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CHAPTER 1

General preliminaries

1.1. Notation and terminology

1.1.1. General notation. Given a set X we denote by P(X) the power set
of X, i.e., the set of all subsets of X. If two subsets A,B in X have the property
that A ∩ B = ∅ then we denote their union by A t B, and we call it the disjoint
union. A pointed set is a pair (X,x), where x is an element of X. The composition
of two maps f : X → Y and g : Y → Z is denoted either by g ◦f or by gf . We will
use the notation IdX or simply Id (when X is clear) to the denote the identity map
X → X. For a map f : X → Y and a subset A ⊂ X, we let f |A or f |A denote the
restriction of f to A. We will use the notation |E| or card (E) to denote cardinality
of a set E.

The Axiom of Choice (AC) plays an important part in many of the arguments of
this book. We discuss AC in more detail in Section ??, where we also list equivalent
and weaker forms of AC. Throughout the book we make the following convention:

Convention 1.1. We always assume ZFC: The Zermelo�Fraenkel axioms and
the Axiom of Choice.

We will use the notation A and cl(A) for the closure of a subset A in a topo-
logical space X. The wedge of a family of pointed topological spaces (Xi, xi), i ∈ I,
denoted by ∨i∈IXi, is the quotient of the disjoint union ti∈IXi, where we identify
all the points xi.

If f : X → R is a function on a topological space X, then we will denote by
Supp(f) the support of f , i.e., the set

cl{x ∈ X : f(x) 6= 0}.

Given a non-empty set X, we denote by Bij(X) the group of bijections X → X ,
with composition as the binary operation.

Convention 1.2. Throughout the paper we denote by 1A the characteristic
function of a subset A in a set X, i.e. the function 1A : X → {0, 1}, 1A(x) = 1 if
and only if x ∈ A.

We will use the notation d or dist to denote the metric on a metric space X.
For x ∈ X and A ⊂ X we will use the notation dist(x,A) for the minimal distance
from x to A, i.e.,

dist(x,A) = inf{d(x, a) : a ∈ A}.
If A,B ⊂ X are two subsets A,B, we let

distHaus(A,B) = max

(
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

)
1



denote the Hausdor� distance between A and B in X. See Section 1.4 for further
details on this distance and its generalizations.

Let (X,dist) be a metric space. We will use the notation NR(A) to denote the
open R-neighborhood of a subset A ⊂ X, i.e. NR(A) = {x ∈ X : dist(x,A) < R}.
In particular, if A = {a} then NR(A) = B(a,R) is the open R-ball centered at a.

We will use the notation NR(A), B(a,R) to denote the corresponding closed
neighborhoods and closed balls de�ned by non-strict inequalities.

We denote by S(x, r) the sphere with center x and radius r, i.e. the set

{y ∈ X : dist(y, x) = r}.
We will use the notation [A,B] to denote a geodesic segment connecting point

A to point B in X: Note that such segment may be non-unique, so our notation is
slightly ambiguous. Similarly, we will use the notation4(A,B,C) or T (A,B,C) for
a geodesic triangle with the vertices A,B,C. The perimeter of a triangle is the sum
of its side-lengths (lengths of its edges). Lastly, we will use the notation N(A,B,C)
for a solid triangle with the given vertices. Precise de�nitions of geodesic segments
and triangles will be given in Section 1.3.3.

By the codimension of a subspace X in a space Y we mean the di�erence be-
tween the dimension of Y and the dimension ofX, whatever the notion of dimension
that we use.

With very few exceptions, in a group G we use the multiplication sign · to
denote its binary operation. We denote its identity element either by e or by 1. We
denote the inverse of an element g ∈ G by g−1. Given a subset S in G we denote
by S−1 the subset {g−1 | g ∈ S}. Note that for abelian groups the neutral element
is usually denoted 0, the inverse of x by −x and the binary operation by +.

If two groups G and G′ are isomorphic we write G ' G′.
A surjective homomorphism is called an epimorphism, while an injective ho-

momorphism is called a monomorphism. An isomorphism of groups ϕ : G → G is
also called an automorphism. In what follows, we denote by Aut(G) the group of
automorphisms of G.

We use the notation H < G or H 6 G to denote that H is a subgroup in G.
Given a subgroup H in G:

• the order |H| of H is its cardinality;
• the index of H in G, denoted |G : H|, is the common cardinality of the
quotients G/H and H\G.

The order of an element g in a group (G, ·) is the order of the subgroup 〈g〉 of
G generated by g. In other words, the order of g is the minimal positive integer n
such that gn = 1. If no such integer exists then g is said to be of in�nite order. In
this case, 〈g〉 is isomorphic to Z.

For every positive integer m we denote by Zm the cyclic group of order m,
Z/mZ . Given x, y ∈ G we let xy denote the conjugation of x by y, i.e. yxy−1.

1.1.2. Direct and inverse limits of spaces and groups. Let I be a directed
set, i.e., a partially ordered set, where every two elements i, j have an upper bound,
which is some k ∈ I such that i 6 k, j 6 k. The reader should think of the set of
real numbers, or positive real numbers, or natural numbers, as the main examples
of directed sets. A directed system of sets (or topological spaces, or groups) indexed
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by I is a collection of sets (or topological spaces, or groups) Ai, i ∈ I, and maps (or
continuous maps, or homomorphisms) fij : Ai → Aj , i 6 j, satisfying the following
compatibility conditions:

(1) fik = fjk ◦ fij ,∀i 6 j 6 k,
(2) fii = Id.
An inverse system is de�ned similarly, except fij : Aj → Ai, i 6 j, and,

accordingly, in the �rst condition we use fij ◦ fjk.
The direct limit of the direct system is the set

A = lim−→Ai =

(∐
i∈I

Ai

)
/ ∼

where ai ∼ aj whenever fik(ai) = fjk(aj) for some k ∈ I. In particular, we have
maps fm : Am → A given by fm(am) = [am], where [am] is the equivalence class in
A represented by am ∈ Am. Note that

A =
⋃
i∈I

fm(Am).

If Ai's are groups, then we equip the direct limit with the group operation:

[ai] · [aj ] = [fik(ai)] · [fjk(aj)],

where k ∈ I is an upper bound for i and j.
If Ai's are topological spaces, we equip the direct limit with the �nal topology,

i.e., the topology where U ⊂ lim−→Ai is open if and only if f−1
i (U) is open for every

i. In other words, this is the quotient topology descending from the disjoint union
of Ai's.

Similarly, the inverse limit of an inverse system is

lim←−Ai =

{
(ai) ∈

∏
i∈I

Ai : ai = fij(aj),∀i 6 j

}
.

If Ai's are groups, we equip the inverse limit with the group operation induced from
the direct product of the groups Ai. If Ai's are topological spaces, we equip the
inverse limit the initial topology, i.e., the subset topology of the Tychono� topology
on the direct product. Explicitly, this is the topology generated by the open sets
of the form f−1

m (Um), Um ⊂ Xm are open subsets and fm : lim←−Ai → Am is the
restriction of the coordinate projection.

Exercise 1.3. Every group G is the direct limit of the directed family Gi, i ∈ I,
consisting of all �nitely generated subgroups of G. Here the partial order on I is
given by inclusion and homomorphisms fij : Gi → Gj are tautological embeddings.

Exercise 1.4. Suppose that G is the direct limit of a direct system of groups
{Gi, fij : i, j ∈ I}. Assume also that for every i we are given a subgroup Hi 6 Gi
satisfying

fij(Hi) 6 Hj , ∀i 6 j.
Then the family {Hi, fij : i, j ∈ I} is again a direct system; let H denote the direct
limit of this system. Show that there exists a monomorphism φ : H → G, so that
for every i ∈ I,

fi|Hi = φ ◦ fi|Hi : Hi → G.

3



Exercise 1.5. 1. Let H 6 G be a subgroup. Then |G : H| ≤ n if and only
if the following holds: For every subset {g0, . . . , gn} ⊂ G, there exist gi, gj so that
gig
−1
j ∈ H.
2. Suppose that G is the direct limit of a family of groups Gi, i ∈ I. Assume

also that there exist n ∈ N so that for every i ∈ I, the group Gi contains a subgroup
Hi of index ≤ n. Let the group H be the direct limit of the family {Hi : i ∈ I} and
φ : H → G be the monomorphism as in Exercise 1.4. Show that

|G : φ(H)| ≤ n.

1.1.3. Growth rates of functions. We will be using in this book two di�er-
ent asymptotic inequalities and equivalences for functions: One is used to compare
Dehn functions of groups and the other to compare growth rates of groups.

Definition 1.6. Let X be a subset of R. Given two functions f, g : X → R,
we say that the order of the function f is at most the order of the function g and
we write f - g, if there exist a, b, c, d, e > 0 such that

f(x) 6 ag(bx+ c) + dx+ e

for every x ∈ X, x > x0, for some �xed x0.
If f - g and g - f then we write f ≈ g and we say that f and g are approxi-

mately equivalent.

The equivalence class of a numerical function with respect to equivalence rela-
tion ≈ is called the order of the function. If a function f has (at most) the same
order as the function x, x2, x3, xd or exp(x) it is said that the order of the function
f is (at most) linear, quadratic, cubic, polynomial, or exponential, respectively. A
function f is said to have subexponential order if it has order at most exp(x) and is
not approximately equivalent to exp(x). A function f is said to have intermediate
order if it has subexponential order and xn - f(x) for every n.

Definition 1.7. We introduce the following asymptotic inequality between
functions f, g : X → R with X ⊂ R : We write f � g if there exist a, b > 0
such that f(x) ≤ ag(bx) for every x ∈ X, x ≥ x0 for some �xed x0.

If f � g and g � f then we write f � g and we say that f and g are asymptot-
ically equal.

Note that this de�nition is more re�ned than the order notion ≈. For instance,
x ≈ 0 while these functions are not asymptotically equal. This situation arises, for
instance, in the case of free groups (which are given free presentation): The Dehn
function is zero, while the area �lling function of the Cayley graph is A(`) � `. The
equivalence relation ≈ is more appropriate for Dehn functions than the relation �,
because in the case of a free group one may consider either a presentation with
no relation, in which case the Dehn function is zero, or another presentation that
yields a linear Dehn function.

Exercise 1.8. 1. Show that ≈ and � are equivalence relations.
2. Suppose that x � f , x � g. Then f ≈ g if and only if f � g.

1.2. Graphs

An unoriented graph Γ consists of the following data:
• a set V called the set of vertices of the graph;
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• a set E called the set of edges of the graph;
• a map ι called incidence map de�ned on E and taking values in the set
of subsets of V of cardinality one or two.

We will use the notation V = V (Γ) and E = E(Γ) for the vertex and edge sets
of the graph Γ. Two vertices u, v such that {u, v} = ι(e) for some edge e, are called
adjacent. In this case, u and v are called the endpoints of the edge e.

An unoriented graph can also be seen as a 1-dimensional cell complex, with 0-
skeleton V and with 1-dimensional cells/edges labeled by elements of E, such that
the boundary of each 1-cell e ∈ E is the set ι(e). As with general cell complexes
and simplicial complexes, we will frequently con�ate a graph with its geometric
realization, i.e., the underlying topological space.

Convention 1.9. In this book, unless we state otherwise, all graphs are as-
sumed to be unoriented.

Note that in the de�nition of a graph we allow for monogons1 (i.e. edges
connecting a vertex to itself) and bigons2 (distinct edges connecting the same pair
of vertices). A graph is simplicial if the corresponding cell complex is a simplicial
complex. In other words, a graph is simplicial if and only if it contains no monogons
and bigons.

An edge connecting vertices u, v of Γ is denoted [u, v]: This is unambiguous if
Γ is simplicial. A �nite ordered set [v1, v2], [v2, v3], . . . , [vn, vn+1] is called an edge-
path in Γ. The number n is called the combinatorial length of the edge-path. An
edge-path in Γ is a cycle if vn+1 = v1. A simple cycle (or a circuit), is a cycle where
all vertices vi, i = 1, . . . , n, are distinct. In other words, a simple cycle is a cycle
homeomorphic to the circle, i.e., a simple loop in Γ.

A simplicial tree is a simply-connected simplicial graph.

An isomorphism of graphs is an isomorphism of the corresponding cell com-
plexes, i.e., it is a homeomorphism f : Γ→ Γ′ so that the images of the edges of Γ
are edges of Γ′ and images of vertices are vertices. We use the notation Aut(Γ) for
the group of automorphisms of a graph Γ.

The valency (or valence, or degree) of a vertex v of a graph Γ is the number
of edges having v as one of its endpoints, where every monogon with both vertices
equal to v is counted twice.

A directed (or oriented) graph Γ consists of the following data:
• a set V called set of vertices of the graph;
• a set E called the set of edges of the graph;
• two maps o : E → V and t : E → V , called respectively the head (or
origin) map and the tail map.

Then, for every x, y ∈ V we de�ne the set of oriented edges connecting x to y:

E(x,y) = {ē : (o(ē), t(ē)) = (x, y)}.

A directed graph is called symmetric if for every subset {u, v} of V the sets
E(x,y) and E(y,x) have the same cardinality. For such graphs, interchanging the
maps t and o induces an automorphism of the directed graph, which �xes V .

1Not to be confused with unigons, which are hybrids of unicorns and dragons.
2Also known as digons.

5



A symmetric directed graph Γ is equivalent to a unoriented graph Γ with the
same vertex set, via the following replacement procedure: Pick an involutive bijec-
tion β : E → E, which induces bijections β : E(x,y) → E(y,x) for all x, y ∈ V . We
then get the equivalence relation e ∼ β(e). The quotient E = E/ ∼ is the edge-set
of the graph Γ, where the incidence map ι is de�ned by ι([e]) = {o(e), t(e)}. The
unoriented graph Γ thus obtained, is called the underlying unoriented graph of the
given directed graph.

Exercise 1.10. Describe the converse to this procedure: Given a graph Γ,
construct a symmetric directed graph Γ, so that Γ is the underlying graph of Γ.

Definition 1.11. Let F ⊂ V = V (Γ) be a set of vertices in a (unoriented)
graph Γ. The vertex-boundary of F , denoted by ∂V F , is the set of vertices in F
each of which is adjacent to a vertex in V \ F .

The edge-boundary of F , denoted by E(F, F c), is the set of edges e such that
the set of endpoints ι(e) intersects both F and its complement F c = V \ F in
exactly one element.

Unlike the vertex-boundary, the edge boundary is the same for F as for its
complement F c. For graphs without bigons, the edge-boundary can be identi�ed
with the set of vertices v ∈ V \ F adjacent to a vertex in F , in other words, with
∂V (V \ F ) .

For graphs having a uniform upper bound C on the valency of vertices, cardi-
nalities of the two types of boundaries are comparable

(1.1) |∂V F | 6 |E(F, F c)| 6 C|∂V F | .
Definition 1.12. A simplicial graph Γ is bipartite if the vertex set V splits as

V = Y tZ, so that each edge e ∈ E has one endpoint in Y and one endpoint in Z.
In this case, we write Γ = Bip(Y,Z;E).

Exercise 1.13. LetW be an n-dimensional vector space over a �eldK (n > 3).
Let Y be the set of 1-dimensional subspaces of W and let Z be the set of 2-
dimensional subspaces of W . De�ne the bipartite graph Γ = Bip(Y,Z,E), where
y ∈ Y is adjacent to z ∈ Z if, as subspaces in W , y ⊂ z.

1. Compute (in terms of K and n) the valence of Γ, the (combinatorial) length
of the shortest circuit in Γ, and show that Γ is connected. 2. Estimate from above
the length of the shortest path between any pair of vertices of Γ. Can you get a
bound independent of K and n?

1.3. Topological and metric spaces

1.3.1. Topological spaces. Lebesgue covering dimension. Given two
topological spaces, we let C(X;Y ) denote the space of all continuous maps X → Y ;
set C(X) := C(X;R). We always endow the space C(X;Y ) with the compact-open
topology.

Definition 1.14. Two subsets A, V of a topological space X are said to be
separated by a function if there exists a continuous function ρ = ρA,V : X → [0, 1]
so that

1. ρ|A ≡ 0
2. ρ|V ≡ 1.
A topological space X is called perfectly normal if every two disjoint closed

subsets of X can be separated by a function.
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An open covering U = {Ui : i ∈ I} of a topological space X is called locally
�nite if every subset J ⊂ I such that⋂

i∈J
Ui 6= ∅

is �nite. Equivalently, every point x ∈ X has a neighborhood which intersects only
�nitely many Ui's.

The multiplicity of an open covering U = {Ui : i ∈ I} of a space X is the
supremum of cardinalities of subsets J ⊂ I so that⋂

i∈J
Ui 6= ∅.

A covering V is called a re�nement of a covering U if every V ∈ V is contained in
some U ∈ U .

Definition 1.15. The (Lebesgue) covering dimension of a topological space
Y is the least number n such that the following holds: Every open cover U of Y
admits a re�nement V which has multiplicity at most n+ 1.

The following example shows that covering dimension is consistent with our
�intuitive� notion of dimension:

Example 1.16. If M is a n-dimensional topological manifold, then n equals
the covering dimension of M . See e.g. [Nag83].

1.3.2. General metric spaces. A metric space is a set X endowed with a
function dist : X ×X → R with the following properties:

(M1) dist(x, y) > 0 for all x, y ∈ X; dist(x, y) = 0 if and only if x = y;

(M2) (Symmetry) for all x, y ∈ X, dist(y, x) = dist(x, y);

(M3) (Triangle inequality) for all x, y, z ∈ X, dist(x, z) 6 dist(x, y)+dist(y, z).

The function dist is called metric or distance function. Occasionally, it will be
convenient to allow dist to take in�nite values, in this case, we interpret triangle
inequalities following the usual calculus conventions (a+∞ =∞ for every a ∈ R∪∞,
etc.).

A metric space is said to satisfy the ultrametric inequality if

dist(x, z) 6 max(dist(x, y),dist(y, z)),∀x, y, z ∈ X.

We will see some examples of ultrametric spaces in Section 1.8.

Every norm | · | on a vector space V de�nes a metric on V :

dist(u, v) = |u− v|.

The standard examples of norms on the n-dimensional real vector space V are:

|v|p =

(
n∑
i=1

|xi|p
)1/p

, 1 6 p <∞,

and
|v|max = |v|∞ = max{|x1|, . . . , |xn|}.

7



Exercise 1.17. Show that the Euclidean plane E2 satis�es the parallelogram
identity: If A,B,C,D are vertices of a parallelogram P in E2 with the diagonals
[AC] and [BD], then

(1.2) d2(A,B) + d2(B,C) + d2(C,D) + d2(D,A) = d2(A,C) + d2(B,D),

i.e., sum of squares of the sides of P equals the sum of squares of the diagonals of
P .

If X,Y are metric spaces, the product metric on the direct product X × Y is
de�ned by the formula

(1.3) d((x1, y1), (x2, y2))2 = d(x1, x2)2 + d(y1, y2)2.

We will need a separation lemma which is standard (see for instance [Mun75,
�32]), but we include a proof for the convenience of the reader.

Lemma 1.18. Every metric space X is perfectly normal.

Proof. Let A, V ⊂ X be disjoint closed subsets. Both functions distA, distV ,
which assign to x ∈ X its minimal distance to A and to V respectively, are clearly
continuous. Therefore the ratio

σ(x) :=
distA(x)

distV (x)
, σ : X → [0,∞]

is continuous as well. Let τ : [0,∞] → [0, 1] be a continuous monotone function
such that τ(0) = 0, τ(∞) = 1, e.g.

τ(y) =
2

π
arctan(y), y 6=∞, τ(∞) := 1.

Then the composition ρ := τ ◦ σ satis�es the required properties. �

A metric space (X,dist) is called proper if for every p ∈ X and R > 0 the closed
ball B(p,R) is compact. In other words, the distance function dp(x) = d(p, x) is
proper.

A topological space is called locally compact if for every x ∈ X there exists
a basis of neighborhoods of x consisting of relatively compact subsets of X, i.e.,
subsets with compact closure. A metric space is locally compact if and only if for
every x ∈ X there exists ε = ε(x) > 0 such that the closed ball B(x, ε) is compact.

Definition 1.19. Given a function φ : R+ → N, a metric space X is called φ�
uniformly discrete if each ball B(x, r) ⊂ X contains at most φ(r) points. A metric
space is called uniformly discrete if it is φ�uniformly discrete for some function φ.

Note that every uniformly discrete metric space necessarily has discrete topol-
ogy.

Given two metric spaces (X,distX), (Y,distY ), a map f : X → Y is an isomet-
ric embedding if for every x, x′ ∈ X

distY (f(x), f(x′)) = distX(x, x′) .

The image f(X) of an isometric embedding is called an isometric copy of X in Y .
A surjective isometric embedding is called an isometry, and the metric spaces

X and Y are called isometric. A surjective map f : X → Y is called a similarity
with the factor λ if for all x, x′ ∈ X,

distY (f(x), f(x′)) = λdistX(x, x′) .
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The group of isometries of a metric space X is denoted Isom(X). A metric
space is called homogeneous if the group Isom(X) acts transitively on X, i.e., for
every x, y ∈ X there exists an isometry f : X → X such that f(x) = y.

1.3.3. Length metric spaces. Throughout these notes by a path in a topo-
logical space X we mean a continuous map p : [a, b] → X. A path is said to join
(or connect) two points x, y if p(a) = x, p(b) = y. We will frequently con�ate a
path and its image.

Given a path p in a metric space X, one de�nes the length of p as follows. A
partition

a = t0 < t1 < . . . < tn−1 < tn = b

of the interval [a, b] de�nes a �nite collection of points p(t0), p(t1), . . . , p(tn−1), p(tn)
in the space X. The length of p is then de�ned to be

(1.4) length(p) = sup
a=t0<t1<···<tn=b

n−1∑
i=0

dist(p(ti), p(ti+1))

where the supremum is taken over all possible partitions of [a, b] and all integers n.
By the de�nition and triangle inequalities in X, length(p) > dist(p(a), p(b)).

If the length of p is �nite then p is called recti�able, and we say that p is
non-recti�able otherwise.

Exercise 1.20. Consider a C1-smooth path in the Euclidean space p : [a, b]→
Rn , p(t) = (x1(t), . . . , xn(t)). Prove that its length (de�ned above) is given by the
familiar formula

length(p) =

ˆ b

a

√
[x′1(t)]2 + . . .+ [x′n(t)]2 dt.

Similarly, if (M, g) is a connected Riemannian manifold and dist is the Rie-
mannian distance function, then the two notions of length, given by equations (2.1)
and (1.4), coincide for smooth paths.

Exercise 1.21. Prove that the graph of the function f : [0, 1]→ R,

f(x) =

{
x sin 1

x if 0 < x 6 1 ,
0 if x = 0 ,

is a non-recti�able path joining (0, 0) and (1, sin(1)).

Let (X,dist) be a metric space. We de�ne a new metric dist` on X, known
as the induced intrinsic metric: dist`(x, y) is the in�mum of the lengths of all
recti�able paths joining x to y.

Exercise 1.22. Show that dist` is a metric on X with values in [0,∞].

Suppose that p is a path realizing the in�mum in the de�nition of distance
dist`(x, y). We will (re)parameterize such p by its arc-length; the resulting path
p : [0, D]→ (X,dist`) is called a geodesic segment in (X,dist`).

Exercise 1.23. dist 6 dist`.

Definition 1.24. A metric space (X,dist) such that dist = dist` is called a
length (or path) metric space.
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Note that in a path metric space, a priori, not every two points are connected
by a geodesic. We extend the notion of geodesic to general metric spaces: A geodesic
in a metric space X is an isometric embedding g of an interval in R into X. Note
that this notion is di�erent from the one in Riemannian geometry, where geodesics
are isometric embeddings only locally, and need not be arc-length parameterized.
A geodesic is called a geodesic ray if it is de�ned on an interval (−∞, a] or [a,+∞),
and it is called bi-in�nite or complete if it is de�ned on R.

