, ..., any, b1, bs, and relators are:

(8.16) Ribiby? by byt by i = 1,..,m
(8.17) a7 ba;ibyby by b T b b i =1, m, = 1,2,
(8.18) azbja; bbb b bbb i =1, m, = 1,2,

Now, define the map ¢ : G — Q, ¢(a;) = a;,¢(b;) = 1,5 = 1,2. Clearly, ¢
respects all the relators and, hence, it determines an epimomorphism ¢ : G — Q.
We claim that the kernel K of ¢ is generated by by, bs. First, the kernel, of course,
contains by, bo. The subgroup generated by b1, bo is clearly normal in G because of
the relators (8.17) and (8.18). Thus, indeed, by, by generate K.

The reason that the group G is hyperbolic is that the presentation written
above is Dehn: because of the choices of the numbers r; etc., when we multiply
conjugates of the relators of G, we cannot cancel more than half of one of the
relators (8.16) — (8.18), namely, the product of generators by, bs appearing in the
end of each relator. This argument is a typical example of application of the small
cancelation theory, see [LS77]. Rips in his paper [?], did not use the language of
hyperbolic groups, but the language of the small cancelation theory.

One then verifies that G has cohomological dimension 2 by showing that the
presentation complex Z of the presentation P of the group G is aspherical, for this
one can use, for instance, [?].

Now, R. Bieri proved in [Bie76b, Theorem B] that if G is a group of cohomo-
logical dimension 2 and H < G is a normal subgroup of infinite index, then H is
free.

Suppose that the subgroup K is free. Then rank of K is at most 2 since K
is 2-generated. The elements aj,as € G act on K as automorphisms (by conju-
gation). However, considering action of a1,as on the abelianization, we see that
because p;j,q;; are even, the images of the generators bi, by cannot generate the
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abelianization of K. Similar argument shows that K cannot be cyclic, so K is
trivial and, hence, by = bs = 1 in G. However, this clearly contradicts the fact
that the presentation (8.16) — (8.18) is a Dehn presentation (since the words by, bo
obviously do not contain more than half of the length of any relator). O

In particular, there are hyperbolic groups which contain non-hyperbolic finitely-
generated subgroups. Furthermore,

COROLLARY 8.143. Hyperbolic groups could have unsolvable membership prob-
lem.

PROOF. Indeed, start with a finitely-presented group @ with unsolvable word
problem and apply the Rips construction to Q. Then g € G belongs to IV if and
only if g maps trivially to (). Since @) has unsolvable word problem, the problem
of membership of g in N is unsolvable as well. O

On the other hand, the membership problem is solvable for quasiconvex sub-
groups, see Theorem 8.163.

8.19. Asymptotic cones, actions on trees and isometric actions on
hyperbolic spaces

Let G be a finitely-generated group with the generating set g1, .., gm; let X be
a metric space. Given a homomorphism p : G — Isom(X), we define the following
function:

(8.19) () 1= max d(plgr) (), 2)

and set

d, == Ilg( d,(x).
This function does not necessarily have minimum, so we choose =, € X to be a
point so that

dy(x) —d, < 1.
Such points x, are called min-maz points of p for obvious reason. The set of min-
max points could be unbounded, but, as we will see, this does not matter. Thus,
high value of d, means that all points of X move a lot by at least one of the
generators of p(G).

ExaMPLE 8.144. 1. Let X = H", G = (g) be infinite cyclic group, p(g) €
Isom(X) is a hyperbolic translation along a geodesic L C X by some amount ¢ > 1,
e.g. p(g)(z) = e’z in the upper half-space model. Then d, = ¢ and we can take
x, € L, since the set of points of minima of d,(x) is L.

2. Suppose that X = H" = U™ and G are the same but p(g) is a parabolic
translation, e.g. p(g)(z) = z+u, where u € R"! is a unit vector. Then d, does not
attain minimum, d, = 0 and we can take as z, any point x € U™ so that x,, > 1.

3. Suppose that X is the same, but G is no longer required to be cyclic. Assume
that p(G) fixes a unique point z, € X. Then d, = 0 and the set of min-max points is
contained in a metric ball centered at x,. The radius of this ball could be estimated
from above independently of G and p. (The latter is nontrivial.)

Suppose o € Isom(X) and we replace the original representation p with the
conjugate representation p' = p° : g+ ap(g)ot, g € G.

EXERCISE 8.145. Verify that d, = d, and that as x, one can take o(z,).
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Thus, conjugating p by an isometry, does not change the geometry of the action,
but moves min-max points in a predictable manner.
The set Hom(G,Isom (X)) embeds in (Isom(X))™ since every p is determined
by the m-tuple
(p(gl)v sty p(gm))'
As usual, we equip the group Isom(X) with the topology of uniform convergence
on compacts and the set Hom(G,Isom(X)) with the subset topology.

EXERCISE 8.146. Show that topology on Hom(G,Isom(X)) is independent of
the finite generating set. Hint: Embed Hom/(G,Isom(X)) in the product of count-
ably many copies of Isom(X) (indexed by the elements of G) and relate topology
on Hom(G,Isom(X)) to the Tychonoff topology on the infinite product.

Suppose now that the metric space X is proper. Pick a base-point o € X. Then
Arzela-Ascoli theorem implies that for every D the subset

Hom(G,Isom(X))o,p = {p: G — Isom(X)|d,(0) < D}
is compact. We next consider the quotient
Rep(G,Isom(X)) = Hom(G, Isom(X))/Isom(X)

where Isom(X) acts on Hom(G,Isom(X)) by conjugation p — p°. We equip
Rep(G,Isom(X)) with the quotient topology. In general, this topology is not Haus-
dorff.

ExAMPLE 8.147. Let G = (g) is infinite cyclic, X = H". Show that trivial
representation pg : G — 1 € Isom(X) and representation p; where p1(g) acts as
a parabolic translation, project to points [p;] in Rep(G,Isom(X)), so that every
neighborhood of [pp] contains [p1].

EXERCISE 8.148. Let X be a graph (not necessarily locally-finite) with the
standard metric and consider the subset Hom (G, Isom(X)) consisting of repre-
sentations p which give rise to the free actions G/Ker(p) ~ X. Then

Reps(G,Isom(X)) = Homy(G,Isom(X))/Isom(X)
is Hausdorft.

We will be primarily interested in compactness rather than Hausdorff properties
of Rep(G,Isom(X)). Define

Homp(G,Isom(X)) = {p: G — Isom(X)|d, < D}.
Similarly, for a subgroup H C Isom(X), one defines
Homp(G,H) = Homp(G,Isom(X)) N Hom(G, H).

LEMMA 8.149. Suppose that H C Isom(X) is a closed subgroup whose action
on X is cobounded. Then for every D € Ry, Repp(G,H) = Homp(G,H)/H is
compact.

PROOF. Let 0 € X, R < oo be such that the orbit of B(o, R) under the H-
action is the entire space X. For every p € Hom(G, H) we pick ¢ € H so that
some min-max point xz, of p satisfies:

o(z,) € B(o,R).
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Then, using conjugation by such o’s, for each equivalence class [p] € Repp(G, H)
we choose a representative p so that x, € B(o, R). It follows that for every such p

p € Hom(G,H) N Hom(G,Isom(X)), p, D'=D+2R.
This set is compact and, hence, its projection Repp(G, H) is also compact. O

In view of this lemma, even if X is not proper, we say that a sequence p; : G —
Isom(X) diverges if
lim d,, = oo.
11— 00
DEFINITION 8.150. We say that an isometric action of a group on a real tree
T is nontrivial if the group does not fix a point in 7.

ProOPOSITION 8.151 (M.Bestvina; F. Paulin). Suppose that (p;) is a diverging
sequence of representations p; : G — H C Isom(X), where X is a Rips—hyperbolic
metric space. Then G admits a nontrivial isometric action on a real tree.

PRrROOF. Let p; = z,, be min-max points of p;’s. Take \; := (dpi){l and
consider the corresponding asymptotic cone Cone, (X, P, ) of the space X; here
p = (p;)- According to Lemma 8.35, the metric space X in this asymptotic cone
is a real tree T. Furthermore, the sequence of group actions p; converges to an
isometric action p, : G N T"

Pw(9)(w0) = (pi(xi)),

the key here is that all generators p;(gx) of pi(G) move the base-point p; € \; X by
< Ai(dy, +1). The ultralimit of the latter quantity is equal to 1. Furthermore, for
w-all i one of the generators, say g = g, satisfies

dp, — d(pi(g)(p:)| <1

in X. Thus, the element p,(g) will move the point p € T exactly by 1. Because p;
was a min-max point of p;, it follows that

d,, =1

P

In particular, the action p,, : G ~ T has no fixed point, i.e., is nontrivial. (]
One of the important applications of this proposition is

THEOREM 8.152 (F. Paulin, [?]). Suppose that G is a finitely-generated group
with property FA and H is a hyperbolic group. Then, up to conjugation in H, there
are only finitely many homomorphisms G — H.

Proor. Let X be a Cayley graph of H, then H C Isom(X), X is proper and
Rips—hyperbolic. Then, by the above proposition, if Hom(G, H)/H is noncompact,
then GG has a nontrivial action on a real tree. This contradicts the assumption that
G has the property FA. Suppose, therefore, that Hom(G, H)/H is compact. If
this quotient is infinite, pick a sequence p; € Hom(G, H) of pairwise non-conjugate
representations. Without loss of generality, by replacing p;’s by their conjugates, we
can assume that min-max points p; of p;’s are in B(e, 1). Therefore, after passing to
a subsequence if necessary, the sequence of representations p; converges. However,
the action of H on itself is free, so for every generator g of G, the sequence p;(g)
is eventually constant. Therefore, the entire sequence (p;) consists of only finitely
many representations. Contradiction. Thus, Hom(G, H)/H is finite. O
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This theorem is one of many results of this type: Bounding number of homo-
morphisms from a group to a hyperbolic group. Having Property FA is a very
strong restriction on the group, so, typically one improves Proposition 8.151 by
making stronger assumptions on representations G — H and, accordingly, stronger
conclusions about the action of G on the tree, for instance:

THEOREM 8.153. Suppose that H is a hyperbolic group, X is its Cayley graph
and all the representations p; : G — H are faithful. Then the resulting nontrivial
action of G on a real tree is small, i.e., stabilizer of every nontrivial geodesic segment
is virtually cyclic.

The key ingredient then is Rips Theory which converts small actions (satisfying
some mild restrictions which will hold in the case of groups G which embed in
hyperbolic groups) G ~ T, to decompositions of G as an amalgam G; xg, G2 or
HNN-extension G' = G'1*q,, where the subgroup Gj3 is again virtually cyclic. Thus,
one obtains:

THEOREM 8.154 (I. Rips, Z. Sela, [?]). Suppose that G does not split over a
virtually cyclic subgroup. Then for every hyperbolic group H, Hom,;(G,H)/H is
finite, where Hom,,; consists of injective homomorphisms. In particular, if G is
itself hyperbolic, then Out(G) = Aut(G)/G is finite.

Some interesting and important groups G, like surface groups, do split over vir-
tually cyclic subgroups. In this case, one cannot in general expect Hom,,;(G,H)/H
to be finite. However, it turns out that the only reason for lack of finiteness is the
fact that one can precompose homomorphisms G — H with automorphisms of G
itself:

THEOREM 8.155 (I. Rips, Z. Sela, [?]). Suppose that G is a I-ended finitely-
generated group. Then for every hyperbolic group H, the set

Aut(G)\Hom;;(G,H)/H
is finite. Here Aut(G) acts on Hom(G, H) by precomposition.

8.20. Further properties of hyperbolic groups

1. Hyperbolic groups are ubiquitous:

THEOREM 8.156 (See e.g. [?]). Let G be a non-elementary 0-hyperbolic group.
Then there exists N, so that for every collection ¢, .., gx € G of elements of norm
> 10000, the following holds:

i. The subgroup generated by the elements g» and all their conjugates is free.

ii. Then the quotient group G/ ((g7,...g7)) is again non-elementary hyperbolic
for all sufficiently large n. In particular, infinite hyperbolic groups are never simple.

Thus, by starting with, say, a nonabelian free group F,, = G, and adding to its
presentation one relator of the form w”™ at a time (where n’s are large), one obtains
non-elementary hyperbolic groups. Furthermore,

THEOREM 8.157 (A. Olshanskii, [?]). Every non-elementary torsion-free hy-
perbolic group admits a quotient which is an infinite torsion group, where every
nontrivial element has the same order.
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THEOREM 8.158 (A. Ol'shanskii, [?], T. Delzant [?]). Every non-elementary
hyperbolic group G is SQ-universal, i.e., every countable group embeds in a quotient

of G.
“Most” groups are hyperbolic:

THEOREM 8.159 (A. Ol'shanskii [?]). Fizk € N, k > 2 and let A = {a*!,a™?, ..., afl}
be an alphabet. Fiz i € N and let (ny,...,n;) be a sequence of natural numbers. Let
N = N(k,i,n1,...,n;) be the number of group presentations

G ={ay,...,ag|r1, ..., 7;)

such that r1,...,7; are reduced words in the alphabet A such that the length of r; is
n;, j =1,2,,i. If Ny is the number of hyperbolic groups in this collection and if
n = min{ny,..,n;}, then
N
lim =2 =1
and convergence is exponentially fast.

The model of randomness which appears in this theorem is by no means unique,
we refer the reader to [?], [?], [?], [?] for further discussion of random groups.

Theorems 8.160, 8.161, 8.162 below first appeared in Gromov’s paper [?]; other
proofs could be found for instance in [?], [BH99|, [ECH'92|, [ECH92], |?].
2. Hyperbolic groups have finite type:

THEOREM 8.160. Let G be d-hyperbolic. Then there ezists Dy = Do(J) so that
for all D > Dy the Rips complex Ripsy(G) is contractible. In particular, G has
type F.

3. Hyperbolic groups have controlled torsion:

THEOREM 8.161. Let G be hyperbolic. Then G contains only finitely many
conjugacy classes of finite subgroups.

4. Hyperbolic groups have solvable algorithmic problems:

THEOREM 8.162. FEwery d-hyperbolic group has solvable word and conjugacy
problems.

Furthermore:

THEOREM 8.163 (I. Kapovich, [?]). Membership problem is solvable for qua-
siconvex subgroups of hyperbolic groups: Let G be hyperbolic and H < G be a
quasiconvex subgroup of a d-hyperbolic group. Then the problem of membership in
H is solvable.

Isomorphism problem is solvable:

THEOREM 8.164 (Z. Sela, [?]; F. Dahmani and V. Guirardel [?]). Given two
d-hyperbolic groups G1, G2, there is an algorithm to determine if G1,Gy are iso-
morphic.

Note that Sela proved this theorem only for torsion-free 1-ended hyperbolic
groups. This result was extended to all hyperbolic groups by Dahmani and Guirardel.
5. Hyperbolic groups are hopfian:
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THEOREM 8.165 (Z. Sela, [?]). For every hyperbolic group G and every epimor-
phism ¢ : G — G, Ker(¢) = 1.

Note that every residually finite group is hopfian, but the converse, in general,
is false. An outstanding open problem is to determine if all hyperbolic groups are
residually finite (it is widely expected that the answer is negative). Every linear
group is residually finite, but there are nonlinear hyperbolic groups, see [?]. It is
very likely that some (or even all) of the nonlinear hyperbolic groups described in
[?] are not residually finite.

6. Hyperbolic groups tend to be co-Hopfian:

THEOREM 8.166 (Z. Sela, [?]). For every I-ended hyperbolic group G, every
monomorphism ¢ : G — G is surjective, i.e., such G is co-Hopf.

7. All hyperbolic groups admit QI embeddings in the real-hyperbolic space H":

THEOREM 8.167 (M. Bonk, O. Schramm [?]). For every hyperbolic group G
there exists n, such that G admits a quasi-isometric embedding in H™.
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CHAPTER 9

Tits’ Alternative

In this chapter we will prove

THEOREM 9.1 (Tits’ Alternative, [?]). Let L be a Lie group with finitely many
connected components and I' C L be a finitely generated subgroup. Then either T’
is virtually solvable or I’ contains a free nonabelian subgroup.

REMARK 9.2. In the above one cannot replace ‘virtually solvable’ by ‘solvable’.
Indeed counsider the Heisenberg group Hsz < GL(3,R) and A5 < GL(5,R). The
group I' = H3 x As < GL(8,R) is not solvable (because As is simple) and does not
contain a free nonabelian subgroup (because it has polynomial growth).

COROLLARY 9.3. Suppose that T’ is a finitely generated subgroup of GL(n,R).
Then T has either polynomial or exponential growth.

Proor. By Tits” Alternative, either I' contains a nonabelian free subgroup
(and hence I" has exponential growth) or I' is virtually solvable. For virtually
solvable groups the assertion follows from Theorem ?7?. O

9.1. Zariski topology and algebraic groups

The proof of Tits’ theorem relies in part on some basic results from theory
of affine algebraic groups. We recall some terminology and results needed in the
argument. For a more thorough presentation see [?] and [OV90].

The proof of the following general lemma is straightforward, and left as an
exercise to the reader.

LEMMA 9.4. For every commutative ring A the following two statements are
equivalent:

(1) every ideal in A is finitely generated;

(2) the set of ideals satisfies the ascending chain condition (ACC), that is,
every ascending chain of ideals

LCLC---CL, C---

stabilizes, i.e. there ewists an integer N such that I, = In for every
n>N.

DEFINITION 9.5. A commutative ring is called noetherian if it satisfies one
(hence both) statements in Lemma 9.4.

Note that a field seen as a ring is always noetherian. Other examples of noe-
therian rings come from the following

THEOREM 9.6 (Hilbert’s ideal basis theorem, see [?]). If A is a noetherian ring
then the ring of multivariable polynomials A[X1, ..., X,,] is also noetherian.
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From now on, we fix a field K.

DEFINITION 9.7. An affine algebraic set in K™ is a subset Z in K" that is the
solution set of a system of multivariable polynomial equations p; =0, Vj € J, with
coefficients in K:

Z ={(z1,...,xn) € K" ; pj(x1,..,2,) =0,j € J}.
We will frequently say “algebraic subset” when referring to affine algebraic set.

For instance, the algebraic subsets in the affine line (1-dimensional vector space
V') are finite subsets and the entire of V', since every nonzero polynomial in one
variable has at most finitely many zeroes.

There is a one-to-one map associating to every algebraic subset in K™ an ideal
in K[Xq,..., X,):

ZHIZ:{pEK[Xl,...,Xn] ; pleO}.

Note that Iz is the kernel of the homomorphism p — p|z from K[X;,..., X,)]
to the ring of functions on Z. Thus, the ring K[X7, ..., X,,]/Iz may be seen as a
ring of functions on Z; this quotient ring is called the coordinate ring of Z or the
ring of polynomials on Z, and denoted K[Z].

Theorem 9.6 and Lemma 9.4 imply the following.

LEMMA 9.8. (1) Every algebraic set is defined by finitely many equations.

(2) The set of algebraic subsets of K™ satisfies the descending chain condition
(DCC): every descending chain of algebraic subsets

1229220 D
stabilizes, i.e., for some integer N > 1, Z; = Zn for every i > N.

The pair (Z,K[Z]) (a ringed space) is an affine algebraic variety or simply an
affine variety, or, by abusing the terminology, just a (sub)variety. We will frequently
conflate affine varieties and the corresponding algebraic subsets.

DEFINITION 9.9. A morphism between two affine varieties Y in K™ and Z in
K™ is a map of the form ¢ : Y — Z, ¢ = (¢1, ..., om) , such that ¢; is in K[Y] for
every i € {1,2,...,m}.

Note that every morphism is induced by a morphism ¢ : K* — K™, 6 ¢ =
(@15 s Pm ), with @; : K® — K a polynomial function for every i € {1,2,...,m}.

An isomorphism between two affine varieties Y and Z is an invertible map
¢ : Y — Z such that both ¢ and ¢! are morphisms. When Y = Z, an isomorphism
is called an automorphism.

EXERCISE 9.10. 1. If f: Y — Z is a morphism of affine varieties and W C Z
is a subvariety, then f~!(W) is a subvariety in Y. In particular, every linear
automorphism of V' = K" sends subvarieties to subvarieties and, hence, the notion
of a subvariety is independent of the choice of a basis in V.

2. Show that the projection map f : C* — C, f(z,y) = x, does not map
subvarieties to subvarieties.

Let V be an n-dimensional vector space over a field K. The Zariski topology
on V is the topology having as closed sets all the algebraic subsets in V. It is
clear that the intersection of algebraic subsets is again an algebraic subset. Let
Z = Z1U..UZ; be a finite union of algebraic subsets, Z; defined by a set of
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polynomials P;, i € {1,...,£}. According to Lemma 9.8, (1), we may take each P;
to be finite. Define the new set of polynomials

¢

P = {p = le-; p; € P; for every i € {1,...,8}} .
i=1

The solution set of the system of equations p =0, p € P, is Z.

The induced topology on a subvariety Z C V is also called the Zariski topology.
Note that this topology can also be defined directly using polynomial functions in
K[Z]. According to Exercise 9.10, morphisms between affine varieties are continuous
with respect to the Zariski topologies.

The Zariski closure of a subset £ C V' can also be defined by means of the set
Py of all polynomials which vanish on FE, i.e. it coincides with

{zr eV |p(x)=0,Vpe Pg}.

A subset Y C Z in an affine variety is called Zariski-dense if its Zariski closure
is the entire of Z.

Lemma 9.8, Part (2), implies that the closed sets in Zariski topology satisfy the
descending chain condition (DCC).

DEFINITION 9.11. A topological space such that the closed sets satisfy the DCC
(or, equivalently, with the property that the open sets satisfy the ACC) is called
noetherian.

LEMMA 9.12. Every subspace of a noetherian topological space (with the sub-
space topology) is noetherian.

PRrOOF. Let X be a space with topology T such that (X, T) is noetherian, and
let Y be an arbitrary subset in X. Consider a descending chain of closed subsets
inY:

L1223 22D 4p 2D ...
Every Z; is equal to Y N C; for some closed set C; in X. We leave it to the reader
to check that C; can be taken equal to the closure Z; of Z; in X.
The descending chain of closed subsets in X,

212792272 ...
stabilizes, hence, so does the chain of the subsets Z;. O
PROPOSITION 9.13. Ewvery noetherian topological space X is compact.

Proor. Compactness of X is equivalent to the condition that for every family
{Z; - i €I} of closed subsets in X, if (,.; Z; = () then there exists a finite subset .J
of I such that (¢ ; Z; = 0. Assume that all finite intersections of a family as above
are non-empty. Then we construct inductively a descending sequence of closed sets
that never stabilizes. The initial step consists of picking an arbitrary set Z;,, with
i1 € I. At the nth step we have a non-empty intersection Z;, N Z;, N...N Z, ;
hence, there exists Z;, , with i,,.1 € I such that Z; NZ;,N..NZ;, NZ; . isa
non-empty proper closed subset of Z;, N Z;, N...NZ,, . ]

We now discuss a strong version of connectedness, relevant in the setting of
noetherian spaces.

LEMMA 9.14. For a topological space X the following properties are equivalent:
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(1) every open non-empty subset of X is dense in X;
(2) two open non-empty subsets have non-empty intersection;

(3) X cannot be written as a finite union of proper closed subsets.
We leave the proof of this lemma as an exercise to the reader.

DEFINITION 9.15. A topological space is called irreducible if it is non-empty
and one of (hence all) the properties in Lemma 9.14 is (are) satisfied. A subset of
a topological space is irreducible if, when endowed with the subset topology, it is
an irreducible space.

EXERCISE 9.16. (1) Prove that K™ with Zariski topology is irreducible.

(2) Prove that an algebraic variety Z is irreducible if and only if K[Z] does
not contain zero divisors.

The following properties are straightforward and their proof is left as an exercise
to the reader.

LEMMA 9.17. (1) The image of an irreducible space under a continuous
map is irreducible.

(2) The cartesian product of two irreducible spaces is an irreducible space,
when endowed with the product topology.

Note that the Zariski topology on K*"*™ = K" x K™ is not the product topology.
Nevertheless, one has:

LEMMA 9.18. Let Vi, Vs be finite-dimensional vector spaces over K and Z; C
Vi,i = 1,2, be irreducible subvarieties. Then the product Z := Z1xZy CV = Vi xVy
is an irreducible subvariety in the vector space V.

PRrOOF. Let Z = W1 U W5 be a union of two proper subvarieties. For every
z € Zj the product {z} x Zs is isomorphic to Zy (via projection to the second
factor) and, hence, irreducible. On the other hand,

{Z} X Ao = (({Z} X ZQ) n Wl) U (({Z} X ZQ) n Wg)

is a union of two subvarieties. Thus, for every z € Z;, one of these subvarieties has
to be the entire {z} x Z;. In other words, either {z} x Zy C Wj or {z} x Zy C Wa.
We then partition Z; in two subsets Ay, As:

A, = {Z IS4 {Z} X Zo C Wz},l =1,2.
Since each Wy, W5 is a proper subvariety, both Ay, A; are proper subsets of Z;.
We will now prove that both Ay, A are subvarieties in Z;. We will consider the
case of A; since the other case is obtained by relabeling. Let fi,..., fx denote

generators of the ideal of W;. We will think of each f; as a function of two variables
f = f(X1,Xs), where X}, stands for the tuple of coordinates in Vi, k = 1,2. Then

Ar={2€Zy: fi(z,20) =0,YV2 € Zy,i=1,...,k}.