Definition 1.25. A metric space X is called geodesic if every two points in X
are connected by a geodesic path. A subset A in a metric space X is called convex
if for every two points x, y ∈ A there exists a geodesic γ ⊂ X connecting x and y.

Exercise 1.26. Prove that for (X,dist`) the two notions of geodesics agree.

A geodesic triangle T = T (A,B,C) or ∆(A,B,C) with vertices A,B,C in a
metric space X is a collection of geodesic segments [A,B], [B,C], [C,A] in X. These
segments are called edges of T . Later on, in Chapters 7 and 8 we will use generalized
triangles, where some edges are geodesic rays or, even, complete geodesics. The
corresponding vertices generalized triangles will be points of the ideal boundary of
X.

Examples 1.27. (1) Rn with the Euclidean metric is a geodesic metric
space.

(2) Rn \ {0} with the Euclidean metric is a length metric space, but not a
geodesic metric space.

(3) The unit circle S1 with the metric inherited from the Euclidean metric of
R2 (the chordal metric) is not a length metric space. The induced intrinsic
metric on S1 is the one that measures distances as angles in radians, it is
the distance function of the Riemannian metric induced by the embedding
S1 → R2.

(4) The Riemannian distance function dist de�ned for a connected Riemann-
ian manifold (M, g) (see Section 2.1.3) is a path-metric. If this metric is
complete, then the path-metric is geodesic.

(5) Every connected graph equipped with the standard distance function (see
Section 1.3.4) is a geodesic metric space.

Exercise 1.28. If X,Y are geodesic metric spaces, so is X × Y . If X,Y are
path-metric spaces, so is X × Y . Here X × Y is equipped with the product metric
de�ned by (1.3).

Theorem 1.29 (Hopf�Rinow Theorem [Gro07]). If a length metric space is
complete and locally compact, then it is geodesic and proper.

Exercise 1.30. Construct an example of a metric space X which is not a
length metric space, so that X is complete, locally compact, but is not proper.

1.3.4. Graphs as length spaces. Let Γ be a connected graph. Recall that
we are con�ating Γ and its geometric realization, so the notation x ∈ Γ below will
simply mean that x is a point of the geometric realization.

We introduce a path-metric dist on the geometric realization of Γ as follows.
We declare every edge of Γ to be isometric to the unit interval in R. Then, the
distance between any vertices of Γ is the combinatorial length of the shortest edge-
path connecting these vertices. Of course, points of the interiors of edges of Γ are
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not connected by any edge-paths. Thus, we consider fractional edge-paths, where
in addition to the edges of Γ we allow intervals contained in the edges. The length
of such a fractional path is the sum of lengths of the intervals in the path. Then,
for x, y ∈ Γ, dist(x, y) is

inf
p

(length(p)) ,

where the in�mum is taken over all fractional edge-paths p in Γ connecting x to y.

Exercise 1.31. a. Show that in�mum is the same as minimum in this de�ni-
tion.

b. Show that every edge of Γ (treated as a unit interval) is isometrically em-
bedded in (Γ,dist).

c. Show that dist is a path-metric.
d. Show that dist is a complete metric.

The metric dist is called the standard metric on Γ.
The notion of a standard metric on a graph generalizes to the concept of a

metric graph, which is a connected graph Γ equipped with a path-metric dist`.
Such path-metric is, of course, uniquely determined by the lengths of edges of Γ
with respect to the metric d.

Example 1.32. Consider Γ which is the complete graph on 3 vertices (a tri-
angle) and declare that two edges e1, e2 of Γ are unit intervals and the remaining
edge e3 of Γ has length 3. Let dist` be the corresponding path-metric on Γ. Then
e3 is not isometrically embedded in (Γ,dist`).

1.4. Hausdor� and Gromov-Hausdor� distances. Nets

Given subsets A1, A2 in a metric space (X, d), de�ne the minimal distance
between these sets as

dist(A1, A2) = inf{d(a1, a2) : ai ∈ Ai, i = 1, 2}.

The Hausdor� (pseudo)distance between subsets A1, A2 ⊂ X is de�ned as

distHaus(A1, A2) := inf{R : A1 ⊂ NR(A2), A2 ⊂ NR(A1)}.

Two subsets of X are called Hausdor�-close if they are within �nite Hausdor�
distance from each other.

The Hausdor� distance between two distinct spaces (for instance, between a
space and a dense subspace in it) can be zero. The Hausdor� distance becomes
a genuine distance only when restricted to certain classes of subsets, for instance,
to the class of compact subsets of a metric space. Still, for simplicity, we call it a
distance or a metric in all cases.

Hausdor� distance de�nes the topology of Hausdor��convergence on the set
K(X) of compact subsets of a metric space X. This topology extends to the set
C(X) of closed subsets of X as follows. Given ε > 0 and a compact K ⊂ X we
de�ne the neighborhood Uε,K of a closed subset C ∈ C(X) to be

{Z ∈ C(X) : distHaus(Z ∩K,C ∩K) < ε}.

This system of neighborhoods generates a topology on C(X), called Chabauty topol-
ogy. Thus, a sequence Ci ∈ C(X) converges to a closed subset C ∈ C(X) if and
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only if for every compact subset K ⊂ X,

lim
i→∞

Ci ∩K = C ∩K,

where the limit is in topology of Hausdor��convergence.

M. Gromov de�ned in [Gro81, section 6] themodi�ed Hausdor� pseudo-distance
(also called the Gromov�Hausdor� pseudo-distance) on the class of proper metric
spaces:

distGHaus((X, dX), (Y, dY )) = inf
(x,y)∈X×Y

inf{ε > 0 | ∃ a pseudo-metric(1.5)

dist on M = X t Y, such that dist(x, y) < ε,dist|X = dX ,dist|Y = dY and

B(x, 1/ε) ⊂ Nε(Y ), B(y, 1/ε) ⊂ Nε(X)} .

For homogeneous metric spaces the modi�ed Hausdor� pseudo-distance coin-
cides with the pseudo-distance for the pointed metric spaces:

distH̃((X, dX , x0), (Y, dY , y0)) = inf{ε > 0 | ∃ a pseudo-metric(1.6)

dist on M = X t Y such that dist(x0, y0) < ε, dist|X = dX ,dist|Y = dY ,

B(x0, 1/ε) ⊂ Nε(Y ), B(y0, 1/ε) ⊂ Nε(X)} .
This pseudo-distance becomes a metric when restricted to the class of proper
pointed metric spaces.

Still, as before, to simplify the terminology we shall refer to all three pseudo-
distances as `distances' or `metrics.'

Example 1.33. The real line R with the standard metric and the planar circle
of radius r, C(O, r), with the length metric, are at modi�ed Hausdor� distance

ε0 :=
4√

π2r2 + 16 + πr
.

Since both are homogeneous spaces, it su�ces to prove that the pointed metric
spaces (R, 0) and (C(O, r), N), where N is the North pole, are at the distance ε0

with respect to the modi�ed Hausdor� distance with respect to these base-points.
To prove the upper bound we glue R and C(O, r) by identifying isometrically

the interval
[
−π2 r ,

π
2 r
]
in R to the upper semi-circle (see Figure 1.1), and we endow

the graphM thus obtained with its length metric dist. Note that the use of pseudo-
metrics onM in the de�nition of the modi�ed Hausdor� pseudo-distance allows for
points x ∈ X and y ∈ Y to be identi�ed. The minimal ε > 0 such that in (M,dist)[

−1

ε
,

1

ε

]
⊂ Nε(C(O, r)) and B(N, 1/ε) ⊂ Nε(R)

is ε0 de�ned above. This value is the positive solution of the equation

(1.7)
π

2
r + ε =

1

ε
.

For the lower bound consider another metric dist′ on R∨C(O, r) which coincides
with the length metrics on both R and C(O, r). Let ε′ be the smallest ε > 0 such
that dist′(0, N) < ε and

[
− 1
ε ,

1
ε

]
⊂ Nε(C(O, r)), B(N, 1/ε) ⊂ Nε(R) in the metric
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dist′. Let x′, y′ be the nearest points in C(O, r) to − 1
ε′ and

1
ε′ , respectively. Since

dist′(x′, y′) 6 πr, it follows that 2
ε′ 6 πr+2ε′. The previous inequality implies that

ε′ > ε0.
N = 0

the graph M

−π2
π
2

O

r

Figure 1.1. Circle and real line glued along an arc of length πr.

One can associate to every metric space (X,dist) a discrete metric space that
is at �nite Hausdor� distance from X, as follows.

Definition 1.34. An ε�separated subset A in X is a subset such that

dist(a1, a2) > ε , ∀a1, a2 ∈ A, a1 6= a2 .

A subset S of a metric space X is said to be r-dense in X if the Hausdor�
distance between S and X is at most r.

Definition 1.35. An ε-separated δ�net in a metric space X is a subset of X
that is ε�separated and δ�dense.

An ε-separated net in X is a subset that is ε�separated and 2ε�dense.

When the constants ε and δ are not relevant we shall not mention them and
simply speak of separated nets.

Lemma 1.36. A maximal δ�separated set in X is a δ�separated net in X.

Proof. Let N be a maximal δ�separated set in X. For every x ∈ X \N , the
set N ∪{x} is no longer δ�separated, by maximality of N . Hence there exists y ∈ N
such that dist(x, y) < δ. �

By Zorn's lemma a maximal δ�separated set always exists. Thus, every metric
space contains a δ�separated net, for any δ > 0.

Exercise 1.37. Prove that if (X,dist) is compact then every separated net in
X is �nite; hence, every separated set in X is �nite.
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Definition 1.38 (Rips complex). Let (X, d) be a metric space. For R > 0
we de�ne a simplicial complex RipsR(X); its vertices are points of X; vertices
x0, x1, ..., xn span a simplex if and only if for all i, j,

dist(xi, xj) 6 R.

The simplicial complex RipsR(X) is called the R-Rips complex of X.

We will discuss Rips complexes in more detail in �6.2.1.

1.5. Lipschitz maps and Banach-Mazur distance

1.5.1. Lipschitz and locally Lipschitz maps. A map f : X → Y between
two metric spaces (X,distX), (Y,distY ) is L-Lipschitz if for all x, x′ ∈ X

distY (f(x), f(x′)) 6 LdistX(x, x′) .

A map which is L-Lipschitz for some L is called simply Lipschitz.

Exercise 1.39. Show that every L-Lipschitz path p : [0, 1] → X is recti�able
and length(p) 6 L.

The following is a fundamental theorem about Lipschitz maps between Eu-
clidean spaces:

Theorem 1.40 (Rademacher Theorem, see Theorem 3.1 in [Hei01]). Let U be
an open subset of Rn and let f : U → Rm be Lipschitz. Then f is di�erentiable at
almost every point in U .

A map f : X → Y is called locally Lipschitz if for every x ∈ X there exists
ε > 0 so that the restriction f |B(x, ε) is Lipschitz. We let Liploc(X;Y ) denote the
space of locally Lipschitz maps X → Y . We set Liploc(X) := Liploc(X;R).

Exercise 1.41. Fix a point p in a metric space (X,dist) and de�ne the function
distp by distp(x) := dist(x, p). Show that this function is 1-Lipschitz.

Lemma 1.42 (Lipschitz bump-function). Let 0 < R < ∞. Then there exists a
1
R�Lipschitz function ϕ = ϕp,R on X such that

1. ϕ is positive on B(p,R) and zero on X \B(p,R).
2. ϕ(p) = 1.
3. 0 6 ϕ 6 1 on X.

Proof. We �rst de�ne the function ζ : R+ → [0, 1] which vanishes on the
interval [R,∞), is linear on [0, R] and equals 1 at 0. Then ζ is 1

R�Lipschitz. Now
take ϕ := ζ ◦ distp. �

Lemma 1.43 (Lipschitz partition of unity). Suppose that we are given a lo-
cally �nite covering of a metric space X by a countable set of open Ri-balls Bi :=
B(xi, Ri), i ∈ I ⊂ N. Then there exists a collection of Lipschitz functions ηi, i ∈ I
so that:

1.
∑
i ηi ≡ 1.

2. 0 6 ηi 6 1, ∀i ∈ I.
3. Supp(ηi) ⊂ B(xi, Ri), ∀i ∈ I.
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Proof. For each i de�ne the bump-function using Lemma 1.42:

ϕi := ϕxi,Ri .

Then the function
ϕ :=

∑
i∈I

ϕi

is positive on X. Finally, de�ne
ηi :=

ϕi
ϕ
.

It is clear that the functions ηi satisfy all the required properties. �

Remark 1.44. Since the collection of balls {Bi} is locally �nite, it is clear that
the function

L(x) := sup
i∈I,ηi(x)6=0

Lip(ηi)

is bounded on compact sets in X, however, in general, it is unbounded on X. We
refer the reader to the equation (1.8) for the de�nition of Lip(ηi).

From now on, we assume that X is a proper metric space.

Proposition 1.45. Liploc(X) is a dense subset in C(X), the space of continu-
ous functions X → R, equipped with the compact-open topology (topology of uniform
convergence on compacts).

Proof. Fix a base-point o ∈ X and let An denote the annulus

{x ∈ X : n− 1 6 dist(x, o) 6 n}, n ∈ N.

Let f be a continuous function on X. Pick ε > 0. Our goal is to �nd a locally
Lipschitz function g on X so that |f(x) − g(x)| < ε for all x ∈ X. Since f is
uniformly continuous on compact sets, for each n ∈ N there exists δ = δ(n, ε) such
that

∀x, x′ ∈ An, dist(x, x′) < δ ⇒ |f(x)− f(x′)| < ε .

Therefore for each n we �nd a �nite subset

Xn := {xn,1, . . . , xn,mn} ⊂ An
so that for r := δ(n, ε)/4, R := 2r, the open balls Bn,j := B(xn,j , r) cover An. We
reindex the set of points {xn,j} and the balls Bn,j with a countable set I. Thus, we
obtain an open locally �nite covering of X by the balls Bj , j ∈ I. Let {ηj , j ∈ I}
denote the corresponding Lipschitz partition of unity. It is then clear that

g(x) :=
∑
i∈I

ηi(x)f(xi)

is a locally Lipschitz function. For x ∈ Bi let J ⊂ I be such that

x /∈ B(xj , Rj), ∀j /∈ J.
Then |f(x)− f(xj)| < ε for all j ∈ J . Therefore

|g(x)− f(x)| 6
∑
j∈J

ηj(x)|f(xj)− f(x)| < ε
∑
j∈J

ηj(x) = ε
∑
i∈I

ηj(x) = ε.

It follows that |f(x)− g(x)| < ε for all x ∈ X. �

A relative version of Proposition 1.45 also holds:
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Proposition 1.46. Let A ⊂ X be a closed subset contained in a subset U which
is open in X. Then, for every ε > 0 and every continuous function f ∈ C(X) there
exists a function g ∈ C(X) so that:

1. g is locally Lipschitz on X \ U .
2. ‖f − g‖ < ε.
3. g|A = f |A.

Proof. For the closed set V := X \ U pick a continuous function ρ = ρA,V
separating the sets A and V . Such a function exists, by Lemma 1.18. According to
Proposition 1.45, there exists h ∈ Liploc(X) such that ‖f − h‖ < ε. Then take

g(x) := ρ(x)h(x) + (1− ρ(x))f(x).

We leave it to the reader to verify that g satis�es all the requirements of the propo-
sition. �

1.5.2. Bi�Lipschitz maps. The Banach-Mazur distance. A map f :
X → Y is L−bi-Lipschitz if it is a bijection and both f and f−1 are L-Lipschitz
for some L; equivalently, f is surjective and there exists a constant L > 1 such that
for every x, x′ ∈ X

1

L
distX(x, x′) 6 distY (f(x), f(x′)) 6 LdistX(x, x′) .

A bi-Lipschitz embedding is de�ned by dropping surjectivity assumption.

Example 1.47. Suppose thatX,Y are connected Riemannian manifolds (M, g),
(N,h) (see Section 2.1.3). Then a di�eomorphism f : M → N is L-bi-Lipschitz if
and only if

L−1 6

√
f∗h

g
6 L.

In other words, for every tangent vector v ∈ TM ,

L−1 6
|df(v)|
|v|

6 L.

If there exists a bi-Lipschitz map f : X → Y , the metric spaces (X,distX) and
(Y,distY ) are called bi-Lipschitz equivalent or bi-Lipschitz homeomorphic. If dist1

and dist2 are two distances on the same metric space X such that the identity map
id : (X,dist1) → (X,dist2) is bi-Lipschitz, then we say that dist1 and dist2 are
bi-Lipschitz equivalent.

Examples 1.48. (1) If d1, d2 are metrics on Rn de�ned by two norms on
Rn, then d1, d2 are bi-Lipschitz equivalent.

(2) Two left-invariant Riemannian metrics on a connected real Lie group de-
�ne bi-Lipschitz equivalent distance functions.

For a Lipschitz function f : X → R let Lip(f) denote

(1.8) Lip(f) := inf{L : f is L�Lipschitz}

Example 1.49. If T : V → W is a continuous linear map between Banach
spaces, then

Lip(T ) = ‖T‖,
the operator norm of T .
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The Banach-Mazur distance distBM (V,W ) between two Banach spaces V and
W is

log
(

inf
T :V→W

(
‖T‖ · ‖T−1‖

))
,

where the in�mum is taken over all invertible linear maps T : V →W .

Theorem 1.50 (John's Theorem, see e.g. [Ver11], Theorem 2.1). For every
pair of n-dimensional normed vector spaces V,W , distBM (V,W ) 6 log(n).

Exercise 1.51. Suppose that f, g are Lipschitz functions on X. Let ‖f‖, ‖g‖
denote the sup-norms of f and g on X. Show that

1.Lip(f + g) 6 Lip(f) + Lip(g).
2. Lip(fg) 6 Lip(f)‖g‖+ Lip(g)‖f‖.
3.

Lip

(
f

g

)
6

Lip(f)‖g‖+ Lip(g)‖f‖
infx∈X g2(x)

.

Note that in case when f is a smooth function on a Riemannian manifold, these
formulae follow from the formulae for the derivatives of the sum, product and ratio
of two functions.

1.6. Hausdor� dimension

We recall the concept of Hausdor� dimension for metric spaces. Let K be a
metric space and α > 0. The α�Hausdor� measure µα(K) is de�ned as

(1.9) lim
r→0

inf

N∑
i=1

rαi ,

where the in�mum is taken over all countable coverings of K by balls B(xi, ri),
ri 6 r (i = 1, . . . , N). The motivation for this de�nition is that the volume of
the Euclidean r-ball of dimension a ∈ N is ra (up to a uniform constant); hence,
Lebesgue measure of a subset of Ra is (up to a uniform constant) estimated from
above by the a-Hausdor� measure. Euclidean spaces, of course, have integer di-
mension, the point of Hausdor� measure and dimension is to extend the de�nition
to the non-integer case.

The Hausdor� dimension of the metric space K is de�ned as:

dimH(K) := inf{α : µα(K) = 0}.

Exercise 1.52. Verify that the Hausdor� dimension of the Euclidean space
Rn is n.

We will need the following theorem:

Theorem 1.53 (L. Sznirelman; see also [HW41]). Suppose that X is a proper
metric space; then the covering dimension dim(X) is at most the Hausdor� dimen-
sion dimH(X).

Let A ⊂ X be a closed subset. Let Bn := B̄(0, 1) ⊂ Rn denote the closed unit
ball in Rn. De�ne

C(X,A;Bn) := {f : X → Bn ; f(A) ⊂ Sn−1 = ∂Bn}.

An immediate consequence of Proposition 1.46 is the following.
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Corollary 1.54. For every function f ∈ C(X,A;Bn) and an open set U ⊂ X
containing A, there exists a sequence of functions gi ∈ C(X,A;Bn) so that for all
i ∈ N:

1. gi|A = f |A.
2. gi ∈ Lip(X \ U ;Rn).

For a continuous map f : X → Bn de�ne A = Af as

A := f−1(Sn−1).

Definition 1.55. The map f is essential if it is homotopic rel. A to a map
f ′ : X → Sn−1. An inessential map is the one which is not essential.

We will be using the following characterization of the covering dimension due
to Alexandrov:

Theorem 1.56 (P. S. Alexandrov, see Theorem III.5 in [Nag83]). dim(X) < n
if and only if every continuous map f : X → Bn is inessential.

We are now ready to prove Theorem 1.53. Suppose that dimH(X) < n. We
will prove that dim(X) < n as well. We need to show that every continuous map
f : X → Bn is inessential. Let D denote the annulus {x ∈ Rn : 1/2 6 |x| < 1}. Set
A := f−1(Sn−1) and U := f−1(D).

Take the sequence gi given by Corollary 1.54. Since each gi is homotopic to f
rel. A, it su�ces to show that some gi is inessential. Since f = limi gi, it follows
that for all su�ciently large i,

gi(U) ∩B
(

0,
1

3

)
= ∅.

We claim that the image of every such gi misses a point in B
(
0, 1

3

)
. Indeed,

since dimH(X) < n, the n-dimensional Hausdor� measure of X is zero. However,
gi|X \U is locally Lipschitz. Therefore gi(X \U) has zero n-dimensional Hausdor�
(and hence Lebesgue) measure. It follows that gi(X) misses a point y in B

(
0, 1

3

)
.

Composing gi with the retraction Bn \ {y} → Sn−1 we get a map f ′ : X → Sn−1

which is homotopic to f rel. A. Thus f is inessential and, therefore, dim(X) <
n. �

1.7. Norms and valuations

In this and the following section we describe certain metric spaces of algebraic
origin that will be used in the proof of the Tits alternative.

A norm on a ring R is a function | · | from R to R+, which satis�es the following
axioms:

1. |x| = 0 ⇐⇒ x = 0.
2. |xy| = |x| · |y|.
3. |x+ y| 6 |x|+ |y|.
An element x ∈ R such that |x| = 1 is called a unit.
We will say that a norm | · | is nonarchimedean if it satis�es the ultrametric

inequality
|x+ y| 6 max(|x|, |y|).

We say that | · | is archimedean if there exists an isometric monomorphism R ↪→ C.
We will be primarily interested in normed archimedean �elds which are R and C
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with the usual norms given by the absolute value. (By a theorem of Gelfand�
Tornheim, if a normed �eld F contains R as sub�eld then F is isomorphic, as a
�eld, either to R or to C.)

Below is an alternative approach to nonarchimedean normed rings R. A func-
tion ν : R→ R ∪ {∞} is called a valuation if it satis�es the following axioms:

1. ν(x) =∞ ⇐⇒ x = 0.
2. ν(xy) = ν(x) + ν(y).
3. ν(x+ y) > min(ν(x), ν(y)).

Therefore, one converts a valuation to a nonarchimedean norm by setting

|x| = c−ν(x), x 6= 0, |0| = 0,

where c > 0 is a �xed real number.

Remark 1.57. More generally, one also considers valuations with values in
arbitrary ordered abelian groups, but we will not need this.

A normed ring R is said to be local if it is locally compact as a metric space; a
normed ring R is said to be complete if it is complete as a metric space. A norm
on a �eld F is said to be discrete if the image Γ of | · | : F \ {0} → (0,∞) is an
in�nite cyclic group. If the norm is discrete, then an element π ∈ F such that |π|
is a generator of Γ satisfying |π| < 1, is called a uniformizer of F . If F is a �eld
with valuation ν, then the subset

Oν = {x ∈ F : ν(x) > 0}

is a subring in F , the valuation ring or the ring of integers in F .

Exercise 1.58. 1. Verify that every nonzero element of a �eld F with discrete
norm has the form πku, where u is a unit.