However, for every fixed z € Z;, the function f;(z,-) is a polynomial function f; .
on Zy. Therefore, A; is the solution set of the system of polynomial equations on
Z12

{fi=0:i=1,....k,z€ Z}.

Therefore, A; is a subvariety. This contradicts irreducibility of Zs. O
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LeEMMA 9.19. Let (X, T) be a topological space.

(1) A subset Y of X is irreducible if and only if its closure Y in X is irre-
ducible. -
(2) If Y is irreducible and Y C A CY then A is irreducible.

(3) Every irreducible subset Y of X is contained in a mazimal irreducible
subset.

(4) The mazimal irreducible subsets of X are closed and they cover X.

PROOF. (1) For every open subset U C X, UNY # 0 if and only if UNY # ().
This and Lemma 9.14, (2), imply the equivalence.

(2) Now let U,V be two open sets in A. Then U = ANU; and V = ANV,
where Uy, V; are open in X. Since U1 NY # () and V; NY # 0 it follows that both
U; and Vi have non-empty intersections with Y. Then irreducibility of Y implies
that U; N V4 NY is non-empty, whence U NV # 0.

(3) The family Zy of irreducible subsets containing Y has the property that
every ascending chain has a maximal element, which is the union. It can be easily
verified that the union is again irreducible, using Lemma 9.14, (2).

It follows by Zorn’s Lemma that Zy has a maximal element.

(4) follows from (1) and (3). O

THEOREM 9.20. A noetherian topological space X is a union of finitely many
distinct mazimal irreducible subsets X1, Xo, ..., X,, such that for every i, X; is not
contained in \J;,; X;j. Moreover, every mazimal irreducible subset in X coincides
with one of the subsets X1, Xs, ..., X, . This decomposition of X is unique up to a
renumbering of the X;’s.

PrOOF. Let F be the collection of closed subsets of X that cannot be written
as a finite union of maximal irreducible subsets. Assume that F is non-empty.
Since X is noetherian, F satisfies the DCC, hence by Zorn’s Lemma it contains a
minimal element Y. As Y is not irreducible, it can be decomposed as Y = Y; UY5,
where Y; are closed and, by the minimality of Y, both Y; decompose as finite unions
of irreducible subsets (maximal in Y;). According to Lemma 9.19, (3), Y itself can
be written as union of finitely many maximal irreducible subsets, a contradiction.
It follows that F is empty.

If Xi € Uz X then X; = (U, (X; NX;). As X; is irreducible it follows
that X; C X; for some j # ¢, hence by maximality X; = X, contradicting the fact
that we took only distinct maximal irreducible subsets. A similar argument is used
to prove that every maximal irreducible subset of X must coincide with one of the
sets X;.

Now assume that X can be also written as a union of distinct maximal irre-
ducible subsets Y7, Y5, ..., Y,, such that for every 4, Y; is not contained in Uj# Y;.
For every i € {1,2,...,m} there exists a unique j; € {1,2,...,n} such that Y; = X},.
The map i — j; is injective, and if some k € {1,2,...,n} is not in the image of this
map then it follows that X C U;il Y, C U#k X, a contradiction. O

DEFINITION 9.21. The subsets X; defined in Theorem 9.20 are called the irre-
ducible components of X.
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Note that we can equip every Zariski-open subset U of a (finite-dimensional)
vector space V' with the Zariski topology, which is the subset topology with respect
to the Zariski topology on V. Then U is also Noetherian. We will be using the
Zariski topology primarily in the context of the group GL(V), which we identify
with the Zariski open subset of V ® V*, the space of n X n matrices with nonzero
determinant.

DEFINITION 9.22. An algebraic subgroup of GL(V) is a Zariski-closed subgroup
of GL(V).

Given an algebraic subgroup G of GL(V), the binary operation G x G —
G, (g,h) — gh is a morphism. The inversion map g — g~!, as well as the left-
multiplication and right-multiplication maps g — ag and g — ga, by a fixed element
a € (G, are automorphisms of G.

EXAMPLE 9.23. (1) The subgroup SL(V) of GL(V) is algebraic, defined
by the equation det(g) = 1.

(2) The group GL(n,K) can be identified to an algebraic subgroup of SL(n+
1,K) by mapping every matrix A € GL(n,K) to the matrix

(6 st )
0 detl(A) .

Therefore, in what follows, it will not matter if we consider algebraic
subgroups of GL(n,K) or of SL(n,K).

(3) The group O(V) is an algebraic subgroup, as it is given by the system of
equations MTM =Idy .

(4) More generally, given an arbitrary quadratic form ¢ on V, its stabilizer
O(q) is obviously algebraic. A special instance of this is the symplectic
group Sp(2k,K), preserving the form with the following matrix (given
with respect to the standard basis in V = K?")

0 ... 1
J= 0 K , where K= 0 .©° 0
-K 0 1 0

LEMMA 9.24. IfT is a subgroup of SL(V') then its Zariski closure T in SL(V)
is also a subgroup.

PRrOOF. Consider the map f: SL(V) — SL(V) given by f(y) =~~!. Then f
is a polynomial isomorphism and, hence, f(I') is Zariski closed in SL(V). Since I'
is a subgroup, f(T') contains I'. Thus, I'N f(T') is a Zariski closed set containing I'.
It follows that I' = f(I') and hence T is stable under the inversion. The argument,
for the multiplication is similar. (I

If Kis R or C, then V = K" also has the standard or classical topology, given
by the Euclidean metric on V. We use the terminology classical topology for the
induced topology on subsets of V. Classical topology, of course, is stronger than
Zariski topology.
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THEOREM 9.25 (See for instance Chapter 3, §2, in [OV90]). (1) An alge-
braic subgroup of GL(n, C) is irreducible in the Zariski topology if and only
if it is connected in the classical topology.

(2) A connected (in classical topology) algebraic subgroup of GL(n,R) is irre-
ducible in the Zariski topology.

PROPOSITION 9.26. Let G be an algebraic subgroup in GL(V).

(1) Only one irreducible component of G contains the identity element. This
component is called the identity component and is denoted by Gy.

(2) The subset Gg is a normal subgroup of finite index in G whose cosets are
the irreducible components of G.

REMARK 9.27. Proposition 9.26, (2), implies that for algebraic groups the irre-
ducible components are disjoint. This is not true in general for algebraic varieties,
consider, for instance, the subvariety {zy = 0} C K.

PRrOOF. (1) Let X1, ..., X}, be irreducible components of G containing the iden-
tity. According to Lemma 9.18, the product set X; x ... x X}, is irreducible. Since
the product map is a morphism, the subset X; --- X C G is irreducible as well;
hence by Lemma 9.19, (3), and by Theorem 9.20 this subset is contained in some
X,. The fact that every X; with ¢ € {1,...,k} is contained in Xj --- X}, hence in
X, implies that k£ = 1.

(2) Since the inversion map g + ¢g~! is an algebraic automorphism of G (but

not a group automorphism, of course) it follows that Gy is stable with respect to
the inversion. Hence for every g € Gy, gGo contains the identity element, and is an
irreducible component. Therefore, gGo = Gy. Likewise, for every z € G, xGoz !
is an irreducible component containing the identity element, hence it equals Gy.
The cosets of G (left or right) are images of Gy under automorphisms, therefore
also irreducible components. Thus there can only be finitely many of them. O

In what follows we list some useful properties of algebraic groups. We refer the
reader to [OV90] for the details:

1. A complex or real algebraic group is a complex, respectively real, Lie group.

2. Every Lie group G (resp. algebraic group over a field K), contains a radical
RadG, which is the largest connected (resp. irreducible) solvable normal Lie (resp.
algebraic) subgroup of G. The radical is the same if the group is considered with its
real or its complex Lie structure. A group with trivial radical is called semisimple.

3. The quotient of an algebraic group by its radical is an algebraic semisimple
group.

4. The commutator subgroup of an irreducible algebraic group is an irreducible
algebraic subgroup. An irreducible algebraic semisimple group coincides with its
commutator subgroup.

5. One of the most remarkable properties of algebraic semisimple groups is
the following: given such a group G and its representation as a linear group G —
GL(V), the space V decomposes into a direct sum of G-invariant subspaces so that
the restriction of the action of G to any of these subspaces is irreducible, i.e. there
are no proper G-invariant subspaces.

6. From the classification of normal subgroups in a semisimple connected Lie
group (see for instance [OV 90, Theorem 4, Chapter 4, §3]) it follows that the image
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of an algebraic irreducible semisimple group under an algebraic homomorphism is
an algebraic irreducible semisimple group.

As an application of the formalism of algebraic groups, we will now give a
“cheap” proof of the fact that the group SU(2) contains a subgroup isomorphic to
F3, the free group on two generators:

LEMMA 9.28. The subset of monomorphisms Fy — SU(2) is dense in the va-
riety Hom(F3, SU(2)).

Proor. Consider the space V = Hom(F»,SL(2,C)) = SL(2,C) x SL(2,C);
every element w € Fy defines a polynomial function

fw V= 8L(2,C), fulp)=p(w).

Since SL(2,R) < SL(2,C) contains a subgroup isomorphic to Fy (see Example
4.38), it follows that for every w # 1, the function f,, takes values different from 1.
In particular, the subset E,, := f, (1) is a proper (complex) subvariety in V. Since
SL(2,C) is a connected complex manifold, the variety SL(2, C) is irreducible; hence,
V is irreducible as well. It follows that for every w # 1, E,, has empty interior (in
the classical topology) in V. Suppose that for some w # 1, the intersection

E!, = E,NSU(2) x SU(2)

contains a nonempty open subset U. In view of Exercise 3.8, SU(2) is Zariski dense
(over C) in SL(2,C); hence, U (and, thus, E,,) is Zariski dense in V. Tt then follows
that E,, = V, which is false. Therefore, for every w # 1, the closed (in the classical
topology) subset E!, C Hom(F3,SU(2)) has empty interior. Since Fj is countable,
by Baire category theorem, the union

E:=JE,
w#1
has empty interior in Hom(Fy,SU(2)). Since every p ¢ E is injective, lemma
follows. O
Since SU(2)/ £ I is isomorphic to SO(3), we obtain

LEMMA 9.29. The subset of monomorphisms Fy — SO(3) is dense in the va-
riety Hom(Fy, SO(3)).

9.2. Virtually solvable subgroups of GL(n,C)

This and the following section deal with virtually solvable subgroups of the
general linear group and limits of sequences of such groups. This material (namely,
Theorem 9.45 or the weaker Proposition 9.44 that will also suffice) will be needed
in the proof of the Tits’ Alternative.

Let G be a subgroup of GL(V), where V' = C". We will think of V' as a G-
module. In particular we will talk about G-submodules and quotient modules: The
former are G-invariant subspaces W of V, the latter are quotients V/W, where W is
a G-submodule. The G-module V is reducible if there exists a proper G-submodule
W C V. We say that G is upper-triangular (or the G-module V' is upper-triangular)
if it is conjugate to a subgroup of the group B of upper-triangular matrices in
GL(V). In other words, there exists a complete flag0 C V;, C ... C V,, =V of
G-submodules in V', where dim(V;) = i for each i. Of course, reducibility makes
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sense only for modules of dimension > 1; however, by abusing the terminology, we
will regard modules of dimension < 1 as reducible by default.

The group B (and its conjugates in GL(V')) is called the Borel subgroup of
GL(V).

LEMMA 9.30. Suppose that G is an abstract group so that every G-module
V = Ck with 2 < k < n is reducible. Then every n-dimensional G-module V is
upper-triangular.

PrROOF. Since G ~ V is reducible, there exists a proper submodule W C V.
Thus dim(W) < n and dim(V/W) < n. Now, the assertion follows by induction on
the dimension. |

For a vector space V over K we let P(V') denote the corresponding projective
space:

PV) = (V\{0})/K".

LEmMA 9.31. Let G < GL(V) be upper-triangular. Then the fized-point set
Fix(G) of the action of G on the projective space P(V') is nonempty and consists
of a disjoint union of projective subspaces P(Vy),0 =1,...,k, so that the subspaces
V; C V are linearly independent, i.e.:

k

Span({vla ) Vk}) = @ Ve.

=1
In particular, k < dim(V).
ProoF. For g € GL(V) we let a;;(g) denote the 7,j matrix coefficient of g.
Then, since G is upper-triangular, the maps x; : ¢ — a;;(g) are homomorphisms

X : G — C*, called characters of G. The (multiplicative) group of characters of G
is denoted X (G). We let J C {1,...,n} be the set of all indices j such that

a;;(g) = aji(g) =0,Yg € G,Vi # j.

We then break the set J into disjoint subsets Ji, ..., J,; which are preimages of
points x € X(G) under the map

jeJ—x, € X(G).

Set Vy := Span({e;,i € J;}), where ey, ..., e, form the standard basis in V. It is
clear that G fixes each P(V}) pointwise since each g € G acts on V; via the scalar
multiplication by x¢(g). We leave it to the reader to check that

s

P(Ve)
4

1

is the entire fixed-point set Fix(G). d
In what follows, the topology on subgroups of GL(V) is always the Zariski
topology, in particular, connectedness always means Zariski—connectedness.

THEOREM 9.32 (A. Borel). Let G be a connected solvable Lie group. Then
every G-module V' (where V is a finite-dimensional complex vector space) is upper-
triangular.
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PRrROOF. In view of Lemma 9.30, it suffices to prove that every such module V'
is reducible. The proof is an induction on the derived length d of G.

We first recall a few facts about eigenvalues of the elements of GL(V). Let
Zgr(vy denote the center of GL(V'), i.e. the group of matrices of the form p- I, €
C*, where [ is the unit matrix.

Let g € GL(V)\Zarv)- Then g has linearly independent eigenspaces Ey,(g),j =
1,...,k, labeled by the corresponding eigenvalues \;,1 < j < k, where 2 < k < n
We let £(g) denote the set of (unlabeled) eigenspaces

{E)\j (g)aj =1,.., k}

Let B, denote the abelian subgroup of GL(V') generated by g and the center Zgp,(v).
Then for every ¢’ € By, £(¢') = £(g) (with the new eigenvalues, of course). There-
fore, if N(B,) denotes the normalizer of By in G, then N(B,) preserves the set
E(g), however, elements of N(By) can permute the elements of £(g). (Note that
N(By) is, in general, larger than N((g)), the normalizer of (g) in G.) Since £(g)
has cardinality < n, there is a subgroup N° = N°(B,) < N(Bj,) of index # n! that
fixes the set £(g) element-wise, i.e., every h € N° will preserve each E)(g), where
A € Sp(g), the spectrum of g. Of course, h need not act trivially on Fy(g). Since
g ¢ Z¢, this means that there exists a proper N°-invariant subspace F)(g) C V.

We next prove several needed for the proof of Borel’s theorem.

LEMMA 9.33. Let A be an abelian subgroup of GL(V). Then the A-module V
1s reducible.

Proor. If A < Zgrv), there is nothing to prove. Assume, therefore, that A
contains an element g ¢ Zgy(v). Since A < N(B,), it follows that A preserves the
collection of subspaces £(g). Since A is abelian, it cannot permute these subspaces.
Therefore, A preserves the proper subspace E),(g) C V and hence A ~ V is
reducible. (I

LeEMMA 9.34. Suppose that G < GL(V) is a connected metabelian group, so
that G' = [G,G] < Zgrv). Then the G-module V' is reducible.

PRrOOF. The proof is analogous to the proof of the previous lemma. If G <
Zgr(v) there is nothing to prove. Pick, therefore some g € G\ Zgr(v). Since
the image of G in PGL(V) is abelian, the group G is contained in N(By). Since
G is connected, it cannot permute the elements of £(g). Hence G preserves each
Ey,(g). Since every subspace Ej,(g) is proper, it follows that the G-module V' is
reducible. O

Similarly, we have:

LEMMA 9.35. Let G < GL(V) be a metabelian group whose projection to
PGL(V) is abelian. Then G contains a reducible subgroup of index < n!.

PrOOF. We argue as in the proof of the previous lemma, except G may permute
the elements of £(g). However, it will contain an index < n! subgroup which
preserves each F);(g) and the assertion follows. O

We can now prove Theorem 9.32. Lemma 9.33 proves the theorem for abelian
groups, i.e., solvable groups of derived length 1. Suppose the assertion holds for all
connected groups of derived length < d and let G < GL(V) be a connected solvable
group of derived length d. Then G’ = [G, G] has derived length < d. Thus by the
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induction hypothesis, G’ is upper-triangular. By Lemma 9.31, Fix(G') C P(V) is
a nonempty disjoint union of independent projective subspaces P(V;),i = 1,...,~.
Since G’ is normal in G, Fix(G') is invariant under G. Since G is connected, it
cannot interchange the components P(V;) of Fix(G). Therefore, it has to preserve
each P(V;). If one of the P(V;)’s is a proper projective subspace in P(V), then V;
is G-invariant and hence the G-module V is reducible. Therefore, we assume that
¢ =1and V; =V, ie., G’ acts trivially on P(V). This means that G' < Zgp(v)
is abelian and hence G is 2-step nilpotent. Now, the assertion follows from Lemma
9.34. This concludes the proof of Theorem 9.32. (]
The following is a converse to Theorem 9.32:

PROPOSITION 9.36. For V = C" the Borel subgroup B < GL(V) is solvable of
derived length n. Thus, a connected subgroup of GL(V') is solvable if and only if
it is conjugate to a subgroup of B, i.e., Borel subgroups are the maximal solvable
connected subgroups of GL(V'). In particular, the derived length of every connected
subgroup of GL.,(C) is at most n.

PRrROOF. The proof is induction on n. The assertion is clear for n = 1 as
GL1(C) = C* is abelian. Suppose it holds for n’ = n — 1, we will prove it for n.
Let B := [Bt~D BGE-D] BO) = B be the derived series of B.

Let 0 =V, C V4 C ... C V,, be the complete flag invariant under B. Set W :=
V/Vi, let By be the image of B in GL(W). The kernel K of the homomorphism
B — By is isomorphic to C*. The group By preserves the complete flag

0=Wo=WVi/Vi CWy :=Va/Vi C...CW =V/W.

Therefore, by the induction assumption it has derived length n — 1. Thus B(™ :=
[B(»=1) B(»=1] ¢ K = C*. Since C* is abelian [B("), B(")] = 0, i.e., B has derived
length n. O

REMARK 9.37. Theorem 9.32 is false for non-connected solvable subgroups of
GL(V). Take n = 2, let A be the group of diagonal matrices in SL(2,C) and let

| 0 1
s=1 1 o
Then s normalizes A and s> € A. We let G be the group generated by A and s
which is isomorphic to the semidirect product of A and Zs. In particular, G is

solvable of derived length 2. On the other hand, it is clear that the G-module C?
is irreducible.

THEOREM 9.38. There exist functions v(n),d(n) so that every virtually solvable
subgroup T' < GL(V) contains a solvable subgroup A of index < v(n) and derived
length < 6(n).

PROOF. Let d denote the derived length of a finite index solvable subgroup of
I. Let I denote the Zariski closure of I" in GL(V'). Then I" has only finitely many
(Zariski) connected components (see Theorem 9.20).

LEMMA 9.39. The group T is contains a finite index subgroup which is a solvable
group of derived length d.

ProoF. We will use k-fold iterated commutators

[[gla v 792"]]
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defined in the equation (??). Let I'° < I" denote a solvable subgroup of derived
length d and finite index m in I'; thus

F=mleu.. Uy,le.

The group I'° satisfies polynomial equations of the form (g1, ..., goa) = 1. Therefore,
I satisfies the polynomial equations in the variables g;:

ilgr, -y g2a] = 1i =1, .ym.

Hence, the Zariski closure T of I satisfies the same set of polynomial equations. It
follows that I' contains a subgroup of index m which is solvable of derived length
d. O

Let G be the (Zariski) connected component of the identity of I', which implies
that G < T.

LEMMA 9.40. The group G is solvable of derived length < n.

PRrROOF. Let H < G be the maximal solvable subgroup of derived length d of
finite index. Thus as above, H is given by imposing polynomial equations of the

form [[g1,...,g24] = 1 on tuples of the elements of G, i.e., H is Zariski closed. Since
H has finite index in G, it is also open. Since G is connected, it follows that G = H,
i.e., G is solvable and has derived length < n by Proposition 9.36. O

It is clear that I' N G is a finite index subgroup of I' whose index is at most
IT : G|. Unfortunately, the index |T' : G| could be arbitrarily large. We will see,
however, that we can enlarge G to a (possibly disconnected) subgroup G < T which
is still solvable but has a uniform upper bound on |T : @\ and a uniform bound on
the derived length.

We will get a bound on the index and the derived length by the dimension
induction. The base case where n = 1 is clear, so we assume that for each n’ < n
and each virtually solvable subgroup I'" < G L, (C) there exists a solvable group G’

G <G <T

as required, with a uniform bound v(n/) on the index [T’ : G’| and so that the
derived length of G’ is at most d(n') < d(n — 1).

Let V := {V4,...,V;} denote the maximal collection of (independent) subspaces
in V so that G fixes each P(V;) pointwise (see Theorem 9.32 and Lemma 9.31). In
particular, £ < n. Since G is normal in T, the collection V is invariant under T
Let K < T denote the kernel of the action of T on the set V. Clearly, G < K and

IT : K| < ¢! < n!l. We will, therefore, study the pair G < K.

REMARK 9.41. Note that we just proved that every virtually solvable subgroup
I' < GL(n,C) contains a reducible subgroup of index < nle¢(n), where ¢(n) =
¢(PGL(n,C)) is the function from Jordan’s Theorem ??. Indeed, if £ > 1, the
subgroup K NT (of index # n!) preserves a proper subspace Vi. If £ = 1, then G
is contained in Zgy(y) and hence I' projects to a finite subgroup ® < PGL(V).
After replacing ® with an abelian subgroup A of index # ¢(PGL(V)) (see Jordan’s
Theorem ??), we obtain a metabelian group A < T whose center is contained in
Zarv)- Now the assertion follows from Lemma 9.35.
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The group K preserves each V; and, by construction, the group G acts trivially
on each P(V;). Therefore, the image Q; of K/G in PGL(V;) is finite. (The finite
group K /G need not act faithfully on P(V;).) By Jordan’s Theorem ?7?, the group
Q; contains an abelian subgroup of index < ¢(dim(V;)) < ¢(n). Hence, K contains
a subgroup NV <1 K of index at most

[T eim(vi)) < e(n)"

i=1

which acts as an abelian group on

We again note that G < N. The image of the restriction homomorphism ¢ : N —
GL(U),
is therefore a metabelian group M.

We also have the homomorphism ¢ : N — GL(W), W = V/U with the image
Ny. This group contains the connected solvable subgroup Gw := ¢(G) of finite
index. To identify the intersection Ker(¢) N Ker(¢)) we observe that V. =U & W
and the group N acts by matrices of the block-triangular form:

kN

where z € M, z € Ny . Then the kernel of the homomorphism ¢xv¢ : N — M x Ny,
consists of matrices of the upper-triangular form

o]

Thus by Proposition 9.36, L = Ker(¢ x 1) is solvable of derived length < n.
By the induction hypothesis, there exists a solvable group Gy of derived length
< d(n —1), so that
Gw < Gw < Nw
and [Ny : é;| < v(n —1). Therefore, for G = (¢ x )" H(M x GAW), we obtain a
commutative diagram

1 L — N 2% MxNy —
TR T

1 L — G 2% Mx Gw —
where ¢ is the inclusion of index i < v(n — 1) subgroup and, hence, ¢/ is also the
inclusion of index ¢ subgroup. Furthermore, L is solvable of derived length < n,
M x Gy is solvable of derived length< max(2,5(n — 1)). Putting it all together,
we get

IT: G| < v(n) :=v(n—1)ni(c(n)",

where G is solvable of derived length < §(n) := max(2,§(n—1))+n. Intersecting G

with T we obtain A < T of index at most v(n) and derived length < §(n). Theorem
9.38 follows. O
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9.3. Limits of sequences of virtually solvable subgroups of GL(n,C)

Throughout this section, all vector spaces under consideration will be complex
and finite-dimensional.

We say that a subgroup G < GL(V), V 2 C", is virtually reducible if G contains
a finite index subgroup H which has reducible action on V. A subgroup which is not
virtually reducible is called virtually irreducible. Recall that modules of dimension
1 are regarded as reducible by default.

REMARK 9.42. In order to distinguish this notion of irreducibility from the
irreducibility in the context of algebraic groups, we will refer to the later as Zariski—
irreducibility.