2. Verify that every discrete norm is nonarchimedean.

Below are the two main examples of �elds with discrete norms:
1. Field Qp of p-adic numbers. Fix a prime number p. For each number

x = q/pn ∈ Q (where both numerator and denominator of q are not divisible by
p) set |x|p := pn. Then | · |p is a nonarchimedean norm on Q, called the p-adic
norm. The completion of Q with respect to the p-adic norm is the �eld of p-adic
numbers Qp. The ring of p-adic integers Op intersects Q along the subset consisting
of (reduced) fractions n

m where m,n ∈ Z and m is not divisible by p. Note that p
is a uniformizer of Qp.

Remark 1.59. We will not use the common notation Zp for Op, in order to
avoid the confusion with �nite cyclic groups.

Exercise 1.60. Verify that Op is open in Qp. Hint: Use the fact that |x+y|p 6
1 provided that |x|p 6 1, |yp| 6 1.

Recall that one can describe real numbers using in�nite decimal sequences.
There is a similar description of p-adic numbers using �base p arithmetic.� Namely,
we can identify p-adic numbers with semi-in�nite Laurent series

∞∑
k=−n

akp
k,
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where n ∈ Z and ak ∈ {0, . . . , p−1}. Operations of addition and multiplication here
are the usual operations with power series where we treat p as a formal variable, the
only di�erence is that we still have to �carry to the right� as in the usual decimal
arithmetic.

With this identi�cation, |x|p = pn, where a−n is the �rst nonzero coe�cient in
the power series. In other words, ν(x) = −n is the valuation. In particular, the
ring Op is identi�ed with the set of series

∞∑
k=0

akp
k.

Remark 1.61. In other words, one can describe p-adic numbers as left-in�nite
sequences of (base p) digits

· · · amam−1 . . . a0.a−1 · · · a−n
where ∀i, ai ∈ {0, . . . , p− 1}, and the algebraic operations require �carrying to the
left� instead of carrying to the right.

Exercise 1.62. Show that in Qp,
∞∑
k=0

pk =
1

1− p
.

2. Let A be a �eld. Consider the ring R = A[t, t−1] of Laurent polynomials

f(t) =

m∑
k=n

akt
k.

Set ν(0) = ∞ and for nonzero f let ν(f) be the least n so that an 6= 0. In other
words, ν(f) is the order of vanishing of f at 0 ∈ R.

Exercise 1.63. 1. Verify that ν is a valuation on R. De�ne |f | := e−ν(f).
2. Verify that the completion R̂ of R with respect to the above norm is naturally

isomorphic to the ring of semi-in�nite formal Laurent series

f =

∞∑
k=n

akt
k,

where ν(f) is the minimal n such that an 6= 0.

Let A(t) be the �eld of rational functions in the variable t. We embed A in R̂
by the rule

1

1− at
= 1 +

∞∑
n=1

antn.

If A is algebraically closed, every rational function is a product of a polynomial
function and several functions of the form

1

ai − t
,

so we obtain an embedding A(t) ↪→ R̂ in this case. If A is not algebraically closed,
proceed as follows. First, construct, as above, an embedding ι of Ā(t) to the
completion of Ā[t, t−1], where Ā is the algebraic closure of A. Next, observe that

20



this embedding is equivariant with respect to the Galois group Gal(Ā/A), where
σ ∈ Gal(Ā/A) acts on Laurent series

f =

∞∑
k=n

akt
k, a ∈ Ā,

by

fσ =

∞∑
k=n

aσk t
k.

Therefore, ι(A(t)) ⊂ R̂, R = A[t, t−1].
In any case, we obtain a norm on A(t) by restricting the norm in R̂. Since

R ⊂ ιA(t), it follows that R̂ is the completion of ιA(t). In particular, R̂ is a
complete normed �eld.

Exercise 1.64. 1. Verify that R̂ is local if and only if A is �nite.
2. Show that t is a uniformizer of R̂.
3. At the �rst glance, it looks likeQp is the same as R̂ for A = Zp, since elements

of both are described using formal power series with coe�cients in {0, . . . , p − 1}.
What is the di�erence between these �elds?

Lemma 1.65. Qp is a local �eld.

Proof. It su�ces to show that the ring Op of p-adic integers is compact. Since
Qp is complete, it su�ces to show that Op is closed and totally bounded, i.e., for
every ε > 0, Op has a �nite cover by closed ε-balls. The fact that Op is closed
follows from the fact that | · |p : Qp → R is continuous and Op is given by the
inequality Op = {x : |x|p 6 1}.

Let us check that Op is totally bounded. For ε > 0 pick k ∈ N such that
p−k < ε. The ring Z/pkZ is �nite, let z1, . . . , zN ∈ Z \ {0} (where N = pk) denote
representatives of the cosets in Z/pkZ. We claim that the set of fractions

wij =
zi
zj
, 1 6 i, j 6 N,

forms a p−k-net in Op ∩ Q. Indeed, for a rational number m
n ∈ Op ∩ Q, �nd

s, t ∈ {z1, . . . , zN} such that

s ≡ m, t ≡ n, mod pk.

Then
m

n
− s

t
∈ pkOp

and, hence, ∣∣∣m
n
− s

t

∣∣∣
p
6 p−k.

Since Op ∩Q is dense in Op, it follows that

Op ⊂
N⋃

i,j=1

B̄ (wij , ε) . �

Exercise 1.66. Show that Op is homeomorphic to the Cantor set. Hint: Verify
that Op is totally disconnected and perfect.
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1.8. Metrics on a�ne and projective spaces

In this section we will use normed �elds to de�ne metrics on a�ne and projective
spaces. Consider the vector space V = Fn over a normed �eld F , with the standard
basis e1, . . . , en. We equip V with the usual Euclidean/hermitian norm in the case
F is archimedean and with the max-norm

|(x1, . . . , xn)| = max
i
|xi|

if F is nonarchimedean. We let 〈·, ·〉 denote the standard inner/hermitian product
on V in the archimedean case.

Exercise 1.67. Suppose that F is nonarchimedean. Show that the metric
|v − w| on V satis�es the ultrametric triangle inequality.

If F is nonarchimedean, de�ne the group K = GL(n,O), consisting of matrices
A such that A,A−1 ∈Matn(O).

Exercise 1.68. If F is a nonarchimedean local �eld, show that the group K
is compact with respect to the subset topology induced from Matn(F ) = Fn

2

.

Lemma 1.69. The group K acts isometrically on V .

Proof. It su�ces to show that elements g ∈ K do not increase the norm on
V . Let aij denote the matrix coe�cients of g. Then, for a vector v =

∑
i viei ∈ V ,

the vector w = g(v) has coordinates

wj =
∑
i

ajivi.

Since |aij | 6 1, the ultrametric inequality implies

|w| = max
j
|wj |, |wj | 6 max

i
|ajivi| 6 |v|.

Thus, |g(v)| 6 |v|. �

If F is archimedean, we let K < GL(V ) denote the orthogonal/hermitian sub-
group preserving the inner/hermitian product on V . The following is a standard
fact from the elementary linear algebra:

Theorem 1.70 (Singular Value Decomposition Theorem). If F is archimedean,
then every matrix M ∈ End(V ) admits a singular valued decomposition

M = UDV,

where U, V ∈ K and D is a diagonal matrix with nonnegative entries arranged in
the descending order. The diagonal entries of D are called the singular values of
M .

We will now prove an analogue of the singular value decomposition in the case
of nonarchimedean normed �elds:

Theorem 1.71 (Smith Normal Form Theorem). Let F be a �eld with discrete
norm and uniformizer π and ring of integers O. Then every matrix M ∈Matn(F )
admits a Smith Normal Form decomposition

M = LDU,

where D is diagonal with diagonal entries (d1, . . . , dn), di = πki , i = 1, . . . , n,

k1 > k2 > . . . > kn,
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and L,U ∈ K = GL(n,O). The diagonal entries di ∈ F are called the invariant
factors of M .

Proof. First, note that permutation matrices belong to K; the group K also
contains upper and lower triangular matrices with coe�cients in O, whose diagonal
entries are units in F . We now apply Gauss Elimination Algorithm to the matrix
M . Note that the row operation of adding the z-multiple of the i-th row to the
j-th row amounts to multiplication on the left with the lower-triangular elementary
matrix Eij(z) with the ij-entry equal z. If z ∈ O, then Eij ∈ K. Similarly,
column operations amount to multiplication on the right by an upper-triangular
elementary matrix. Observe also that dividing a row (column) by a unit in F
amounts to multiplying a matrix on left (right) by an appropriate diagonal matrix
with unit entries on the diagonal.

We now describe row operations for the Gauss Elimination in detail (column op-
erations will be similar). Consider (nonzero) i-th column of a matrix A ∈ End(Fn).
We �rst multiply M on left and right by permutation matrices so that aii has the
largest norm in the i-th column. By dividing rows on A by units in F , we achieve
that every entry in the i-th column is a power of π. Now, eliminating nonzero en-
tries in the i-th column will require only row operations involving πsij -multiples of
the i-th row, where sij > 0, i.e., πsij ∈ O. Applying this form of Gauss Algorithm
to M , we convert M to a diagonal matrix A, whose diagonal entries are powers of
π and

A = L′MU ′, L′,M ′ ∈ GL(n,O).

Multiplying A on left and right by permutation matrices, we rearrange the diagonal
entries to have weakly decreasing exponents. �

Note that both singular value decomposition and Smith normal form decom-
position both have the form:

M = UDV, U, V ∈ K,
and D is diagonal. Such decomposition of the Matn(F ) is called the Cartan de-
composition. To simplify the terminology, we will refer to the diagonal entries of D
as singular values of M in both archimedean and nonarchimedean cases.

Exercise 1.72. Deduce the Cartan decomposition in F = R or F = C, from
the statement that given any Euclidean/hermitian bilinear form q on V = Fn,
there exists a basis orthogonal with respect to q and orthonormal with respect to
the standard inner product

x1y1 + . . .+ xnyn.

We now turn our discussion to projective spaces. The F -projective space P =
FPn is the quotient of Fn+1 \ {0} by the action of F× via scalar multiplication.
We let [v] denote the projection of a nonzero vector v ∈ V = Fn+1 to FPn. The
j-th a�ne coordinate patch on P is the a�ne subspace Aj ⊂ V ,

Aj = (x1, . . . , 1, . . . , xn+1),

where 1 appears in the j-th coordinate.

Notation 1.73. Given a nonzero vector v ∈ V let [v] denote the projection of
v to the projective space P(V ); similarly, for a subset W ⊂ V we let [W ] denote the
image of W \ {0} under the canonical projection V → P(V ). Given an invertible
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linear map g : V → V , we will retain the notation g for the induced projective map
P(V )→ P(V ).

Suppose now that F is a normed �eld. Our next goal is to de�ne the chordal
metric on FPn. In the case of an archimedean �eld F , we de�ne the Euclidean or
hermitian norm on V ∧ V by declaring basis vectors

ei ∧ ej , 1 6 i < j 6 n+ 1

to be orthonormal. Then

|v ∧ w|2 = |v|2|w|2 − 〈v, w〉 〈w, v〉.

Note that if u, v are unit vectors with ∠(v, w) = ϕ, then |v ∧ w| = | sin(ϕ)|.
In the case when F is nonarchimedean, we equip V ∧ V with the max-norm so

that
|v ∧ w| = max

i,j
|xiyj − xjyi|

where v = (x1, . . . , xn+1), w = (y1, . . . , yn+1).

Lemma 1.74. Suppose that u is a unit vector and v ∈ V is such that |ui−vi| 6 ε
for all i. Then

|v ∧ w| 6 2(n+ 1)ε.

Proof. We will consider the archimedean case since the nonarchimedean case
is similar. For every i let δi = vi − ui. Then

|uivj − ujvi|2 6 |uiδj − ujδi|2 6 4ε2

Thus,
|u ∧ v|2 6 4(n+ 1)2ε2. �

Definition 1.75. The chordal metric on P = FPn is de�ned by

d([v], [w]) =
|v ∧ w|
|v| · |w|

.

In the nonarchimedean case this de�nition is due to A. Néron [N�64].

Exercise 1.76. 1. If F is nonarchimedean, show that the group GL(n+ 1, O)
preserves the chordal metric.

2. If F = R, show that the orthogonal group preserves the chordal metric.
3. If F = C, show that the unitary group preserves the chordal metric.

It is clear that d(λv, µw) = d(v, w) for all nonzero scalars λ, µ and nonzero
vectors v, w. It is also clear that d(v, w) = d(w, v) and d(v, w) = 0 if and only if
[v] = [w]. What is not so obvious is why d satis�es the triangle inequality. Note,
however, that in the case of a nonarchimedean �eld F ,

d([v], [w]) 6 1

for all [v], [w] ∈ P . Indeed, pick unit vectors v, w representing [v], [w]; in particular,
vi, wj belong to O for all i, j. Then, the denominator in the de�nition of d([v], [w])
equals 1, while the numerator is 6 1, since O is a ring.

Proposition 1.77. If F is nonarchimedean, then d satis�es the triangle in-
equality.
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Proof. We will verify the triangle inequality by giving an alternative descrip-
tion of the function d. We de�ne a�ne patches on P to be the a�ne hyperplanes

Aj = {x ∈ V : xj = 1} ⊂ V
together with the (injective) projections Aj → P . Every a�ne patch is, of course,
just a translate of Fn, so that ej is the translate of the origin. We, then, equip Aj
with the restriction of the metric |v − w| from V . Let Bj ⊂ Aj denote the closed
unit ball centered at ej . In other words,

Bj = Aj ∩On+1.

We now set dj(x, y) = |x − y| if x, y ∈ Bj and dj(x, y) = 1 otherwise. It follows
immediately from the ultrametric triangle inequality that dj is a metric. We, then,
de�ne for [x], [y] ∈ P the function dist([x], [y]) by:

1. If there exists j so that x, y ∈ Bj project to [x], [y], then dist([x], [y]) :=
dj(x, y).

2. Otherwise, set dist([x], [y]) = 1.
If we knew that dist is well-de�ned (a priori, di�erent indices j give di�erent

values of dist), it would be clear that dist satis�es the ultrametric triangle inequality.
Proposition will, now, follow from

Lemma 1.78. d([x], [y]) = dist([x], [y]) for all points in P .

Proof. The proof will break in two cases:
1. There exists k such that [x], [y] lift to x, y ∈ Bk. To simplify the notation,

we will assume that k = n + 1. Since x, y ∈ Bn+1, |xi| 6 1, |yi| 6 1 for all i, and
xn+1 = yn+1 = 1. In particular, |x| = |y| = 1. Hence, for every i,

|xi − yi| = |xiyn+1 − xjyn+1| 6 max
j
|xiyj − xjyi| 6 d([x], [y]),

which implies that
dist([x], [y]) 6 d([x], [y]).

We will now prove the opposite inequality:

∀i, j |xiyj − xjyi| 6 a := |x− y|.
There exist zi, zj ∈ F so that

yi = xi(1 + zi), yj = xj(1 + zj),

where, if xi 6= 0, xj 6= 0,

zi =
yi − xi
xi

, zj =
yj − xj
xj

.

We will consider the case xixj 6= 0, leaving the exceptional cases to the reader.
Then,

|zi| 6
a

|xi|
, |zi| 6

a

|xj |
.

Computing xiyj − xjyi using the new variables zi, zj , we obtain:

|xiyj − xjyi| = |xixj(1 + zj)− xixj(1 + zi)| = |xjxj(zj − zi)| 6

|xixj |max (|zi|, |zi|) 6 |xixj |max

(
a

|xi|
,
a

|xj |

)
6 amax (|xi|, |xj |) 6 a,

since xi, xj ∈ O.
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2. Suppose that (1) does not happen. Since d([x], [y]) 6 1 and dist([x], [y]) = 1
(in the second case), we just have to prove that

d([x], [y]) > 1.

Consider representatives x, y of points [x], [y] and let i, j be the indices such that

|xi| = |x|, |yj | = |y|.

Clearly, i, j are independent of the choices of the vectors x, y representing [x], [y].
Therefore, we choose x so that xi = 1, which implies that xk ∈ O for all k. If yi = 0
then

|xiyj − xjyi| = |yj |
and

d([x], [y]) >
maxj |1 · yj |
|yj |

= 1.

Thus, we assume that yi 6= 0. This allows us to choose y ∈ Ai as well. Since (1)
does not occur, y /∈ On+1, which implies that |yj | > 1. Now,

d([x], [y]) >
|xiyj − xjyi|
|xi| · |yj |

=
|yj − xj |
|yj |

.

Since xj ∈ O and yj /∈ O, the ultrametric inequality implies that |yj − xj | = |yj |.
Therefore,

|yj − xj |
|yj |

=
|yj |
|yj |

= 1

and d([x], [y]) > 1. This concludes the proof of lemma and proposition. �

We now consider real and complex projective spaces. Choosing unit vectors
u, v as representatives of points [u], [v] ∈ P , we get:

d([u], [v]) = sin(∠(u, v)),

where we normalize the angle to be in the interval [0, π]. Consider now three points
[u], [v], [w] ∈ P ; our goal is to verify the triangle inequality

d([u], [w]) 6 d([u], [v]) + d([v], [w]).

We choose unit vectors u, v, w representing these points so that

0 6 α = ∠(u, v) 6
π

2
, 0 6 β = ∠(v, w) 6

π

2
.

Then,
γ = ∠(u,w) 6 α+ β

and the triangle inequality for the metric d is equivalent to the inequality

sin(γ) 6 sin(α) + sin(β).

We leave veri�cation of the last inequality as an exercise to the reader. Thus, we
obtain

Theorem 1.79. Chordal metric is a metric on P in both archimedean and
nonarchimedean cases.
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Exercise 1.80. Suppose that F is a normed �eld (either nonarchimedean or
archimedean).

1. Verify that metric d determines the topology on P which is the quotient
topology induced from V \ {0}.

2. Assuming that F is local, verify that P is compact.
3. If the norm on F is complete, show that the metric space (P, d) is complete.
4. If H is a hyperplane in V = Fn+1, given as Ker f , where f : V → F is a

linear function, show that

dist([v], [H]) =
|f(v)|
‖v‖ ‖f‖

.

1.9. Kernels and distance functions

A kernel on a set X is a symmetric map ψ : X×X → R+ such that ψ(x, x) = 0.
Fix p ∈ X and de�ne the associated Gromov kernel

k(x, y) :=
1

2
(ψ(x, p) + ψ(p, y)− ψ(x, y)) .

If X were a metric space and ψ(x, y) = dist2(x, y), then this quantity is just the
Gromov product in X where distances are replaced by their squares (see Section
8.3 for the de�nition of Gromov product in metric spaces). Clearly,

∀x ∈ X, k(x, x) = ψ(x, p).

Definition 1.81. 1. A kernel ψ is positive semide�nite if for every natural
number n, every subset {x1, . . . , xn} ⊂ X and every vector λ ∈ Rn,

(1.10)
n∑
i=1

n∑
j=1

λiλjψ(xi, xj) > 0 .

2. A kernel ψ is conditionally negative semide�nite if for every n ∈ N, every
subset {x1, . . . , xn} ⊂ X and every vector λ ∈ Rn with

∑n
i=1 λi = 0, the following

holds:

(1.11)
n∑
i=1

n∑
j=1

λiλjψ(xi, xj) 6 0 .

This is not a particularly transparent de�nition. A better way to think about
this de�nition is in terms of the vector space V = V (X) of consisting of functions
with �nite support X → R. Then each kernel ψ on X de�nes a symmetric bilinear
form on V (denoted Ψ):

Ψ(f, g) =
∑
x,y∈X

ψ(x, y)f(x)g(y).

With this notation, the left hand side of (1.10) becomes simply Ψ(f, f), where

λi := f(xi), Supp(f) ⊂ {x1, . . . , xn} ⊂ X.
Thus, a kernel is positive semide�nite if and only if Ψ is a positive semide�nite
bilinear form. Similarly, ψ is conditionally negative semide�nite if and only if the
restriction of −Ψ to the subspace V0 consisting of functions with zero average, is a
positive semide�nite bilinear form.

Notation 1.82. We will use the lower case letters to denote kernels and the
corresponding upper case letters to denote the associated bilinear forms on V .
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Below is yet another interpretation of the conditionally negative semide�nite
kernels. For a subset {x1, . . . , xn} ⊂ X de�ne the symmetric matrix M with the
entries

mij = −ψ(xi, xj), 1 6 i, j 6 n.

For λ = (λ1, . . . , λn), the left hand-side of the inequality (1.11) equals

q(λ) = λTMλ,

a symmetric bilinear form on Rn. Then, the condition (1.11) means that q is
positive semi-de�nite on the hyperplane

n∑
i=1

λi = 0

in Rn. Suppose, for a moment, that this form is actually positive-de�nite, Since
ψ(xi, xj) > 0, it follows that the form q on Rn has signature (n−1, 1). The standard
basis vectors e1, . . . , en in Rn are null-vectors for q; the condition mij 6 0 amounts
to the requirement that these vectors belong to the same, say, positive, light cone.

The following theorem gives yet another interpretation of conditionally negative
semide�nite kernels in terms of embedding in Hilbert spaces. It was �rst proven
by J. Schoenberg in [Sch38] in the case of �nite sets, but the same proof works for
in�nite sets as well.

Theorem 1.83. A kernel ψ on X is conditionally negative de�nite if and only
if there exists a map F : X → H to a Hilbert space so that

ψ(x, y) = ‖F (x)− F (y)‖2.

Proof. 1. Suppose that the map F exists. Then, for every p = x0 ∈ X, the
associated Gromov kernel k(x, y) equals

k(x, y) = 〈F (x), F (y)〉 ,
and, hence, for every �nite subset {x0, x1, . . . , xn} ⊂ X, the corresponding matrix
with the entries k(xi, xj) is the Gramm matrix of the set

{yi := F (xi)− F (x0) : i = 1, . . . , n} ⊂ H.
Hence, this matrix is positive semide�nite. Accordingly, Gromov kernel determines
a positive semide�nite bilinear form on the vector space V = V (X).

We will verify that ψ is conditionally negative semide�nite by considering sub-
sets X0 in X of the form {x0, x1, . . . , xn}. (Since the point x0 was arbitrary, this
will su�ce.)

Let f : X0 → R be such that

(1.12)
n∑
i=0

f(xi) = 0.

Thus,

f(x0) := −
n∑
i=1

f(xi).

Set yi := F (xi), i = 0, . . . , n. Since the kernel K is positive semide�nite, we have
n∑

i,j=1

(
|y0 − yi|2 + |y0 − yj |2 − |yi − yj |2

)
f(xi)f(xj) =(1.13)
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2

n∑
i,j=1

k(xi, xj)f(xi)f(xj) > 0.

The left hand side of this equation equals

2

(
n∑
i=1

f(xi)

)
·

 n∑
j=1

|y0 − yj |2f(xj)

−
n∑

i,j=1

|yi − yj |2f(xi)f(xj).

Since f(x0) := −
∑n
i=1 f(xi), we can rewrite this expression as

−f(x0)2|y0 − y0|2 − 2

 n∑
j=1

|y0 − yj |2f(x0)f(xj)

− n∑
i,j=1

|yi − yj |2f(xi)f(xj) =

n∑
i,j=0

|yi − yj |2f(xi)f(xj) =

n∑
i,j=0

ψ(xi, xj)f(xi)f(xj).

Taking into account the inequality (1.13), we conclude that

(1.14)
n∑

i,j=0

ψ(xi, xj)f(xi)f(xj) 6 0.

In other words, the kernel ψ on X is conditionally negative semide�nite.

2. Suppose that ψ is conditionally negative de�nite. Fix p ∈ X and de�ne the
Gromov kernel

k(x, y) := (x, y)p :=
1

2
(ψ(x, p) + ψ(p, y)− ψ(x, y)) .