LEMMA 9.43. Let G < GL(V) be a subgroup which is not virtually solvable.
Then G contains a finite index subgroup H which admits an H-module W, which
is either a submodule or quotient module of H ~ 'V, such that H ~ W is virtually
irreducible.

PrOOF. The proof is by induction on the dimension of V. The statement is
clear if V' is 1-dimensional. Suppose it holds in all dimensions < n. If G itself
is virtually irreducible, we are done. Otherwise, we take a finite index subgroup
G1 < G so that the G; ~ V is reducible. Let W C V be a GGi-invariant subspace.
If the images of Gy in GL(W) and GL(V/W) are both virtually solvable, then
G is itself virtually solvable. If one of these images is not virtually solvable, the
statement follows from the induction hypothesis. O

PROPOSITION 9.44. Let I' < GL(n,C) be a finitely-generated virtually irre-
ducible subgroup. Then there exists a neighborhood Z of id in Hom(T', GL(n,C)) so
that every p € = has image which is not virtually solvable.

PROOF. Suppose to the contrary that there exists a sequence
p; € Hom(I', GL(n,C))

converging to id, so that each I'; := p;(I') is virtually solvable. Since each T';
is virtually solvable, by Remark 9.41 it contains a reducible subgroup of index <
nle(n). Let @ < T' denote the intersection of the preimages of these subgroups under
p;’s. Clearly, |I' : ®| < co. After passing to a subsequence, we may assume that
each I'; preserves a proper projective subspace P; C CP"~! of a fixed dimension
k. By passing to a further subsequence, we may assume that the subspaces P;
converge to a proper projective subspace P C CP"~!. Since each I'; preserves P,
the group ® also preserves P. Hence, I' ~ V is virtually reducible, contradicting
our assumptions. O

Although the above proposition will suffice for the proof of the Tits’ Alternative,
we will prove a slightly stronger assertion:

THEOREM 9.45. LetT' C GL(n,C) be a finitely-generated subgroup which is not
virtually solvable. Then there exists a neighborhood ¥ of id in Hom(T', GL(n,C))
so that every p € X has image which is not virtually solvable.

PrROOF. We argue analogously to the proof of Proposition 9.44. Suppose to
the contrary that there exists a sequence p; € Hom(I', G) converging to id, so that
each T'; := p;(T) is virtually solvable. By Theorem 9.38, for each j there exists a
subgroup A; < T'; of index < v(n) which is solvable of derived length < d = §(n).
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Let A < T denote the intersection of pj_l(Aj). Again, [I' : A] < co. Each group T';
satisfies the law:

[g1, -, 904] =1
where [g1, ..., goa] is the d-fold iterated commutator as in (??). Therefore, for every
2¢_tuple of elements 7; of A we have

H7la ceey '72‘1]] = ]li{rolo[[pj(’)/l)v ceey pj(’YQd)H =1
Hence, A is solvable of derived length < d. O

9.4. Reduction to the case of linear subgroups

PROPOSITION 9.46. It suffices to prove Theorem 9.1 for subgroups T' < GL(V),
where V is a finite-dimensional real vector space, and the Zariski closure of ' in
GL(V) is a Zariski-irreducible semisimple algebraic group, acting irreducibly on V.

PRrROOF. The first step is to reduce the problem from subgroups in Lie groups
with finitely many connected components to subgroups of some GL(V).

Let L be a Lie group with finitely many components. The connected component
of the identity Lo C L is then a finite index normal subgroup. Thus I' N L has
finite index in I'. Therefore, we can assume that L is connected.

LEMMA 9.47. There exists a homomorphism ¢ : I' — GL,(R), n = dim(G),
whose kernel is contained in the center of I.

PRrROOF. Since L is connected, kernel of the adjoint representation Ad : L —
GL(T.L) is contained in the center of L, see Lemma 3.10. Now, take ¢ := Ad|T". O

Observe that

1. T is virtually solvable if and only if ¢(I") is virtually solvable.

2. T contains a free subgroup if and only if ¢(I") contains a free subgroup.
Therefore, we can assume that I is a linear group, I' C GL(n,R).

Let G be the Zariski-closure of I" in GL(V). Although G need not be Zariski-
irreducible, by Proposition 9.26 it has only finitely many irreducible components.
Thus, after passing to a finite index subgroup in I', we may assume that G is
Zariski-irreducible.

According to the results mentioned in the end of Section 9.1, G contains a
normal algebraic Zariski-irreducible subgroup which is solvable, Rad(G), and the
quotient G/Rad(G) is a semisimple algebraic Zariski-irreducible subgroup. Clearly
the image of I" by the algebraic projection © : G — G/Rad(G) is Zariski dense in
G/Rad(@G), and it suffices to prove the alternative for 7(T'). Thus we may assume
that the Zariski closure G of I' is Zariski-irreducible and semisimple.

If the action G ~ V is reducible then we take the direct sum decomposition

v:évi
i=1

in G-invariant subspaces, so that the action of G on each V; is irreducible. If we
denote by p; the homomorphism G — GL(V;) then it suffices to prove the Tits’
Theorem for each p;(T"). Indeed, if it is proved, then either all p;(T") are solvable,
in which case T itself is solvable (see Exercise ?7?), or some p;(I") contains a free
non-abelian subgroup, in which case T itself does, as p;(T") is a quotient of T
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Note that when we replace in our problem I" by p;(T"), we have to replace G by
the Zariski closure G; of p;(T') in GL(V;). Note also that

(D) < i) = pi(@) < i) = Gi < ().

According to the considerations in the end of Section 9.1, p;(G) is an algebraic
Zariski-irreducible semisimple group. In particular it coincides with its closure,
hence G; = p;(G). Thus G; acts irreducibly on V; because G does, and G; is
Zariski-irreducible and semisimple because p;(G) is. This concludes the proof of
Proposition 9.46. (]

9.5. Tits’ Alternative for unbounded subgroups of SL(n)

In this section we prove Tits’ Alternative for subgroups I' of SL(n,K) that
are unbounded with respect to the standard norm, where K is either R or C. For
technical reasons, one should also consider the case of other local fields K. Recall
that a local field is a field with a norm |- | which determines a locally compact
topology on K. The most relevant examples for us are when K = R/ K = C,
K = Q, and, more generally, K is the completion of a finite extension of Q.

In what follows, V is an n-dimensional vector space over a local field K, n =
dim(V) > 1. We fix a basis eg,...,e, in V. Then the norm |- | on K determines
the Euclidean norms || - || on V' and on its exterior powers.

NOTATION 9.48. We will use the notation E° to denote the complement X \ E
of a subset &/ C X.

We shall prove the following.

THEOREM 9.49. Let T' < GL(V) be a finitely-generated group which is not
relatively compact, and such that the Zariski closure of T' in GL(V) is a Zariski-
1rreducible semisimple algebraic group acting irreducibly on V. Then I' contains a
free non-abelian subgroup.

PrOOF. In the argument, the free subgroups will be constructed using the
Ping-pong Lemma 4.37. The role of the space X in that lemma will be played by
the projective space.

NoTATION 9.50. We let P(V') denote the projective space of V. When there is
no possibility of confusion we do not mention the vector space anymore, and simply
denote the projective space by P.

The ideal situation would be to find a pair of elements g,k in I with properties
as in Chapter 4, Section 4.5. Since such elements may not exist in I" in general, we
try to ‘approximate’ the situation in Lemma 4.42.

Recall that, according to the Cartan decomposition (see Section 4.5), every
element g € GL(V') can be written as g = kdh, where k and h are in the compact
subgroup K of GL(V) and d is a diagonal matrix with entries on the diagonal such
that \al\ Z ‘ag‘ Z > |(1n| > 0.

DEFINITION 9.51. We call a sequence of elements (g;) in GL(V) a diverging
sequence if their matrix norms diverge to infinity.

It is immediate from the compactness of K that the elements g; of a diverging
sequence have Cartan decomposition g; = k;d;h; such that |a1(g;)| — o0 as i — 0.
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For every diverging sequence, there exists a maximal m € {1,...,n — 1} with

the property that
lim sup w > 0.
isoo  |a1(gi)]

By passing to a subsequence we may assume that
Jim 19m @D g
i—oo |a1(gi)|

and also that k; and h; converge to some k € K and h € K respectively. We
formalize these observations as follows:

DEFINITION 9.52. We call a sequence (g;) m-contracting, for m < dimV,
if its elements have Cartan decompositions g; = k;d;h; satisfying the following
convergence properties:

(1) k; and h; converge to some k and h in K
(2) d; are diagonal matrices with diagonal entries a1(g;), ..., an(g;) such that
la1(g:)| = laz(gi)| = - .. = lan(gs)|,  |a1(gs)| — o0

and
i 1on(00)
i—oo |ai(g;)|

(3) The number m is maximal with the above properties.

> 0.

Observe now that since I' is unbounded, it contains an m-contracting sequence
(gi), for some 1 <m < dimV.

In what follows we analyze the dynamics of an m-contracting sequence o = (g;) .
We use the following notation and terminology, consistent to that in Definition 9.52
and the notation used in §4.5:

NOTATION 9.53.
A(g;) = k; [Span(ey,...,en)] and A(o) = k[Span(ey,...,en)] .

E(g:) = h; ' [Span(emy1,---,en)] and E(c) = h™* [Span(emi1,---en)] -

Here the bracket stands for the projection to P(V). We call A(o) the attracting
subspace of the sequence o and E(o) the repelling subspace of the sequence o.

When m = 1 we call A(o) the attracting point and E(o) (sometimes also
denoted H (o)) the repelling hyperplane of the sequence o.

Note that since k; — k and h; — h, they converge in the compact-open topology
as transformations of P(V'); hence A(g;) converge to A(co), and E(g;) converge to
E (o) with respect to the Hausdorff metric.

EXAMPLE 9.54. To make things more concrete, consider the case dimV = 2
and K = R. Then P(V) = P! is the circle on which the group PSL(2,R) acts
by linear-fractional transformations. Since 0 < m < 2, it follows that m = 1 and,
hence, every diverging sequence contains a 1-contracting subsequence. It is easy
to see that, for a l-contracting sequence, the sequence of inverses has to be 1-
contracting as well. Moreover, the repelling hyperplanes in P(V') are again points.
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Thus, each diverging sequence g; € PSL(2,R) contains a subsequence g; for which
there exists a pair of points A and H in P(V) such that

. 3 _1
Jm gi |povngmy = A and lim g Fpngay = H,

uniformly on compact sets. For instance, if g;, = ¢", and ¢ is parabolic, then
A = H is the fixed point of g. If g is hyperbolic then A is the attractive and H is
the repelling fixed point of g. Thus, in general (unlike in the diagonal case), A(g;)
may belong to E(g;).

The following is a uniform version of Lemma 4.41 for m-contracting sequences:

LEMMA 9.55. Let o = (g;) be an m-contracting sequence. For each compact
K C E(0)° there exist L and ig so that g; is L—Lipschitz on K, for every i > ig.

ProOF. Assume that g;’s satisfy (for all sufficiently large i) the following:
la1(gi)| = laz(gi)] = ... = lam(g:)] = €lar(g:)]

where ¢ > 0 is a constant independent of i.

By the assumption, hK is disjoint of [Span(em41,...,exs)], so the Hausdorff
distance between these two compact sets is 2¢ > 0. Since the sets h; K converge
to hK in the Hausdorff metric, as ¢ — oo, we may assume that for large 7, the set
h; K is contained in K., where

K. =N_.(hK)={pe P(V)|dist(p, hK) < €} .

Since k; act as isometries on P(V'), it suffices to prove that d;’s are L-Lipschitz
maps, for some uniform L and i large enough. In what follows, we consider an

arbitrary diagonal matrix d = d; with eigenvalues a1, ..., an,.
Then every point [u] of K, is at distance > ¢ from [Span(ep, 41, ..., e,)]. With-
out loss of generality, we may assume that v = (uq,...,u,) is a unit vector. Set
w = (U1, U, 0,...,0), U =(0,...,0, U1y, Up)

Suppose that 0 < § < ﬁ and the vector u (as above) is such that
lu;| < 6,Vi=1,...,m.
Then,
[u — U |maz = | | maz < 9.
Lemma 1.74 then implies that
lu AU < 2né,
while

DN =

[u”| > 1—+/nd >
Combining these inequalities,we obtain
([, [u")) < 4né.

Since, by assumption, £ < d([u], [u"]), we see that

€

i
Therefore, for every unit vector u so that [u] € K.,

9.1) Jmaxfuy] > 6= 5(e) = min (4{; 2\1/5) .

0=
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In particular, for such w, there exists k € {1,...,m}, so that
|d(w)* = Jar*lur|* > €2]as]?6.
Let [v] and [w] be two points in K.. Then, in the archimedean case,

|d(v) A d(w)]? = Z |apvpaqwg — aqvqapwp‘2 = Z |apaq|2|vaq - Uqu|2 <

p<q p<q

Jag|* Z vpwg — ”quP = Ja1[*|v A wl]?,
p<q
while in the nonarchimedean case we also get:

|d(v) A d(w)| = max |apvpaqwy — aqugapwy| < lar]?|v Awl.

By combining these inequalities, for unit vectors u, v satisfying [u], [v] € K, we
obtain

_ g Aglw)| _JoAw] _ dv,w)

d(g(v),g(w)) = < O
000D = Yo gl S 5~ e
LEMMA 9.56. Let g be an element in GL(V) with Cartan decomposition g =
kdh, where d is a diagonal matriz with entries a1, ...,a, on the diagonal such that

lar] > las| = ... = lan| > 0. If % < €2/\/n, then g maps the complement of

the e—neighborhood of the hyperplane H = h™1 [Span(ea, ..., e,)] into the ball with
center kle1] and radius € .

PRrROOF. Since k and h are isometries of P(V), it clearly suffices to prove
the statement for ¢ = d, k = h = 1. Let [v] be a point in P(V) such that
dist ([v], [Span(es, ..., e,)]) = €. Then, as in the proof of Lemma 4.42,

_Jdv Ae| las|

d([dv], [er]) =

jdv] = " elaa] T
O

LEmMA 9.57. If o = (g;) is a l-contracting sequence with attracting point
p = A(o) and repelling hyperplane H (o), then for every closed ball B C H(0)¢, the
maps g;|p converge uniformly to the constant function on B which maps everything
to the point p.

ProOF. Consider an arbitrary closed ball B in H(c)¢. Then hB is a closed
ball in the complement of [Span(e,+1,...,e,)]. By compactness on P(V), there
exists € > 0 so that the minimal distance from hB to [Span(em+1,...,€n)] is = 2¢.
Consider

B, = {z € P(V) | dist(z, B) < ¢},
which is also a closed ball, at minimal distance > ¢ from [Span(e41, ..., €,)]. For
all sufficiently large i, the ball h;B is contained in B.. Therefore, it suffices to
prove that the maps k;d;|p. converge uniformly to the constant function on B,
which maps everything to the point p

Consider 6 = ¢/2. For all sufficiently large 4, according to Lemma 9.56, d;(Bs)
is contained in B([e1],d). On the other hand, for all large ¢, the point k;[e1] belongs
to the ball B(p,d). Whence,

kjidi(BE) C B(p, E).
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LeEMMA 9.58. Let (g;) be a diverging sequence of elements in GL(V').

(1) If there exists a closed ball B with non-empty interior and a point p such
that g;|p converge uniformly to the constant function on B which maps
everything to the point p, then (g;) contains a 1-contracting subsequence
with attracting point p.

(2) If, moreover, there exists a hyperplane H such that for every closed ball
B C H¢, gi|p converge uniformly to the constant function on B which
maps everything to the point p, then (g;) contains a 1-contracting subse-
quence with the attracting point p and the repelling hyperplane H.

ProOF. (1) Since (g;) is diverging, it contains a subsequence o (whose ele-
ments we again denote g;) which is m-contracting for some m. By replacing B with
a smaller ball, we may assume that B is in E(0)°.

Let g; = k;d;h; denote the Cartan decomposition of g;. By the above observa-
tions, for all sufficiently large ¢, the balls h; B are disjoint from [Span(e,,+1, .., €n)]-
The sequence of closed metric balls h; B Hausdorff—converges to the closed metric
ball hB. Therefore, there exists ig and a closed ball B’ contained in the intersection

() hiB.
i>ig
By the hypothesis, the closed sets k;d;(B’) Hausdorff-converge to the point p.
For every point [v] € B’ represented by a vector v, we have:

a2(9g; an(9;
[dﬂ)] = |:’l)161 + 2(92)’0262 + ...+ n(gl)’ljnen
a1(g:) a1(9:)
After passing to a subsequence, we may assume that
lim w(9) ) k1 m
11— 00 al(gi)

Since our sequence is m-contracting,
A1l = A2 = ... = | A > 0.

If m > 2 then we may find two distinct points [v], [v'] in B’ represented by two unit

vectors v = (v1,...,v,),v" = (v],...,v") so that
Jim [dyv] = [w],  lim [div'] = [w'],

[w] # [w'], w=wvie1+Aavaea+. ..+ ApUmem,w’ = vier+Aavhes+. ..+ Anv,em.
Assume that d([w], [w']) =€ > 0. As

[u] = lim [k;d;v] = lim [kw;], [v] = lim [k;do'] = lim [kw]],
i—00 1—00 1—00 1—00

it follows that the d([u],[v']) = € > 0. This contradicts the assumption that the
sequence of sets k;d;(B’) Hausdorff-converges to a point. It follows that m = 1,
i.e., 0 = (g;) is 1-contracting. If A(c) # p then a contradiction easily follows from
Lemma 9.57.

(2)  According to (1), the sequence (g;) contains a subsequence o which is
1-contracting, with A(c) = p. We continue with the notation introduced in the
proof of (1). If H(oc) # H then at least one of the points h=![es], ..., h71]e,] is
not in H. Assume that it is h=1[es], and that its distance to H is 2¢ > 0. For
sufficiently large all i’s, the points h; '[es] belong to the ball B(h™![es], €), disjoint
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from H. It follows that the sequence k;d;[e2] = k;i[ea] must converge to p = kleq]
by the assumption, and also to k[es], since lim;_, k; = k. Contradiction. [l

The following lemma is an easy consequence of Lemma 9.58, and it is left as
an exercise to the reader.

LEMMA 9.59. Let (g;) be a 1l-contracting sequence in PGL(V), and f,h €
PGL(V). Then the sequence (fg;h) contains a 1-contracting subsequence o = (g})
such that

A(o) = f(A(0)), E(0) =h""E(0).

LEMMA 9.60. Let (g;) be a diverging sequence in PGL(V'). Then there exists a
vector space W and an embedding p : PGL(V) — PGL(W) so that a subsequence
in (p(gi)) is 1-contracting in PGL(W).

PRrROOF. After passing to a subsequence, we may assume that the sequence
o = (g;) is m-contracting for some m, 0 < m < n. We consider the m-th exterior
power of V',
W :=A"V.
The action of GL(V) on V extends naturally to its action on W we obtain the
embedding p : GL(V) < GL(W). Clearly, for a matrix g € GL(V'), the norms of
the singular values of p(g) € GL(W) are the products

IT e --a5. 9l
j1<<-~<j'm
where a;(g) is the j-th singular value of g. Then, |a1(p(g:))| = |a1 - - - am(g:)| and
it is immediate that
lim ar(p(gi))
i~oo a1(p(9:))

We now return to the proof of the Tits alternative for the subgroup I' < GL(V).
Recall that we are working under the assumption that the Zariski closure G =T of
I'in GL(V) satisfies certain conditions, namely G is Zariski—irreducible, semisimple
and it acts irreducibly on V.

After replacing V' with W as above, since

=0,vi>1. 0O

p(I) < p(G) = p(I') < p(I') < p(G)
and p(QG) is still an algebraic Zariski-irreducible semisimple subgroup (see the end
of Section 9.1), it follows that p(T') = p(G). In what follows, we let I' and G denote
p(T') and p(G), and we denote the sequence (p(g;)) by (g:)-
If the action G ~ W is reducible, we take a direct sum decomposition

W= @W
i=1

into G-invariant subspaces, so that the restriction of the G-action to each is irre-
ducible. This defines homomorphisms p; : G — GL(W;), and all G; = p;(G) are
algebraic Zariski-irreducible semisimple subgroups. In particular, G; = [G;, G],
hence every G} is, in fact, contained in SL(W;). In particular for the 1-dimensional
spaces W;, the group G; is trivial. Without loss of generality, we can, therefore,
assume that each subspace W, has dimension > 1.

LEMMA 9.61. For some s, the sequence o = (g;) restricted to W is 1-contracting.
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Proor. Let p = A(c) € P(W) and H = H(c) C P(W) be the attracting
point and, respectively, the repelling hyperplane of the sequence o = (g;). Since
the subspaces Wy are G-invariant, for each ¢ either p € P(W;) or P(W,;) C H. Since
H is a hyperplane in P(W), it follows that p € P(W;) for some s. The restriction
of (g;) to P(W;) converges to p away from H N P(W5). Since dim(W) > 1, we are
done. d

Let ps be the representation G — SL(W,). Our goal will be to prove that
ps(I') contains a free non-abelian group, whence it will follow that I" contains such
a group, which will conclude the proof. For simplicity of notation, in what follows,
we denote p,(I") by T', its Zariski closure by G and the vector space Wy by V. As
before, the Zariski closure of p,(T") is Zariski-irreducible and semisimple.

THEOREM 9.62. Let T be a subgroup in SL(V) containing a 1-contracting se-
quence of elements, and such that the Zariski closure I' of T is Zariski—irreducible
and that T acts irreducibly on V. Then I" contains a free non-abelian subgroup.

Before beginning the proof, we note that the 1-contracting sequence that we
now have at our disposal in the group I' does not suffice yet, not even to construct
one of the two elements in a ping-pong pair “modeled” after the one in Lemma 4.42.
Indeed, for every i € N the action of the element g; € I' on the projective space
P = P(V) is, as represented in Figure 9.1 (where we picture projective space as a
sphere). According to Lemma 9.56, for every ¢ > 0 and all sufficiently large i, the
transformation ¢; (with the Cartan decomposition k;d;h;) maps the complement
of the e-neighborhood of H (o) = h; ! [Span(es, ..., e,)] into the e-neighborhood of
the point A(o) = k; [e1], with the notation of 9.53.

A(gi) = ki [ed] &

hi ! [ed]

(3

Span(es, ...

F1GURE 9.1. The action of g;.

The first problem occurs when one iterates g;, i.e. one considers g2, g3, etc.
Nothing guarantees that g? would also map the complement of the e-neighborhood
of H(g;) into the e-neighborhood of A(g;), for large . This only happens when
the e-neighborhood of A(g;) is disjoint from the e-neighborhood of H(g;). Our
hypothesis does not, ensure this, since no conditions can be imposed on h;, k; and
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their limits (see comments in Example 9.54). We will use Lemma 9.59 and the
notion of a separating set developed in the sequel to circumvent this difficulty.

Separating sets.

DEFINITION 9.63. A subset FF C PGL(V) is called m-separating if for every
choice of points p1,...,p,m € P = P(V) and hyperplanes Hy,...,H,, C P, there
exists f € F so that

(i) ¢ Hj, Vi, j=1,...,m.

It will now become apparent why we endeavored to ensure the two irreducibility
properties (for the Zariski topology, and for the action) for the Zariski closure of T'.

PROPOSITION 9.64. Let I' C SL(V) be a subgroup with the property that its
Zariski closure is Zariski—irreducible and it acts irreducibly on V. For every m, I’
contains a finite m-separating subset F'.

PROOF. Let G be the Zariski closure of I'. Let PV denote the space of hy-
perplanes in P (i.e. the projective space of the dual of V). For each g € G let
M, C P™ x (PY)™ denote the collection of 2m-tuples

(P1s- s Py Hiy oo, Hyn)
so that
g(pi) € Hj or g~ ' (p;) € Hj
for some 7,5 =1,...,m.

LEMMA 9.65. IfT' is as in Proposition 9.64 then
(M, =0.
ger
PROOF. Suppose to the contrary that the intersection is nonempty. Then there
exists a 2m-tuple (p1,...,Pm, Hi,..., H,) so that for every g € T,
(9.2) 34,7 so that g(p;) € H; or g Yp) € H;.

The set of elements g € SL(V) such that (9.2) holds for the given 2m-tuple is
Zariski—closed, and G is the Zariski closure of I, hence all g € G also satisfy (9.2).
Let G’i’Hj denote the set of g € G so that

9! (p) € Hj.
Clearly, these subsets are Zariski—closed and cover the group G. Since G Zariski—
irreducible, it follows that one of these sets, say G;y Hy» is the entire of G. Therefore,
for every g € G, g(pi) € H;. Thus, projectivization of the vector subspace L
spanned by the G-orbit (of lines) G - p; is contained in H;. The subspace L is

proper and G-invariant. This contradicts the hypothesis that G acts irreducibly on
V. O
We now finish the proof of Proposition 9.64. Let M7 denote the complement of

My in P™ x (PY)™. This set is Zariski open. By Lemma 9.65, the sets M (g € T')
cover the space P™ x (PV)™. Since K is a local field, the product P™ x (PY)™ is
compact and, thus, the above open cover contains a finite subcover. Hence, there
exists a finite set F' C I so that

U Mf=Pmx (P

fer
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This set satisfies the assertion of Proposition 9.64. ([

REMARK 9.66. The above proposition holds even if the field K is not local.
Then the point is that by Hilbert’s Nullstellensatz, there exists a finite subset

F C T so that
() My =) M, =0.
fer gel

With this modification, the above proof goes through.

Ping-pong sequences. We now begin the proof of Theorem 9.62, which will
be split in several lemmas.

In what follows we fix a 4-separating finite subset F' C I' C¢ PGL(V). We will
use the notation f for the elements of F'.

LEMMA 9.67. There exists f € F so that (after passing to a subsequence in
(gi)) both sequences h; := gifgi_1 and gif*Igi_1 are 1-contracting.

PRrOOF. After passing to a subsequence o = (g;), we can assume that the se-
quence o~ = (g; ') is m-contracting, with attracting subspace A (¢~) and repelling
subspace E (07). Pick a point ¢ in the complement of the subspace E (07). Af-
ter passing to a subsequence in (g;) again, we can assume that lim; gi_l(q) =u €
A(o7). Let A(o) and H (o) be the attracting point and the repelling hyperplane
of the sequence o .

Since F is a separating subset, there exists f € F so that f*!(u) ¢ H (o).

Take a small closed ball B(gq,e) C P centered at ¢ and disjoint from E (o7).
According to Lemma 9.55, g; ' (B(g,€)) C B (g; '(q), Le) for al large i and L
independent of ¢. It follows that for all large ¢

g;l (B(g,€)) C B(u, 2Le) .

By Lemma 4.41, fg; ' (B(q,¢)) C B(f(u), L'¢) for all large i and L’ indepen-
dent of i. Note that if we reduce €, the constants L and L’ will not change. We
take € small enough so that the sets B (f(u), L'e) and N, (H(o)) are disjoint. Since
the sequence (g;) restricted to the complement of N, (H (o)) converges uniformly
to the point A(c) it follows that the sequence g;fg; *| B(q,e) converges uniformly to
the point A(c). Lemma 9.58, (1), now implies that (g;) contains a l-contracting
subsequence.

The same argument for f~! concludes the proof. (Il

Thus, we have found a 1-contracting sequence 7 = (h;) in I' such that the
sequence 7~ = (h; ') is also 1-contracting.

LEMMA 9.68. There exists f € F such that, for a subsequence n = (y;) of the
sequence (fh;), both n and n~ = (yl_l) are 1-contracting. Moreover,

(9.3) A(n) ¢ H(n) and A(n~) ¢ H(n™).
Proor. By Lemma 9.59, for any choice f € F, the sequence (fh;) contains a
1-contracting subsequence n = (y;), with n~ = (yl_l) likewise 1-contracting, and

A(n) = f(A(7)), H(n) = H(7),
Al ) =A(") H(@)=fH(T).

Now, the assertion follows from the fact that F' is a 4-separating set. O
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DEFINITION 9.69. [Ping-pong pair] A pair of sequences n = (y;) and ¢ = (z;) is
called a ping-pong pair if both sequences are as in Lemma 9.68 and, furthermore,

A(n*) € H(CF) and A(CY) ¢ H(n*).

Let n = (y;) be the sequence from Lemma 9.68.

LEMMA 9.70. There exists f € F so that the sequences (y;),(z:) = (fyif ')
contain subsequences that form a ping-pong pair.

Proor. By Lemma 9.59, after replacing n = (y;) with a subsequence, we may
assume that ¢ = (z;) and (~ = (z;l) are 1-contracting and A (Cil) =fA (nil),
while H ({il) = fH (nil). Now, the assertion follows from the fact that F' is
4-separating. [

End of proof of Theorem 9.62. Lemma 9.70 implies that I' contains a ping-pong
pair of sequences 1 = (y;), ¢ = (2;). For every small € and all large i, we have:

Ne(H(n)* = B(A(n), €)

N (H (7)) 55 B (A7) o)

Ne(H(0)" = B(A(Q) ¢)

—1
Ne(H () 7= B(A(CT) o)

Moreover, for € sufficiently small, the balls on the right-hand side are contained
in the complements of tubular neighborhoods on the left-hand side. Therefore, the
above statements also hold with transformations y;,y; Lz, z; ! replaced by their
k-th iterations for all k£ > 0.

We choose € small enough so that

B(A(n), ) NN (Hn) UH(QUH (¢7)) =0,
B(A(n) . o) NN (H (1) UH(QUH (¢)) =0,
B(A«), ) NN (H(QUHmUH (n7)) =0,

B ,€) NN,

(A(¢7) e (H(C)UHMmUH (™)) =0.
For € small as above, we consider the sets

A=B(A(n), )UB(A(n7) ,¢)
and
B=DB(A(),e)UB(A(CT) ,e) .
Since A(n) € H(n™), A(n~) € H (n) and A(¢) € H (¢™), A((7) € H((), our

hypotheses imply that AN B = (. Moreover for all large i, for every k € Z \ {0},
yf (E) ggand zf (Z) QE

Lemma 4.37 now implies that for all large ¢, the group (y;, z;) is a free group of
rank 2. g
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9.6. Free subgroups in compact Lie groups

The compact case is more complicated. Let I" be a relatively compact finitely-
generated subgroup of G = SL(n,C). According to Proposition 9.46, we may
assume that the Zariski closure of T' in SL(n,C) is Zariski-irreducible, semisimple,
and that it acts irreducibly, i.e., it does not preserve a proper subspace of C™. Note
that in this section, unlike in the previous one, G denotes SL(n,C), not the Zariski
closure of T'.

Let 71, ..., vm denote generators of I and consider the subfield F'in C generated
by the matrix entries of these matrices.

Reduction to a number field case. Consider the representation variety
R(T',G) = Hom(T', G). This space can be described as follows. Let
(V1o s YmlT1, - o)

be a presentation of I' (the number of relators could be infinite). Each homomor-
phism p : I' — G is determined by the images of the generators of I". Hence R(T, )

is a subset of G™. A map p:v; — G,i=1,...,m extends to a homomorphism of
I' if and only if

(9.4) Vi, plry) = 1.

Since the relators r; are words in vlil,...,'yil, the equations (9.4) amount to

polynomial equations on G™. Hence, R(T',G) is given by a system of polynomial
equations and has a natural structure of an affine algebraic variety. Since the for-
mula for the inverse in SL(n) involves only integer linear combinations of products
of matrix entries, it follows that the above equations have integer (in particular,
rational) coefficients. In other words, the representation variety R(T', G) is defined
over Q.

PROPOSITION 9.71. Let Z be an affine variety in CN defined by polynomial
equations with rational coefficients and let Q be the field of algebraic numbers, the

algebraic closure of Q. Then the set Z ﬂ@N is dense in Z with respect to the
classical topology on CV.

PRrROOF. The proof is by induction on N. The assertion is clear for N = 1.
Indeed, in this case either Z = C or Z is a finite set of roots of a polynomial with
rational coefficients: These roots are algebraic numbers. Suppose the assertion
holds for subvarieties in CVN~1. Pick a point x = (x1,...,2x5) € Z and let ¢; be
a sequence of rational numbers converging to the first coordinate z;. For each
rational number g;, the intersection Z N{x; = ¢;} is again an affine variety defined
over Q which sits inside CVY~!. Now the claim follows from the induction hypothesis
by taking a diagonal sequence. O

COROLLARY 9.72. Algebraic points are dense in R = R(T',G) with respect to
the classical topology. In other words, for every homomorphism p : I' — G, there
exists a sequence of homomorphisms p; : I' = G converging to p so that the matriz
entries of the images of generators p;(7;) are in Q.

We now let p; € R(T',G) be a sequence which converges to the identity rep-
resentation p : I' — I' C G. Recall that in section 9.3, we proved that for every
finitely-generated subgroup I' C GL(n,C) which is not virtually solvable, there
exists a neighborhood ¥ of p = id in Hom(I', GL(n,C)) so that every p’ € E has
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image which is not virtually solvable. Therefore, without loss of generality, we may
assume that each p;(I") constructed above is not virtually solvable.

LEMMA 9.73. IfT'; := p;(T') contains a free subgroup A; of rank 2 then so does
.

PROOF. Let g1,g2 € T be the elements which map to the free generators h1, ho
of Aj under p;. Let A be the subgroup of I' generated by g¢1,g2. We claim that A
is free of rank 2. Indeed, since A; is free of rank 2, there exists a homomorphism
¢; : A; — A sending hy to g, £ = 1,2. The composition ¢; o p; is the identity
since it sends each hy, to itself. Hence, ¢; : A; — A is an isomorphism. O

Thus, it suffices to consider the case when the field F' (generated by matrix
entries of generators of I') is a number field, i.e., is contained in Q. The absolute
Galois group Gal(Q/Q) acts on F and hence on SL(n, F):

Vo € Gal(Q/Q), A= (a;j;) € SL(n,F), o(A):= (a7;)-

Every o € Gal(Q/Q) extends (by identity) to the set of transcendental numbers
and, hence, extends to an automorphism o of C. Therefore, o determines an
automorphism o of SL(n,C) (which, typically, it discontinuous in the classical
topology). Therefore, o will send the subgroup I' € SL(n, F') to o(T') C G(o(F)) C
SL(n,C). The homomorphism o : I' — IV := ¢(I") is 1 — 1 and, therefore, if for
some o the group SL(n,o(F)) happens to be a non-relatively compact subgroup of
SL(n,C) we are done by Theorem 9.49.

However, it could happen that for each o the group G(o(F)) is relatively com-
pact and, thus, we seemingly gained nothing. Nevertheless, there is a remarkable
construction which saves the proof.

Adeles. (See [?, Chapter 6].) The ring of adeles was introduced by A. Weil in
1936. For a number field F' consider various norms |- | : F — R4, see §1.7.

Suppose that F'is a finitely—generated number field. Then F'is a finite extension
of Q. Let Nor(F) denote the set of all norms on F which restrict to either the
absolute value or to one of the p-adic norms on Q C F. We will use the notation
F,, Q, to denote the completion of F' with respect to the norm v, we let O, C F),
denote the ring of integers:

O,={z€F,: v(x)<1}

Note that for each x € Q, z € O, for all but finitely many p’s, since x has only
finitely many primes in its denominator. The same is true for elements of F: For
all but finitely many v € Nor(F), v(x) < 1. We will use the notation v, for the
p-adic norm on Q.

Product formula: For each z € Q\ {0}
H v(z) =1.
vENor(Q)

Indeed, if # = p is prime, then |p| = p for the archimedean norm, v(p) = 1if v # v,
is a nonarchimedean norm and v,(p) = 1/p. Thus, the product formula holds for
prime numbers z. Since norms are multiplicative functions from Q* to Ry, the
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product formula holds for arbitrary « # 0. A similar product formula is true for an
arbitrary algebraic number field F":

I we)™ =1
veNor(F)

where N, = [F, : Q,], see [?, Chapter 6].

DEFINITION 9.74. The ring of adeles is the restricted product

A(F) = ﬁ F,,

veNor(F)
i.e. the subset of the direct product
(9.5) I =
veNor(F)

which consists of sequences whose projection to F}, belongs to O,, for all but finitely
many v’s.

We topologize A(F) via the subset topology induced from the product (9.5),
which, in turn, is equipped with the product topology. Note that the ring operations
are continuous with respect to this topology.

For instance, if ' = Q then A(Q) is the restricted product

R x H Q,.

p 18 prime

REMARK 9.75. Actually, it suffices to use the ring of adeles A(Q). This is
done via the following procedure called the restriction of scalars: The field F' is an
m-~dimensional vector space over Q. This determines an embedding

I' C GL(n,F) = [[ GL(n,Q) C GL(n +m,Q)
i=1
and reduces our discussion to the case I' C GL(n + m, Q).

Now, a miracle happens:

THEOREM 9.76 (See e.g. Chapter 6, Theorem 1 of [?]). The image of the
diagonal embedding F — A(F) is a discrete subset in A(F).

PRrOOF. It suffices to verify that 0 is an isolated point. Take the archimedean
norms vy, ..., Y, € Nor(F) (there are only finitely many of them since the Galois
group Gal(F/Q) is finite) and consider the open subset

Uzﬁ{xEFl,i cy(x) < 1/2} x H O,
i=1

pENor (F)\{v1,....um}
of A(F). Then for each (z,) € U,
I ve@)<12<1
veENor(F)

Hence, by the product formula, the intersection of U with the image of F in A(F)
consists only of {0}. O
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In order to appreciate this theorem, the reader should consider the case F' = Q
which is dense in the completion of Q with respect to every norm.

Recall that I" is a subgroup in SL(n, F'). The diagonal embedding above defines
an embedding

I C SL(n,F) = SL(n,A(F))c [ SL(,F,)
veENor(F)

with discrete image.

For each norm v € Nor(F) we have the projection p, : I' — SL(n, F,). If
the image p,(T') is relatively compact for each v then T is relatively compact in
I, exor(r) SL(n, Fy), by Tychonoff’s Theorem. As I'is also discrete, this implies
that I is finite, a contradiction.

Thus, there exists a norm v € Nor(F') such that the image of T in SL(n, F,)
is not relatively compact. If v happens to be archimedean we are done as before.
The more interesting case occurs if v is nonarchimedean. Then the field F, = k is
a local field (just like the p-adic completion of the rational numbers) and we appeal
to Theorem 9.49 to conclude that I' contains a free subgroup in this case as well.
This concludes the proof of the Tits’ Alternative (Theorem 9.1). O

REMARK 9.77. 1. The above proof works only if I" is finitely generated. The
general case will be treated below.

2. Tits’ proof also works for algebraic groups over fields of positive character-
istic, see [?]. However, in the case of infinitely-generated groups one has to modify
the assertion, since GL(n, F'), where F is an infinite algebraic extension of a finite
field, provides a counter-example otherwise.

3. The arguments in the above proof mostly follow the ones of Breuillard and
Gelander in [?].

Note that a consequence of the previous arguments is the following.
THEOREM 9.78. Let I" be a finitely generated group that does not contain a free

non-abelian subgroup. Then:

(1) If T is a subgroup of an algebraic group L then its Zariski closure G is
virtually solvable.

(2) If T is a subgroup of a Lie group L with finitely many connected compo-
nents, then the closure G of T in the Lie group L is virtually solvable.

Furthermore, in both cases above, the solvable subgroup S of G has derived length
at most 6 = §(L) and the index |G : S| is at most v = v(L).

PROOF. The arguments in the proof of Theorem 9.1 imply the statement (1).
The statement (2) follows in a similar manner. Indeed, as in Section 9.4, using the
adjoint representation one can reduce the problem to the setting of linear subgroups,

and there the closure in the standard topology is contained in the Zariski closure.
O

Tits Alternative without finite generation assumption.
We will need
LEMMA 9.79. Every countable field F' of zero characteristic embeds in C.
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PROOF. Since F' has characteristic zero, its prime subfield P is isomorphic to
Q. Then F is an extension of the form

PCFECEF,

where P C E is an algebraic extension and E' C F is a purely transcendental
extension (see [Chapter VI.1][?]). The algebraic number field E embeds in @ C C.
Since F is countable, F'/E has countable dimension and, therefore,

F=E(ui,...,un)

or
F=E(ui,...,Un,...).

Sending variables u; to independent transcendental numbers z; € C, we then obtain

an embedding F — C. O

THEOREM 9.80 (Tits Alternative). Let F be a field of zero characteristic and
T be a subgroup of GL(n, F). Then either T is virtually solvable or T' contains a
free nonabelian subgroup.

ProOOF. The group I' is the direct limit of the direct system of its finitely-
generated subgroups I';. Let F; C F' denote the subfield generated by the matrix
entries of the generators of I';. Then I'; < GL(n, F;). Since F' (and, hence, every
F;) has zero characteristic, the field F; embeds in C (see Lemma 9.79).

If one of the groups I'; contains a free nonabelian subgroup, then so does
I". Assume, therefore, that this does not happen. Then, in view of the Tits Al-
ternative (for finitely generated linear groups), each I'; is virtually solvable. For
v = v(GL(n,C)) and 6 = 6(GL(n,C)), every i there exists a subgroup A; < T';
of index < 4, so that A; has derived length < § (see Theorem 9.38). In view of
Exercise 77, the group T is also virtually solvable. O
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CHAPTER 10

The Banach-Tarski paradox

10.1. Paradoxical decompositions

DEFINITION 10.1. Two subsets A, B in a metric space (X, dist) are congruent
if there exists an isometry ¢ : X — X such that ¢(A) = B.

DEFINITION 10.2. Two sets A, B in a metric space X are piecewise congruent
(or equidecomposable) if, for some k € N, they admit partitions A = A; U ... U Ay,
B = B; U...lU By, such that for each i € {1, ..., k}, the sets A; and B; are congruent.

Two subsets A, B in a metric space X are countably piecewise congruent (or
countably equidecomposable) if they admit partitions A = | | .y An, B = |l,cn Bn
such that for every n € N, the sets A,, and B,, are congruent.

REMARK 10.3. Thus, by using empty sets for some A,,, B,,, we see that piece-
wise congruence as a stronger form of countably piecewise congruence.

EXERCISE 10.4. Prove that (countably) piecewise congruence is an equivalence
relation.

DEFINITION 10.5. A set F in a metric space X is paradozical if there exists a
partition
EF=XU..UX,UuYiu..uy,

and isometries @1, ..., Pk, V1, ..., Ym of X, so that
gﬁl(Xl) L...d Spk(Xk) =F
and
vV U Uy(Y)=E .
A set E in a metric space X is countably paradozical if there exists a partition
E=|]|Xx,u|]|Vn
neN meN
and two sequences of isometries (¢, )neN, (Vm)men of X, so that
| | en(Xn) =E, and | | ¢m(Ye) = E.
neN meN

ExERcISE 10.6. 1. If E, E’ C X are piecewise-congruent and F is paradoxical,
then so is E'.

2. If E,E' C X are countably piecewise-congruent and E is countably para-
doxical, then so is E'.

Using earlier work of Vitali and Hausdorff, Banach and Tarski proved the fol-
lowing:
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THEOREM 10.7 (Banach-Tarski paradox [?]). (1) Any two bounded sub-

sets with non-empty interior in R™ (for n > 3) are piecewise congruent.

(2) Any two bounded subsets with non-empty interior in R™ (for n € {1,2})
are countably piecewise congruent.

COROLLARY 10.8. (1) Every Euclidean ball is paradozical in R™,n > 3,
and countably paradoxical in R™,n € {1,2}.
(2) For everyn > 3 and every m € N, every ball in R™ is piecewise congruent
to m copies of this ball (one can “double” the ball).
(3) A pea and the sun are piecewise congruent (any two Euclidean n-balls are
piecewise-congruent for n > 3).

REMARK 10.9. The Banach-Tarski paradox emphasizes that it is impossible
to find a finitely-additive measure defined on all subsets of the Euclidean space of
dimension at least 3 that is invariant with respect to isometries and takes the value
one on a unit cube. The main point in their theorem is that the congruent pieces
A;, B; are not Lebesgue measurable.

REMARK 10.10 (Banach-Tarski paradox and axiom of choice). The Banach-
Tarski paradox is neither provable nor disprovable with Zermelo-Fraenkel axioms
(ZF) only: It is impossible to prove that a unit ball in R? is paradoxical in ZF, it
is also impossible to prove it is not paradoxical. An extra axiom is needed, e.g.,
the axiom of choice (AC). In fact, work of M. Foreman & F. Wehrung [?] and J.
Pawlikowski [?] shows that the Banach—Tarski paradox can be proved assuming ZF
and the Hahn-Banach theorem (which is a weaker axiom than AC, see Section ?7?).

10.2. Step 1 of the proof of the Banach—Tarski theorem

We will prove only Corollary 10.8, Parts 1 and 2 and only in the case n < 3.
The general statement of Theorem 10.7 for two bounded subset with non-empty
interiors is derived from the doubling of a ball by using the Banach—Bernstein-
Schroeder theorem (see [?]). The general statement in R™,n > 3, can be easily
either derived from the statement for n = 3, or proved directly by adapting the
proof in dimension 3.

The first step in the proof is common to all dimensions.

Step 1: The unit sphere S" is piecewise congruent to S\ C, where C is
any countable set, and n > 2.

We first prove that there exists a rotation p around the origin such that for any
integer n > 1, p"(C) N C = (. This is obvious in the plane (only a countable set of
rotations do not satisfy this).

In the space we first select a line £ through the origin such that its intersection
with S? is not in C. Such a line exists because the set of lines through the origin
containing points in C' is countable. Then we look for a rotation pg of angle 6
around ¢ such that for any integer n > 1, pj(C) N C = (). Indeed take A the set of
angles « such that the rotation of angle o around ¢ sends a point in C' to another
point in C. There are countably many such angles, therefore the set A’ = Un21 %A
is also countable. Thus, we may choose an angle § ¢ A’

Take O =, 5 p5 (C) and decompose §* as §* = OU(S*\ O). Then (O\ C)U
(S2\ O0) = §?\ C. We, thus, have a piecewise congruence of S to S? \ C which
sends O to O\ C by py and is the identity on S?\ O.
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10.3. Proof of the Banach—Tarski theorem in the plane

Step 2 (using the axiom of choice): The unit circle S' is countably para-
doxical.

Let « be an irrational number and let R € SO(2) be the counter-clockwise
rotation of angle 2wra. Then the map m — R™ is an injective homomorphism
7Z — SO(2). Via this homomorphism, Z acts on the unit circle S'. According to
the axiom of choice there exists a subset D C S! which intersects every Z-orbit in
exactly one point.

Since Z decomposes as 27 U (2Z + 1), the unit circle decomposes as

2Z-DU(2Z +1) - D.

Now, for each X,, = R?" - D consider the isometry ¢, = R™", and for each Y,, =
R?"*1 . D consider the isometry ¢, = R™""'. Clearly S' = ||, ¢n(Xy) and

St =Lez ¥n(Yn)-
Step 3: The unit disk D? is countably paradoxical.

Let D? be the closed unit disk in R? centered at a point O. Step 1 and the fact
that D? \ {O} can be written as the set
{\z; Ae (0,1], z € S'},
imply that D%\ {O} is countably paradoxical. Thus, it suffices to prove that D?\{O}

is piecewise congruent to D?. Take S ((4,0), 3), the unit circle with center (3,0

and radius % For simplicity, we denote this circle S /5. Then

D*\ {0} =D?\ S1/2 USy,2 \ {O}.

According to Step 1, Sy/5 \ {O} is piecewise congruent to S;,,, hence D%\ {O} is
piecewise congruent to

1
2

]D)2\Sl/2|_|81/2:]])2. D

REMARK 10.11 (Stronger result). Instead of the splitting Z = 2Z U (2Z + 1)
of Z into two ‘copies’ of itself, we might consider a splitting of Z into infinitely
countably many ‘copies’ of itself. Indeed the subsets Z(*) = 287 4+ 2k=1 L e N,
form a partition of Z. This allows to prove, following the same proof as above, that
a unit disk is countably piecewise congruent to countably many copies of itself.

PROOF. As in Step 2, we write S! = ZD = | |,y Z*) D. The idea is to move
by isometries the copies of D in Z®* D so as to form the k-th copy of the unit circle.
Indeed, if for the set Xy, = R2'™+2" 7' D we consider the isometry

ok _ok=1y
Grm = Tapoyo BT ™ ",

then

|_| ¢k,m (Xk,m)

mEeZ
is equal to S*((2k,0),1).
Thus, S' is countably piecewise congruent to

| | s'((2k,0),1).
keN
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This extends to the corresponding disks with their centers removed. In Step 3 we
proved that a punctured disk is piecewise congruent to the full disk. This allows to
finish the argument. O

10.4. Proof of the Banach—Tarski theorem in the space

We now explain prove Banach-Tarski theorem for A, the unit ball in R? and
B, the disjoint union of two unit balls in R3.

Step 2: a paradoxical decomposition for the free group of rank 2.

Let F5 be the free group of rank 2 with generators a,b. Given u, a reduced
word in a,b,a”',b"!, we denote by W, the set of reduced words in a,b,a=!,b7!
with the prefix u. Every x € Fy defines a map L, : F» — F3, L,(y) = zy (left
translation by x).

Then

(10.1) Fy = {1}|_|Wa UWa—1 UWp LU Wy—a

but also Fo = L, W,-1 UW,, , and Fy = LiWy—1 UW,,. We slightly modify the above
partition in order to include {1} into one of the other four subsets. Consider the
following modifications of W, and W,-1:

W, =W, \{a";n>1}and W, =W, U{a"; n > 0}.
Then
(102) F :W;UW;_1 U Wy U Wy

and
Fo=LW . UW,.