The key to the proof is:

Lemma 1.84. k is a positive semide�nite kernel on X.

Proof. Consider a subset X0 = {x1, . . . , xn} ⊂ X and a function f : X0 → R.
a. We �rst consider the case when p /∈ X0. Then we set x0 := p and extend

the function f to p by

f(x0) := −
n∑
i=1

f(xi).

The resulting function f : {x0, . . . , xn} → R satis�es (1.12) and, hence,
n∑

i,j=0

ψ(xi, xj)f(xi)f(xj) 6 0.

The same argument as in the �rst part of the proof of Theorem 1.83 (run in the
reverse) then shows that

n∑
i,j=1

k(xi, xj)f(xi)f(xj) > 0.

Thus, k is positive semide�nite on functions whose support is disjoint from {p}.
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b. Suppose that p ∈ X0, f(p) = c 6= 0. We de�ne a new function g(x) :=
f(x) − cδp. Here δp is the characteristic function of the subset {p} ⊂ X. Then
p /∈ Supp(g) and, hence, by the Case (a),

K(g, g) > 0.

On the other hand,

K(f, f) = F (g, g) + 2cK(g, δp) + c2K(δp, δp) = F (g, g),

since the other two terms vanish (as k(x, p) = 0 for every x ∈ X). Thus, K is
positive semide�nite. �

Now, consider the vector space V = V (X) equipped with the positive semi-
de�nite bilinear form 〈f, g〉 = K(f, g). De�ne the Hilbert space H as the metric
completion of

V/{f ∈ V : 〈f, f〉 = 0}.
Then we have a natural map F : X → H which sends x ∈ X to the projection of
the δ-function δx; we obtain:

〈F (x), F (y)〉 = k(x, y).

Let us verify now that

(1.15) 〈F (x)− F (y), F (x)− F (y)〉 = ψ(x, y).

The left hand side of this expression equals

〈F (x), F (x)〉+ 〈F (y), F (y)〉 − 2k(x, y) = ψ(x, p) + ψ(y, p)− 2k(x, y).

Then, the equality (1.15) follows from the de�nition of the Gromov kernel k. �

According to [Sch38], for every conditionally negative de�nite kernel ψ : X ×
X → R+ and every 0 < α 6 1, the power ψα is also a conditionally negative de�nite
kernel.
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CHAPTER 2

Geometric preliminaries

2.1. Di�erential and Riemannian geometry

In this book we will use some elementary Di�erential and Riemannian geometry,
basics of which are reviewed in this section. All the manifolds that we consider are
second countable.

2.1.1. Smooth manifolds. We expect the reader to know basics of di�eren-
tial topology, that can be found, for instance, in [GP10], [Hir76], [War83]. Below
is only a brief review.

Recall that, given a smooth n�dimensional manifold M , a k�dimensional sub-
manifold is a closed subset N ⊂ M with the property that every point p ∈ N is
contained in the domain U of a chart ϕ : U → Rn such that ϕ(U ∩N) = ϕ(U)∩Rk .

If k = n then, by the inverse function theorem, N is an open subset in M ;
in this case N is also called an open submanifold in M . (The same is true in the
topological category, but the proof is harder and requires Brouwer's Invariance of
Domain Theorem, see e.g. [Hat02], Theorem 2B.3.)

Suppose that U ⊂ Rn is an open subset. A piecewise-smooth function f : U →
Rm is a continuous function such that for every x ∈ U there exists a neighborhood
V of x in U , a di�eomorphism φ : V → V ′ ⊂ Rn, a triangulation T of V ′, so that
the composition

f ◦ φ−1 : (V ′, T )→ Rm

is smooth on each simplex. Note that composition g ◦ f is again piecewise-smooth,
provided that g is smooth; however, composition of piecewise-smooth maps need
not be piecewise-smooth.

One then de�nes piecewise smooth k�dimensional submanifolds N of a smooth
manifold M . Such N is a topological submanifold which is locally the image of Rk
in Rn under a piecewise-smooth homeomorphism Rn → Rn. We refer the reader to
[Thu97] for the detailed discussion of piecewise-smooth manifolds.

If k = n− 1 we also sometimes call a submanifold a (piecewise smooth) hyper-
surface.

Below we review two alternative ways of de�ning submanifolds. Consider a
smooth map f : M → N of a m-dimensional manifold M = Mm to an n-
dimensional manifold N = Nn. The map f : M → N is called an immersion
if for every p ∈ M , the linear map dfp : TpM → Tf(p)N is injective. If, moreover,
f de�nes a homeomorphism from M to f(M) with the subspace topology, then f
is called a smooth embedding.

Exercise 2.1. Construct an injective immersion R→ R2 which is not a smooth
embedding.

31



If N is a submanifold in M then the inclusion map i : N → M is a smooth
embedding. This, in fact, provides an alternative de�nition for k-dimensional sub-
manifolds: They are images of smooth embeddings with k�dimensional manifolds
(see Corollary 2.4). Images of immersions provide a large class of subsets, called
immersed submanifolds.

A smooth map f : Mk → Nn is called a submersion if for every p ∈ M , the
linear map dfp is surjective. The following theorem can be found for instance, in
[GP10], [Hir76], [War83].

Theorem 2.2. (1) If f : Mm → Nn is an immersion, then for every
p ∈ M and q = f(p) there exists a chart ϕ : U → Rm of M with p ∈ U ,
and a chart ψ : V → Rn of N with q ∈ V such that f = ψ ◦ f ◦ ϕ−1 :
ϕ(U)→ ψ(V ) is of the form

f(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
n−m times

) .

(2) If f : Mm → Nn is a submersion, then for every p ∈ M and q = f(p)
there exists a chart ϕ : U → Rm ofM with p ∈ U , and a chart ψ : V → Rn
of N with q ∈ V such that f = ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V ) is of the form

f(x1, . . . , xn, . . . , xm) = (x1, . . . , xn) .

Exercise 2.3. Prove Theorem 2.2.

Hint. Use the Inverse Function Theorem and the Implicit Function Theorem
from Vector Calculus.

Corollary 2.4. (1) If f : Mm → Nn is a smooth embedding then
f(Mm) is a m-dimensional submanifold of Nn.

(2) If f : Mm → Nn is a submersion then for every x ∈ Nn the �ber f−1(x)
is a submanifold of dimension m− n.

Exercise 2.5. Every submersion f : M → N is an open map, i.e., the image
of an open subset in M is an open subset in N .

Let f : Mm → Nn be a smooth map and y ∈ N is a point such that for some
x ∈ f−1(y), the map dfx : TxM → TyN, y = f(x), is not surjective. Then the point
y ∈ N is called a singular value of f . A point y ∈ N which is not a singular value
of f is called a regular value of f . Thus, for every regular value y ∈ N of f , the
preimage f−1(y) is either empty or a smooth submanifold of dimension m− n.

Theorem 2.6 (Sard's theorem). Almost every point y ∈ N is a regular value
of f .

Sard's theorem has an important quantitative improvement due to Y. Yomdin
which we will describe below. Let B be the closed unit ball in Rn−1. Consider a
Cn-smooth function f : B → R. For every multi-index i = (i1, . . . , ik)| set |i| := k,
and for k 6 n let

∂if :=
∂kf

∂xi1 . . . ∂xik
be the i-th mixed partial derivative of f . Let

‖∂if‖ := max
x
|∂if(x)|.
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De�ne the Cn-norm of f as

‖f‖Cn := max
i,06|i|6n+1

‖∂if‖.

Given ε > 0 let Eε ⊂ R denote the set

{y ∈ R : ∃x ∈ f−1(y), |∇f(x)| < ε}.
Thus, the set Eε consists of �almost� critical values of f . Yomdin's theorem infor-
mally says that for small ε the set Eε is small. Below is the precise statement.

Theorem 2.7 (Y. Yomdin, [Yom83]). There exists a constant c = c(n, ‖f‖Cn)
so that for every Cn-smooth function f : B → R, and every ε ∈ (0, 1) the set Eε
can be covered by at most c/ε intervals of length εn/(n−1). In particular:

1. Lebesgue measure of Eε is at most

cε
1

n−1 .

2. Whenever an interval J ⊂ R has length ` > cε1/(n−1), there exists a subin-
terval J ′ ⊂ J \ Eε, so that J ′ has length at least

c

ε

(
`− cε1/(n−1)

)
.

2.1.2. Smooth partition of unity.

Definition 2.8. Let M be a smooth manifold and U = {Bi : i ∈ I} a locally
�nite covering of M by open subsets di�eomorphic to Euclidean balls. A collection
of smooth functions {ηi : i ∈ I} on M is called a smooth partition of unity for the
cover U if the following conditions hold:

(1)
∑
i ηi ≡ 1.

(2) 0 6 ηi 6 1, ∀i ∈ I.
(3) Supp(ηi) ⊂ Bi, ∀i ∈ I.

Lemma 2.9. Every open cover U as above admits a smooth partition of unity.

2.1.3. Riemannian metrics. A Riemannian metric on a smooth n-dimen-
sional manifold M , is a positive de�nite inner product 〈·, ·〉p de�ned on the tangent
spaces TpM of M ; this inner product is required to depend smoothly on the point
p ∈ M . We will suppress the subscript p in this notation; we let ‖ · ‖ denote the
norm on TpM determined by the Riemannian metric. The Riemannian metric is
usually denoted g = gx = g(x), x ∈ M or ds2. We will use the notation |dx|2 to
denote the Euclidean Riemannian metric on Rn:

dx2 := dx2
1 + . . .+ dx2

n.

Here and in what follows we use the convention that for tangent vectors u, v,

dxidxj(u, v) = uivj

and dx2
i stands for dxidxi.

A Riemannian manifold is a smooth manifold equipped with a Riemannian
metric.

Two Riemannian metrics g, h on a manifold M are said to be conformal to
each other, if hx = λ(x)gx, where λ(x) is a smooth positive function on M , called
conformal factor. In matrix notation, we just multiply the matrix Ax of gx by
a scalar function. Such modi�cation of Riemannian metrics does not change the
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angles between tangent vectors. A Riemannian metric gx on a domain U in Rn is
called conformally-Euclidean if it is conformal to |dx|2, i.e., it is given by

λ(x)|dx|2 = λ(x)(dx2
1 + . . .+ dx2

n).

Thus, the square of the norm of a vector v ∈ TxU with respect to gx is given by

λ(x)

n∑
i=1

v2
i .

Given an immersion f : Mm → Nn and a Riemannian metric g on N , one
de�nes the pull-back Riemannian metric f∗(g) by

〈v, w〉p = 〈df(v), df(w)〉q , p ∈M, q = f(p) ∈ N,

where the right-hand side we use the inner product de�ned by g and in the left-
hand side the one de�ned by f∗(g). It is useful to rewrite this de�nition in terms
of symmetric matrices, when M,N are open subsets of Rn. Let Ay be the matrix-
function de�ning g. Then f∗(g) is given by the matrix-function Bx, where

y = f(x), Bx = (Dxf)Ay (Dxf)T

and Dxf is the Jacobian matrix of f at the point x.
Let us compute how pull-back works in �calculus terms� (this is useful for

explicit computation of the pull-back metric f∗(g)), when g(y) is a Riemannian
metric on an open subset U in Rn. Suppose that

g(y) =
∑
i,j

gij(y)dyidyj

and f = (f1, . . . , fn) is a di�eomorphism V ⊂ Rn → U . Then

f∗(g) = h,

h(x) =
∑
i,j

gij(f(x))dfidfj .

Here for a function φ : Rn → R, e.g., φ(x) = fi(x),

dφ =
n∑
k=1

dkφ =
n∑
k=1

∂φ

∂xk
dxk,

and, thus,

dfidfj =

n∑
k,l=1

∂fi
∂xk

∂fj
∂xl

dxkdxl.

A particular case of the above is when N is a submanifold in a Riemannian
manifoldM . One can de�ne a Riemannian metric onN either by using the inclusion
map and the pull-back metric, or by considering, for every p ∈ N , the subspace
TpN of TpM , and restricting the inner product 〈·, ·〉p to it. Both procedures de�ne
the same Riemannian metric on N .

Measurable Riemannian metrics. The same de�nition makes sense if the
inner product depends only measurably on the point p ∈ M , equivalently, the
matrix-function Ax is only measurable. This generalization of Riemannian metrics
will be used in our discussion of quasi-conformal groups, Chapter ??, section ??.

34



Length and distance. Given a Riemannian metric on M , one de�nes the
length of a path p : [a, b]→M by

(2.1) length(p) =

ˆ b

a

‖p′(t)‖dt.

By abusing the notation, we will frequently denote length(p) by length(p([a, b])).
Then, provided thatM is connected, one de�nes the Riemannian distance func-

tion

dist(p, q) = inf
p

length(p),

where the in�mum is taken over all paths in M connecting p to q.
A smooth map f : (M, g) → (N,h) of Riemannian manifolds is called a

Riemannian isometry if f∗(h) = g. In most cases, such maps do not preserve
the Riemannian distances. This leads to a somewhat unfortunate terminological
confusion, since the same name isometry is used to de�ne maps between metric
spaces which preserve the distance functions. Of course, if a Riemannian isome-
try f : (M, g) → (N,h) is also di�eomorphism, then it preserves the Riemannian
distance function.

A Riemannian geodesic segment is a path p : [a, b] ⊂ R → M which is a local
length-minimizer, i.e.:

There exists c > 0 so that for all t1, t2 in J su�ciently close to each other,

dist(p(t1), p(t2)) = length(p([t1, t2])) = c|t1 − t2|.
If c = 1, we say that p has unit speed. Thus, a unit speed geodesic is a locally-
distance preserving map from an interval to (M, g). This de�nition extends to
in�nite geodesics in M , which are maps p : J → M , de�ned on intervals J ⊂ M ,
whose restrictions to each �nite interval are �nite geodesics.

A smooth map f : (M, g)→ (N,h) is called totally-geodesic if it maps geodesics
in (M, g) to geodesics in (N,h). If, in addition, f∗(h) = g, then such f is locally
distance-preserving.

Injectivity and convexity radii. For every complete Riemannian manifold
M and a point p ∈M , there exists the exponential map

expp : TpM →M

which sends every vector v ∈ TpM to the point γv(1), where γv(t) is the unique
geodesic inM with γ(0) = p and γ′(0) = v. The injectivity radius InjRad(p) is the
supremum of the numbers r so that expp |B(0, r) is a di�eomorphism to its image.
The radius of convexity ConRad(p) is the supremum of r's so that r 6 InRad(p)
and C = expp(B(0, r)) is a convex subset of M , i.e., every x, y ∈ C are connected
by a (distance�realizing) geodesic segment entirely contained in C. It is a basic fact
of Riemannian geometry that for every p ∈M ,

ConRad(p) > 0,

see e.g. [dC92].

2.1.4. Riemannian volume. For every n-dimensional Riemannian manifold
(M, g) one de�nes the volume element (or volume density) denoted dV (or dA if M
is 2-dimensional). Given n vectors v1, . . . , vn ∈ TpM , dV (v1∧ . . .∧vn) is the volume
of the parallelepiped in TpM spanned by these vectors, this volume is nothing but√
|det(G(v1, . . . , vn))|, where G(v1, . . . , vn) is the Gramm matrix with the entries

35



〈vi, vj〉. If ds2 = ρ2(x)|dx|2, is a conformally-Euclidean metric, then its volume
density is given by

ρn(x)dx1 . . . dxn.

Thus, every Riemannian manifold has a canonical measure, given by the integral
of its volume form

mes(E) =

ˆ
A

dV.

Theorem 2.10 (Generalized Rademacher's theorem). Let f : M → N be a
Lipschitz map of Riemannian manifolds. Then f is di�erentiable almost every-
where.

Exercise 2.11. Deduce Theorem 2.10 from Theorem 1.40 and the fact that
M is second countable.

We now de�ne volumes of maps and submanifolds. The simplest and the most
familiar notion of volume comes from the vector calculus. Let Ω be a bounded
region in Rn and f : Ω → Rn be a smooth map. Then the geometric volume of f
is de�ned as

(2.2) V ol(f) :=

ˆ
Ω

|Jf (x)|dx1 . . . dxn

where Jf is the Jacobian determinant of f . Note that we are integrating here a
non-negative quantity, so geometric volume of a map is always non-negative. If f
were 1-1 and Jf (x) > 0 for every x, then, of course,

V ol(f) =

ˆ
Ω

Jf (x)dx1 . . . dxn = V ol(f(Ω)).

More generally, if f : Ω→ Rm (now, m need not be equal to n), then

V ol(f) =

ˆ
Ω

√
|det(Gf )|

where Gf is the Gramm matrix with the entries
〈
∂f
∂xi

, ∂f∂xj

〉
, where brackets denote

the usual inner product in Rm. In case f is 1-1, the reader will recognize in this
formula the familiar expression for the volume of an immersed submanifold Σ =
f(Ω) in Rm,

V ol(f) =

ˆ
Σ

dS.

The Gramm matrix above makes sense also for maps whose target is an m-
dimensional Riemannian manifold (M, g), with partial derivatives replaced with
vectors df(Xi) in M , where Xi are coordinate vector �elds in Ω:

Xi =
∂

∂xi
, i = 1, . . . , n.

Furthermore, one can take the domain of the map f to be an arbitrary smooth
manifold N (possibly with boundary). De�nition still makes sense and is indepen-
dent of the choice of local charts on N used to de�ne the integral: this independence
is a corollary of the change of variables formula in the integral in a domain in Rn.
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More precisely, consider charts ϕα : Uα → Vα ⊂ N , so that {Vα}α∈J is a locally-
�nite open covering of N . Let {ηα} be a partition of unity on N corresponding to
this covering. Then for ζα = ηα ◦ ϕα, fα = f ◦ ϕα,

V ol(f) =
∑
α∈J

ˆ
Uα

ζα

√
|det(Gfα)|dx1 . . . dxn

In particular, if f is 1-1 and Σ = f(N), then

V ol(f) = V ol(Σ).

Remark 2.12. The formula for V ol(f) makes sense when f : N →M is merely
Lipschitz, in view of Theorem 2.10.

Thus, one can de�ne the volume of an immersed submanifold, as well as that of
a piecewise smooth submanifold; in the latter case we subdivide a piecewise-smooth
submanifold in a union of images of simplices under smooth maps.

By abuse of language, sometimes, when we consider an open submanifold N in
M , so that boundary ∂N of N a submanifold of codimension 1, while we denote
the volume of N by V ol(N), we shall call the volume of ∂N the area, and denote
it by Area (∂N) .

Exercise 2.13. (1) Suppose that f : Ω ⊂ Rn → Rn is a smooth map so
that |dxf(u)| 6 1 for every unit vector u and every x ∈ Ω. Show that
|Jf (x)| 6 1 for every x and, in particular,

V ol(f(Ω)) = |
ˆ

Ω

Jfdx1 . . . dxn| 6 V ol(f) 6 V ol(Ω).

Hint: Use that under the linear map A = dxf , the image of every r-ball
is contained in r-ball.

(2) Prove the same thing if the map f is merely 1-Lipschitz.

More general versions of the above exercises are the following.

Exercise 2.14. Let (M, g) and (N,h) be n-dimensional Riemannian manifolds.
(1) Let f : M → N be a smooth map such that for every x ∈M , the norm of

the linear map

dfx :
(
TxM, 〈·, ·〉g

)
→ (Tf (x)N, 〈·, ·〉h)

is at most L.
Prove that |Jf (x)| 6 Ln for every x and that for every open subset U

of M
V ol(f(Ω)) 6 LnV ol(Ω).

(2) Prove the same statement for an L�Lipschitz map f : M → N .

A consequence of Theorem 2.2 is the following.

Theorem 2.15. Consider a compact Riemannian manifold Mm, a submersion
f : Mm → Nn, and a point p ∈ N . For every x ∈ N set Mx := f−1(x). Then, for
every p ∈ N and every ε > 0 there exists an open neighborhood W of p such that
for every x ∈W ,

1− ε 6 V ol(Mx)

V ol(Mp)
6 1 + ε.
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Proof. First note that, by compactness of Mp, for every neighborhood U of
Mp there exists a neighborhood W of p such that f−1(W ) ⊂ U .

According to Theorem 2.2, (2), for every x ∈ Mp there exists a chart of M ,
ϕx : Ux → Ux, with Ux containing x, and a chart of N , ψx : Vx → V x with Vx
containing p, such that ψx ◦ f ◦ ϕ−1

x is a restriction of the projection to the �rst n
coordinates. Without loss of generality we may assume that Ux is an open cube in
Rm. Therefore, V x is also a cube in Rn, and Ux = V x ×Zx , where Zx is an open
subset in Rm−n .

SinceMp is compact, it can be covered by �nitely many such domains of charts
U1, . . . , Uk. Let V1, . . . , Vk be the corresponding domains of charts containing p.
For the open neighborhood U =

⋃k
i=1 Ui of Mp consider an open neighborhood W

of p, contained in
⋂k
i=1 Vi, such that f−1(W ) ⊆ U .

For every x ∈W , Mx =
⋃k
l=1(Ui ∩Mx). Fix l ∈ {1, . . . , k}. Let (gij(y))16i,j6n

be the matrix-valued function on U l, de�ning the pull-back by ϕl of the Riemannian
metric on M .

Since gij is continuous, there exists a neighborhood W l of p̄ = ψl(p) such that
for every x̄ ∈Wl and for every t̄ ∈ Zl we have,

(1− ε)2 6
det [gij(x̄, t̄)]n+16i,j6m

det [gij(p̄, t̄)]n+16i,j6m

6 (1 + ε)2 .

Recall that the volumes of Mx ∩ Ui and of Mp ∩ Ul are obtained by integrating
respectively (det [gij(x̄, t̄)]n+16i,j6k)1/2 and (det [gij(p̄, t̄)]n+16i,j6k)1/2 on Zl . The
volumes of Mx and Mp are obtained by combining this with a partition of unity.

It follows that for x ∈
⋂k
i=1 ψ

−1
i (W l),

1− ε 6 V ol(Mx)

V ol(Mp)
6 1 + ε .

�

Finally, we recall an important formula for volume computations:

Theorem 2.16 (Coarea formula, see e.g. Theorem 6.3 [Cha06] ). Let U be an
open connected subset with compact closure U in a Riemannian manifold M and
let f : U → (0,∞) be a smooth submersion with a continuous extension to U such
that f restricted to U \ U is constant. For every t ∈ (0,∞) let Ht denote the level
set f−1(t), and let dAt be the Riemannian area density induced on Ht.

Then, for every function g ∈ L1(U),ˆ
U

g |gradf |dV =

ˆ ∞
0

dt

ˆ
Ht
g dAt

where dV is the Riemannian volume density of M

2.1.5. Growth function and Cheeger constant. In this section we present
two basic notions initially introduced in Riemannian geometry and later adapted
and used in group theory and in combinatorics.

Given a Riemannian manifold (M, g) and a point x0 ∈M , we de�ne the growth
function

GM,x0(r) := V ol B(x0, r),

the volume of the metric ball of radius r and center at x in (M, g)
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Remarks 2.17. (1) For two di�erent points x0, y0, we have

GM,x0(r) 6 GM,y0(r + d), where d = dist(x0, y0) .

(2) Suppose that the action of the group of isometries of M is cobounded,
i.e., there exists κ such that the Isom(M)-orbit of B(x0, κ) equals M . In
this case, for every two basepoints x0, y0

GM,x0
(r) 6 GM,y0(r + κ) .

Thus, in this case the growth rate of the function G does not depend on
the choice of the basepoint.

We refer the reader to Section ?? for the detailed discussion of volume growth
and its relation to group growth.

Exercise 2.18. Assume again that the action Isom(M) y M is cobounded
and that (M, g) is complete.