Step 3: A paradoxical decomposition for the unit sphere (using the axiom
of choice).

According to the Tits Alternative (see also Example 9.29), the free group Fs
embeds as a subgroup in the orthogonal group SO(3). For every w € F» we denote
by R, the rotation of R? given by this embedding.

Let C be the (countable) set of intersections of S? with the union of axes of
the rotations R,, w € Fy \ {1}. Since C is countable, by Step 1, S? is piecewise
congruent to S?\ C. The set S?\ C is a disjoint union of orbits of Fy. According to
the axiom of choice there exists a subset D C S?\ C which intersects every Fy-orbit
in S?\ C exactly once. (The removal of the set C' ensures that the action of Fy is
free, i.e., no nontrivial element of F, fixes a point, that is all orbits are copies of
F.)

By Step 2,

Fy =W UW!, i UW, UW,-1.
This defines a decomposition
(10.3) S’\C=F-D=W,-DUW._, - DUW,-DUW,-1-D.

The fact that the subsets in the union (10.3) are pairwise disjoint reflects the
fact that the action of F» on S§?\ C is free. Since F» admits a paradoxical decompo-
sition, so does S? \ C. Since the latter is piecewise-congruent to S?, it follows that
S? also admits a paradoxical decomposition.
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We will now show that S? is piecewise congruent to a disjoint union of two
copies of S2. Let v denote the vector (3,0,0) in R? and let T}, denote the isometry
of R? which is the translation by v.

In view of the decomposition (10.3), the set S? \ C is piecewise congruent to

W, -DURW,_,-DUT, WyD)UT, 0 R, W,-1D)=S*\CUT, (S*\ C) .

This and Step 1 imply that S? is piecewise congruent to S? LT, S?, i.e., one can
“double” the ball. Part 2 of Corollary 10.8 now follows by induction.

Step 4: A paradoxical decomposition for the unit ball.

The argument is very similar to the last step in the 2-dimensional case. Let B?
denote the closed unit ball in R? centered at O. Step 3 and the fact that the unit
ball B3\ {O} can be written as the set

{Azr; A€ (0,1], z € S?},
imply that B* \ {O} is piecewise congruent to
B\ {0} LT, (B°\ {0))

Thus, it remains to prove that B3 \ {O} is piecewise congruent to B3. We denote
by Si/2 the sphere with the center (%, 0, O) and radius % Then

B?\ {O} =B\ S1,2 US1/2 \ {O}.
According to Step 1, S;/; \ {O} is piecewise congruent to S;/,; hence, B3\ {O} is
piecewise congruent to B3\ S1/2USy2 = B3.
This concludes the proof of Corollary 10.8, Parts 1 and 2, for n < 3. (]

REMARK 10.12. Banach and Tarski’s proof relies on the Hausdorff’s paradox,
discovered several years prior to their proof. Inspired by the Hausdorff’s argument,
R. M. Robinson, answering a question of von Neumann, proved in [?] that five is the
minimal number of pieces in a paradoxical decomposition of the unit 3-dimensional
ball. See Proposition 11.90 for a proof of this statement, and Section 11.7 for a
discussion on the minimal number of pieces in a paradoxical decomposition.

REMARK 10.13. (1) The free group F; of rank 2 contains a free subgroup
of countably infinite rank, see Proposition 4.47. This and a proof similar
to the one of Theorem 10.7 yields that the unit sphere S"~! is countably
piecewise congruent to countably many copies of S*1.

(2) It can be proved that the unit sphere S*~! can be partitioned into 2%°
pieces, so that each piece is piecewise congruent to S"~! (see [?]).
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CHAPTER 11

Amenability and paradoxical decomposition.

In this chapter we discuss in detail two important concepts behind the Banach-
Tarski paradox: Amenability and paradoxical decompositions. Although both prop-
erties were first introduced for groups (of isometries), it turns out that amenability
can be defined in purely metric terms, in the context of graphs of bounded geom-
etry. We shall begin by discussing the graph version of amenability, then we will
turn to the case of groups, and then to the opposite property of being paradozical.

11.1. Amenable graphs

DEFINITION 11.1. A graph G is called amenable if its Cheeger constant, as
described in Definition ??, is zero. Equivalently, there exists a sequence F}, of finite
subsets of V' such that

n—00 |E |
Such sequence F;, is called a Folner sequence for the graph G .
A graph G is non-amenable if its Cheeger constant is strictly positive.

It is immediate from the definition that every finite graph is amenable (take
F,=V).

We describe in what follows various metric properties equivalent to non-ame-
nability. Our arguments are adapted from [?]. The only tool that will be needed is
Hall-Rado Marriage Theorem from graph theory, stated below.

Let Bip(Y,Z; E) denote the bipartite graph with vertex set V split as V =
Y U Z, and the edge-set E. Given two integers k,l > 1, a perfect (k,l)—-matching
of Bip(Y,Z; E) is a subset M C E such that each vertex in Y is the endpoint of
exactly k edges in M, while each vertex in Z is the endpoint of exactly ! edges in
M.

THEOREM 11.2 (Hall-Rado [?], §I11.2). Let Bip(Y,Z; E) be a locally finite
bipartite graph and let k > 1 be an integer such that:
o For every finite subset A C Y, its edge-boundary E(A, A°) contains at
least k|A| elements.

e For every finite subset B in Z, its edge-boundary E(B,B¢) contains at
least |B| elements.

Then Bip(Y, Z; E) has a perfect (k,1)—-matching.

Given a discrete metric space (X, dist), two (not necessarily disjoint) subsets
Y,Z in X, and a real number C' > 0, one defines a bipartite graph Bipc(Y, Z),
with the vertex set Y U Z, where two vertices y € Y and z € Z are connected by
an edge in Bipc(Y, Z) if and only if dist(y, z) < C. (The reader will recognize here

291



a version of the Rips complex of a metric space.) We will use this construction in
the case when Y = Z = X, then the vertex set of Bip(X, X) will consist of two
copies of the set X.

In what follows, given a graph with the vertex-set V' we will use the notation
Nc(F) and No(F) to denote the “closed” and “open” C-neighborhood of F in V:

Nco(F)={veV dist(v,F) <C}, Ng(F)={veV dist(v,F) < C}.

THEOREM 11.3. Let G be a connected graph of bounded geometry, with vertex
set V and edge set E, endowed, as usual, with the standard metric. The following
conditions are equivalent:

(a) G is non-amenable.

(b) G satisfies the following expansion condition: There exists a constant C >
0 such that for every finite non-empty subset F C V, the set No(F) C 'V
contains at least twice as many vertices as F.

(c) There exists a constant C' > 0 such that the graph Bipc(V, V') has a perfect
(2,1)-matching.

(d) There exists a map f € B(V) (see Definition 5.10) such that for every
v €V the preimage f~1(v) contains ezactly two elements.

(e) (Gromov’s condition) there ezists a map f € B(V) such that for every
v € V the pre-image f~1(v) contains at least two elements.

REMARK 11.4. Property (b) can be replaced by the property (b’) that for some
(equivalently, every) 8 > 1 there exists C' > 0 such that N'¢(F)NV has cardinality
at least 8 times the cardinality of F. Indeed, it suffices to observe that for every
a>1C >0,

VF,(Nc(F)| = o|F| = Vk €N, [Nic(F)| > a"|F|.

ProoFr. We will now prove Theorem 11.3. Let m > 1 denote the valence of G.
(a) = (b). The graph G is non-amenable if and only if its Cheeger constant is
positive. In other words, there exists 7 > 0 such that for every finite set of vertices
F,|E(F, F©)| > n|F|. This implies that N'; (F) contains at least (1+.L)|F| vertices,
which, according to Remark 11.4, implies property (b).

(b) = (c¢). Let C be the constant as in the expansion property. We form
the bipartite graph Bipc (Y, Z), where Y, Z are two copies of V. Clearly, the graph
Bipc(Y, Z) is locally finite. For any finite subset A in V, since [N c(A)NV| > 2|A4|,
it follows that the edge-boundary of A in Bipc(Y, Z) has at least 2|A| elements,
where we embed A in either one of the copies of V' in Bipc(Y, Z). It follows by
Theorem 11.2 that Bipc(Y, Z) has a perfect (2, 1)-matching.

(¢) = (d). The matching in (c) defines amap f: Z =V — Y =V, so that
distg(z, f(2)) < C. Hence, f € B(V) and |f~*(y)| = 2 for every y € V.

The implication (d) = (e) is obvious. We show that (e) = (b). According
to (e), there exists a constant M > 0 and a map f : V — V such that for every
r €V, dist(z, f(x)) < M, and |f~!(y)| > 2 for every y € V. For every finite
nonempty set ' C V, f~1(F) is contained in Ay (F) and it has at least twice as
many elements. Thus, (b) is satisfied.

Thus, we proved that the properties (b) through (e) are equivalent.
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It remains to be shown that (b) = (a). By hypothesis, there exists a constant C
such that for every finite non-empty subset F C V, [N¢(F)N V| > 2|F|. Without
loss of generality, we may assume that C is a positive integer. Recall that Oy F
is the vertex-boundary of the subset FF C V. Since N¢(F) = F UN¢(0v F), it
follows that [Nc(dv F) \ F| = |F)|.

Recall that the graph G has finite valence m > 1. Therefore,

INc(ovF)| < mC|ovF]|.
We have, thus, obtained that for every finite nonempty set ' C V,

C 1 1
|E(F,F)| = [ovF| > WM/C(GVF” > gl

Therefore, the Cheeger constant of G is at least —= > 0, and the graph is non-
amenable. 0

EXERCISE 11.5. Show that a sequence F,, C V is Fglner if and only if for every
CeRy
F,
tim Vel

n—00 ‘Fn‘

Some graphs with bounded geometry admit Fglner sequences which consist of
metric balls. A proof of the following property (in the context of Cayley graphs)
first appeared in [?].

PRrROPOSITION 11.6. A graph G of bounded geometry and sub-exponential growth
(in the sense of Definition ??7) is amenable and has the property that for every
basepoint vog € V (where V is the vertex set of G) there exists a Folner sequence
consisting of metric balls with center vg.

PRrROOF. Let vy be an arbitrary vertex in G. We equip the vertex set V of G
with the restriction of the standard metric on G and set

Gy.v (1) = |B(vo,n)],

here and in what follows B(x,n) is the ball of center x and radius = in V. Our goal
is to show that for every £ > 0 there exists a radius R. such that dy B(vg, R.) has
cardinality at most ¢ |B(vo, R.)| .

We argue by contradiction and assume that there exists € > 0 such that for
every integer R > 0,

|0y B(vo, R)| = € |B(vg, R)| -

(Since G has bounded geometry, considering vertex—boundary is equivalent to con-
sidering the edge-boundary.) This inequality implies that

|B(vo, R+ 1) > (1+¢€)|B(vo, R)| -
Applying the latter inequality inductively we obtain
VneN, |B(vg,n)| = (1+¢)",

whence
In®
limsupM >In(l1+¢)>0.
n—00 n
This contradicts the assumption that G has sub-exponential growth. [
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For the sake of completeness we mention without proof two more properties
equivalent to those in Theorem 11.3.

The first will turn out to be relevant to a discussion later on between non-
amenability and existence of free sub-groups (the von Neumann-Day Question
11.77).

THEOREM 11.7 (Theorem 1.3 in [?]). Let G be an infinite connected graph of
bounded geometry. The graph G is non-amenable if and only if there exists a free
action of a free group of rank two on G by bi-Lipschitz maps which are at finite
distance from the identity.

The second property is related to probability on graphs.

An amenability criterion with random walks. Let G be an infinite locally
finite connected graph with set of vertices V' and set of edges E. For every vertex
x of G we denote by val(x) the valency at the vertex X. We refer the reader to
[?, ?, ?] for the definition of Markov chains and detailed treatment of random walks
on graphs and groups.

A simple random walk on G is a Markov chain with random variables

X1, Xoy oo, X -

1
val(z)
joined by an edge, and p(x,y) = 0 if x and y are not joined by an edge.

We denote by p,(x,y) the probability that a random walk starting in z will be

at y after n steps. The spectral radius of the graph G is defined by

p(G) = limsup [pn ()] " .

n—oo

on V, with the transition probability p(z,y) = if z and y are two vertices

It can be easily checked that the spectral radius does not depend on = and y.

THEOREM 11.8 (J. Dodziuk, [?]). A graph of bounded geometry is non-amenable
if and only if p(G) < 1.

Note that in the case of countable groups the corresponding theorem was proved
by H. Kesten [?].

COROLLARY 11.9. In a non-amenable graph of bounded geometry, the simple
random walk is transient, that is, for every x,y € V,

oo
Z pn(z,y) < 00.
n=1

11.2. Amenability and quasi-isometry

THEOREM 11.10 (Graph amenability is QI invariant). Suppose that G and G’
are quasi-isometric graphs of bounded geometry. Then G is amenable if and only if
g is.

Proor. We will show that non-amenability is a quasi-isometry invariant. We
will assume that both G and G’ are infinite, otherwise the assertion is clear. Note
that according to Theorem 11.3, Part (b), nonamenability is equivalent to existence
of a constant C' > 0 such that for every finite non-empty set F' of vertices, its closed
neighborhood N¢(F) contains at least 2|F| vertices.
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Let V and V' be the vertex sets of graphs G and G’ respectively. We assume
that V,V’ are endowed with the metrics obtained by restriction of the standard
metrics on the respective graphs. Let m < oo be an upper bound on the valence
of graphs G,G’. Let f:V — V' and g : V' — V be L-Lipschitz maps that are
quasi-inverse to each other:

dist(fog,Id) < A, dist(go f,Id) < A.
Assume that G’ is amenable. Given a finite set ' in V, consider
FL P = f(F) % F" = g(F).
Since F" is at Hausdorff distance < A from F, it follows that |F'| < b|F"|, where
b= mP. In particular,
[F(E) = b7 F).
Likewise, for every finite set F in V' we obtain

lg(F")| = b~ |

Remark 11.4 implies that for every number a > b2, t}lere exists C' > 1 such
that for an arbitrary finite set F” C V', its neighborhood N¢(F”) contains at least
a|F'| vertices. Therefore, the set g (No(F”)) contains at least

1 «
- FH > =|F'
S NG ()] > SIF

elements.
Pick a finite nonempty subset F' C V and set F' := f(F),F" = gf(F). Then
|F'| > b~!|F| and, therefore,

- !
l9 We(F) | > 5P|
Since g is L—Lipschitz,

g Ne(F") € Nro(F") € Npora(F).
We conclude that B o
WNecra(F)l > 5 |F-

Setting C" := LC' + A, and 3 := {z > 1, we conclude that G satisfies the expansion
property (b’) in Theorem 11.3. Hence, G is also non-amenable. O

We will see below that this theorem generalizes in the context connected Rie-
mannian manifolds M of bounded geometry and graphs G obtained by discretiza-
tion of M, and, thus, quasi-isometric to M. More precisely, we will see that non-
amenability of the graph is equivalent to positivity of the Cheeger constant of the
manifold (see Definition 2.20). This may be seen as a version within the setting
of amenability /isoperimetric problem of the Milnor-Efremovich-Schwartz Theorem
77 stating that the growth functions of M and G are equivalent.

In what follows we use the terminology in Definitions 2.56 and 2.60 for the
bounded geometry of a Riemannian manifold, respectively of a simplicial graph.

THEOREM 11.11. Let M be a complete connected n-dimensional Riemannian
manifold and G a simplicial graph, both of bounded geometry. Assume that M is
quasi-isometric to G. Then the Cheeger constant of M is strictly positive if and
only if the graph G is non-amenable.
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REMARKS 11.12. (1) Theorem 11.11 was proved by R. Brooks [Bro82al],
[Bro81] in the special case when M is the universal cover of a compact
Riemannian manifold and G is the a Cayley graph of the fundamental
group of this compact manifold .

(2) A more general version of Theorem 11.11 requires a weaker condition of
bounded geometry for the manifold than the one used in this book. See
for instance [Gro93], Proposition 0.5.45. A proof of that result can be
obtained by combining the main theorem in [?] and Proposition 11 in [?].

ProoOF. Since M has bounded geometry it follows that its sectional curvature
is at least a and at most b, for some b > a. It also follows that the injectivity radius
at every point of M is at least p, for some p > 0.

As in Theorem 2.24, we let V,.(r) denote the volume of ball of radius = in the
n-dimensional space of constant curvature k.

Choose € so that 0 < e < 2p. Let N be a maximal e-separated set in M.

It follows that & = {B(z,¢) | * € N} is a covering of M, and by Lemma 2.58,
(2), its multiplicity is at most

Va (5)

Vo (3)

We now consider the restriction of the Riemannian distance function on M to
the subset N. Define the Rips complex Ripss.(IN) (with respect to this metric on
N), and the 1-dimensional skeleton of the Rips complex, the graph G.. According
to Theorem 5.41, the manifold M is quasi-isometric to G.. Furthermore, G, has
bounded geometry as well. This and Theorem 11.10 imply that G. has strictly posi-
tive Cheeger constant if and only if G has. Thus, it suffices to prove the equivalence
in Theorem 11.11 for the graph G = G..

Assume that M has positive Cheeger constant. This means that there exists
h > 0 such that for every open submanifold Q@ C M with compact closure and
smooth boundary,

Area(09) = hVol(2).

Our goal is to show that there exist uniform positive constants B and C such
that for every finite subset F' C N there exists an open submanifold with compact
closure and smooth boundary 2, such that (with the notation in Definition 1.11),

(11.1) card E(F, F¢) > B Area(0f?) and CVol(Q2) > card F'.
Then, it would follow that

. Bh
|E(F, F°)| > ?|F|7

i.e., G would be non-amenable. Here, as usual, F* = N \ F.

Since M has bounded geometry, the open cover U admits a smooth partition
of unity {¢., ; * € N} in the sense of Definition 2.8, such that all the functions
@, are L—Lipschitz for some constant L > 0 independent of x, see Lemma 2.23.
Let FF C N be a finite subset. Consider the smooth function ® = " ., . By
hypothesis and since I/ has multiplicity at most m, the function ® is Lm—Lipschitz.
Furthermore, since the map ® has compact support, the set © of singular values of
® is compact and has Lebesgue measure zero.
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For every t € (0, 1), the preimage
Q= Y((t,00)) € M

is an open submanifold in M with compact closure. If we choose ¢ to be a regular
value of @, that is t ¢ ©, then the hypersurface ®~1(¢), which is the boundary of
Q¢, is smooth (Theorem 2.4).

Since N is e-separated, the balls B (m7 %) ,x € N, are pairwise disjoint. There-

fore, for every z € N the function ¢, restricted to B (w, %) is identically equal to

1. Hence, the union
€
B( ,7)
|_| g
zEF

is contained in ; for every ¢ € (0,1), and in view of Part 2 of Theorem 2.24 we get

Vol(Q) > Y Vol (g: g) > card F - Vi (£/2)
zeF

Therefore, for every t ¢ O, the domain 2, satisfies the second inequality in (11.1)
with C=! =V}, (¢/2). Our next goal is to find values of ¢t ¢ © so that the first
inequality in (11.1) holds.

Fix a constant 7 in the open interval (0,1), and consider the open set U =
o1((0,).

Let F’ be the set of points z in F such that U N B(x,¢) # (). Since for every
y € U there exists x € F such that ¢, (y) > 0, it follows that the set of closed balls
centered in points of F’ and of radius € cover U.

Since {p, : © € N} is a partition of unity for the cover U of M, it follows that
for every y € U there exists z € N \ F such that ¢.(y) > 0, whence y € B(z,¢).
Thus,

(11.2) Uc <U B(x,s)) n| U Blze

TzEF’ zEN\F

In particular, for every x € F” there exists z € N\ F such that B(x,e)NB(z,¢) # 0,
whence x and z are connected by an edge in the graph G.

Thus, every point € F’ belongs to the vertex-boundary 0y F of the subset F'
of the vertex set of the graph G. We conclude that card F’ < card E(F, F°).

Since |V®| < mL, by the Coarea Theorem 2.16, with ¢ = 1, f = & and
U = &1(0,n), we obtain:

n
/ Area(d9,)dt = / VAV < mLVol(U) < mL 3 Vol(B(x,¢)).

The last inequality follows from the inclusion (11.2). At the same time, by applying
Theorem 2.24, we obtain that for every x € M

Va(e) = Vol(B(x,¢)).
By combining these inequalities, we obtain

n
/ Area(9)dt < mLV,(e) |F'| < mLV,(e) |E (F, F°)|.
0
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Since © has measure zero, it follows that for some ¢t € (0,7) \ O,
Area(09) < Z%LVa(e) |E (F,F°)| = B|E (F, F°)]|.

This establishes the first inequality in (11.1) and, hence, shows that nonamenability
of M implies nonamenability of the graph G.

We now prove the converse implication. To that end, we assume that for some
¢ satisfying 2p > 6 > 0, some maximal d-separated set N and the corresponding
graph (of bounded geometry) G = G5 are constructed as above, so that G has a
positive Cheeger constant. Thus, there exists h > 0 such that for every finite subset
Fin N

card E(F, F°) > hcard F.

Let Q be an arbitrary open bounded subset of M with smooth boundary. Our
goal is to find a finite subset Fj in N such that for two constants P and () inde-
pendent of 2, we have

(11.3) Area(99Q) > P |E(Fy, FY)| and |Fy| > QVol(Q).

This would imply positivity of Cheeger constant of M. Note that, since the graph G
has finite valence, in the first inequality of (11.3) we may replace the edge boundary
E(Fy, F¢) by the vertex boundary Oy F), (see Definition 1.11).

Consider the finite subset F' of points x € N such that QN B(z,d) # 0. It

follows that Q C |J, . B(,d). We split the set F' into two parts:

(11.4) F = {x €F : VollQn B(z,d)] > ;VOZ[B(I’,(S)]}
and

Py {x €F : Vol B(x,0)] < ;VOZ[B(JU,(S)]} .
Set

v, = Vol (sm U B(x,é)) k=1,2.

xEF}
Thus,

1
max (vy,v2) = §VOZ(Q).

Case 1: v; > %VOZ(Q). In view of Theorem 2.24, this inequality implies that
1
(11.5) Vol(®) < > Vol (B(x,6)) < |[Fi| Va(0).
xEeF,

This gives the second inequality in (11.3). A point z in 9y F} is then a point
in N satisfying (11.4), such that within distance 80 of = there exists a point y € N
satisfying the inequality opposite to (11.4). The (unique) shortest geodesic [z, y] C
M will, therefore, intersect the set of points

Half = {x €M ; Vol [B(xz,0)N Q) = ;VOI[B(I,(S)]} .
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This implies that Jy F} is contained in the 8-neighborhood of the set Half C
M. Given a maximal d—separated subset Hs of Half (with respect to the restric-
tion of the Riemannian distance on M), Oy F; will then be contained in the 96-
neighborhood of Hy. In particular,

|| B(m,g) < |J B(y.104),

xEBVFl y€H5
whence
1)
Vi (8/2) |OvF1| < Vol |_| B <x, 2)] <
€0y Fy
(11.6) > Vol [B(y,100)] < V,(106) |Hy|.

yEHs
Since Hj extends to a maximal d—separated subset H' of M, Lemma 2.58, (2),
V(%)
V(3)

implies that the multiplicity of the covering {B(z,d) | z € H'} is at most
It follows that
m - Area(0N) Z Area(0Q2N B(y,9)) .

yEHs

(NEd

We now apply Buser’s Theorem 2.25 and deduce that there exists a constant
A = A(n,a,d) such that for all y € Hy, we have,

Area(0Q2N B(y,d)) = Vol QN B(y,d)] = %Vol[B(y, 9)].
It follows that

Area(09) yez}; Vol[B Wv;,( p) |Hjs| .
Combining this estimate with the inequality (11.6), we conclude that
Area(0Q) > P|0v Fi|,
for some constant P independent of 2.

This establishes the first inequality in (11.3) and, hence, proves positivity of
the Cheeger constant of M in the Case 1.

Case 2. Assume now that v, is at least $Vol(Q).
We obtain, using Buser’s Theorem 2.25 for the second inequality below, that
1 1
Area(09) Area (0Q2N B(y,0)) > — Vol [2N B(y,0)] = =—=Vol(Q).
mArea(28) > 37 Area (020 5(.8) > 5. 3 Vol [20 B(y.) > 73Vl ®)

Thus, in the Case 2 we obtain the required lower bound on Area(df?) directly. O

COROLLARY 11.13. Let M and M’ be two complete connected Riemann man-
ifolds of bounded geometry which are quasi-isometric to each other. Then M has
positive Cheeger constant if and only if M' has positive Cheeger constant.

Proor. Consider graphs of bounded geometry G and G’ that are quasi-isometric
to M and M’ respectively. Then G, G’ are also quasi-isometric to each other. The
result now follows by combining Theorem 11.11 with Theorem 11.10. ]

299



An interesting consequence of Corollary 11.13 is quasi-isometric invariance of
a certain property of the Laplace-Beltrami operator for Riemannian manifolds of
bounded geometry. Cheeger constant for Riemannian manifold M is closely con-
nected to the bottom of the spectrum of the Laplace-Beltrami operator Ay on
L?>(M) N C>®(M). Let M be a complete connected Riemannian manifold of infi-
nite volume, let \o(M) denote the lowest eigenvalue of A, Then \g(M) can be
computed as

\V4 2
Jar
(see [?] or [SY94], Chapter I). J. Cheeger proved in [Che70] that

| f: M — R smooth with compact support }

No(M) > Th*(M),

where h(M) is the Cheeger constant of M. Even though Cheeger’s original result
was formulated for compact manifolds, his argument works for all complete mani-
folds, see [SY94]. Cheeger’s inequality is complemented by the following inequality
due to P. Buser (see [Bus82], or [SY94]) which holds for all complete Riemannian
manifolds whose Ricci curvature is bounded below by some a € R:

A (M) < ah(M) + BR*(M),

for some @ = af(a),B = B(a). Combined, Cheeger and Buser inequalities imply
that h(M) =0 <= \o(M) = 0.

COROLLARY 11.14. Let M and M’ be two complete connected Riemann mani-
folds of bounded geometry which are quasi-isometric to each other. Then \g(M) =
0 <= MN(M')=0.

We finish the section by noting a remarkable property of quasi-isometries be-
tween non-amenable graphs.

THEOREM 11.15 (K. Whyte [?]). Let G;,i = 1,2, be two non-amenable graphs
of bounded geometry. Then every quasi-isometry G, — Go is at bounded distance
from a bi-Lipschitz map.

Note that this theorem was also implicit in [?].

11.3. Amenability for groups

We now discuss the concept of amenability for groups. We introduce various
versions of amenability and non-amenability, formulated in terms of actions and
inspired by the Banach-Tarski paradox. We then show that in the case of finitely
generated groups one of the notions of amenability is equivalent to the metric
amenability for (arbitrarily chosen) Cayley graphs, as formulated in Definition 11.1.

Let G be a group acting on a set X. We assume that the action is on the left
(for an action on the right a similar discussion can be carried out). We denote the

action by p(g,z) =g(x) =g - x.
We say that two subsets A, B C X are G—congruent if there exists g € G such
that g- A = B.
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We say subsets A, B C X are G-piecewise congruent (or A and B are G-
equidecomposable) if, for some k € N, there exist partitions A = A; U... U Ay,
B = B; U...U By such that A; and B; are G—congruent for every i € {1,...,k}.

The subsets A, B are G—countably piecewise congruent (or G—countably equide-
composable) if they admit countable partitions A = | | _x An, B =], .y Bn such
that A, and B,, are G—congruent for every n € N.

neN neN

EXERCISE 11.16. Verify that piecewise congruence and countably piecewise
congruence are equivalence relations.

DEFINITIONS 11.17. (1) A G—paradozical subset of X is a subset E that
admits a G-paradozical decomposition, i.e., a finite partition

E=XU...uXuvyu...uY,
such that for some elements g1, ..., gk, h1,-..,hmnm of G,
gl(Xl) ... ng(Xk) = F and hl(Yl) U...u hnb(}/’m) =F.

(2) A G—countably paradozical subset of X is a subset F' admitting a countable

partition
F= |_| X, U |_| Y,,
neN meN

such that for two sequences (g, )nen and (Am)men in G,

| | gn(X0)=F and | | (Yi) = F.

neN meN

John von Neumann [?] studied properties of group actions that make para-
doxical decompositions possible (like for the action of the group of isometries of
R™ for n > 3) or, on the contrary forbid them (like for the action of the group
of isometries of R?). He defined the notion of amenable group, based on the exis-
tence of a mean /finitely additive measure invariant under the action of the group,
and equivalent to the nonexistence of paradoxical decompositions for any space on
which the group acts. One can ask furthermore that no subset has a paradoxical
decomposition, for any space endowed with an action of the group. This defines a
strictly smaller class, that of super-amenable groups. In what follows we discuss all
these variants of amenability and paradoxical behavior.

To clarify the setting, we recall the definition of a finitely additive (probability)
measure.

DEFINITION 11.18. An algebra of subsets of a set X is a non-empty collection
A of subsets of X such that:
(1) ¥ and X are in A;
(2) ABe A= AUBec A, ANB € A,
3) Ac A= A°=X\Ac A

DEFINITION 11.19. (1) A finitely additive (f.a.) measure p on an algebra
A of subsets of X is a function p : A — [0,00] such that pu(A U B) =
((A) + u(B) for all A, B € A.

(2) If moreover u(X) =1 then p is called a finitely additive probability (f.a.p.)
measure.
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(3) Let G be a group acting on X preserving A, i.e., gA € A for every A € A
and g € G. If p is a finitely additive measure on A, so that u(gA) = u(A)
for all g € G and A € R, then p is called G—invariant.

An immediate consequence of the f.a. property is that for any two sets A, B €

Aa
p(AUB) = p((A\B)U(ANB)U(B\A)) = u(A\B)+u(ANB)+u(B\A) < p(A)+p(B).

REMARK 11.20. In some texts the f.a. measures are called simply ‘measures’.
We prefer the terminology above, since in other texts a ‘measure’ is meant to be
countably additive.

We recall without proof a strong result relating the existence of a finitely addi-
tive measure to the non-existence of paradoxical decompositions. It is due to Tarski
(7], [?, pp. 599-643]), see also [?, Corollary 9.2].

THEOREM 11.21 (Tarski’s alternative). Let G be a group acting on a space X
and let E be a subset in X. Then E is not G—paradozical if and only if there exists
a G—invariant finitely additive measure p : P(X) — [0, 00] such that u(E) = 1.

11.4. Super-amenability, weakly paradoxical actions, elementary
amenability

DEFINITION 11.22. (1) A group action G ~ X is weakly paradozical if
there exists a G-paradoxical subset in X. An action G ~ X is super-
amenable if it is not weakly paradoxical.

(2) An action G ~ X is paradozical if the entire set X is G-paradoxical.

(3) A group G is (weakly) paradozical if the action G ~ G by left multiplica-
tions is (weakly) paradoxical.

(4) Likewise, a group G is called super-amenable if the action G ~ G by left
multiplications is super-amenable.

Note that, by using the inversion map = — !, one easily sees that in Defini-
tion 11.22, (3) and (4), it does not matter if one considers left or right multiplication.

PRrROPOSITION 11.23. (1) A group is super-amenable if and only if every
action of it is super-amenable.

(2) A group is weakly paradozical if and only if it has at least one weakly
paradozical action.

ProoOF. (1) and (2) are equivalent, therefore it suffices to prove (1). The ‘if’
part of the statement is obvious. We prove the ‘only if’ part.

Consider an arbitrary action G ~ X and an arbitrary non-empty subset F of
X. Without loss of generality we may assume that the action is G ~ X is to the
left.

Let = be a point in E and let Gg be the set of g € G such that gz € E. By
hypothesis, G is super-amenable, therefore G is not paradoxical with respect to
the left-action G ~ G. Theorem 11.21 implies that there exists a G—left-invariant
finitely additive measure ug : P(G) — [0, o0] such that u(Gg) = 1.
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We define a G-invariant finitely additive measure p : P(X) — [0, oo] by
n(A) = pe({g € G| gz € A}).

This measure satisfies ;1(E) = 1, hence, E cannot be G—paradoxical. O
PROPOSITION 11.24. A weakly paradozical group has exponential growth.

PrOOF. Let G be weakly paradoxical and let F be a G-paradoxical subset of
G. Then
E=XjU...uXzuviu...uy,

and there exist elements g1, ..., gk, h1,..., sy, in G such that
ngl ... I_ngXk = F and hlyi U...ud hmYm =F.

We define two piecewise left translations §: E — E and h: E — E as follows:
The restriction of g to g;X; coincides with the left translation by g;” L for every
i € {1,...,k}; the restriction of h to h;Y; coincides with the left translation by
h;l, for every j € {1,...,m}. Both maps are injective. Indeed if a,b are two
distinct elements of F, either they are in the same subset g; X; in which case the
injectivity follows from the injectivity of left translations, or a € g; X; and b € g; X,
for some i # j. In the latter case, g(a) € X; and g(b) € X; ad since X; N X; =0,
the two images are distinct. A similar argument shows the injectivity of h.

Given an alphabet of two letters {z,y} we denote by W, the set of words of
length n. For w € W,, we denote by w(g, h) the map E — E obtained by replacing
x with g, ¥ with h and considering the composition of the finite sequence of maps
thus obtained.

We prove by induction on n > 1 that the subsets w(g, h)(E), w € W, are
pairwise disjoint. For n = 1 this means that g(E) and h(E) are disjoint, which is
obvious.

Assume that the statement is true for n. Let u and v be two distinct words of
length n + 1. Assume that they both begin with the same letter, say u = zu’ and
v = zv’, where «’ and v’ are distinct words of length n (the case when the letter is
y is similar).

Then u(g, h)(E) = gu'(g, h)(E) and v(g, h)(E) = gv'(g, h)(E) . The induction
hypothesis implies that the sets u'(g, h)(E) and v'(g, h)(E) are disjoint, and since
g is injective, the same is true for the two initial sets.

If w = zu’ and v = yv’ then

’U,(g,il)(E) C Q(E) CXiU...UXg
while
v(g,h)(E) Ch(E) CYiU...UY,,.

Thus, u(g, h)(E) and v(g, h)(E) are disjoint in this case too, which concludes the
induction step, and the proof.
It follows from the statement just proved, that for every m > 1, given an

arbitrary a € E, the set w(g,h)(a), w € W,,, contains as many elements as W,,,
that is 2". By the definition of § and h, for every w € W, w(g,h)(a) = gwa,
where g,, is an element in G obtained by replacing in w every occurrence of the
letter = by one of the elements g, ..., gk, every occurrence of the letter y by one
of the elements hq, ..., h,,, and taking the product in G. Since g,a, w € W, , are

pairwise distinct, the elements g,,, w € W, , are pairwise distinct. With respect
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to a generating set S containing g1, ..., gk, h1,- .., hm we have |gu|s < n, whence,

COROLLARY 11.25. Every group with sub-exponential growth is super-amenable.

Corollary 11.25 is a strengthening of Proposition 11.6 in the group-theoretic
setting, in view of the discussion in Section 11.3.

COROLLARY 11.26. Virtually nilpotent groups and finite extensions of Grig-
orchuk groups are super-amenable.

EXERCISE 11.27. Given a finite group G and a non-empty subset £ C G,
construct a G-left-invariant finitely additive measure p : P(G) — [0, 00] such that

w(E) =1.

It is not known if the converse of Proposition 11.24 is true or if on the contrary
there exist super-amenable groups with exponential growth.

A weaker version of the converse of Proposition 11.24 is known though, and it
runs as follows.

PROPOSITION 11.28. A free two-generated sub-semigroup S of a group G is
always G—paradoxical, where the action G ~ G is either by left of by right multi-
plication.

PROOF. Let a,b be the two elements in G generating the free sub-semigroup
S, let S, and Sy be the subsets of elements in S represented by words beginning in
a, respectively by words beginning in b. Then S = S, U Sy, with a= 1S, = S and
b=1S, = S. |

REMARK 11.29. The converse of Proposition 11.28, on the other hand is not
true: a weakly paradoxical group does not necessarily contain a nonabelian free
subsemigroup. There exist torsion groups that are paradoxical (see the discussion
following Remark 11.81).

PRroroOsITION 11.30. (1) A subgroup of a super-amenable group is super-
amenable.

(2) A finite extension of a super-amenable group is super-amenable.
(3) A quotient of a super-amenable group is super-amenable.

(4) A direct limit of a directed system of super-amenable groups is super-
amenable.

REMARKS 11.31. The list of group constructions under which super-amenability
is stable cannot be completed with:
e if a normal subgroup N in a group G is super-amenable and G/N is
super-amenable then G is super-amenable;

e a direct product of super-amenable groups is super-amenable.

It is simply not known if the second property is true, while the first property is
known to be false. Otherwise, this property and Corollary 11.25 would imply that
all solvable groups are super-amenable. On the other hand, solvable groups that
are not virtually nilpotent contain a nonabelian free subsemigroup [?].
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PrOOF. (1) Let H < G with G super-amenable and let E be a non-empty
subset of H. By Theorem 11.21, there exists a G-left-invariant finitely additive
measure 4 : P(G) — [0,00] such that u(E) = 1. Theorem 11.21 applied to u
restricted to P(H) imply that E cannot be H-paradoxical either.

(2) Let H < G with H super-amenable and G = | |"; Hz;. Let E be a non-
empty subset of G.

The group H acts on GG, whence by Proposition 11.23, (1), and Theorem 11.21,
there exists an H-left-invariant finitely additive measure p : P(G) — [0, 00| such
that p (U 2, E) = 1.

Define the measure v : P(G) — [0, o0] by

>oim1 MTiE)
It is clearly finitely additive and satisfies v(F) = 1.
Let A be an arbitrary non-empty subset of G and g an arbitrary element in
G. We have that G = | |I”, Hz; = | |\", Hz;g, whence there exists a bijection
¢:{1,...,m} = {1,...,m} dependent on g such that Hx;g = Hx,.
We may then rewrite the denominator in the expression of v(gA) as

> igA) = phizgiA) =Y plapmA) =Y plajA).
=1 =1 i=1 Jj=1

For the second equality above we have used the H—-invariance of pu. We conclude
that v is G-left-invariant.

(3) Let E be a non-empty subset of G/N. Theorem 11.21 applied to the action
of G on G/N gives a G-left-invariant finitely additive measure y : P(G/N) — [0, 0]
such that u (F) = 1. The same measure is also G/N-left-invariant.

(4) Let h;; : H; — Hj,i < j, be the homomorphisms defining the direct system
of groups (H;) and let G be the direct limit. Let h; : H; — G be the homomorphisms
to the direct limit, as defined in Section 1.1.

Consider a non-empty subset E of G. Without loss of generality we may assume
that all h;(H;) intersect E: there exists ip such that for every i > ig, h;(H;)
intersects F, and we can restrict to the set of indices i > ig.

The set of functions

{f:P(G) = (0,00} = ] [0,00]

P(G)

is compact according to Tychonoff’s theorem (see Remark 77, 77).

Note that each group H; acts naturally on G by left multiplication via the ho-
momorphism h; : H; — G. For each i € I let M; be the set of H;—left-invariant f.a.
measures p on P(G) such that pu(FE) = 1. Since H; is super-amenable, Proposition
11.23, (1), and Theorem 11.21 imply that the set M, is non-empty.

Let us prove that M; is closed in []p)[0,00]. Let f : P(G) — [0,00] be
an element of [[p¢)[0,00] in the closure of M;. Then, for every finite collection
Aq, ..., A, of subsets of X and every e > 0 there exists p in M; such that |f(A4;)—
w(A;j)| < eforevery j € {1,2,...,n}. This implies that for every e > 0, | f(E)—1| <
€

[f(AUB) = f(A) = f(B)| < 3¢
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and

|f(gA) — F(A)| < 2

VA,B € P(X) and g € H;. By letting ¢ — 0 we obtain that f € M,. Thus, the
subset M; is indeed closed.

By the definition of compactness, if {V; : ¢ € I'} is a family of closed subsets of a
compact space X such that ﬂ V; # 0 for every finite subset J C I, then ﬂ Vi £ 0.

jeJ iel

Consider a finite subset]J of I. Since I is a directed set, there exists k € I such
that j < k,Vj € J. Hence, we have homomorphisms hj;, : H; — Hy,Vj € J, and
all homomorphisms h; : H; — G factor through hy : Hy — G. Thus, ﬂngMj
contains My, in particular, this intersection is non-empty. It follows from the above
that (;c; M; is non-empty. Every element p of this intersection is clearly a f.a.
measure such that p(F) =1, and p is also G-left-invariant because

G =Jhi(H).

O

In view of Corollary 11.26, Proposition 11.30 and Remarks 11.31 it is natural
to consider the class of groups that contains all finite and abelian groups, that is
stable with respect to the operations described in Proposition 11.30, plus the one
of extension:

DEFINITION 11.32. The class of elementary amenable groups £A is the smallest
class of groups containing all finite groups, all abelian groups and closed under direct
sums, finite-index extensions, direct limits, subgroups, quotients and extensions

1—-Gy =Gy — Gz — 1,
where both G, G3 are elementary amenable.
Neither of the two classes of super-amenable and of elementary amenable groups
contains the other:
e solvable groups are all elementary amenable, while they are super-amenable
only if they are virtually nilpotent;
e there exist Grigorchuk groups of intermediate growth that are not elemen-
tary amenable

The following result due to C. Chou (and proved previously for the smaller
class of solvable groups by Rosenblatt [?]) describes, within the setting of finitely
generated groups, the intersection between the two classes, and brings information
on the set of elementary amenable groups that are not super-amenable.

THEOREM 11.33 ([?]). A finitely generated elementary amenable group either
is virtually nilpotent or it contains a free non-abelian subsemigroup.

11.5. Amenability and paradoxical actions

In this section we define amenable actions and amenable groups, and prove
that paradoxical behavior is equivalent to non-amenability.

306



DEFINITION 11.34. (1) A group action G ~ X is amenable if there exists
a G-invariant f.a.p. measure p on P(X), the set of all subsets of X.

(2) A group is amenable if the action of G on itself via left multiplication is
amenable.

LEMMA 11.35. A paradozical action G ~ X cannot be amenable.

PROOF. Suppose to the contrary that X admits a G-invariant f.a.p. measure
w and

X=XjU..uX,uvriu...uyYy,,

is a G-paradoxical decomposition, i.e., for some g1,...,gx,h1,...,hm € G,
g1(X1) U... I_ng(Xk) =X and hl(Yl) U...d hm(ym) =X.

Then
wXi U UXe)=pYiU...UYy) = u(X),

which implies that 2u(X) = u(X), contradicting the assumption that pu(X) =
1. O

REMARK 11.36. We will prove in Corollary 11.63 that a finitely-generated group
is amenable if and only if it is non-paradoxical.

ExampLE 11.37. If X is a finite set, then every group action G ~ X is
amenable. In particular, every finite group is amenable. Indeed, for a finite set
G define p : P(X) — [0,1] by u(A) = %, where | - | denotes cardinality of a
subset.

ExampLE 11.38. The free group of rank two Fj is non-amenable since F3 is
paradoxical, as explained in Chapter 10, Section 10.4.

Yet another equivalent definition for amenability can be formulated using the
concept of an invariant mean, which is responsible for the terminology ‘amenable’:

DEFINITION 11.39. (1) A mean on a set X is a linear functional m :
(> (X) — C defined on the set £*°(X) of bounded functions on X, with
the following properties:

(M1) if f takes values in [0, 00) then m(f) > 0;
(M2) m(1x) =1.

Assume, moreover, that X is endowed with the action of a group G,
GxX — X,(g,x) — g-z. This induces an action of G on the set £>°(X) of
bounded complex-valued functions on X defined by g- f(z) = f(g~! - z).

A mean is called left-invariant if m(g- f) = m(f) for every f € £>°(X)
and g € G.

A special case of the above is when G = X and G acts on itself by left trans-
lations.

ProrosITION 11.40. A group action G ~ X is amenable (in the sense of
Definition 11.34) if and only if it admits a left-invariant mean.
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PRrROOF. Given a f.a.p. measure p on X one can apply the standard construc-
tion of integrals (see [?, Chapter 1] or [?, Chapter 11]) and define, for any function
f:+X — C, m(f) = [ fdu. Since p(X) = 1, for every bounded function f,
m(f) € C. Thus, we obtain a linear functional m : £*°(X) — C. If the measure
is G-invariant then m is also G-invariant.

Conversely, given a G-invariant mean m on X, one defines an invariant f.a.p.
measure pon X by u(A) =m(1a).

EXERCISE 11.41. Prove that p thus defined is a f.a.p. measure and that G-
invariance of m implies G-invariance of p.

O
REMARK 11.42. Suppose that in Proposition 11.40, X = G and G ~ X is the

action by left multiplication. Then:
(a) Inthe above proposition, left-invariance can be replaced by right-invariance.

(b) Moreover, both can be replaced by bi-invariance.

Proovr. (a) It suffices to define yu,.(A) = u(A=1) and m,.(f) = m(f1), where
filz) = f@@™h).

(b) Let u be a left-invariant f.a.p. measure and p, the right-invariant measure
in (a). Then for every A C X define

v(4) = / w(Ag~ ) dur(g)
O

QUESTION 11.43. Suppose that G is a group which admits a mean m : £°(G) —
R that is quasi-invariant, i.e., there exists a constant « such that

im(fog) —m(f)| <k
for all functions f € £°°(G) and all group elements g. Is it true that G is amenable?
LEMMA 11.44. Every action G ~ X of an amenable group G is also amenable.
PRrOOF. Choose a point « € X and define v : P(X) — [0, 1] by
v(A) = u{g € G ; go € A}).
We leave it to the reader to verify that v is again a G-invariant f.a.p. measure. [

COROLLARY 11.45. If G is a group which admits a paradozical action, then G
is non-amenable. In other words, if an amenable group G acts on a space X, then
X cannot be G—paradoxical.

This corollary and the fact that the sphere S? is O(3)-paradoxical imply that
the group O(3) is not amenable (as an abstract group). More generally, in view of
Tits’ Alternative, if G is a connected Lie group then either G is solvable or non-
amenable (since every non-solvable connected Lie group contains a free nonabelian
subgroup).

The converse to Lemma 11.44 is false: The action of any group on a one-
point set is clearly amenable, see, however, Proposition 11.58. On the other hand,
Glasner and Monod [?] proved that every countable group admits an amenable
faithful action on a set X.
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A natural question to ask is whether on an amenable group there exists only
one invariant finitely additive probability measure. It turns out that this is far from
being true:

THEOREM 11.46 (J. Rosenblatt [?]). Let G be a non-discrete o-compact locally
compact metric group. If G is amenable as a discrete group, then there are 28°
mutually singular G-invariant means on L™ (G).

REMARK 11.47. Theorem 11.21 and the Banach-Tarski paradox prove that
there exists no Isom(R?)-left-invariant finitely additive measure u : P(R?) — [0, o]
such that the unit ball has positive measure.

ProrosITION 11.48. (1) A subgroup of an amenable group is amenable.

(2) Let N be a normal subgroup of a group G. The group G is amenable if
and only if both N and G/N are amenable.

(3) The direct limit G (see Section 1.1) of a directed system (H;);c1 of amenable
groups H;, is amenable.

PROOF. (1) Let p be a f.a.p. measure on an amenable group G, and let H be
a subgroup. By Axiom of Choice, there exists a subset D of G intersecting each
right coset Hg in exactly one point. Then v(A) = u(AD) defines a left-invariant
f.a.p. measure on H.

(2) “=" Assume that G is amenable and let y be a f.a.p. measure on G. The
subgroup N is amenable according to (1). Amenability of G/N follows from Lemma
11.44, since G acts on G/N by left multiplication.

(2) “<" Let v be a left-invariant f.a.p. measure on G/N, and X a left-invariant
f.a.p. measure on N. On every left coset gV one defines a f.a.p. measure by
Ag(A) = A(g~'A). The H-left-invariance of A implies that )\, is independent of the
representative g, i.e. gN = ¢'N = \j = Ay.

For every subset B in G define

w(B) :/G/N Ag(BNgN)dv(gN) .

Then p is a G-left-invariant probability measure.
(3) The proof is along the same lines as that of Proposition 11.30, (4). The
only difference is that the compact HP(G) [0, 0¢0] is replaced in this argument by

{f:P(@) = 0,1} = ] [0,1].
P(G)
([l

COROLLARY 11.49. Let G1 and G2 be two groups that are co-embeddable in the
sense of Definition 3.40. Then G1 is amenable if and only if G5 is amenable.

COROLLARY 11.50. Any group containing a free nonabelian subgroup is non-
amenable.

PRrROOF. Note that every non-abelian free group contains a subgroup isomorphic
to Fy, free group of rank 2. Now, the statement follows from Proposition 11.48,
Part (1), and Example 11.38. O
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COROLLARY 11.51. A semidirect product N x H is amenable if and only if both
N and H are amenable.

PRrROOF. The statement follows immediately from Part (2) of the above propo-
sition. 0

COROLLARY 11.52. 1. If G;, © = 1,...,n, are amenable groups, then the
Cartesian product G = G1 X ... X G, is also amenable.
2. Direct sum G = @;c;G; of amenable groups is again amenable.

PRrOOF. 1. The statement follows from inductive application of Corollary 11.51.
2. This is a combination of Part 1 and the fact that G is a direct limit of finite
direct products of the groups Gj;. d

COROLLARY 11.53. A group G is amenable if and only if all finitely generated
subgroups of G are amenable.