(1) Prove that the growth function is almost sub-multiplicative, that is:

GM,x0
((r + t)κ) 6 GM,x0

(rκ)GM,x0
((t+ 1)κ) .

(2) Prove that the growth function of M is at most exponential, that is there
exists a > 1 such that

GM,x0
(x) 6 ax , for every x > 0 .

Definition 2.19. An isoperimetric inequality in a manifoldM is an inequality
satis�ed by all open submanifolds Ω with compact closure and smooth boundary,
of the form

V ol(Ω) ≤ f(Ω)g (Area∂Ω) ,

where f and g are real-valued functions, g de�ned on R+ .

Definition 2.20. The Cheeger (isoperimetric) constant h(M) (or isoperimetric
ratio) of M is the in�mum of the ratios

Area(∂Ω)

min [V ol(Ω) , V ol(M \ Ω)]
,

where Ω varies over all open submanifolds with compact closure and smooth bound-
ary.

If in particular h(M) ≥ κ > 0 then the following isoperimetric inequality holds
in M :

V ol(Ω) 6
1

κ
Area(∂Ω) for every Ω .

This notion was de�ned by Cheeger for compact manifolds in [Che70]. Further
details can be found for instance in P. Buser's book [Bus10]. Note that when M
is a Riemannian manifold of in�nite volume, one may replace the denominator in
the ratio de�ning the Cheeger constant by V ol(Ω).

Assume now that M is the universal cover of a compact Riemannian manifold
N . A natural question to ask is to what extent the growth function and the Cheeger
constant of M depend on the choice of the Riemannian metric on N . The �rst
question, in a way, was one of the origins of the geometric group theory.
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V.A. Efremovich [Efr53] noted that two growth functions corresponding to
two di�erent choices of metrics on N increase at the same rate, and, moreover,
that their behavior is essentially determined by the fundamental group only. See
Proposition ?? for a slightly more general statement.

A similar phenomenon occurs with the Cheeger constant: Positivity of h(M)
does not depend on the metric on N , it depends only on a certain property of
π1(N), namely, the non-amenability, see Remark 11.12. This was proved much later
by R. Brooks [Bro81, Bro82a]. Brooks' argument has a global analytic �avor, as
it uses the connection established by Cheeger [Che70] between positivity of the
isoperimetric constant and positivity of spectrum of the Laplace-Beltrami operator
on M . Note that even though in the quoted paper Cheeger only considers compact
manifolds, the same argument works for universal covers of compact manifolds.
This result was highly in�uential in global analysis on manifolds and harmonic
analysis on graphs and manifolds.

2.1.6. Curvature. Instead of de�ning the Riemannian curvature tensor, we
will only describe some properties of Riemannian curvature. First, if (M, g) is a 2-
dimensional Riemannian manifold, one de�nes Gaussian curvature of (M, g), which
is a smooth function K : M → R, whose values are denoted K(p) and Kp.

More generally, for an n-dimensional Riemannian manifold (M, g), one de-
�nes the sectional curvature, which is a function Λ2M → R, denoted Kp(u, v) =
Kp,g(u, v):

Kp(u, v) =
〈R(u, v)u, v〉
|u ∧ v|2

,

provided that u, v ∈ TpM are linearly independent. Here R is the Riemannian
curvature tensor and |u∧v| is the area of the parallelogram in TpM spanned by the
vectors u, v. Sectional curvature depends only on the 2-plane P in TpM spanned
by u and v. The curvature tensor R(u, v)w does not change if we replace the metric
g with a conformal metric h = ag, where a > 0 is a constant. Thus,

Kp,h(u, v) = a−2Kp,g(u, v).

Totally geodesic Riemannian isometric immersions f : (M, g)→ (N,h) preserve
sectional curvature:

Kp(u, v) = Kq(df(u), df(v)), q = f(p).

In particular, sectional curvature is invariant under Riemannian isometries of equidi-
mensional Riemannian manifolds. In the case whenM is 2-dimensional, Kp(u, v) =
Kp, is the Gaussian curvature of M .

Gauss-Bonnet formula. Our next goal is to connect areas of triangles to
curvature.

Theorem 2.21 (Gauss-Bonnet formula). Let (M, g) be a Riemannian surface
with the Gaussian curvature K(p), p ∈ M and the area form dA. Then for every
2-dimensional triangle N ⊂M with geodesic edges and vertex angles α, β, γ,ˆ

N
K(p)dA = (α+ β + γ)− π.

In particular, if K(p) is constant equal κ, we get

−κArea(N) = π − (α+ β + γ).
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The quantity π − (α+ β + γ) is called the angle de�cit of the triangle ∆.

Manifolds of bounded geometry. A (complete) Riemannian manifold M
is said to have bounded geometry if there are constants a, b and ε > 0 so that:

1. Sectional curvature of M varies in the interval [a, b].
2. Injectivity radius of M is > ε.

The numbers a, b, ε are called geometric bounds on M . For instance, every
compact Riemannian manifold M has bounded geometry, every covering space of
M (with pull-back Riemannian metric) also has bounded geometry.

Theorem 2.22 (See e.g. Theorem 1.14, [Att94]). Let M be a Riemannian
manifold of bounded geometry with geometric bounds a, b, ε. Then for every x ∈M
and 0 < r < ε/2, the exponential map

expx : B(0, r)→ B(x, r) ⊂M

is an L-bi-Lipschitz di�eomorphism, where L = L(a, b, ε).

This theorem also allows one to re�ne the notion of partition of unity in the
context of Riemannian manifolds of bounded geometry:

Lemma 2.23. Let M be a Riemannian manifold of bounded geometry and let
U = {Bi = B(xi, ri) : i ∈ I} a locally �nite covering of M by metric balls so that
InjRadM (xi) > 2ri for every i and

B

(
xi,

3

4
ri

)
∩B

(
xj ,

3

4
rj

)
= ∅, ∀i 6= j.

Then U admits a smooth partition of unity {ηi : i ∈ I} which, in addition, satis�es
the following properties:

1. ηi ≡ 1 on every ball B(xi,
ri
2 ).

2. Every smooth functions ηi is L�Lipschitz for some L independent of i.

Curvature and volume.
Below we describe without proof certain consequences of uniform lower and

upper bounds on the sectional curvature on the growth of volumes of balls, that
will be used in the sequel. The references for the result below are [BC01, Section
11.10], [CGT82], [Gro86], [G�60]. See also [GHL04], Theorem 3.101, p. 140.

Below we will use the following notation: For κ ∈ R, Aκ(r) and Vκ(r) will
denote the area of the sphere, respectively the volume of the ball of radius r, in
the n�dimensional space of constant sectional curvature κ . We will also denote by
A(x, r) the area of the geodesic sphere of radius r and center x in a Riemannian
manifold M . Likewise, V (x, r) will denote the volume of the geodesic ball centered
at x and of radius r in M .

Theorem 2.24 (Bishop�Gromov�Günther). LetM be a complete n�dimensional
Riemannian manifold.

(1) Assume that the sectional curvature on M is at least a. Then, for every
point x ∈M :

• A(x, r) 6 Aa(r) and V (x, r) 6 Va(r).

• The functions r 7→ A(x,r)
Aa(r) and r 7→ V (x,r)

Va(r) are non-increasing.
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(2) Assume that the sectional curvature on M is at most b . The, for every
x ∈M with injectivity radius ρx = InjRadM (x):

• For all r ∈ (0, ρx), we have A(x, r) > Ab(r) and V (x, r) > Vb(r).

• The functions r 7→ A(x,r)
Ab(r)

and r 7→ V (x,r)
Vb(r)

are non-decreasing on

(0, ρx) .

The results (1) in the theorem above are also true if the Ricci curvature of M
is at least (n− 1)a.

Theorem 2.24 follows from in�nitesimal versions of the above inequalities (see
Theorems 3.6 and 3.8 in [Cha06]). A consequence of the in�nitesimal version of
Theorem 2.24, (1), is the following theorem which will be useful in the proof of
quasi-isometric invariance of positivity of the Cheeger constant:

Theorem 2.25 (Buser's inequality [Bus82], [Cha06], Theorem 6.8). Let M be
a complete n�dimensional manifold with sectional curvature at least a. Then there
exists a positive constant λ depending on n, a and r > 0, such that the following
holds. Given a hypersurface H ⊂ M and a ball B(x, r) ⊂ M such that B(x, r) \ H
is the union of two open subsets O1O2 separated by H, we have:

min [V ol(O1) , V ol(O2)] 6 λArea [H ∩B(x, r)] .

2.1.7. Harmonic functions. For the detailed discussion of the material in
this section we refer the reader to [Li04] and [SY94].

Let M be a Riemannian manifold. Given a smooth function f : M → R, we
de�ne the energy of f as the integral

E(f) =

ˆ
M

|df |2dV =

ˆ
M

|∇f |2dV.

Here the gradient vector �eld ∇f is obtained by dualizing the di�erential 1-form
df using the Riemannian metric on M . Note that energy is de�ned even if f only
belongs to the Sobolev space W 1,2

loc (M) of functions di�erentiable a.e. on M with
locally square-integrable partial derivatives.

Theorem 2.26 (Lower semicontinuity of the energy functional). Let (fi) be a

sequence of functions in W 1,2
loc (M) which converges (in W 1,2

loc (M)) to a function f .
Then

E(f) 6 lim inf
i→∞

E(fi).

Definition 2.27. A function h ∈W 1,2
loc is called harmonic if it is locally energy-

minimizing: For every point p ∈M and a small metric ball B = B(p, r) ⊂M ,

E(h|B) 6 E(u), ∀u : B̄ → R, u|∂B = h|∂B .

Equivalently, for every relatively compact open subset Ω ⊂ M with smooth
boundary

E(h|B) 6 E(u), ∀u : Ω̄→ R, u|∂Ω = h|∂Ω.

It turns out that harmonic functions h on M are automatically smooth and,
moreover, satisfy the equation ∆h = 0, where ∆ is the Laplace�Beltrami operator
on M :

∆u = div∇u
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Here for a vector �eld X on M , the divergence divX is a function on M satisfying

divXdV = LXdV,

where LX is the Lie derivative along the vector �eld X:

LX : Ωk(M)→ Ωk(M),

LX(ω) = iXdω + d(iXω),

iX : Ω`+1(M)→ Ω`(M), iX(ω)(X1, . . . , X`) = ω(X,X1, . . . , X`).

In local coordinates (assuming that M is n-dimensional):

divX =

n∑
i=1

1√
|g|

∂

∂xi

(√
|g|Xi

)
where

|g| = det((gij)),

and

(∇u)i =

n∑
j=1

gij
∂u

∂xj

and (gij) = (gij)
−1, the inverse matrix of the metric tensor. Thus,

∆u =

n∑
i,j=1

1√
|g|

∂

∂xi

(
gij
√
|g| ∂u
∂xj

)
.

In terms of the Levi�Civita connection ∇ on M ,

∆(u) = Trace(H(u)), H(u)(Xi, Xj) = ∇Xi∇Xj (u)−∇∇XiXj (u),

T race(H) =

n∑
i,j=1

gijHij ,

where Xi, Xj are vector �elds on M .

If M = Rn with the �at metric, then ∆ is the usual Laplace operator:

∆u =

n∑
i=1

∂2

∂x2
i

u.

Theorem 2.28 (Yau's gradient estimate). Suppose that Mn is a complete n-
dimensional Riemannian manifold with Ricci curvature > a. Then for every har-
monic function h on M , every x ∈M with InjRad(x) > ε,

|∇h(x)| 6 h(x)C(ε, n).

Theorem 2.29 (Compactness property). Suppose that (fi) is a sequence of
harmonic functions on M so that there exists p ∈M for which the sequence (fi(p))

is bounded. Then the family of functions (fi) is precompact in W 1,2
loc (M). Further-

more, every limit of a subsequence in (fi) is a harmonic function.

Theorem 2.30 (Maximum Principle). Let Ω ⊂ M be a relatively compact
domain with smooth boundary and h : M → R be a harmonic function. Then h|Ω
attains maximum on the boundary of Ω and, moreover, if h|Ω attains its maximum
at a point of Ω, then h is constant.
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2.1.8. Alexandrov curvature and CAT (κ) spaces. In the more general
setting of metric spaces it is still possible to de�ne a notion of (upper and lower
bound for the) sectional curvature, which moreover coincide with the standard ones
for Riemannian manifolds. This is done by comparing geodesic triangles in a metric
space to geodesic triangles in a model space of constant curvature. In what follows,
we only discuss the metric de�nition of upper bound for the sectional curvature,
the lower bound case is similar but less used.

For a given κ ∈ R, we denote by Xκ the model surface of constant curvature
κ. If κ = 0 then Xκ is the Euclidean plane, if κ < 0 then Xκ will be discussed in
detail in Chapter 7, it is the upper half-plane with the rescaled hyperbolic metric:

Xκ =

(
U2, |κ|−1 dx

2 + dy2

y2

)
.

If κ > 0 then Xκ is the 2�dimensional sphere S
(

0, 1√
κ

)
in R3 with the Riemannian

metric induced from R3.

Let X be a geodesic metric space, and let ∆ be a geodesic triangle in X. Given
κ > 0 we say that ∆ is κ�compatible if its perimeter is at most 2π√

κ
. By default,

every triangle is κ�compatible for κ 6 0 .
We will prove later on (see �7.10) the following:

Lemma 2.31. Let κ ∈ R and let a 6 b 6 c be three numbers such that c 6 a+ b
and a + b + c < 2π√

κ
if κ > 0. Then there exists a geodesic triangle in Xκ with

lengths of edges a, b and c, and it is unique up to congruence.

Therefore, for every κ ∈ R and every κ�compatible triangle ∆ = ∆(A,B,C) ⊂
X with vertices A,B,C ∈ X and lengths a, b, c of the opposite sides, there exists a
triangle (unique, up to congruence)

∆̃(Ã, B̃, C̃) ⊂ Xκ

with the side-lengths a, b, c. The triangle ∆̃(Ã, B̃, C̃) is called the κ�comparison
triangle or a κ�Alexandrov triangle.

For every point P on, say, the side [AB] of ∆, we de�ne the κ�comparison point

P̃ ∈ [Ã, B̃], so that
d(A,P ) = d(Ã, P̃ ).

Thus, for P ∈ [A,B], Q ∈ [B,C] we de�ne κ�comparison points P̃ , Q̃ ∈ ∆̃.

Definition 2.32. We say that the triangle ∆ is CAT (κ) if it is κ�compatible
and for every pair of points P and Q on the triangle, their κ�comparison points
P̃ , Q̃ satisfy

distXκ

(
P̃ , Q̃

)
> distX (P,Q) .

Definition 2.33. (1) A CAT (κ)�domain in X is an open convex set
U ⊂ X, and such that all the geodesic triangles entirely contained in U
are CAT (κ).

(2) We say that X has Alexandrov curvature at most κ if it is covered by
CAT (κ)�domains.
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Note that a CAT (κ)�domain U for κ > 0 must have diameter strictly less than
π√
κ
. Otherwise, one can construct geodesic triangles in U with two equal edges and

the third reduced to a point, with perimeter > 2π√
κ
.

The point of De�nition 2.33 is that it applies to non-Riemannian metric spaces
where such notions as tangent vectors, Riemannian metric, curvature tensor cannot
be de�ned, while one can still talk about curvature being bounded from above by
κ.

Proposition 2.34. Let X be a Riemannian manifold. Its Alexandrov curvature
is at most κ if and only if its sectional curvature in every point is 6 κ .

Proof. The �if� implication follows from the Rauch-Toponogov comparison
theorem (see [dC92, Proposition 2.5]). For the �only if� implication we refer to
[Rin61] or to [GHL04, Chapter III]. �

Definition 2.35. A metric space X is called a CAT (κ)-space if the entire X
is a CAT (κ)-domain. We will use the de�nition only for κ 6 0. A metric space X
is said to be a CAT (−∞)-space if X is a CAT (κ)-space for every κ.

Note that for the moment we do not assume X to be metrically complete.
This is because there are naturally occurring incomplete CAT (0) spaces, called
Euclidean buildings, which, nevertheless, are geodesically complete (every geodesic
segment is contained in a complete geodesic). On the other hand, Hilbert spaces
provide natural examples of complete CAT(0) metric spaces.

Exercise 2.36. Let X be a simplicial tree with a path-metric d. Show that
(X, d) is CAT (−∞).

In the case of non-positive curvature there exists a local-to-global result.

Theorem 2.37 (Cartan-Hadamard Theorem). If X is a simply connected com-
plete metric space with Alexandrov curvature at most κ for some κ 6 0, then X is
a CAT (κ)�space.

We refer the reader to [Bal95] and [BH99] for proofs of this theorem, and a
detailed discussion of CAT (κ)�spaces, with κ 6 0.

Definition 2.38. Simply-connected complete Riemannian manifolds of sec-
tional curvature 6 0 are called Hadamard manifolds. Thus, every Hadamard man-
ifold is a CAT (0) space.

An important property of CAT (0)-spaces is convexity of the distance function.
Suppose that X is a geodesic metric space. We say that a function F : X×X → R
is convex if for every pair of geodesics α(s), β(s) in X (which are parameterized
with constant, but not necessarily unit, speed), the function

f(s) = F (α(s), β(s))

is a convex function of one variable. Thus, the distance function dist of X is convex,
whenever for every pair of geodesics [a0, a1] and [b0, b1] in X, the points as ∈ [a0, a1]
and bs ∈ [b0, b1] such that dist(a0, as) = sdist(a0, a1) and dist(b0, bs) = sdist(b0, b1)
satisfy

(2.3) dist(as, bs) ≤ (1− s)dist(a0, b0) + sdist(a1, b1) .
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Note that in the case of a normed vector space X, a function f : X ×X → R
is convex if and only if the sup-graph

{(x, y, t) ∈ X2 × R : f(x, y) > t}
is convex.

Proposition 2.39. A geodesic metric space X is CAT (0) if and only if the
distance on X is convex.

Proof. Consider two geodesics [a0, b0] and [a1, b1] in X. On the geodesic
[a0, b1] consider the point cs such that dist(a0, cs) = sdist(a0, b1) . The fact that the
triangle with edges [a0, a1], [a0, b1] and [a1, b1] is CAT (0) and the Thales theorem in
R2, imply that dist(as, cs) ≤ sdist(a1, b1). The same argument applied to the trian-
gle with edges [a0, b1], [a0, b0], [b0, b1], implies that dist(cs, bs) ≤ (1− s)dist(a0, b0).
The inequality (2.3) follows from

dist(as, bs) 6 dist(as, cs) + dist(cs, bs) .

Figure 2.1. Argument for convexity of the distance.

Conversely, assume that (2.3) is satis�ed.
In the special case when a0 = a1, this implies the comparison property in

De�nition 2.32 when one of the two points P,Q is a vertex of the triangle. When
a0 = b0, (2.3) again implies the comparison property when dist(A,P )

dist(A,B) = dist(B,Q)
dist(B,C) .

We now consider the general case of two points P ∈ [A,B] and Q ∈ [B,C] such
that dist(A,P )

dist(A,B) = s and dist(B,Q)
dist(B,C) = t with s < t . Consider B′ ∈ [A,B] such that

dist[A,B′] = s
tdist[A,B] . Then, according to the above, dist(B′, C) 6 dist(B̃′, C̃),

and dist(P,Q) 6 tdist(B′, C) 6 tdist(B̃′, C̃) = dist(P̃ , Q̃) . �

Corollary 2.40. Every CAT (0)-space X is uniquely geodesic.
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Proof. It su�ces to apply the inequality (2.3) to any geodesic bigon, that is,
in the special case when a0 = b0 and a1 = b1. �

2.1.9. Cartan's �xed point theorem. Let X be a metric space and A ⊂ X
be a subset. De�ne the function

ρ(x) = ρA(x) = sup
a∈A

d2(x, a).

Proposition 2.41. Let X be a complete CAT(0) space. Then for every bounded
subset A ⊂ X, the function ρ = ρA attains unique minimum in X.

Proof. Consider a sequence (xn) in X such that

lim
n→∞

ρ(xn) = r = inf
x∈X

ρ(x).

We claim that the sequence (xn) is Cauchy. Given ε > 0 let x = xi, x
′ = xj be

points in this sequence such that

r 6 ρ(x) < r + ε, r 6 ρ(x′) < r + ε.

Let p be the midpoint of [x, x′] ⊂ X; hence, r 6 ρ(p). Let a ∈ A be such that

ρ(p)− ε < d2(p, a).

Consider the Euclidean comparison triangle T̃ = T (x̃, x̃′, ã) for the triangle T (x, x′, a).
In the Euclidean plane we have (by the parallelogram identity (1.2)):

d2(x̃, x̃′) + 4 d2(ã, p̃) = 2
(
d2(ã, x̃) + d2(ã, x̃′)

)
.

Applying the comparison inequality for the triangles T and T̃ , we obtain:

d(a, p) 6 d(ã, p̃).

Thus:

d(x, x′)2 + 4(r − ε) < d2(x, x′) + 4d2(a, p) 6 2
(
d2(a, x) + d2(a, x′)

)
<

2(ρ(x) + ρ(x′)) < 4r + 4ε.

It follows that
d(x, x′)2 < 8ε

and, therefore, the sequence (xn) is Cauchy. By completeness of X, the function
ρ attains minimum in X; the same Cauchy argument implies that the point of
minimum is unique. �

As a corollary, we obtain a �xed-point theorem for isometric group actions
on complete CAT (0) spaces, which was �rst proven by Cartan in the context of
Riemannian manifolds of nonpositive curvature:

Theorem 2.42. Let X be a complete CAT (0) metric space and G y X be a
group acting isometrically with bounded orbits. Then G �xes a point in X.

Proof. Let A denote a bounded orbit of G in X and let ρA be the correspond-
ing function on X. Then, by uniqueness of the minimum point m of ρA, the group
G will �x m. �
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Corollary 2.43. 1. Every �nite group action on a complete CAT (0) space
has a �xed point. For instance, every action of a �nite group on a tree or on a
Hilbert space �xes a point.

2. If G is a compact group acting isometrically and continuously on a Hilbert
space H, then G �xes a point in H.

2.1.10. Ideal boundary, horoballs and horospheres. In this section we
de�ne the ideal boundary of a metric space. This is a particularly signi�cant object
when the metric space is CAT (0), and it generalizes the concept introduced for
non-positively curved simply connected Riemannian manifolds by P. Eberlein and
B. O'Neill in [EO73, Section 1].

Let X be a geodesic metric space. Two geodesic rays ρ1 and ρ2 in X are called
asymptotic if they are at �nite Hausdor� distance; equivalently if the function
t 7→ dist(ρ1(t), ρ2(t)) is bounded on [0,∞) .

Clearly, being asymptotic is an equivalence relation on the set of geodesic rays
in X.

Definition 2.44. The ideal boundary of a metric space X is the collection of
equivalence classes of geodesic rays. It is usually denoted either by ∂∞X or by
X(∞).

An equivalence class α ∈ ∂∞X is called an ideal point or point at in�nity of X,
and the fact that a geodesic ray ρ is contained in this class is sometimes expressed
by the equality ρ(∞) = α.

The space of geodesic rays in X has a natural compact-open topology, or,
equivalently, topology of uniform convergence on compacts (recall that we regard
geodesic rays as maps from [0,∞) to X). Thus, we topologize ∂∞X by giving it
the quotient topology τ .

Exercise 2.45. Every isometry g : X → X induces a homeomorphism g∞ :
∂∞X → ∂∞X.

This exercise explains why we consider rays emanating from di�erent points of
X: otherwise most isometries of X would not act on ∂∞X.

Convention. From now on, in this section, we assume that X is a complete
CAT (0) metric space.

Lemma 2.46. If X is locally compact then for every point x ∈ X and every
point α ∈ ∂∞X there exists a unique geodesic ray ρ with ρ(0) = x and ρ(∞) = α .
We will also use the notation [x, α) for the ray ρ.

Proof. Let r : [0,∞) → X be a geodesic ray with r(∞) = α . For every
n ∈ N, according to Corollary 2.40, there exists a unique geodesic gn joining x and
r(n). The convexity of the distance function implies that every gn is at Hausdor�
distance dist(x, r(0)) from the segment of r between r(0) and r(n).

By the Arzela-Ascoli Theorem, a subsequence gnk of geodesic segments con-
verges in the compact-open topology to a geodesic ray ρ with ρ(0) = x. Moreover,
ρ is at Hausdor� distance dist(x, r(0)) from r .

Assume that ρ1 and ρ2 are two asymptotic geodesic rays with ρ1(0) = ρ2(0) =
x . LetM be such that dist(ρ1(t), ρ2(t)) 6M , for every t > 0. Consider t ∈ [0,∞),
and ε > 0 arbitrarily small. Convexity of the distance function implies that

dist(ρ1(t), ρ2(t)) 6 εdist(ρ1(t/ε), ρ2(t/ε)) 6 εM .
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It follows that dist(ρ1(t), ρ2(t)) = 0 and, hence, ρ1 = ρ2. �

In particular, for a �xed point p ∈ X one can identify the set X̄ := X t ∂∞X
with the set of geodesic segments and rays with initial point p. In what follows,
we will equip X̄ with the topology induced from the compact-open topology on the
space of these segments and rays.

Exercise 2.47. (1) Prove that the embedding X ↪→ X̄ is a homeomor-
phism to its image.

(2) Prove that the topology on X̄ is independent of the chosen basepoint p.
In other words, given p and q two points in X, the map [p, x] 7→ [q, x]
(with x ∈ X̄) is a homeomorphism.

(3) In the special case when X is a Hadamard manifold, show that for every
point p ∈ X, the ideal boundary ∂∞X is homeomorphic to the unit sphere
S in the tangent space TpM via the map v ∈ S ⊂ TpM → expp(R+v) ∈
∂∞X.

An immediate consequence of the Arzela�Ascoli Theorem is that X̄ is compact.

Consider a geodesic ray r : [0,∞) → X, and an arbitrary point x ∈ X . The
function t 7→ dist(x, r(t)) − t is decreasing (due to the triangle inequality) and
bounded from below by −dist(x, r(0)). Therefore, there exists a limit

(2.4) fr(x) := lim
t→∞

[dist(x, r(t))− t] .

Definition 2.48. The function fr : X → R thus de�ned, is called the Buse-
mann function for the ray r.

For the proof of the next lemma see e.g. [Bal95], Chapter 2, Proposition 2.5.

Lemma 2.49. If r1 and r2 are two asymptotic rays then fr1 − fr2 is a constant
function.

In particular, it follows that the collections of sublevel sets and the level sets of
a Busemann function do not depend on the ray r, but only on the point at in�nity
that r represents.

Exercise 2.50. Show that fr is linear with slope −1 along the ray r. In
particular,

lim
t→∞

fr(t) = −∞.

Definition 2.51. A sublevel set of a Busemann function, f−1
r (−∞, a] is called

a (closed) horoball with center (or footpoint) α = r(∞); we sometime denote such
a set B(α). A level set f−1

r (a) of a Busemann function is called a horosphere with
footpoint α, it is denoted H(α). Lastly, an open sublevel set f−1

r (−∞, a) is called
an open horoball with footpoint α = r(∞), and denoted B(α) .

Lemma 2.52. Let r be a geodesic ray and let B be the open horoball f−1
r (−∞, 0) .

Then B =
⋃
t>0B(r(t), t) .
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Proof. Indeed, if for a point x, fr(x) = limt→∞[dist(x, r(t))− t] < 0, then for
some su�ciently large t, dist(x, r(t))− t < 0. Whence x ∈ B(r(t), t).

Conversely, suppose that x ∈ X is such that for some s > 0, dist(x, r(s))− s =
δs < 0. Then, because the function t 7→ dist(x, r(t)) − t is decreasing, it follows
that for every t > s,

dist(x, r(t))− t 6 δs .
Whence, fr(x) 6 δs < 0. �

Lemma 2.53. Let X be a CAT (0) space. Then every Busemann function on
X is convex and 1-Lipschitz.

Proof. Note that distance function on any metric space is 1-Lipschitz (by the
triangle inequality). Since Busemann functions are limits of normalized distance
functions, it follows that Busemann functions are 1-Lipschitz as well. (This part
does not require CAT (0) assumption.) Similarly, since distance function is convex,
Busemann functions are also convex as limits of normalized distance functions. �

Furthermore, if X is a Hadamard manifold, then every Busemann function fr
is smooth, with gradient of constant norm 1, see [BGS85].

Lemma 2.54. Assume that X is a complete CAT (0) space. Then:

• Open and closed horoballs in X are convex sets.
• A closed horoball is the closure of an open horoball.

Proof. The �rst property follows immediately from the convexity of Buse-
mann functions. Let f = fr be a Busemann function. Consider the closed horoball

B̄ = {x : f(x) 6 t}.

Since this horoball is a closed subset of X, it contains the closure of the open
horoball

B = {x : f(x) < t}.
Suppose now that f(x) = t. Since lims→∞ f(s) = −∞, there exists s such that
f(r(s)) < t. Convexity of f implies that

f(y) < f(x) = t, ∀y ∈ [x, r(s)] \ {x}.

Therefore, x belongs to the closure of the open horoball B, which implies that B̄
is the closure of B. �

Exercise 2.55. 1. Suppose that X is the Euclidean space Rn, r is the geodesic
ray in X with r(0) = 0 and r′(0) = u, where u is a unit vector. Show that

fr(x) = −x · u.

In particular, closed (resp. open) horoballs in X are closed (resp. open) half-spaces,
while horospheres are hyperplanes.

2. Construct an example of a proper CAT (0) space and an open horoball
B ⊂ X, B 6= X, so that B is not equal to the interior of the closed horoball B̄.
Can this happen in the case of Hadamard manifolds?
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2.2. Bounded geometry

In this section we review several notions of bounded geometry for metric spaces.

2.2.1. Riemannian manifolds of bounded geometry.

Definition 2.56. We say a Riemannian manifold M has bounded geometry if
it is connected, it has uniform upper and lower bounds for the sectional curvature,
and a uniform lower bound for the injectivity radius InjRad(x) (see Section 2.1.3).

Probably the correct terminology should be �uniformly locally bounded geom-
etry�, but we prefer shortness to an accurate description.

A connected Riemannian manifold without boundary, so that the isometry
group of M acts cocompactly on M (see section 3.1.1), has bounded geometry.

Remark 2.57. In the literature the condition of bounded geometry on a Rie-
mannian manifold is usually weaker, e.g. that there exists L > 1 and R > 0 such
that every ball of radius R in M is L-bi-Lipschitz equivalent to the ball of radius
R in Rn ([Gro93], §0.5.A3) or that the Ricci curvature has a uniform lower bound
([Cha06], [Cha01]).

For the purposes of this book, the restricted condition in De�nition 2.56 su�ces.

In what follows we keep the notation Vκ(r) from Theorem 2.24 to designate
the volume of a ball of radius r in the n�dimensional space of constant sectional
curvature κ.

Lemma 2.58. Let M be complete n�dimensional Riemannian manifold with
bounded geometry, let a 6 b and ρ > 0 be such that the sectional curvature is at
least a and at most b, and that at every point the injectivity radius is larger than ρ.

(1) For every δ > 0, every δ�separated set in M is φ-uniformly discrete, with

φ(r) = Va(r+λ)
Vb(λ) , where λ is the minimum of δ2 and ρ .

(2) For every 2ρ > δ > 0 and every maximal δ�separated set N in M , the

multiplicity of the covering {B(x, δ) | x ∈ N} is at most
Va( 3δ

2 )
Vb( δ2 )

.

Proof. (1) Let S be a δ�separated subset in M .
According to Theorem 2.24, for every point x ∈ S and radius r > 0 we have:

Va(r + λ) > V ol [BM (x, r + λ)] > card
[
B(x, r) ∩ S

]
Vb(λ) .

This implies that card
[
B(x, r) ∩ S

]
6 Va(r+λ)

Vb(λ) , whence S with the induced
metric is φ-uniformly discrete, with the required φ.

(2) Let F be a subset in N such that
⋂
x∈F B(x, δ) is non-empty. Let y be

a point in this intersection. Then the ball B
(
y, 3δ

2

)
contains the disjoint union⊔

x∈F B
(
x, δ2

)
, whence

Va

(
3δ

2

)
> V ol

[
BM

(
y,

3δ

2

)]
> cardF Vb

(
δ

2

)
.

�

51



2.2.2. Metric simplicial complexes of bounded geometry. Let X be a
simplicial complex and d a path-metric on X. Then (X, d) is said to be a metric
simplicial complex if the restriction of d to each simplex is isometric to a Euclidean
simplex. The main example of a metric simplicial complex is a generalization of a
graph with the standard metric described below.

Let X be a connected simplicial complex. As usual, we will often con�ate X
and its geometric realization. Metrize each k-simplex of X to be isometric to the
standard k-simplex ∆k in the Euclidean space:

∆k = (R+)k+1 ∩ {x0 + . . .+ xn = 1}.
Thus, for each m-simplex σm and its face σk, the inclusion σk → σm is an isometric
embedding. This allows us to de�ne a length-metric on X so that each simplex is
isometrically embedded in X, similarly to the de�nition of the standard metric on a
graph. Namely, a piecewise-linear (PL) path p in X is a path p : [a, b]→ X, whose
domain can be subdivided in �nitely many intervals [ai, ai+1] so that p|[ai, ai+1] is
a piecewise-linear path whose image is contained in a single simplex of X. Lengths
of such paths are de�ned using metric on simplices of X. Then

d(x, y) = inf
p

length(p)

where the in�mum is taken over all PL paths in X connecting x to y. The metric
d is then a path-metric; we call this metric the standard metric on X.

Exercise 2.59. Verify that the standard metric is complete and that X is a
geodesic metric space.

Definition 2.60. A metric simplicial complex X has bounded geometry if it is
connected and if there exist L > 1 and N <∞ so that:

• every vertex of X is incident to at most N edges;
• the length of every edge is in the interval [L−1, L].

In particular, the set of vertices of X with the induced metric is a uniformly
discrete metric space.

Thus, a metric simplicial complex of bounded geometry is necessarily �nite-
dimensional.

Examples 2.61. • If Y is a �nite connected metric simplicial complex,
then its universal cover (with the pull-back path metric) has bounded
geometry.
• A connected simplicial complex has bounded geometry if and only if there
is a uniform bound on the valency of the vertices in its 1-skeleton.

Metric simplicial complexes of bounded geometry appear naturally in the con-
text of Riemannian manifolds with bounded geometry. Given a simplicial complex
X, we will equip it with the standard metric, where each simplex is isometric to a
Euclidean simplex with unit edges.

Theorem 2.62 (See Theorem 1.14, [Att94]). Let M be an n-dimensional
Riemannian manifold of bounded geometry with geometric bounds a, b, ε. Then
M admits a triangulation X of bounded geometry (whose geometric bounds de-
pend only on n, a, b, ε) and an L-bi-Lipschitz homeomorphism f : X → M , where
L = L(n, a, b, ε).
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Another procedure of approximation of Riemannian manifolds by simplicial
complexes will be described in Section 5.3.
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CHAPTER 3

Algebraic preliminaries

3.1. Geometry of group actions

3.1.1. Group actions. Let G be a group or a semigroup and E be a set. An
action of G on E on the left is a map

µ : G× E → E, µ(g, a) = g(a),

so that
(1) µ(1, x) = x ;
(2) µ(g1g2, x) = µ(g1, µ(g2, x)) for all g1, g2 ∈ G and x ∈ E .

Remark 3.1. If, in addition, G is a group, then the two properties above imply
that

µ(g, µ(g−1, x)) = x

for all g ∈ G and x ∈ E .

An action of G on E on the right is a map

µ : E ×G→ E, µ(a, g) = (a)g,

so that
(1) µ(x, 1) = x ;
(2) µ(x, g1g2) = µ(µ(x, g1), g2) for all g1, g2 ∈ G and x ∈ E .

Note that the di�erence between an action on the left and an action on the
right is the order in which the elements of a product act.

If not speci�ed, an action of a group G on a set E is always to the left, and it
is often denoted Gy E.

If E is a metric space, an isometric action is an action so that µ(g, ·) is an
isometry of E for each g ∈ G.

A group action Gy X is called free if for every x ∈ X, the stabilizer of x in
G,

Gx = {g ∈ G : g(x) = x}
is {1}.

Given an action µ : Gy X, a map f : X → Y is called G�invariant if

f (µ(g, x)) = f(x), ∀g ∈ G, x ∈ X.
Given two actions µ : G y X and ν : G y Y , a map f : X → Y is called

G�equivariant if

f (µ(g, x)) = ν(g, f(x)), ∀g ∈ G, x ∈ X.
In other words, for each g ∈ G we have a commutative diagram,
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X
g - X

Y

f

? g - Y

f

?

A topological group is a group G equipped with the structure of a topological
space, so that the group operations (multiplication and inversion) are continuous
maps. If G is a group without speci�ed topology, we will always assume that G is
discrete, i.e., is given the discrete topology.

If G is a topological group and E is a topological space, a continuous action of
G on E is a continuous map µ satisfying the above action axioms.

A topological group action µ : G y X is called proper if for every compact
subsets K1,K2 ⊂ X, the set

GK1,K2 = {g ∈ G : g(K1) ∩K2 6= ∅} ⊂ G
is compact. If G has discrete topology, a proper action is called properly discontin-
uous action, as GK1,K2

is �nite.

Exercise 3.2. Suppose that X is locally compact and Gy X is proper. Show
that the quotient X/G is Hausdor�.

A topological actionGy X is called cocompact if there exists a compact C ⊂ X
so that

G · C :=
⋃
g∈G

gC = X.

Exercise 3.3. If Gy X is cocompact then X/G (equipped with the quotient
topology) is compact.

The following is a converse to the above exercise:

Lemma 3.4. Suppose that X is locally compact and G y X is such that X/G
is compact. Then G acts cocompactly on X.

Proof. Let p : X → Y = X/G be the quotient. For every x ∈ X choose a
relatively compact (open) neighborhood Ux ⊂ X of x. Then the collection

{p(Ux)}x∈X
is an open covering of Y . Since Y is compact, this open covering has a �nite
subcovering

{p(Uxi : i = 1, . . . , n}
The union

C :=

n⋃
i=1

cl(Uxi)

is compact in X and projects onto Y . Hence, G · C = X. �

In the context of non-proper metric space the concept of cocompact group
action is replaced with the one of cobounded action. An isometric action Gy X is
called cobounded if there exists D <∞ such that for some point x ∈ X,⋃

g∈G
g(B(x,D)) = X.
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Equivalently, given any pair of points x, y ∈ X, there exists g ∈ G such that
dist(g(x), y) 6 2D. Clearly, if X is proper, the action G y X is cobounded if and
only if it is cocompact. We call a metric space X quasi-homogeneous if the action
Isom(X) y X is cobounded.

Similarly, we have to modify the notion of a properly discontinuous action: An
isometric action G y X on a metric space is called properly discontinuous if for
every bounded subset B ⊂ X, the set

GB,B = {g ∈ G : g(B) ∩B 6= ∅}
is �nite. Assigning two di�erent meaning to the same notation of course, creates
ambiguity, the way out of this conundrum is to think of the concept of proper
discontinuity applied to di�erent categories of actions: Topological and isometric.
In the former case we use compact subsets, in the latter case we use bounded
subsets. For proper metric spaces, both de�nitions, of course, are equivalent.

3.1.2. Lie groups. References for this section are [Hel01, OV90, War83].
A Lie group is a group G which has structure of a smooth manifold, so that

the binary operation G × G → G and inversion g 7→ g−1, G → G are smooth.
Actually, every Lie group G can be made into a real analytic manifold with real
analytic group operations. We will assume that G is a real n-dimensional manifold,
although one can also consider complex Lie groups.

Example 3.5. Groups GL(n,R), SL(n,R), O(n), O(p, q) are (real) Lie groups.
Every countable discrete group (a group with discrete topology) is a Lie group.

Here O(p, q) is the group of linear isometries of the quadratic form

x2
1 + . . . x2

p − x2
p+1 − . . .− x2

p+q

of signature (p, q). The most important, for us, case is O(n, 1) ∼= O(1, n). The
group PO(n, 1) = O(n, 1)/± I is the group of isometries of the hyperbolic n-space.

Exercise 3.6. Show that the group PO(n, 1) embeds in O(n, 1) as the sub-
group stabilizing the future light cone

x2
1 + . . .+ x2

n − x2
n+1 > 0, xn+1 > 0.

The tangent space V = TeG of a Lie group G at the identity element e ∈ G
has structure of a Lie algebra, called the Lie algebra g of the group G.

Example 3.7. 1. The Lie algebra sl(n,C) of SL(n,C) consists of trace-free
n× n complex matrices. The Lie bracket operation on sl(n,C) is given by

[A,B] = AB −BA.
2. The Lie algebra of the unitary subgroup U(n) < GL(n,C) equals the space

of skew-hermitian matrices

u(n) = {A ∈Matn(C) : A = −A∗}.
3. The Lie algebra of the orthogonal subgroup O(n) < GL(n,R) equals the

space of skew-symmetric matrices

o(n) = {A ∈Matn(R) : A = −AT }.

Exercise 3.8. u(n) ⊕ iu(n) = Matn(C), is the Lie algebra of the group
GL(n,C).
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Theorem 3.9. For every �nite-dimensional real Lie algebra g there exists
unique, up to isomorphism, simply-connected Lie group G whose Lie algebra is
isomorphic to g.

Every Lie group G has a left-invariant Riemannian metric. Indeed, pick a
positive-de�nite inner product 〈·, ·〉e on V = TeG. For every g ∈ G we consider
the left multiplication Lg : G → G,Lg(x) = gx. Then Lg : G → G is a smooth
map and the action of G on itself via left multiplication is simply-transitive. We
de�ne the inner product 〈·, ·〉g on TgG as the image of 〈·, ·〉e under the derivative
Dg : TeG→ TgG.

Every Lie group G acts on itself via inner automorphisms

ρ(g)(x) = gxg−1.

This action is smooth and the identity element e ∈ G is �xed by the entire group G.
Therefore G acts linearly on the tangent space V = TeG at the identity e ∈ G. The
action of G on V is called the adjoint representation of the group G and denoted
by Ad. Therefore we have the homomorphism

Ad : G→ GL(V ).

Lemma 3.10. For every connected Lie group G the kernel of Ad : G→ GL(V )
is contained in the center of G.

Proof. There is a local di�eomorphism

exp : V → G

called the exponential map of the group G, sending 0 ∈ V to e ∈ G. In the case
when G = GL(n,R) this map is the ordinary matrix exponential map. The map
exp satis�es the identity

g exp(v)g−1 = exp(Ad(g)v), ∀v ∈ V, g ∈ G.

Thus, if Ad(g) = Id then g commutes with every element of G of the form
exp(v), v ∈ V . The set of such elements is open in G. Now, if we are willing
to use a real analytic structure on G then it would immediately follow that g be-
longs to the center of G. Below is an alternative argument. Let g ∈ Ker(Ad). The
centralizer Z(g) of g in G is given by the equation

Z(g) = {h ∈ G : [h, g] = 1}.

Since the commutator is a continuous map, Z(g) is a closed subgroup of G. More-
over, as we observed above, this subgroup has nonempty interior in G (containing
e). Since Z(g) acts transitively on itself by, say, left multiplication, Z(g) is open
in G. As G is connected, we conclude that Z(g) = G. Therefore kernel of Ad is
contained in the center of G. �

Theorem 3.11 (E. Cartan). Every closed subgroup H of a Lie group G has
structure of a Lie group so that the inclusion H ↪→ G is an embedding of smooth
manifolds.

A Lie group G is called simple if G contains no connected proper normal sub-
groups. Equivalently, a Lie group G is simple if its Lie algebra g is simple, i.e., g is
nonabelian and contains no ideals.
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Example 3.12. The group SL(2,R) is simple, but its center is isomorphic to
Z2.

Thus, a simple Lie group need not be simple as an abstract group. A Lie group
G is semisimple if its Lie algebra splits as a direct sum

g = ⊕ki=1gi,

where each gi is a simple Lie algebra.

3.1.3. Haar measure and lattices.

Definition 3.13. A (left) Haar measure on a topological groupG is a countably
additive, nontrivial measure µ on Borel subsets of G satisfying:

(1) µ(gE) = µ(E) for every g ∈ G and every Borel subset E ⊂ G.
(2) µ(K) is �nite for every compact K ⊂ G.
(3) Every Borel subset E ⊂ G is outer regular:

µ(E) = inf{µ(U) : E ⊂ U, U is open in G}

(4) Every open set E ⊂ G is inner regular:

µ(E) = sup{µ(U) : U ⊂ E, U is open in G}

By Haar's Theorem, see [Bou63], every locally compact topological group G
admits a Haar measure and this measure is unique up to scaling. Similarly, one
de�nes right-invariant Haar measures. In general, left and right Haar measures are
not the same, but they are for some important classes of groups:

Definition 3.14. A locally compact group G is unimodular if left and right
Haar measures are constant multiples of each other.

Important examples of Haar measures come from Riemannian geometry. Let
X be a homogeneous Riemannian manifold, G is the isometry group. Then X has a
natural measure ω de�ned by the volume form of the Riemannian metric on X. We
have the natural surjective map G → X given by the orbit map g 7→ g(o), where
o ∈ X is a base-point. The �bers of this map are stabilizers Gx of points x ∈ X.
Arzela-Ascoli theorem implies that each subgroup Gx is compact. Transitivity of
the actionGy X implies that all the subgroupsGx are conjugate. SettingK = Go,
we obtain the identi�cation X = G/K. Now, let µ be the pull-back of ω under the
projection map G→ X. By construction, µ is left-invariant (since the metric on X
is G�invariant).

Definition 3.15. Let G be a topological group with �nitely many connected
components and µ a Haar measure on G. A lattice in G is a discrete subgroup
Γ < G so that the quotient Q = Γ\G admits a �nite G�invariant measure (for the
action to the right of G on Q) induced by the Haar measure. A lattice Γ is called
uniform if the quotient Q is compact.

If G is a Lie group then the measure above can also be obtained by taking a
Riemannian metric on G which is left-invariant under G and right-invariant under
K, the maximal compact subgroup of G. Note that when G is unimodular, the
volume form thus obtained is also right-invariant under G.

Thus if one considers the quotient X := G/K, then X has a Riemannian metric
which is (left) invariant under G. Hence, Γ is a lattice if and only if Γ acts on X
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properly discontinuously so that vol(Γ \X) is �nite. Note that the action of Γ on
X is a priori not free.

Theorem 3.16. A locally compact second countable group G is unimodular
provided that it contains a lattice.

Proof. For arbitrary g ∈ G consider the push-forward ν = Rg(µ) of the (left)
Haar measure µ on G; here Rg is the right multiplication by g:

ν(E) = µ(Eg).

Then ν is also a left Haar measure on G. By the uniqueness of Haar measure,
ν = cµ for some constant c > 0.

Lemma 3.17. Every discrete subgroup Γ < G admits a measurable fundamental
set, i.e., a measurable subset of D ⊂ G such that⋃

γ∈Γ

γD = G, µ(γD ∩D) = 0, ∀γ ∈ Γ \ 1.

Proof. Since Γ < G is discrete, there exists an open neighborhood V of 1 ∈ G
such that Γ ∩ V = {1}. Let U ⊂ V be another open neighborhood of 1 ∈ G such
that UU−1 ⊂ V . Then for γ ∈ Γ we have

γu = u′, u ∈ U, u′ ∈ U ⇒ γ = u′u−1 ∈ U ⇒ γ = 1.