PRrOOF. The direct part follows from (1). The converse part follows from (3),
where, given the group G, we let I be the set of all finite subsets in G, and for
any ¢ € I, H; is the subgroup of G generated by the elements in i. We define the
directed system of groups (H;) by letting h;; : H; — H; be the natural inclusion
map whenever ¢ C j. Then G is the direct limit of the system (H;) and the assertion
follows from Proposition 11.48. a

COROLLARY 11.54. Ewery abelian group G is amenable.

PROOF. Since every abelian group is a direct limit of finitely-generated abelian
subgroups, by Part (3) of the above proposition, it suffices to prove the corollary
for finitely-generated abelian groups. Amenability of such groups will be proven in
Proposition 11.69 as an application of the Fglner criterion for amenability. O

REMARK 11.55. Even for the infinite cyclic group 7Z, amenability is nontrivial,
it depends on a form of Axiom of Choice, e.g., ultrafilter lemma: One can show
that Zermelo—Fraenkel axioms are insufficient for proving amenability of Z.

COROLLARY 11.56. Ewvery solvable group is amenable.

PrROOF. We argue by induction on the derived length. If £ = 1 then G is
abelian and, hence, are amenable by Corollary 11.54.

Assume that the assertion holds for k and take a group G such that G*+D =
{1} and G # {1} for any i < k. Then G is abelian and G = G/G"® is
solvable with derived length equal to k. Whence, by the induction hypothesis, G is
amenable. This and Proposition 11.48, (2), imply that G is amenable. (]

In view of the above results, every elementary amenable group is amenable. On
the other hand, all finitely generated groups of intermediate growth are amenable
but not elementary amenable.

ExAMPLE 11.57 (Infinite direct products of amenable groups need not be
amenable). Let FF = Fy be free group of rank 2. Recall, Corollary 3.86, that
F is residually finite, hence, for every g € F'\ {1} there exists a homomorphism
g+ F'— &4 so that p,4(g) # 1 and @, is a finite group. Each @, is, of course,
amenable. Consider the direct product of these finite groups:

G =] @
geF

310



Then the product of homomorphisms ¢, : F' — ®,, defines a homomorphism
¢ : F — G. This homomorphism is injective since for every g # 1, ¢4(g) # 1.
Thus, G cannot be amenable.

The following is a generalization of Proposition 11.48, (2); this proposition also
completes the result in Lemma 11.44.

PROPOSITION 11.58. Let G be a group acting on a set X. The group G is
amenable if and only if G ~ X is amenable and for every p € X the stabilizer
Stab(p) of the point p is amenable.

PRrROOF. The direct implication follows from Lemma 11.44 and from Proposi-
tion 11.48, (1).

Assume now that for every p € X its G-stabilizer S, is amenable and that
myx : £*°(X) — C is a G-invariant mean. By proposition 11.40, for every p € X
there exists a left-invariant mean m,, : £*°(S,) — C.

We define a left-invariant mean on ¢°°(G) using a construction in the spirit of
Fubini’s Theorem.

Let I € £>°(G). We split X into G-orbits X = [ | . Gp.

For every p € R we define a function F,, on the orbit Gp by F,,(gp) = m, (F|ggp).
Then we define a function Fx on X which coincides with F}, on each orbit Gp.

The fact that F' is bounded implies that Fx is bounded. We define

The linearity of m follows from the linearity of every m, and of mx. The two
properties (M1) and (M2) in Definition 11.39 are easily checked for the mean m.
We now check that m is left-invariant. Let i be an arbitrary element of GG, and let
h - F be defined by h - F(x) = F(h~!-z), for every z € G.

Then

(h- F)p(gp) = my ((h : F)|gSp) =myp (F|h*1g5p) = Fp(h_lgp) .
We deduce from this that (h- F)x = Fx oh™! = h- Fx , whence
m(h-F)=mx ((h-F)x)=mx (h-Fx)=mx (Fx) =m(F).
([l
COROLLARY 11.59. Amenability is preserved by virtual isomorphisms of groups.

PrOOF. The only nontrivial part of this statement is: If H is an amenable
subgroup of finite index in a group G, then G is also amenable. Consider the action
of G on X = G/H by left multiplications. Stabilizers of points under this action
are conjugates of the group H in G, hence, they are amenable. The set X is finite
and, hence, the action G ~ X is amenable. Thus, G is amenable by Proposition
11.58. (Il

For topological groups and topological group actions one can refine the notion
of amenability as follows:

DEFINITION 11.60 (Amenability for topological group actions). 1. Let Gx X —
X be a topological action of a topological group GG. Then this action is topologically
amenable if there exists a continuous G-invariant linear functional m defined on the
space of all Borel measurable bounded functions X — C, such that:

e m(f) >0 when f > 0;
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e m(lyx)=1;
Such a linear functional is called an invariant mean.
2. A topological group G is said to be amenable if the action of G on itself via
left multiplication is amenable. The corresponding linear functional m is called a
left-invariant mean.

REMARK 11.61. With this notion, for instance, every compact group is topo-
logically amenable (we can take m to be the integral with respect to a left Haar
measure). In particular, the group SO(3) is topologically amenable. On the other
hand, as we saw, SO(3) is not amenable as an abstract group. More generally, if
‘H is a separable Hilbert space and G = U(H) is the group of unitary operators on
‘H endowed with the weak operator topology, then G is topologically amenable, see
[?]. We refer to [?] for further details on topological amenability.

11.6. Equivalent definitions of amenability for finitely generated groups

In view of Corollary 11.53, amenability in the case of finitely generated groups
is particularly significant. In this case, one can relate the group amenability to the
metric amenability for Cayley graphs.

THEOREM 11.62. Let G be a finitely-generated group. The following are equiv-
alent:

(1) G is amenable in the sense of Definition 11.34;
(2) one (every) Cayley graph of G is amenable in the sense of Definition 11.1.

PrOOF. According to Theorem 11.10, if one Cayley graph of G is amenable
then all the other Cayley graphs are. Thus, in what follows we fix a finite generating
set S of G, the corresponding Cayley graph G = Cayley(G, S), and word metric,
and we assume that the statement (2) refers to G.

(2)= (1).  We first illustrate the proof in the case G = Z and the Fglner

sequence
0, =[-n,n] CZ,
since the proof is more transparent in this case and illustrates the general argument.
Puck a non-principal ultrafilter w on N. For a subset A C Z we define a f.a.p.
measure u by
|[ANQ,
2n+1 "~

Let us show that p is invariant under the unit translation g : z — z + 1. Note that

HAan‘ - |gAan|| <L

p(A) = w-lim

Thus,

1
_ < w-li —
|1(A) = nlgA)] < wrlim == = 0

This implies that p is Z-invariant.

We now consider the general case. Since G is amenable, there exists a Fglner
sequence of subsets (£2,,) C G (since G is the vertex set of G). We use the sets €2;
to construct a G-invariant f.a.p. measure on P(G). Following Remark 11.42, we
can and will use the action to the right of G on itself in this discussion.
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Let w be a non-principal ultrafilter on N. For every A C G define
[ANQ,]
Q|
We leave it to the reader to check that p is a f.a.p. measure on G. Now consider
an arbitrary generator g € S. We have

AgnQn|—[ANQ ANQg - |ANQ,
1(Ag) — p(A4)] = wlim 490 ”||Q | Nll _ g | 9|Q| | | I

Now ANQ,gt = (ANQg NQ) U (ANQ,g~ 1\ Q). Likewise,
ANQ, = (ANQ N Qg U (ANQ, \ Qg™ .

Therefore, the ultralimit above can be rewritten as

w(A) = w-lim

HA N (Qn971 \ Q)| = [AN (2 \ Qngil)H <

w-lim

|2 h
AR Q007 @) AN (9 7))
|2n|
-1 A c
— w-lim [AN (g™ "\ Qn)|Q+|| 9N (Qng \ Q)| < w-lim 2|E(%’ﬂ7|9n)| —0.

The last equality follows from amenability of the graph G. Therefore, u(Ag) =
w(A) for every g € S. Since S is a generating set of G, we obtain the equality
w(Ag) = p(A) for every g € G.

(1)= (2).  We prove this implication by proving the contrapositive, that is
—(2) = —(1). We shall, in fact, prove that —(2) implies that G is paradoxical.

Assume that G is non-amenable. According to Theorem 11.3, this implies that
there exists a map f : G — G which is at finite distance from the identity map,
such that |f~1(y)| = 2 for every y € G. Lemma 5.27 implies that there exists a
finite set {hq,..., h,} and a decomposition G = Ty U ... U T, such that f restricted
to T; coincides with the multiplication on the right Ry,,.

For every y € G we have that f~!(y) consists of two elements, which we label
as {y1,y2}. This gives a decomposition of G into Y; U Y>. Now we decompose
Y1 = A1 U...UA,, where A; = Y1 NT;, and likewise Yo = B; U ... U B,,, where
Bi = YYQ ﬁn. Clearly A1h1 ...y Anhn =G and B1h1 ...y Bnhn =G. We have,
thus, proved that G is paradoxical. O

The equivalence in Theorem 11.62 allows to give another proof that the free
group on two generators F5 is paradoxical: Consider the map f : F» — F5 which
consists in deleting the last letter in every reduced word. This map satisfies Gro-
mov’s condition in Theorem 11.3. Hence, the Cayley graph of F3 is non-amenable;
thus, F5 is non-amenable as well.

Another consequence of the proof of Theorem 11.62 is the following weaker
version of the Tarski’s Alternative Theorem 11.21:

COROLLARY 11.63. A finitely generated group is either paradozical or amenable.

PROOF. Indeed, in the proof of Theorem 11.62, we proved that Cayley graph
G of G is amenable if and only if the group G is, and that if G is non-amenable then
G is paradoxical. Thus, we have that group amenability is equivalent not only to
the Cayley graph amenability but also to non-paradoxical behavior. [
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Note that the above proof uses existence of ultrafilters on N. One can show
that ZF axioms of the set theory are insufficient to conclude that Z has an invariant
mean. In particular, for any group G containing an element of infinite order, ZF
are not enough to conclude that G admits an invariant mean.

QUESTION 11.64. Is there a finitely-generated infinite group which admits an
invariant mean under the ZF axioms in set theory?

COROLLARY 11.65. Every super-amenable group is amenable.

LEMMA 11.66. Let (£2,) be a sequence of subsets of a finitely-generated group
G. The following are equivalent:

(1) () is a Folner sequence for one of the Cayley graphs of G.
(2) For every g€ G

Qg A O
(11.7) lim (9 A Sl _

n—00 |2,

0.

(3) For every element g of a generating set S of G,
Q.9 A\Q,
(11.8) lim 9 An|

n—00 |0

0.

PROOF. Let S be a finite generating set that determines a Cayley graph G of
G, we will assume that 1 ¢ S. Let Q C G, i.e., Q is a subset of the vertex set of G.
Then the vertex boundary of Q in G is

owva=Ja\as.
ses

Thus, for a sequence (£2,,) the equality

L B, 05)

n—oo ‘Qn|

=0.

is equivalent to the set of equalities
Q, \ Qps!
lim 7| n\ s |

=0 for every s € 5,
n— o0 ‘in

which in its turn is equivalent to (11.8) for every g € S=!. Thus, (1) is equivalent
to (3).

It remains to show that (1) implies that (11.7) holds for an arbitrary g € G.
In view of Exercise 11.5, if €),, is a Fglner sequence for one finite generating set of
G, the sequence €, is also Fglner for every finite generating set of G. By taking
a finite generating set of G’ which contains given g € G, we obtain the desired
conclusion. O

DEFINITION 11.67. If G is a group, then a sequence of subsets €2,, C G satisfying
property (11.7) in Lemma 11.66, is called a Fglner sequence for the group G. Note
that the form of this definition makes sense even if G is not finitely-generated.

EXERCISE 11.68. Prove that the subsets Q, = Z¥ N [-n,n]* form a Fglner
sequence for Z*.
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PROPOSITION 11.69. (1) If () is a Folner sequence in a countable group
G and w is a non-principal ultrafilter on N then a left-invariant mean
m : £ (G) — C may be defined by

m(f) =w-hm|g—1n| 3 f@)

€,

(2) For any k € N the group Z* has an invariant mean m : £ (Zk) — C is
defined by
1
m(f) = w-lim ~——+ Z flx).
(27’L + 1) z€ZFN[—n,n]*
PrROOF. (1) It suffices to note that pu(A) = m(14) is the left invariant f.a.p.

measure defined in the proof of (2)=- (1) above.
(2) is a consequence of (1) and Exercise 11.68. O

We are now able to relate amenable groups to the Banach—Tarski paradox.

ProPOSITION 11.70. (1) The group of isometries Isom(R™) withn = 1,2
is amenable.

(2) The group of isometries Isom(R™) with n > 3 is non-amenable.

PrOOF. (1) The group Isom(R™) is the semidirect product of O(n) and R™.
The group R™ is abelian and, hence, amenable, by Corollary 11.54. Furthermore,
O(1) = Zs is finite and, hence, amenable. The group O(2) contains the abelian
subgroup SO(2) of index 2. Hence, O(2) is also amenable. Thus, Isom(R") (n < 2)
is amenable as a semidirect product of two amenable groups, see Corollary 11.51.

(2) This follows from Corollary 11.45 and Banach-Tarski paradox. O

In many textbooks one finds the following property (first introduced by Fglner
in [?]) as an alternative characterization of amenability. Though it is close to the one
provided by Lemma 11.66, we briefly discuss it here, for the sake of completeness.

DEFINITION 11.71. A group G is said to have the Fglner Property if for every
finite subset K of G and every € > 0 there exists a finite non-empty subset F' such
that for all g € K

[FgAF|
(11.9) EIBZ 1<
||
REMARK 11.72. The relation (11.9) can be rewritten as
[FEAF
(11.10) <e.
|F|

where FK = {fk : fe F, ke K}.

EXERCISE 11.73. Verify that a group has Fglner property if and only if it
contains a Fglner sequence in the sense of Definition 11.67.

LEMMA 11.74. (1) In both Definition 11.71 and in the characterization
of the Fglner Property provided by Lemma 11.66, one can take the action

of G on the left, i.e. % <ein (11.9) ete.
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(2) When G is finitely generated, it suffices to check Definition 11.71 for a
finite generating set.
PROOF. (1) One formulation is equivalent to the other via the anti-automorphism
G — G given by the inversion g — g~ 1.
In Definition 11.71, for every finite subset K and every e€ > 0 it suffices to
apply the property with multiplication on the left to the set K~! = {g~!; g € K},

obtain the set F, then take F/ = F~'. This set will verify % < e. The
proof for Lemma 11.66 is similar.

(2) Let S be an arbitrary finite generating set of G. The general statement
implies the one for K = S. Conversely, assume that the condition holds for K = S.
In other words, there exists a sequence F}, of finite subsets of G, so that for every
se S,

| Fas A\ Fal
hmi = O
no |F|
In view of Lemma 11.66, for every g € G
hmi = 0
no |F|

Thus, there exists a sequence of finite subsets F), so that for every g € G there
exists N = N, so that

F, F,
Vn > N, |ngFA’n<€.

Taking N = max{N, : g € K}, we obtain the required statement with F' = Fy. O

COROLLARY 11.75. A finitely-generated group is amenable if and only if it has
Folner property.

We already know that subgroups of amenable groups are again amenable, below
we show how to construct Fglner sequences for subgroups directly.

PROPOSITION 11.76. Let H be a subgroup of an amenable group G, and let
(Qn)nen be a Folner sequence for G. For every n € N there exists g, € G such that
the intersection g, *Q, N H = F,, form a Folner sequence for H.

ProoF. Consider a finite subset K C H, let s denote the cardinality of K.
Since (0, )nen is a Folner sequence for G, the ratios
12K A
20|
converge to 0. We partition each subset €, into intersections with left cosets of H:
Q, =Wy, uQk),

(11.11) n

where .

Then Q, K Ng;H = QS)K. We have that
QK N\ = (Q%I)KAQS)) T (Qslkm)KAQngn)) '

The inequality
|0 KA |
— <oy
€20
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implies that there exists i € {1,2,...,k,} such that

QKA _
]

In particular, g;lQ,(f) = F,,, with F}, C H, and we obtain that

P, K A\ Fl
="K .
I o

O

Since many examples and counterexamples display a connection between ame-
nability and the algebraic structure of a group, it is natural to ask whether there
exists a purely algebraic criterion of amenability. J. von Neumann made the obser-
vation that the existence of a free subgroup excludes amenability in the very paper
where he introduced the notion of amenable groups, under the name of measurable
groups [?]. It is this observation that has led to the following question:

QUESTION 11.77 (the von Neumann-Day problem). Does every non-amenable
group contain a free non-abelian subgroup?

The question is implicit in [?], and it was formulated explicitly by Day [?, §4].

When restricted to the class of subgroup of Lie groups with finitely many com-
ponents (in particular, subgroups of GL(n,R)), Question 11.77 has an affirmative
answer, since, in view of the Tits’ alternative (see Chapter 9, Theorem 9.1), ev-
ery such group without either contains a free non-abelian subgroup or is virtually
solvable. Since all virtually solvable groups are amenable, the claim follows.

Note that more can be said about finitely generated amenable subgroups I' of
a Lie group L with finitely many connected components than just the fact that I is
virtually solvable. To begin with, according to Theorem 9.78, I" contains a solvable
subgroup X of derived length < 6(L) so that |T': 3| < v(L).

THEOREM 11.78 (Mostow—Tits). A discrete amenable subgroup T of a Lie group
L with finitely many components, contains a polycyclic group of index at most n(L).

Proor. We will prove this theorem for subgroups of GL(n,C) as the general
case is obtained wvia the adjoint representation of L. Let G denote the Zariski
closure of T in GL(n,C). Then, by Part 1 of Theorem 9.78, G contains a connected
solvable subgroup S of derived length at most § = d(n) and |G : S| < v = v(n).
Note that, up to conjugation, S is a subgroup of the group B of upper-triangular
matrices in GL(n, C), see Proposition 9.36. The intersection A := I'NB is a discrete
subgroup of a connected solvable Lie group. Mostow proved in [?] that such a group
is necessarily polycyclic. Furthermore, he established an upper bound on ranks of

quotients A(*) /A(R+1) O

When the subgroup I' < GL(n,C) is not discrete, not much is known. We
provide below a few examples to illustrate that when one removes the hypothesis
of discreteness, the variety of subgroups that may occur is much larger. Since this
already occurs in SL(2,R), it is natural to ask the following.
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QUESTION 11.79. 1. What are the possible solvable subgroups of SL(2,R)?
Equivalently, what are the possible subgroups of the group of affine transformations
of the real line?

2. What are the possible solvable subgroups of SL(2,C) ?

ExampLES 11.80. 1. We first note that for all integers m,n > 1, the wreath
product Z™  Z™ is a subgroup of SL(2,R). Indeed, consider Ok, the ring of
integers of a totally-real algebraic extension K of Q of degree m. This ring is
a free Z-module with a basis wy,...,wn,. Let t1,...,t, be transcendental numbers
that are independent over Q, i.e. for every i € {1,...,n}, t; is transcendental over
Q(th N ,ti_l,ti+1, AN 7tn)

Then the subgroup G of SL(2,R) generated by the following matrices

([t 0 (a0
S1 = 0 1 y ey Sn = 0 1 )
. 1 w1 . 1 Wm
Uy = 0 1 gy Um = 0 1

is isomorphic to Z™ 1 Z".
Indeed, G is a semidirect product of its unipotent subgroup consisting of ma-
trices

( (1) T ) with @ € Ok (t1, ..., tn),

isomorphic to the direct sum €
matrices

.ezn Ok, and of its abelian subgroup consisting of

kl... kn
(tl : tn (1)> with (1, ..oy k) € Z7.

2. Every free metabelian group (see Definition ??) is a subgroup of SL(2,R).
This follows from the fact that a free metabelian group with m generators appears
as a subgroup of Z™ 1 Z™, using the Magnus embedding (Theorem ?7?).

3. All the examples above can be covered by the following general statements.
Given an arbitrary free solvable group S with derived length k > 1, we have:

e S is a subgroup of SL (2871 R);
e for every m € N the wreath product Z™ ¢ S is a subgroup of SL (2"3, R).

Indeed, one can construct by induction on k the necessary injective homomor-
phisms. The initial step for both statements above is represented by the examples
1 and 2. We assume that the second statement is true for £ and we deduce that
the first statement is true for k£ + 1. This implication and the Magnus embedding
described in Theorem ?7 suffice to finish the inductive argument.

Consider the free solvable group S, i of derived length k£ with n generators
S1, ..., Sn. According to the hypothesis, S,, ,, embeds as a subgroup of SL (25!, R);
thus, we will regard s1, ..., s, as 2°~1 x 2*=1 real matrices. Let O be the ring of
integers of a totally-real algebraic extension of degree m, and let {wy,...,w,} be a
basis of Ok as a free Z-module.
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We consider the subgroup G of SL (2¥,R) generated by the following matrices
(described by square 2F~1 x 2¢¥=1 blocks; in particular the notations I and 0 below
signify the identity respectively the zero square 2¥~1 x 28=1 matrices):

s1 O S, 0
o1 = 0 I yreey On = 0 I ’
1 wll 1 wml
Uy = 0 7 g ooy U = 0 I .

The group G is isomorphic to Z™ 1Sy, i: It is a semidirect product of the unipotent
subgroup consisting of matrices

I =z . . . m
< 0 1 ) , with z in the group ring O Sy i = SG}Z ,
n,k

and the subgroup isomorphic to S, consisting of matrices
g 0 .
( 0TI > with g € Sy 1.

REMARK 11.81. Other classes of groups satisfying the Tits’ alternative are:

(1) finitely generated subgroups of GL(n,K) for some integer n > 1 and some
field K of finite characteristic [?];

2) subgroups of Gromov hyperbolic groups ([?, §8.2.F], [?, Chapter 8]);
4
5

subgroups of Out(F,), see [?, 7, ?];

fundamental groups of compact manifolds of nonpositive curvature, see
[Bal95].

Hence, for all such groups Question 11.77 has positive answer.

(2)
(3) subgroups of the mapping class group, see [?];
(4)
(5)

The first examples of finitely-generated non-amenable groups with no (non-
abelian) free subgroups were given in [?]. In [?] it was shown that the free Burnside
groups B(n,m) with n > 2 and m > 665, m odd, are also non-amenable. The
first finitely presented examples of non-amenable groups with no (non-abelian) free
subgroups were given in [?].

Still, metric versions of the von Neumann-Day Question 11.77 have positive
answers. One of these versions is Whyte’s Theorem 11.7 (a graph of bounded
geometry is non-amenable if and only if it admits a free action of a free non-Abelian
group by bi-Lipschitz maps at finite distance from the identity).

Another metric version of the von Neumann-Day Question was established by
Benjamini and Schramm in [?]. They proved that:

o An infinite locally finite simplicial graph G with positive Cheeger constant
contains a tree with positive Cheeger constant.
Note that in the result above uniform bound on the valency is not
assumed. The definition of the Cheeger constant is considered with the
edge boundary.
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o If, moreover, the Cheeger constant of G is at least an integer n > 0, then G
contains a spanning subgraph, where each connected component is a rooted
tree with all vertices of valency n, except the root, which is of valency n+1.

o If X is either a graph or a Riemannian manifold with infinite diameter,
bounded geometry and positive Cheeger constant (in particular, if X is
the Cayley graph of a paradowxical group) then X contains a bi-Lipschitz
embedding of the binary rooted tree.

Related to the above, the following is asked in [?]:

OPEN QUESTION 11.82. Is it true every Cayley graph of every finitely generated
group with exponential growth contains a tree with positive Cheeger constant?

Note that the open case is that of amenable non-linear groups with exponential
growth.

11.7. Quantitative approaches to non-amenability

One can measure “how paradoxical” a group or a group action is via the Tarski
numbers. In what follows, groups are not required to be finitely generated.

DEFINITION 11.83. (1) Given an action of a group G on a set X, and a
subset IF C X, which admits a G—paradoxical decomposition in the sense
of Definition 11.17, the Tarski number of the paradozical decomposition is
the number k£ + m of elements of that decomposition.

(2) The Tarski number Targ(X,E) is the infimum of the Tarski numbers
taken over all G-paradoxical decompositions of E. We set Targ (X, FE) =
oo in the case when there exists no G-paradoxical decomposition of the
subset £ C X.
We use the notation Targ(X) for Targ (X, X).

(3) We define the lower Tarski number tar(G) of a group G to be the infimum
of the numbers Targ(X, E) for all the actions G ~ X and all the non-
empty subsets E of X.

(4) When X = G and the action is by left multiplication, we denote Targ(X)
simply by Tar(G) and we call it the Tarski number of G.

Note that G—invariance of the subset E is not required in Definition 11.83.

It is easily seen that tar(G) < Tar(G) for every group G.

Of course, in view of the notion of countably paradoxical sets, one could refine
the discussion further and use other cardinal numbers besides the finite ones. We
do not follow this direction here.

PROPOSITION 11.84. Let G be a group, G ~ X be an action and E C X be a
nonempty subset.