In other words, Γ-images of U are pairwise disjoint. Since G is a second countable,
there exists a countable subset

E = {gi ∈ G : i ∈ N}
so that

G =
⋃
i

Ugi.

Clearly, each set
Wn := Ugn \

⋃
i<n

ΓUgi

is measurable, and so is their union

D =

∞⋃
n=1

Wn.

Let us verify that D is a measurable fundamental set. First, note that for every
x ∈ G there exists the least n such that x ∈ Ugn. Therefore,

G =

∞⋃
n=1

(
Ugn \

⋃
i<n

Ugi

)
.

Next,

Γ ·D =

∞⋃
n=1

(
ΓUgn \

⋃
i<n

ΓUgi

)
=

Γ ·
∞⋃
n=1

(
Ugn \

⋃
i<n

Ugi

)
⊃
∞⋃
n=1

(
Ugn \

⋃
i<n

Ugi

)
= G.
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Therefore, Γ ·D = G. Next, suppose that

x ∈ γD ∩D.

Then, for some n, m
x ∈Wn ∩ γWm.

If m < n then
γWm ⊂ Γ

⋃
i<n

Ugi

which is disjoint from Wn, a contradiction. Thus, Wn ∩ γWm = ∅ for m < n and
all γ ∈ Γ. If n < m then

Wn ∩ γWm = γ−1 (γWn ∩Wm) = ∅.

Thus, n = m, which implies that

Ugn ∩ γUgn 6= ∅ ⇒ U ∩ γU 6= ∅ ⇒ γ = 1.

Thus, for all γ ∈ Γ \ {1}, γD ∩D = ∅. �

Let D ⊂ G be a measurable fundamental set for a lattice Γ < G. Then

0 < µ(D) = µ(Γ\G) <∞

since Γ is a lattice. For every g ∈ G, Dg is again a fundamental set for Γ and, thus,
µ(D) = µ(Dg). Hence, µ(D) = µ(Dg) = cν(D). It follows that c = 1. Thus, µ is
also a right Haar measure. �

3.1.4. Geometric actions. Suppose now that X is a metric space. We
will equip the group of isometries Isom(X) of X with the compact-open topology,
equivalent to the topology of uniform convergence on compact sets. A subgroup
G ⊂ Isom(X) is called discrete if it is discrete with respect to the subset topology.

Exercise 3.18. Suppose that X is proper. Show that the following are equiv-
alent for a subgroup G ⊂ Isom(X):

a. G is discrete.
b. The action Gy X is properly discontinuous.
c. For every x ∈ X and an in�nite sequence gi ∈ G, limi→∞ d(x, gi(x)) =∞.
Hint: Use Arzela�Ascoli theorem.

Definition 3.19. A geometric action of a group G on a metric space X is an
isometric properly discontinuous cobounded action Gy X.

For instance, if X is a homogeneous Riemannian manifold with the isometry
group G and Γ < G is a uniform lattice, then Γ acts geometrically on X. Note that
every geometric action on a proper metric space is cocompact.

Lemma 3.20. Suppose that a group G acts geometrically on a proper metric
space X. Then G\X has a metric de�ned by

(3.1) dist(ā, b̄) = inf{dist(p, q) ; p ∈ Ga , q ∈ Gb} = inf{dist(a, q) ; q ∈ Gb} ,

where ā = Ga and b̄ = Gb .
Moreover, this metric induces the quotient topology of G\X.
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Proof. The in�mum in (3.1) is attained, i.e. there exists g ∈ G such that

dist(ā, b̄) = dist(a, gb).

Indeed, take g0 ∈ G arbitrary, and let R = dist(a, gb). Then

dist(ā, b̄) = inf{dist(a, q) ; q ∈ Gb ∩B(a,R)}.
Now, for every gb ∈ B(a,R),

gg−1
0 B(a,R) ∩B(a,R) 6= ∅.

Since G acts properly discontinuously on X, this implies that the set Gb∩B(a,R)
is �nite, hence the last in�mum is over a �nite set, and it is attained. We leave it
to the reader to verify that dist is the Hausdor� distance between the orbits G · a
and G · b. Clearly the projection X → G\X is a contraction. One can easily check
that the topology induced by the metric dist on G\X coincides with the quotient
topology. �

3.2. Complexes and group actions

3.2.1. Simplicial complexes. As we expect the reader to be familiar with
basics of algebraic topology, we will discuss simplicial complexes and (in the next
section) cell complexes only very brie�y.

We will use the notation X(i) to denote the i-th skeleton of the simplicial
complex X. A gallery in an n-dimensional simplicial complex X is a chain of n-
simplices σ1, . . . , σk so that σi ∩ σi+1 is an n− 1-simplex for every i = 1, . . . , k− 1.

Let σ, τ be simplices of dimensions m and n respectively with the vertex sets

σ(0) = {v0, . . . , vm}, τ (0) = {w0, . . . , wn}
The product σ × τ , of course, is not a simplex (unless nm = 0), but it admits a
standard triangulation, whose vertex set is

σ(0) × τ (0).

This triangulation is de�ned as follows. Pairs uij = (vi, wj) are the vertices of σ×τ .
Distinct vertices

(ui0,j0 , . . . , uik,jk)

span a k-simplex in σ × τ if and only if j0 6 . . . 6 jk.

A homotopy between simplicial maps f0, f1 : X → Y is a simplicial map
F : X × I → Y which restricts to fi on X × {i}, i = 0, 1. The tracks of the
homotopy F are the paths p(t) = F (x, t), x ∈ X.

Let X be a simplicial complex. Recall that besides usual cohomology groups
H∗(X;A) (with coe�cients in a ring A that the reader can assume to be Z or
Z2), we also have cohomology with compact support H∗c (X,A) which are de�ned
as follows. Consider the usual cochain complex C∗(X;A). We say that a cochain
σ ∈ C∗(X;A) has compact support if it vanishes outside of a �nite subcomplex in
X. Thus, in each chain group Ck(X;A) we have the subgroup Ckc (X;A) consisting
of compactly supported cochains. Then the usual coboundary operator δ satis�es

δ : Ckc (X;A)→ Ck+1
c (X;A).

The cohomology of the new cochain complex (C∗c (X;A), δ) is denoted H∗c (X;A)
and is called cohomology of X with compact support. Maps of simplicial complexes
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no longer induce homomorphisms of H∗c (X;A) since they do not preserve the com-
pact support property of cochains; however, proper maps of simplicial complexes
do induce natural maps on H∗c . Similarly, maps which are properly homotopic
induce equal homomorphisms of H∗c and proper homotopy equivalences induce iso-
morphisms of H∗c . In other words, H∗c satis�es the functoriality property of the
usual cohomology groups as long as we restrict to the category of proper maps.

3.2.2. Cell complexes. A cell complex (or CW complex) X is de�ned as the
increasing union of subspaces denoted X(n) (or Xn), called n-skeleta of X. The
0-skeleton X(0) of X is a set with discrete topology. Assume that X(n−1) is de�ned.
Let

Un := tj∈JDn
j ,

a (possibly empty) disjoint union of closed n-balls Dn
j . Suppose that for each D

n
j

we have a continuous attaching map ej : ∂Dn
j → X(n−1). This de�nes a map e =

en : ∂Un → X(n−1) and an equivalence relation x ≡ y = e(x), x ∈ U, y ∈ X(n−1).
We then declare X(n) to be the quotient space of X(n−1) t Un with the quotient
topology with respect to the above equivalence relation. We will use the notation
Dn
j /ej the image of Dn in Xn, i.e., the quotient Dn

j / ≡. We then equip

X :=
⋃
n∈N

Xn

with the weak topology, where a subset C ⊂ X is closed if and only if the intersection
of C with each skeleton is closed (equivalently, intersection of C with the image
of each Dn in X is closed). By abuse of terminology, both the balls Dn

j and their
projections to X are called n-cells in X. Similarly, we will con�ate X and its
underlying topological space.

Exercise 3.21. A subset K ⊂ X is compact if and only if is closed and
contained in a �nite union of cells.

Regular and almost regular cell complexes. A cell complex X is said to
be regular if every attaching map ej is 1-1. For instance, every simplicial complex
is a regular cell complex. A regular cell complex is called triangular if every cell
is naturally isomorphic to a simplex. (Note that X itself need not be simplicial
since intersections of cells could be unions of simplices.) A cell complex X is almost
regular if the boundary Sn−1 of every cell Dn

j is given structure of a regular cell
complex Kj so that the attaching map ej is 1-1 on every cell in Sn−1. Almost
regular 2-dimensional cell complexes (with a single vertex) appear naturally in the
context of group presentations, see De�nition 4.79.

Barycentric subdivision of an almost regular cell complex. Our goal
is to (canonically) subdivide an almost regular cell complex X so that the result is
a triangular regular cell complex X ′ = Y where every cell is a simplex. We de�ne
Y as an increasing union of regular subcomplexes Yn (where Yn ⊂ Y (n) but, in
general, is smaller).

First, set Y0 := X(0). Suppose that Yn−1 ⊂ Y (n−1) is de�ned, so that |Yn−1| =
X(n−1). Consider attaching maps ej : ∂Dn

j → X(n−1). We take the preimage of
the regular cell complex structure of Yn−1 under ej to be a re�nement Lj of the
regular cell complex structure Kj on Sn−1. We then de�ne a regular cell complex
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Mj on Dn
j by conning o� every cell in Lj from the origin o ∈ Dn

j . Then cells in Mj

are the cones Coneoj (s), where s's are cells in Lj .

subdivide

o
o

Figure 3.1. Barycentric subdivision of a 2-cell.

Since, by the induction assumption, every cell in Yn−1 is a simplex, its preimage
s in Sn−1 is also a simplex, this Coneo(s) is a simplex as well. We then attach
each cell Dn

j to Yn by the original attaching map ej . It is clear that the new
cells Coneoj (s) are embedded in Yn and each is naturally isomorphic to a simplex.
Lastly, we set

Y :=
⋃
n

Yn.

Second barycentric subdivision. Note that the complex X ′ constructed
above may not be a simplicial complex. The problem is that if x, y are distinct
vertices of Lj , their images under the attaching map ej could be the same (a point
z). Thus the edges [oj , x], [oj , y] in Yn+1 will intersect in the set {oj , z}. However,
if the complex X was regular, this problem does not arise and X ′ is a simplicial
complex. Thus in order to promote X to a simplicial complex (whose geometric
realization is homeomorphic to |X|), we take the second barycentric subdivision X ′′

of X: Since X ′ is a regular cell complex, the complex X ′′ is naturally isomorphic
to a simplicial complex.

G-cell complexes. Let X be a cell complex and G be a group. We say that
X is a G-cell complex (or that we have a cellular action Gy X) if G acts on X by
homeomorphisms and for every n we have a G-action Gy Un so that the attaching
map en is G-equivariant.

Definition 3.22. A cellular action G y X is said to be without inversions if
whenever g ∈ G preserves a cell s in X, it �xes this cell pointwise.

An actionGy X on a simplicial complex is called simplicial if it sends simplices
to simplices and is linear on each simplex.

Assuming that X is naturally isomorphic to a simplicial complex and G y X
is without inversions, without loss of generality we may assume that G y X is
linear on every simplex in X.

The following is immediate from the de�nition of X ′′, since barycentric subdi-
visions are canonical:
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Lemma 3.23. Let X be an almost regular cell complex and Gy X be an action
without inversions. Then G y X induces a simplicial action without inversions
Gy X ′′.

Lemma 3.24. Let X be a simplicial complex and G y X be a free simplicial
action. Then this action is properly discontinuous on X (in the weak topology).

Proof. Let K be a compact in X. Then K is contained in a �nite union of
simplices σ1, . . . , σk in X. Let F ⊂ G be the subset consisting of elements g ∈ G so
that gK ∩K 6= ∅. Then, assuming that F is in�nite, it contains distinct elements
g, h such that g(σ) = h(σ) for some σ ∈ {σ1, . . . , σn}. Then f := h−1g(σ) = σ.
Since the action G y X is linear on each simplex, f �xes a point in σ. This
contradicts the assumption that the action of G on X is free. �

3.2.3. Borel construction. Recall that every group G admits a classifying
space E(G), which is a contractible cell complex admitting a free cellular action
Gy E(G). The space E(G) is far from being unique, we will use the one obtained
by Milnor's Construction, see for instance [Hat02, Section 1.B]. A bene�t of this
construction is that E(G) is a simplicial complex and the construction of Gy E(G)
is canonical. Simplices in E(G) are ordered tuples of elements of g: [g0, . . . , gn] is an
n-simplex with the obvious inclusions. To verify contractibility of E = E(G), note
that each i + 1-skeleton Ei+1 contains the cone over the i-skeleton Ei, consisting
of simplices of the form

[1, g0, . . . , gn], g0, . . . , gn ∈ G.
(The point [1, . . . , 1] ∈ Ei+1 is the tip of this cone.) Therefore, the straight-line
homotopy to [1, . . . , 1] gives the required contraction.

The group G acts on E(G) by the left multiplication

g × [g0, . . . , gn]→ [gg0, . . . , ggn].

Clearly, this action is free and, moreover, each simplex has trivial stabilizer. The
action Gy E(G) has two obvious properties that we will be using:

1. If G is �nite then each skeleton E(G)i is compact.
2. If G1 < G2 then there exists an equivariant embedding E(G1) ↪→ E(G2).

We will use only these properties and not the actual construction of E(G) and
the action Gy E(G).

Suppose now that X is a cell complex and Gy X is a cellular action without
inversions. Our next goal is to replace X with a new cell complex X̂ which admits
a homotopy-equivalence p : X̂ → X so that the action G y X lifts (via p) to
a free cellular action G y X̂. The construction of G y X̂ is called the Borel
Construction. We �rst explain the construction in the case when X is a simplicial
complex since the idea is much clearer in this case.

For each simplex σ ∈ X consider its (pointwise) stabilizer Gσ 6 G. Clearly, if
σ1 ⊂ σ2 then

Gσ2
6 Gσ1

.

For each simplex σ de�ne X̂σ := σ × E(Gσ). The group Gσ acts naturally on X̂σ.
Whenever σ1 ⊂ Supp(σ2) we have the natural embedding E(Gσ1) ↪→ E(Gσ2) and
hence embeddings

X̂σ1
= σ1 × E(Gσ1

) ⊃ σ1 × E(Gσ2
) ⊂ X̂σ2

.
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Henceforth, we glue X̂σ2
to X̂σ1

by identifying the two copies of the product sub-
complex σ1 × E(Gσ2

). Let X̂ denote the regular cell complex resulting from these
identi�cations.

For general cell complexes we have to modify the above construction. De�ne
the support Supp(σ) of an n-cell σ in X to be the smallest subcomplex in X whose
underlying space contains the image of Sn−1 under the attaching map of σ. Since
G acts on X without inversions, for every σ1 ⊂ Supp(σ2),

Gσ2 6 Gσ1

where Gσ is the stabilizer of σ in G. As before, for each n-dimensional cell σ de�ne
X̂σ := Dn × E(Gσ). The group Gσ acts on X̂σ preserving the product structure
and �xing Dn pointwise. Whenever σ1 ⊂ Supp(σ2) we have the natural embedding
E(Gσ1

) ↪→ E(Gσ2
) and hence embeddings

X̂σ1
= σ1 × E(Gσ1

) ⊃ σ1 × E(Gσ2
) ⊂ Supp(σ2)× E(Gσ2

).

At the same time, we have the attaching map eσ2 : ∂Dn → Supp(σ2) and, thus the
attaching map

êσ2
:= eσ2

× Id : ∂Dn × E(Gσ2
)→ Supp(σ2)× E(Gσ2

)

Here n is the dimension of the cell σ2. We now de�ne X̂ by induction on skeleta of
X. We begin with X̂0 obtained by replacing each 0-cell σ in X with X̂σ. Assume
that X̂n−1 is constructed by gluing spaces X̂τ , where τ 's are cells in X(n−1). For
each n-cell σ the attaching map êσ de�ned above will yield an attaching map

∂Dn × E(Gσ)→ X̂n−1.

We then glue the spaces X̂σ to X̂n−1 via these attaching maps. We have a natural
projection p : X̂ → X which corresponds to the projection

X̂σ := Dn × E(Gσ)→ Dn

for each n-cell σ in X. Since each Dn is contractible, it follows that p restricts to
a homotopy-equivalence

X̂n → X(n)

for every n. Naturality of the construction ensures that the action G y X lifts to
an action Gy X̂; it is clear from the construction that for each cell σ, the stabilizer
of X̂σ in G is Gσ. Since Gσ acts freely on E(Gσ), it follows that the action Gy X̂
is free. Suppose now that G y X is properly discontinuous. Then, Gσ is �nite
for each σ and, thus X̂σ has �nite i-skeleton for each i. Moreover, if X/G were
compact, then the action of G on each i-skeleton of X̂ is compact as well.

The construction of the complex X̂ and the action G y X̂ is called the Borel
construction. One application of the Borel construction is the following

Lemma 3.25. Suppose that G y X is a cocompact properly discontinuous ac-

tion. Then there exists a properly discontinuous, cellular, free action Gy X̂ which

is cocompact on each skeleton and so that X is homotopy-equivalent to X̂.
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3.2.4. Groups of �nite type. If G is a group admitting a free properly
discontinuous cocompact action on a graph Γ, thenG is �nitely generated, as, by the
covering theory, G ∼= π1(Γ/G)/p∗(π1(Γ)), where p : Γ→ Γ/G is the covering map.
Groups of �nite type Fn are higher-dimensional generalizations of this example.

Definition 3.26. A group G is said to have type Fn, 1 6 n 6∞, if it admits
a free properly discontinuous cellular action on an n − 1-connected n-dimensional
cell complex Y , which is cocompact on each skeleton.

Note that we allow the complex Y to be in�nite-dimensional.

Exercise 3.27. A group G is �nitely-presented if and only if it has type F2.

In view of Lemma 3.25, we obtain:

Corollary 3.28. A group G has type Fn if and only if it admits a properly
discontinuous cocompact cellular action on an n − 1-connected n-dimensional cell
complex X, which is cocompact on each skeleton.

Proof. One direction is obvious. Suppose, therefore, that we have an action
G y X as above. We apply Borel construction to this action and obtain a free
properly discontinuous action G y X̂ which is cocompact on each skeleton of X̂.
If n =∞, we let Y := X̂. Otherwise, we let Y denote the n-skeleton of X̂. Recall
that the inclusion Y ↪→ X̂ induces monomorphisms of all homotopy groups πj ,
j 6 n− 1. Since X is n− 1�connected, the same holds for X̂ and hence Y . �

Corollary 3.29. Every �nite group has type F∞.

Proof. Start with the action of G on a complex X which is a point and then
apply the above corollary. �

3.3. Subgroups

Given two subgroups H,K in a group G we denote by HK the subset

{hk ; h ∈ H, k ∈ K} ⊂ G.
Recall that a normal subgroup K in G is a subgroup such that for every g ∈ G,
gKg−1 = K (equivalently gK = Kg). We use the notation K C G to denote that
K is a normal subgroup in G. When either H or K is a normal subgroup, the set
HK de�ned above becomes a subgroup of G.

A subgroup K of a group G is called characteristic if for every automorphism
φ : G → G, φ(K) = K. Note that every characteristic subgroup is normal (since
conjugation is an automorphism). But not every normal subgroup is characteristic.

Example 3.30. Let G be the group (Z2,+). Since G is abelian, every subgroup
is normal. But, for instance, the subgroup Z × {0} is not invariant under the
automorphism φ : Z2 → Z2 , φ(m,n) = (n,m).

Definition 3.31. A subnormal descending seriesindexsubnormal descending
series in a group G is a series

G = N0 B N1 B · · · B Nn B · · ·
such that Ni+1 is a normal subgroup in Ni for every i > 0.

If all Ni are normal subgroups of G then the series is called normal.
A subnormal series of a group is called a re�nement of another subnormal series

if the terms of the latter series all occur as terms in the former series.
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The following is a basic result in group theory:

Lemma 3.32. If G is a group, N C G, and A C B 6 G, then BN/AN is
isomorphic to B/A(B ∩N).

Definition 3.33. Two subnormal series

G = A0 B A1 B . . . B An = {1} and G = B0 B B1 B . . . B Bm = {1}

are called isomorphic if n = m and there exists a bijection between the sets of
partial quotients {Ai/Ai+1 | i = 1, . . . , n− 1} and {Bi/Bi+1 | i = 1, . . . , n− 1} such
that the corresponding quotients are isomorphic.

Lemma 3.34. Any two �nite subnormal series

G = H0 > H1 > . . . > Hn = {1} and G = K0 > K1 > . . . > Km = {1}

possess isomorphic re�nements.

Proof. De�ne Hij = (Kj ∩Hi)Hi+1. The following is a subnormal series

Hi0 = Hi > Hi1 > . . . > Him = Hi+1 .

When inserting all these in the series of Hi one obtains the required re�nement.
Likewise, de�ne Krs = (Hs ∩Kr)Kr+1 and by inserting the series

Kr0 = Kr > Kr1 > . . . > Krn = Kr

in the series of Kr, we de�ne its re�nement.
According to Lemma 3.32

Hij/Hij+1 = (Kj ∩Hi)Hi+1/(Kj+1∩Hi)Hi+1 ' Kj ∩Hi/(Kj+1∩Hi)(Kj ∩Hi+1) .

Similarly, one proves that Kji/Kji+1 ' Kj ∩Hi/(Kj+1 ∩Hi)(Kj ∩Hi+1). �

Definition 3.35. The center Z(G) of a group G is de�ned as the subgroup
consisting of elements h ∈ G so that [h, g] = 1 for each g ∈ G.

It is easy to see that the center is a characteristic subgroup of G.

Definition 3.36. A group G is a torsion group if all its elements have �nite
order.

A group G is said to be without torsion (or torsion-free) if all its non-trivial
elements have in�nite order.

Note that the subset TorG = {g ∈ G | g of �nite order} of the group G,
sometimes called the torsion of G, is in general not a subgroup.

Definition 3.37. A group G is said to have property * virtually if a �nite
index subgroup H of G has the property *.

The following properties of �nite index subgroups will be useful.

Lemma 3.38. If N C H and H C G, N of �nite index in H and H �nitely
generated, then N contains a �nite index subgroup K which is normal in G.
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Proof. By hypothesis, the quotient group F = H/N is �nite. For an arbitrary
g ∈ G the conjugation by g is an automorphism ofH, henceH/gNg−1 is isomorphic
to F . A homomorphism H → F is completely determined by the images in F of
elements of a �nite generating set of H. Therefore there are �nitely many such
homomorphisms, and �nitely many possible kernels of them. Thus, the set of
subgroups gNg−1, g ∈ G , forms a �nite list N,N1, .., Nk. The subgroup K =⋂
g∈G gNg

−1 = N ∩N1 ∩ · · · ∩Nk is normal in G and has �nite index in N , since
each of the subgroups N1, . . . , Nk has �nite index in H. �

Proposition 3.39. Let G be a �nitely generated group. Then:

(1) For every n ∈ N there exist �nitely many subgroups of index n in G.

(2) Every �nite index subgroup H in G contains a subgroup K which is �nite
index and characteristic in G.

Proof. (1) Let H 6 G be a subgroup of index n. We list the left cosets of H:

H = g1 ·H, g2 ·H, . . . , gn ·H,
and label these cosets by the numbers {1, . . . , n}. The action by left multiplication
of G on the set of left cosets of H de�nes a homomorphism φ : G → Sn such that
φ(G) acts transitively on {1, 2, . . . , n} and H is the inverse image under φ of the
stabilizer of 1 in Sn. Note that there are (n − 1)! ways of labeling the left cosets,
each de�ning a di�erent homomorphism with these properties.