(1) If H is a subgroup of G then Targ(X, E) < Targ (X, E).

(2) The lower Tarski number tar(G) of a group is at least two.
Moreover, tar(G) = 2 if and only if G contains a free two-generated
sub-semigroup S.
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PRrROOF. (1) If the subset F does not admit a paradoxical decomposition with
respect to the action of H on X then there is nothing to prove. Consider an
H-paradoxical decomposition

E=X,U.UX,UY,U..UY,,

such that
E=mXU.UhXp=hYiU..UhL Yy,

and k 4+ m = Tary (X, E). The above decomposition is paradoxical for the action
of G on X as well, hence Targ(X, E) < Targ(X, E).

(2) The fact that every Targ(X, F) is at least two is immediate.

We prove the direct part of the equivalence.

Assume that tar(G) = 2. Then there exists an action G ~ X, a subset E of
X with a decomposition £ = AL B and two elements g,h € G such that gA = F
and hB = E. Set ¢’ := g~ ',/ := h~'. We claim that ¢’ and I’ generate a free
subsemigroup in G. Indeed every non-trivial word w in ¢’,h’ cannot equal the
identity because, depending on whether its first letter is ¢’ or A/, it will have the
property that wFE C A or wFE C B.

Two non-trivial words w and u in ¢’, A’ cannot be equal either. Indeed, without
loss of generality we may assume that the first letter in w is ¢/, while the first letter
in u is '. Then wE C A and uFE C B, whence w # u.

We now prove the converse part of the equivalence. Let x,y be two elements
in G generating the free sub-semigroup S, let S, be the set of words beginning in
z and S, be the set of words beginning in y. Then S = S, U S,, with 2715, = S
and y~ 1S, = S. (]

R. Grigorchuk constructed in [?] examples of finitely-generated amenable tor-
sion groups G which are weakly paradoxical, thus answering Rosenblatt’s conjecture
[?, Question 12.9.b]. Thus, every such amenable group G satisfies

3 < tar(G) < o0.

QUESTION 11.85. What are the possible values of tar(G) for an amenable group
G? How different can it be from Tar(G) ?

We now move on to study values of Tarski numbers Targ(X) and Tar(G), that
is for G-paradoxical sets that are moreover G—invariant.

PROPOSITION 11.86. Let G be a group, and let G ~ X be an action.
(1) Targ(X) > 4.

(2) If G acts freely on X and G contains a free subgroup of rank two, then
Targ(X) =4.

PRrROOF. (1) Since in every paradoxical decomposition of X one must have
k > 2 and m > 2, the Tarski number is always at least 4.

(2) The proof of this statement is identical to the one appearing in Chapter
10, Section 10.4, Step 3, for E = S?\ C. O

Proposition 11.86, (2), has a strong converse, appearing as a first statement in
the following proposition.
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ProrosiTION 11.87. 1. If Targ(X) = 4, then G contains a non-abelian free
subgroup.
2. If X admits a G-paradoxical decomposition

X=X UXoUY;U...UY,,

then G contains an element of infinite order. In particular, if G is a torsion group
then for every G-action on a set X, Targ(X) > 6.

ProoF. 1. By hypothesis, there exists a decomposition
X=X1UXoUuYiUuY,
and elements g1, g2, h1, ho € G, such that
91 X1 U geXo = MY UhgYs = X
Set g := gflgg and h := hflhg; then
(11.12) X;UgXe =X, Y1 URY; = X.
This implies that
gX1UgY1UgYs = X\ g(X2) =Xy
and, similarly,
hX; UhX, UAY, =Y.
In particular, g X1 C X3, hY; C Y;. It follows that for every n € N,
g"X; C Xy, and A"Y; CY;.
It also follows that for every n € N,
g"(YiUYs) Cg" 1 (X1) € X,
and that
(X, U Xo) C A" (V) C Y.
Equations (11.12) also imply that
X=¢'X;UX,=h"1V, UYs.
Furthermore, for every n € N,
g "(X2) C Xy and hT"(Y2) C Y2
and
g "(MUY;) C Xy and AT"(XjUXp) CYs.
Now we can apply Lemma 4.37 with A := Y] UY5 and B := X; U Xo; it follows

that bijections g and h of X generate a free subgroup Fb.
2. Let g1,92 € G be such that

ngl |_|g2X2 = X .

Again, set g := g; 'go. The same arguments as in the proof of Part 1 show that for
every n > 0,

gn(yl ... |_|Ym) C X;.
Therefore, g™ # 1 for all n > 0. O

S. Wagon (Theorems 4.5 and 4.8 in [?]) proved a stronger form of Proposition
11.87 and Proposition 11.86, part (2):
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THEOREM 11.88 (S. Wagon). Let G be a group acting on a set X. The Tarski
number Targ(X) is four if and only if G contains a free non-abelian subgroup F
such that the stabilizer in F' of each point in X is abelian.

As an immediate consequence of Proposition 11.86 is the following

COROLLARY 11.89. The Tarski number for the action of SO(n) on the (n—1)—
dimensional sphere S*1 is 4, for every n > 3.

The result on the paradoxical decomposition of Euclidean balls can also be
refined, and the Tarski number computed. We begin by noting that the Euclidean
unit ball B in R™ centered in the origin 0 is never paradoxical with respect to the
action of the orthogonal group O(n). Indeed, assume that there exists a decompo-
sition

B=XU---UuX,UYiU---UY,
such that
B:nglU"'l_lann:hlyll_l"'UhmYm
with
g17...,gn,h1,...,hm € O(n)
Then the origin 0 is contained in only one of the sets of the initial partition, say, in
Xi. It follows that none of the sets Y; contains 0; hence, neither does the union

hiYiu---Uhy,Yn

which contradicts the fact that this union equals B.
The following result was first proved by R. M. Robinson in [?].

PROPOSITION 11.90. The Tarski number for the unit ball B in R™ with respect
to the action of the group of isometries G of R™ is 5.

PrOOF. We first prove that the Tarski number cannot be 4. Assume to the
contrary that there exists a decomposition

B=X,UX, Y, UYs
and g1, g2, h1, he € G = Isom(R"™), such that
B =g1X1UgeXo = h1Y1 UhYs.

By Proposition 3.56, the elements g; and h; are compositions of linear isometries
and translations. Since, as we observed above, elements g;, h; cannot all belong to
O(n), it follows that, say, g1 has a non-trivial translation component:

gl(sc):le+T1, U, EO(n>7T1 750

We claim that go € O(n) and that X5 contains a closed hemisphere of the unit
sphere S = 0B.

Indeed, g1 X; C T1B. As T3 is non-trivial, T1B # B; hence, T1S contains no
subsets of the form {x, —x}, where x is a unit vector. Therefore, T} BNS is contained
in an open hemisphere of the unit sphere S. Since the union g1 (X7)Ug2(X3) contains
the sphere S, it follows that g X5 contains a closed hemisphere in S, and, hence, so
does ¢goB. Since goB C B, it follows that goB = B, hence, ¢g2(0) = 0 and, thus, X»
contains a closed hemisphere of S.
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This claim implies that (Y7 UY2) NS is contained in an open hemisphere of S.
By applying the above arguments to the isometries hq, hy, we see that both hq, ho
belong to O(n). We then have that
S =h1(Y1NS) U he(Y2NS).

On the other hand, both Y3, Ys and, hence, hq(Y71), ho(Y2) are contained in open
hemispheres of S. Union of two open hemispheres in S cannot be the entire S.
Contradiction. Thus, Targ(B) > 5.

We now show that there exists a paradoxical decomposition of B with five
elements. Corollary 11.89 implies that there exist g1, g2, h1, ho in SO(n) such that
S:Xl |_|X2|_|Y1 |_|}/2 291X1|_|92X2 Zhlyl uhg)/Q

As in the proof of Proposition 11.87, we take g := gflgg, h:= ]’Ll_lhg and obtain
S=X1|_|X2L|§/1|_|Y2=X1 ngQ:Yll_thg.
It follows that for every A > 0 the sphere AS (of radius ) has the paradoxical
decomposition
AS = )\Xl (] )\XQ L AYl L )\YQ = )\Xl Ug/\XQ = )\Yl (] h)\}/g

The group I" := (g, h) generated by g and h contains countably many nontrivial
orthogonal transformations; the fixed-point set of every such transformation is a
proper linear subspace in R"™. Therefore, there exists a point P € S not fixed by
any nontrivial element of I'. Let 2 denote the I'-orbit of P. Since the action of I'
on {2 is free, the map

v =P
is a bijection I' — Q. The group I is a free group of rank two with free generators
g, h, hence as in equation (10.1) of Section 10.4, we have the following paradoxical
decomposition of the group I
(g, hy = {1} UW,UW,—1 UW;, UWp—1
where
F:WQUgngl, =W, UhW),-1.
We now replace the original paradoxical decomposition of S by
S=X]uX,uY/ Uy, u{P}
where
Xi = (X \QuwW,P,
X5 =(X2\Q)UW,~1 P,
Y = (X1 \ Q) UW,P,
Yy = (Yo \Q)UW,-1P.
Clearly, X UgX}, =Y/ URY; =S.
We now consider the decomposition
B=U,uU, UV UVLU{P},
where
Uy ={0}u | | AXiuX],
0<A<1
U= | | AXuXs,
0<A<1
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vi= || muyy,

0<A<1
and
Va= || Meuys.
0<A<1
Then Uy U gUs = B, while Vi WAV, U {T(P)} = B, where T is the translation
sending the point P to the origin O. O

Below we describe the behavior of the Tarski number of groups with respect to
certain group operations.

PROPOSITION 11.91. (1) If H is a subgroup of G then Tar(G) < Tar(H).
(2) Every paradozical group G contains a finitely generated subgroup H such
that Tar(G) = Tar(H).
(3) If N is a normal subgroup of G then Tar(G) < Tar(G/N).
ProOOF. (1) If H is amenable then there is nothing to prove. Consider a

decomposition
H=XuU..uXuviu..uyY,
such that
H=mnXU.UhhXy=hYiU. UK, Y,

and k +m = Tar(H).

Let R be the set of representatives of right H—cosets inside G. Then )?Z- =
X;R,i€e{l,2,..,k} and 17] =Y;R,j€{1,2,...,m} form a paradoxical decompo-
sition for G.

(2) Given a decomposition
G=X,U..UX;UY,U..UY,,

such that
G=gXiU..UgXr=hY1U..Uh,Yny

and k + m = Tar(G), consider the subgroup H generated by g1, ..., gk, h1y vy Bupy
Thus Tar(H) < Tar(G); since the converse inequality is also true, the equality
holds.

(3) Set @ :=G/N. As before, we may assume, without loss of generality, that
@ is paradoxical. Let

Q=X1U..UuX,uY Uu..uY,,
be a decomposition such that
@ = 91Y1 ...y gkyk = hl?l ...y hm?m

and k—i—m:Tar(@).
Consider an (injective) section o : Q@ — G, for the projection G — Q; set

Q = s(Q). Then G = QN and the sets X; = o (X;) N, i € {1,2,...,k} and
Yi=0 (?j) N, j€{1,2,...,m} form a paradoxical decomposition for G. O
Proposition 11.91, (1), allows to formulate the following quantitative version of

Corollary 11.49.
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COROLLARY 11.92. If two groups are co-embeddable then they have the same
Tarski number.

It is proven in [?], [Ady79, Theorem VI1.3.7] that, for every odd m > 665,
two free Burnside groups B(n;m) and B(k;m) of exponent m and with n > 2 and
k > 2, are co-embeddable. Thus:

COROLLARY 11.93. For every odd m > 665, and n > 2, the Tarski number
of a free Burnside groups B(n;m) of exponent m is independent of the number of
generators n.

COROLLARY 11.94. A group has the Tarski number 4 if and only if it contains
a non-abelian free subgroup.

Proor. If a group G contains a non-abelian free subgroup then the result
follows by Proposition 11.86, (1), (2), and Proposition 11.91, (1). If a group G has
Tar(G) = 4 then the claim follows from Proposition 11.87. O

Thus, the Tarski number helps to classify the groups that are non-amenable
and do not contain a copy of F5. This class of groups is not very well understood
and, as noted in the end of Section 11.6, its only known members are “infinite
monsters”. For torsion groups G as we proved above Tar(G) > 6. On the other
hand, Ceccherini, Grigorchuk and de la Harpe proved:

THEOREM 11.95 (Theorem 2, [?]). The Tarski number of every free Burnside
group B(n;m) with n > 2 and m > 665, m odd, is at most 14.

Natural questions, in view of Corollary 11.93, are the following;:

QUESTION 11.96. How does the Tarski number of a free Burnside group B(n;m)
depend on the exponent m? What are its possible values?

QUESTION 11.97 (Question 22 [?], [?]). What are the possible values for the
Tarski numbers of groups? Do they include 5 or 67 Are there groups which have
arbitrarily large Tarski numbers?

It would also be interesting to understand how much of the Tarski number is
encoded in the large scale geometry of a group. In particular:

QUESTION 11.98. 1. Is the Tarski number of a group G equal to that of its
direct product G x F' with an arbitrary finite group F'?7

2. Is the same true when F'is an arbitrary amenable group?

3. Is the Tarski number invariant under virtual isomorphisms?

Note that the answers to Questions 11.98 are positive for the Tarski number
equal to oo or 4.

QUESTION 11.99. 1. Is the Tarski number of groups a quasi-isometry invariant?
2. Is it at least true that the existence of an (L, C)-quasi-isometry between
groups implies that their Tarski number differ at most by a constant K = K (L, A)?

The answer to Question 11.98 (Part 1) is, of course, positive for Tar(G) = oo,
but, already, for Tar(G) = 4 this question is equivalent to a well-known open prob-
lem below. A group G is called small if it contains no free nonabelian subgroups.
Thus, G is small iff Tar(G) > 4.
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QUESTION 11.100. Is smallness invariant under quasi-isometries of finitely gen-
erated groups?

11.8. Uniform amenability and ultrapowers

In this section we discuss a uniform version of amenability and its relation to
ultrapowers of groups.

Recall (Definition 11.71) that a (discrete) group G is amenable (has the Folner
Property) iff for every finite subset K of G and every € € (0, 1) there exists a finite
non-empty subset F' C G satisfying:

|KF \ F| < ¢|F|.

DEFINITION 11.101. A group G has the uniform Fglner Property if, in addition,

one can bound the size of F' in terms of € and |K]|, i.e. there exists a function
¢:(0,1) x N — N such that

[F| < (e |[K]) -

ExaMPLES 11.102. (1) Nilpotent groups have the uniform Fglner prop-

erty, [?].

(2) A subgroup of a group with the uniform Fglner Property also has this
property, [?].

(3) Let N be a normal subgroup of G. The group G has the uniform Fglner
Property if and only if N and G/N have this property, [?].

(4) There is an example of a countable (but infinitely generated) group that is
amenable but does not satisfy the uniform Fglner Property, see [?, §IV].

THEOREM 11.103 (G. Keller [?], [?]). (1) If for some non-principal ultra-
filter w the ultrapower G* has the Fglner Property, then G also has the
uniform Folner Property.

(2) If G has the uniform Fglner property, then for every non-principal ultra-
filter w, the ultrapower G also has the uniform Fglner property.

PRrOOF. (1) The group G can be identified with the “diagonal” subgroup G of
G, represented by constant sequences in G. It follows by Proposition 11.76 that G
has the Fglner property. Assume that it does not have the uniform Fglner property.
Then there exists ¢ > 0 and a sequence of subsets K, in G of fixed cardinality k
such that for every sequence of subsets 2, C G

K [\ Q] < el = lim |2 = oc.

Let K, = (K,)*¥. According to Lemma ??, K has cardinality k. Since G¥ is
amenable it follows that there exists a finite subset U € G* such that |[KU AU| <
€|U|. Let ¢ be the cardinality of U. According to Lemma ??, (??), U = (U,)*, where
each U, C G has cardinality c¢. Moreover, w-almost surely |KU, A U,| < €|U,|.
Contradiction. We, therefore, conclude that G has the uniform Fglner Property.

(2) Let k € N and ¢ > 0; define m := ¢(e, k) where ¢ is the function in the
uniform Fglner property of G. Let K be a subset of cardinality & in G¥. Lemma
?7? implies that K = (K,,)%, for some sequence of subsets K, C G of cardinality
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k. The uniform Fglner Property of G implies that there exists {2, of cardinality at
most m such that
|Knn \ Q| < €],

Let F' := (Q,)¥. The description of K and F given by Lemma ??, (?77?), implies
that

whence |KF A F| < ¢|F|. Since |F| < m according to Lemma ??, (??), the claim
follows. O

ProrosITION 11.104 (G. Keller, [?], Corollary 5.9). Every group with the uni-
form Falner property satisfies a law.

PRrooF. Indeed, by Theorem 11.103, (2), if G has the uniform Fglner Property
then any ultrapower G* has the uniform Fglner Property. Assume that G does
not satisfy any law, i.e., in view of Lemma ?7, the group G“ contains a subgroup
isomorphic to the free group Fs. By Proposition 11.76 it would then follow that F5
has the Fglner Property, a contradiction. O

11.9. Quantitative approaches to amenability

One quantitative approach to amenability is due to A.M. Vershik, who intro-
duced in [?] the Fglner function. Given an amenable graph G of bounded geometry,
its Folner function FY : (0,00) — N is defined by the condition that FY(z) is the
minimal cardinality of a finite non-empty set F' of vertices satisfying the inequality

1
[E(F,F)| < IF|.

According to the inequality (1.1) relating the cardinalities of the vertex and
edge boundary, if one replaces in the above E(F, F¢) by the vertex boundary oy F
of I, one obtains a Fglner function asymptotically equal to the first, in the sense
of Definition 1.7.

The following is a quantitative version of Theorem 11.10.

PrOPOSITION 11.105. If two graphs of bounded geometry are quasi-isometric
then they are either both non-amenable or both amenable and their Folner functions
are asymptotically equal.

PROOF. Let G and G’ be two graphs of bounded geometry, and let f: G — G’
and g : ' = G be two (L, C)—quasi-isometries such that f o g and go f are at
distance at most C from the respective identity maps (in the sense of the inequalities
(5.3)). Without loss of generality we may assume that both f and g send vertices
to vertices. Let m be the maximal valency of a vertex in either G or G’.

We begin by some general considerations. We denote by « the maximal cardi-
nality of B(z,C) NV, where B(x,C) is an arbitrary ball of radius C in either G or
G’. Since both graphs have bounded geometry, it follows that « is finite.

Let A be a finite subset in V(G), let A’ = f(A) and A” = g(A’). It is obvious
that |A"”] < |A’| < |A]. By hypothesis, the Hausdorff distance between A” and A
is C, therefore |A| < a|A”|. Thus we have the inequalities

1
(11.13) SlAl< (Al < 4],
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and similar inequalities for finite subsets in V' (G’) and their images by g¢.

The first part of the statement follows from Theorem 11.10.
Assume now that both G and G’ are amenable, and let FY and FY be their
respective Fglner functions. Without loss of generality we assume that both Fglner

functions are defined using the vertex boundary.
Fix z € (0,00), and let A be a finite subset in V(G) such that [A| = FY(z) and

1
< —|4].
O (A)] < <A

Let A’ = f(A) and A” = g(A’). We fix the constant R = L(2C + 1), and
consider the set B = Ng(A’). The vertex-boundary dy (B) is composed of vertices
u such that R < dist(u, A") < R+ 1.

It follows that

dist(g(u), A) > dist(g(u), A”) - C > %R -2C=1

and that
dist(g(u), A) < L(R+ 1)+ C.
In particular every vertex g(u) is at distance at most L(R + 1) + C — 1 from
Ov(A) and it is not contained in A. We have thus proved that

g (0v(B)) € Ny(re1y+c—1 (v (A))\ A.

It follows that if we denote mZ(f+1)+C=1 by X then we can write, using (11.13),

1
[0v (B)l < alg (9v(B))] < @ |9y (4)] < aA—|A| <
1 1
A=A < o* A= |B|.

x x

We have thus obtained that, for K = a?X and every = > 0, the value FY (£) is
at most |B| < m®| 4’| < m®|A| = m®FY(x). We conclude that Fgl < F9.

The opposite inequality Fg = Ff is obtained similarly. O
Proposition 11.105 implies that, given a finitely generated amenable group G,

any two of its Cayley graphs have asymptotically equal Fglner functions. We will,
therefore, write Ff, for the equivalence class of all these functions.

DEFINITIONS 11.106. (1) We say that a sequence (F},) of finite subsets in
a group realizes the Fglner function of that group if for some generating
set S, card F,, = Fg(n), where G is the Cayley graph of G with respect to
S, and

1
(2) We say that a sequence (A4,) of finite subsets in a group quasi-realizes

the Folner function of that group if card A,, =< F%(n) and there exists a
constant a > 0 and a finite generating set .S such that for every n,

[B(dn, 45)] <~ [Aul,

where |E(A,,, A%)| is the edge boundary of A4,, in the Cayley graph of G
with respect to S'.

329



LEMMA 11.107. Let H be a finitely generated subgroup of a finitely generated
amenable group G. Then F¥ < FS.

ProoF. Consider a generating set S of G containing a generating set X of H.
We shall prove that for the Fglner functions defined with respect to these generating
sets, we can write F(z) < FS(x) for every # > 0. Let F be a finite subset in G
such that |F| = F¢(z) and [0y F| < 1|F].

The set F' intersects finitely many cosets of H, g1 H,...,gxH . In particular
F = |_|';€:1 F;, where F; = F N g;H. We denote by 9}, F; the set of vertices in dy F;
joined to vertices in F; by edges with labels in X. The sets 0}, F; are contained in
g;H for every i € {1,2,...,k}, hence they are pairwise disjoint subsets of 9y F. We
can thus write

k 1 1 k
i B r 7p_,§:p‘
;:1:‘8‘/ 1}<‘8V |<Z| |—xi=1| z|-

It follows that there exists i € {1,2,...,k} such that |0, F;| < 1|F|. By
construction, F; = ¢;K; with K; a subset of H, and the previous inequality is
equivalent to |0y K;| < %\Kﬂ, where the vertex-boundary Oy K; is considered in
the Cayley graph of H with respect to the generating set X. We then have that
F7(2) < K| < |F| = FS(a). O

One may ask how do the Fglner functions relate to the growth functions, and
when do the sequences of balls of fixed centre quasi-realize the Folner function,
especially under the extra hypothesis of subexponential growth, see Proposition
11.6.

THEOREM 11.108. Let G be an infinite finitely generated group.
(1) F(n) = Ga(n).
(2) If the sequence of balls B(1,n) quasi-realizes the Fglner function of G
then G is virtually nilpotent.

ProoF. (1) Consider a sequence (F,) of finite subsets in G that realizes the
Fglner function of that group, for some generating set S. In particular

1
n
We let & denote the growth function of G with respect to the generating set S.
Inequality (??) in Proposition ?? implies that
[Fo| _ 1
< - Fn 9
2dk, " n [l

where d = |S| and k,, is such that &(k, — 1) < 2|F,| < &(k, — 1).
This implies that

whence,
et oe (D)
2FF (1) > & (kn —1) > & 5
(2) The inequality in (2) implies that for some a > 0,
S(Ln+1)| <= [B(Ln)] .
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In terms of the growth function, this inequality can be re-written as

(6] 1)-6
(11.14) (ntl)=-06M a
&(n) n
Let f(z) be the piecewise-linear function on Ry whose restriction to N equals &
and which is linear on every interval [n,n + 1],n € N. Then the inequality (11.14)

means that for all = ¢ N,
f(a)

a
fl@) =’

which, by integration, implies that In|f(z)| < aln|z| + b. In particular, it follows

that &(n) is bounded by a polynomial in n, whence, G is virtually nilpotent. O

In view of Theorem 11.108, (1), one may ask if there is a general upper bound
for the Fglner functions of a group, same as the exponential function is a general
upper bound for the growth functions; related to this, one may ask how much can
the Fglner function and the growth function of a group differ. The particular case
of the wreath products already shows that there is no upper bound for the Fglner
functions, and that consequently they can differ a lot from the growth function.

THEOREM 11.109 (A. Erschler, [?]). Let G and H be two amenable groups and
assume that some representative F' of Ff has the property that for every a > 0
there exists b > 0 so that aF(z) < F(bx) for every x > 0.

Then the Fglner function of the wreath product A B is asymptotically equal to
[F ()7 .

A. Erschler proved in [?] that for every function f : N — N, there exists a
finitely generated group G, which is a subgroup of a group of intermediate growth
(in particular, G is amenable) whose Fglner function satisfies F¢(n) > f(n) for all
sufficiently large n.
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11.10. Amenable hierarchy

We conclude this chapter with the following diagram illustrating hierarchy of
amenable groups:

f.g. abelian groups

f.g. nilpotent groups

polycyclic groups

solvable groups

elementary amenable groups

amenable groups

small groups

FIGURE 11.1. Hierarchy of amenable groups
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