Conversely, if φ : G → Sn is such that φ(G) acts transitively on {1, 2, . . . , n}
then G/φ−1(Stab (1)) has cardinality n.

Since the group G is �nitely generated, a homomorphism φ : G→ Sn is deter-
mined by the image of a generating �nite set of G, hence there are �nitely many
distinct such homomorphisms. The number of subgroups of index n in H is equal
to the number ηn of homomorphisms φ : G → Sn such that φ(G) acts transitively
on {1, 2, . . . , n}, divided by (n− 1)!.

(2) Let H be a subgroup of index n. For every automorphism ϕ : G → G,
ϕ(H) is a subgroup of index n. According to (1) the set {ϕ(H) | ϕ ∈ Aut (G)} is
�nite, equal {H,H1, . . . ,Hk}. It follows that

K =
⋂

ϕ∈Aut (G)

ϕ(H) = H ∩H1 ∩ . . . ∩Hk.

Then K is a characteristic subgroup of �nite index in H hence in G. �

Let S be a subset in a group G, and let H 6 G be a subgroup. The following
are equivalent:

(1) H is the smallest subgroup of G containing S ;

(2) H =
⋂
S⊂G16G

G1 ;

(3) H =
{
s1s2 · · · sn ; n ∈ N, si ∈ S or s−1

i ∈ S for every i ∈ {1, 2, . . . , n}
}
.

The subgroup H satisfying any of the above is denoted H = 〈S〉 and is said
to be generated by S. The subset S ⊂ H is called a generating set of H. The
elements in S are called generators of H.

When S consists of a single element x, 〈S〉 is usually written as 〈x〉; it is the
cyclic subgroup consisting of powers of x.
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We say that a normal subgroup K C G is normally generated by a set R ⊂ K
if K is the smallest normal subgroup of G which contains R, i.e.

K =
⋂

R⊂NCG

N .

We will use the notation
K = 〈〈R〉〉

for this subgroup.

3.4. Equivalence relations between groups

Definition 3.40. (1) Two groups G1 and G2 are called co-embeddable if
there exist injective group homomorphisms G1 → G2 and G2 → G1.

(2) The groups G1 and G2 are commensurable if there exist �nite index sub-
groups Hi 6 Gi, i = 1, 2, such that H1 is isomorphic to H2.

An isomorphism ϕ : H1 → H2 is called an abstract commensurator of G1

and G2.

(3) We say that two groups G1 and G2 are virtually isomorphic (abbreviated
as VI) if there exist �nite index subgroups Hi ⊂ Gi and �nite normal
subgroups Fi / Hi, i = 1, 2, so that the quotients H1/F1 and H2/F2 are
isomorphic.

An isomorphism ϕ : H1/F1 → H2/F2 is called a virtual isomorphism of
G1 and G2. When G1 = G2, ϕ is called virtual automorphism.

Example 3.41. All countable free groups are co-embeddable. However, a free
group of in�nite rank is not virtually isomorphic to a free group of in�nite rank.

Proposition 3.42. All the relations in De�nition 3.40 are equivalence relation
between groups.

Proof. The fact that weak commensurability is an equivalence relation is
immediate. It su�ces to prove that virtual isomorphism is am equivalence relation.
The only non-obvious property is transitivity. We need

Lemma 3.43. Let F1, F2 be normal �nite subgroups of a group G. Then their
normal closure F = 〈〈F1, F2〉〉 (i.e., the smallest normal subgroup of G containing
F1 and F2) is again �nite.

Proof. Let f1 : G→ G1 = G/F1, f2 : G1 → G1/f1(F2) be the quotient maps.
Since the kernel of each f1, f2 is �nite, it follows that the kernel of f = f2 ◦ f1 is
�nite as well. On the other hand, the kernel of f is clearly the subgroup F . �

Suppose now that G1 is VI to G2 and G2 is VI to G3. Then we have

Fi / Hi < Gi, |Gi : Hi| <∞, |Fi| <∞, i = 1, 2, 3,

and
F ′2 / H

′
2 < G2, |G2 : H ′2| <∞, |F ′2| <∞,

so that
H1/F1

∼= H2/F2, H ′2/F
′
2
∼= H3/F3.
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The subgroup H ′′2 := H2 ∩ H ′2 has �nite index in G2. By the above lemma, the
normal closure in H ′′2

K2 := 〈〈F2 ∩H ′′2 , F ′2 ∩H ′′2 〉〉
is �nite. We have quotient maps

fi : H ′′2 → Ci = fi(H
′′
2 ) 6 Hi/Fi, i = 1, 3,

with �nite kernels and cokernels. The subgroups Ei := fi(K2), are �nite and normal
in Ci, i = 1, 3. We let H ′i, F

′
i ⊂ Hi denote the preimages of Ci and Ei under the

quotient maps Hi → Hi/Fi, i = 1, 3. Then |F ′i | < ∞, |Gi : H ′i| < ∞, i = 1, 3.
Lastly,

H ′i/F
′
i
∼= Ci/Ei ∼= H ′′2 /K2, i = 1, 3.

Therefore, G1, G3 are virtually isomorphic. �

Given a group G, we de�ne V I(G) as the set of equivalence classes of virtual
automorphisms of G with respect to the following equivalence relation. Two virtual
automorphisms of G, ϕ : H1/F1 → H2/F2 and ψ : H ′1/F

′
1 → H ′2/F

′
2, are equivalent

if for i = 1, 2, there exist H̃i, a �nite index subgroup of Hi ∩H ′i, and F̃i, a normal
subgroup in H̃i containing the intersections H̃i ∩ Fi and H̃i ∩ F ′i , such that ϕ and
ψ induce the same automorphism from H̃1/F̃1 to H̃2/F̃2.

Lemma 3.43 implies that the composition induces a binary operation on V I(G),
and that V I(G) with this operation becomes a group, called the group of virtual
automorphisms of G.

Let Comm(G) be the set of equivalence classes of abstract commensurators
of G with respect to an equivalence relation de�ned as above, with the normal
subgroups Fi and F ′i trivial. As in the case of V I(G), the set Comm(G), endowed
with the binary operation de�ned by the composition, becomes a group, called the
abstract commensurator of the group G.

Let Γ be a subgroup of a group G. The commensurator of Γ in G, denoted by
CommG(Γ), is the set of elements g in G such that the conjugation by g de�nes an
abstract commensurator of Γ: gΓg−1 ∩ Γ has �nite index in both Γ and gΓg−1.

Exercise 3.44. Show that CommG(Γ) is a subgroup of G.

Exercise 3.45. Show that for G = SL(n,R) and Γ = SL(n,Z), CommG(Γ)
contains SL(n,Q).

3.5. Commutators, commutator subgroup

Definition 3.46. The commutator of two elements h, k in a group G is

[h, k] = hkh−1k−1 .

Note that:
• two elements h, k commute (i.e., hk = kh) if and only if [h, k] = 1.
• hk = [h, k]kh ;

Thus, the commutator [h, k] `measures de degree of non-commutativity' of the
elements h and k. In Lemma ?? we will prove some further properties of commu-
tators.

Let H,K be two subgroups of G. We denote by [H,K] the subgroup of G
generated by all commutators [h, k] with h ∈ H, k ∈ K.
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Definition 3.47. The commutator subgroup (or derived subgroup) of G is the
subgroup G′ = [G,G]. As above, we may say that the commutator subgroup G′ of
G `measures the degree of non-commutativity' of the group G.

A group G is abelian if every two elements of G commute, i.e., ab = ba for all
a, b ∈ G.

Exercise 3.48. Suppose that S is a generating set of G. Then G is abelian if
and only if [a, b] = 1 for all a, b ∈ S.

Proposition 3.49. (1) G′ is a characteristic subgroup of G;

(2) G is abelian if and only if G′ = {1};

(3) Gab = G/G′ is an abelian group (called the abelianization of G);

(4) if ϕ : G → A is a homomorphism to an abelian group A, then ϕ factors
through the abelianization: Given the quotient map p : G → Gab, there
exists a homomorphism ϕ : Gab → A such that ϕ = ϕ ◦ p.

Proof. (1) The set S = {[x, y] | x, y ∈ G} is a generating set of G′ and for
every automorphism ψ : G→ G, ψ(S) = S.

(2) follows from the equivalence xy = yx⇔ [x, y] = 1 , and (3) is an immediate
consequence of (2).

(4) follows from the fact that ϕ(S) = {1}. �

Recall that the �nite dihedral group of order 2n, denoted by D2n or I2(n), is
the group of symmetries of the regular Euclidean n-gon, i.e. the group of isometries
of the unit circle S1 ⊂ C generated by the rotation r(z) = e

2πi
n z and the re�ection

s(z) = z̄. Likewise, the in�nite dihedral group D∞ is the group of isometries of Z
(with the metric induced from R); the group D∞ is generated by the translation
t(x) = x+ 1 and the symmetry s(x) = −x.

Exercise 3.50. Find the commutator subgroup and the abelianization for the
�nite dihedral group D2n and for the in�nite dihedral group D∞.

Exercise 3.51. Let Sn (the symmetric group on n symbols) be the group of
permutations of the set {1, 2, . . . , n}, and An ⊂ Sn be the alternating subgroup,
consisting of even permutations.

(1) Prove that for every n 6∈ {2, 4} the group An is generated by the set of
cycles of length 3.

(2) Prove that if n > 3, then for every cycle σ of length 3 there exists ρ ∈ Sn
such that σ2 = ρσρ−1.

(3) Use (1) and (2) to �nd the commutator subgroup and the abelianization
for An and for Sn.

(4) Find the commutator subgroup and the abelianization for the group H of
permutations of Z de�ned in Example 4.7.
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Note that it is not necessarily true that the commutator subgroup G′ of G
consists entirely of commutators {[x, y] : x, y ∈ G} (see [Vav] for some �nite group
examples). However, occasionally, every element of the derived subgroup is indeed
a single commutator. For instance, every element of the alternating group An < Sn
is the commutator in Sn, see [Ore51].

This leads to an interesting invariant (of geometric �avor) called the commu-
tator norm (or commutator length) `c(g) of g ∈ G′, which is the least number k so
that g can be expressed as a product

g = [x1, y1] · · · [xk, yk],

as well as the stable commutator norm of g:

lim sup
n→∞

`c(g
n)

n
.

See [Bav91, Cal08] for further details. For instance, if G is the free group on
two generators (see De�nition 4.16), then every nontrivial element of G′ has stable
commutator norm greater than 1.

3.6. Semi-direct products and short exact sequences

Let Gi, i ∈ I, be a collection of groups. The direct product of these groups,
denoted

G =
∏
i∈I

Gi

is the Cartesian product of sets Gi with the group operation given by

(ai) · (bi) = (aibi).

Note that each group Gi is the quotient of G by the (normal) subgroup∏
j∈I\{i}

Gj .

A group G is said to spit as a direct product of its normal subgroups Ni C
G, i = 1, . . . , k, if one of the following equivalent statements holds:

• G = N1 · · ·Nk and Ni ∩Nj = {1} for all i 6= j;
• for every element g of G there exists a unique k-tuple (n1, . . . , nk), ni ∈
Ni, i = 1, . . . , k such that g = n1 · · ·nk.

Then, G is isomorphic to the direct product N1 × . . .×Nk. Thus, �nite direct
products G can be de�ned either extrinsically, using groups Ni as quotients of G,
or intrinsically, using normal subgroups Ni of G.

Similarly, one de�nes semidirect products of two groups, by taking the above
intrinsic de�nition and relaxing the normality assumption:

Definition 3.52. (1) (with the ambient group as given data) A group G
is said to split as a semidirect product of two subgroups N and H, which
is denoted by G = N oH if and only if N is a normal subgroup of G, H
is a subgroup of G, and one of the following equivalent statements holds:
• G = NH and N ∩H = {1};
• G = HN and N ∩H = {1};
• for every element g of G there exists a unique n ∈ N and h ∈ H such
that g = nh;
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• for every element g of G there exists a unique n ∈ N and h ∈ H such
that g = hn;

• there exists a retraction G → H, i.e., a homomorphism which re-
stricts to the identity on H, and whose kernel is N .
Observe that the map ϕ : H → Aut (N) de�ned by ϕ(h)(n) = hnh−1,

is a group homomorphism.

(2) (with the quotient groups as given data) Given any two groups N and H
(not necessarily subgroups of the same group) and a group homomorphism
ϕ : H → Aut (N), one can de�ne a new group G = N oϕ H which is a
semidirect product of a copy of N and a copy of H in the above sense,
de�ned as follows. As a set, N oϕ H is de�ned as the cartesian product
N ×H. The binary operation ∗ on G is de�ned by

(n1, h1) ∗ (n2, h2) = (n1ϕ(h1)(n2), h1h2) , ∀n1, n2 ∈ N and h1, h2 ∈ H .

The group G = N oϕ H is called the semidirect product of N and H
with respect to ϕ.

Remarks 3.53. (1) If a group G is the semidirect product of a normal
subgroup N with a subgroup H in the sense of (1) then G is isomorphic
to N oϕ H de�ned as in (2), where

ϕ(h)(n) = hnh−1 .

(2) The group N oϕ H de�ned in (2) is a semidirect product of the normal
subgroup N1 = N × {1} and the subgroup H = {1} ×H in the sense of
(1).

(3) If both N and H are normal subgroups in (1) then G is a direct product
of N and H.

If ϕ is the trivial homomorphism, sending every element of H to the
identity automorphism of N , then N oφ H is the direct product N ×H.

Here is yet another way to de�ne semidirect products. An exact sequence is a
sequence of groups and group homomorphisms

. . . Gn−1
ϕn−1−→ Gn

ϕn−→ Gn+1 . . .

such that Imϕn−1 = Kerϕn for every n. A short exact sequence is an exact
sequence of the form:

(3.2) {1} −→ N
ϕ−→ G

ψ−→ H −→ {1} .
In other words, ϕ is an isomorphism from N to a normal subgroup N ′ C G and ψ
descends to an isomorphism G/N ′ ' H.

Definition 3.54. A short exact sequence splits if there exists a homomorphism
σ : H → G (called a section) such that

ψ ◦ σ = Id.

When the sequence splits we shall sometimes write it as

1→ N → G
x→ H → 1.

Then, every split exact sequence determines a decomposition of G as the semidirect
product ϕ(N) o σ(H). Conversely, every semidirect product decomposition G =
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N o H de�nes a split exact sequence, where ϕ is the identity embedding and
ψ : G→ H is the retraction.

Examples 3.55. (1) The dihedral group D2n is isomorphic to Znoϕ Z2,
where ϕ(1)(k) = n− k.

(2) The in�nite dihedral group D∞ is isomorphic to ZoϕZ2, where ϕ(1)(k) =
−k.

(3) The permutation group Sn is the semidirect product of An and Z2 =
{id, (12)}.

(4) The group (Aff(R) , ◦) of a�ne maps f : R → R, f(x) = ax + b , with
a ∈ R∗ and b ∈ R is a semidirect product Roϕ R∗, where ϕ(a)(x) = ax.

Proposition 3.56. (1) Every isometry φ of Rn is of the form φ(x) =
Ax+ b, where b ∈ Rn and A ∈ O(n).

(2) The group Isom(Rn) splits as the semidirect product Rn oO(n), with the
obvious action of the orthogonal O(n) on Rn.

Sketch of proof of (1). For every vector a ∈ Rn we denote by Ta the translation
of vector a, x 7→ x+ a.

If φ(0) = b then the isometry ψ = T−b ◦ φ �xes the origin 0. Thus it su�ces to
prove that an isometry �xing the origin is a linear map in O(n). Indeed:

• an isometry of Rn preserves straight lines, because these are bi-in�nite
geodesics;

• an isometry is a homogeneous map, i.e. ψ(λv) = λψ(v); this is due to the
fact that (for 0 < λ 6 1) w = λv is the unique point in Rn satisfying

d(0, w) + d(w, v) = d(0, v).

• an isometry map is an additive map, i.e. ψ(a+ b) = ψ(a) + ψ(b) because
an isometry preserves parallelograms.

Thus, ψ is a linear transformation of Rn, ψ(x) = Ax for some matrix A. Or-
thogonality of the matrix A follows from the fact that the image of an orthonormal
basis under ψ is again an orthonormal basis. �

Exercise 3.57. Prove statement (2) of Proposition 3.56. Note that Rn is
identi�ed to the group of translations of the n-dimensional a�ne space via the map
b 7→ Tb.

In sections 3.10 and 3.11 we discuss semidirect products and short exact se-
quences in more detail.

3.7. Direct sums and wreath products

Let X be a non-empty set, and let G = {Gx | x ∈ X} be a collection of groups
indexed by X. Consider the set of maps Mapf (X,G) with �nite support, i.e.,

Mapf (X,G) := {f : X →
⊔
x∈X

Gx ; f(x) ∈ Gx , f(x) 6= 1Gx

for only �nitely many x ∈ X} .
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Definition 3.58. The direct sum
⊕

x∈X Gx is de�ned asMapf (X,G), endowed
with the pointwise multiplication of functions:

(f · g) (x) = f(x) · g(x) , ∀x ∈ X.

Clearly, if Ax are abelian groups then
⊕

x∈X Ax is abelian.
When Gx = G is the same group for all x ∈ X, the direct sum is the set of

maps

Mapf (X,G) := {f : X → G | f(x) 6= 1G for only �nitely many x ∈ X} ,

and we denote it either by
⊕

x∈X G or by G⊕X .

If, in this latter case, the set X is itself a group H, then there is a natural
action of H on the direct sum, de�ned by

ϕ : H → Aut

(⊕
h∈H

G

)
, ϕ(h)f(x) = f(h−1x) , ∀x ∈ H .

Thus, we de�ne the semi-direct product(⊕
h∈H

G

)
oϕ H .

Definition 3.59. The semidirect product (
⊕

h∈H G)oϕH is called the wreath
product of G with H, and it is denoted by G oH. The wreath product G = Z2 o Z
is called the lamplighter group.

3.8. Group cohomology

The purpose of this section is to introduce cohomology of groups and to give
explicit formulae for cocycles and coboundaries in small degrees. We refer the
reader to [Bro82b, Chapter III, Section 1] for the more thorough discussion.

Let G be a group and let M,N be left G-modules; then HomG(M,N) de-
notes the subspace of G-invariants in the G-module Hom(M,N), where G acts on
homomorphisms u : M → N by the formula:

(gu)(m) = g · u(g−1m).

If C∗ is a chain complex and A is a G-module, then HomG(C∗, A) is the chain
complex formed by subspaces HomG(Ck, A) in Hom(Ck, A). The standard chain
complex C∗ = C∗(G) of G with coe�cients in A is de�ned as follows:

Ck(G) = Z ⊗
∏k
i=0G, is the G-module freely generated by (k + 1)-tuples

(g0, . . . , gk) of elements of G with the G-action given by

g · (g0, . . . , gk) = (gg0, . . . , ggk).

The reader should think of each tuple as spanning a k-simplex. The boundary
operator on this chain complex is the natural one:

∂k(g0, . . . , gk) =

k∑
i=0

(−1)i(g0, . . . , ĝi, . . . gk),

where ĝi means that we omit this entry in the tuple. Then C∗ = C∗(G) is the
simplicial chain complex of the simplicial complex de�ning the Milnor's classifying
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space EG of the group G (see Section 3.2.3). The dual cochain complex C∗ is
de�ned by:

Ck = Hom(Ck, A), δk(f)((g0, . . . , gk+1)) = f(∂k+1(g0, . . . , gk+1)), f ∈ Ck.
Suppose for a moment that A is a trivial G-module. Then, for BG = (EG)/G,
the simplicial cochain complex C∗(BG,A) is naturally isomorphic to the subcom-
plex of G-invariant cochains in C∗(G,A), i.e., the subcomplex (C∗(G,A))G =
HomG(C∗, A). If A is a nontrivial G-module then the HomG(C∗, A) is still isomor-
phic to a certain natural cochain complex based on the simplicial complex C∗(BG)
(cochain complex with twisted coe�cients, or coe�cients in a certain sheaf), but
the de�nition is more involved and we will omit it.

Definition 3.60. The cohomology groups of G with coe�cients in the G-
module A are de�ned as H∗(G,A) := H∗(HomG(C∗, A)). In other words,

H∗(G,A) = Ker(δk)/ Im(δk−1), Hi(G,A) = Zi(G,A)/Bi(G,A).

In particular, if A is a trivial G-module, then H∗(G,A) = H∗(BG,A).

So far, all de�nitions looked very natural. Our next step is to reduce the
number of variables in the de�nition of cochains by one using the fact that cochains
in HomG(Ck, A) are G-invariant. The drawback of this reduction, as we will see,
will be lack of naturality, but the advantage will be new formulae for cohomology
groups which are useful in some applications.

By G-invariance, for f ∈ HomG(Ck, A) we have:

f(g0, . . . , gk) = g0 · f(1, g−1
0 g1, . . . , g

−1
0 gk)

In other words, it su�ces to restrict cochains to the set of (k+ 1)-tuples where the
�rst entry is 1 ∈ G. Every such tuple has the form

(1, g1, g1g2, . . . , g1 · · · gk)

(we will see below why). The latter is commonly denoted

[g1|g2| . . . |gk].

Note that computing the value of the coboundary,

δk−1f(1, g1, g1g2, . . . , g1 · · · gk) = δk−1f([g1|g2| . . . |gk])

we get

δk−1f(1, g1, g1g2, . . . , g1 · · · gk) =

f(g1, . . . , g1 · · · gk)− f(1, g1g2, . . . , g1 · · · gk) + f(1, g1, g1g2g3, . . . , g1 · · · gk)− . . . =

g1 · f(1, g2, . . . , g2 · · · gk)− f([g1g2|g3| . . . |gk]) + f([g1|g2g3|g4| . . . |gk])− . . . =

g1 · f([g2| . . . |gk])− f([g1g2|g3| . . . |gk]) + f([g1|g2g3|g4| . . . |gk])− . . .
Thus,

δk−1f([g1|g2| . . . |gk]) = g1 · f([g2| . . . |gk])− f([g1g2|g3| . . . |gk])+

f([g1|g2g3|g4| . . . |gk])− . . .

Then, we let C̄k (k ≥ 1) denote the abelian group of functions f sending k-tuples
[g1| . . . |gk] of elements of G to elements of A; we equip these groups with the above
coboundary homomorphisms δk. For k = 0, we have to use the empty symbol [ ],

77



f([ ]) = a ∈ A, so that such functions f are identi�ed with elements of A. Thus,
C̄0 = A and the above formula for δ0 reads as:

δ0 : a 7→ ca, ca([g]) = g · a− a.

The resulting chain complex (C̄∗, δ∗) is called the inhomogeneous bar complex of G
with coe�cients in A. We now compute the coboundary maps δk for this complex
for small values of k:

(1) δ0 : a 7→ fa, fa([g]) = g · a− a.
(2) δ1(f)([g1, g2]) = g1 · f([g2])− f([g1g2]) + f([g1]).
(3) δ2(f)([g1|g2|g3]) = g1 · f([g2|g3])− f([g1g2|g3]) + f([g1|g2g3])− f([g1|g2]).
Therefore, spaces of coboundaries and cocycles for (C̄∗, δ∗) in small degrees are

(we now drop the bar notation for simplicity):
(1) B1(G,A) = {fa : G→ A,∀a ∈ A|fa(g) = g · a− a}.
(2) Z1(G,A) = {f : G→ A|f(g1g2) = f(g1) + g1 · f(g2)}.
(3) B2(G,A) = {h : G × G → A|∃f : G → A, h(g1, g2) = f(g1) − f(g1g2) +

g1 · f(g2)}.
(4) Z2(G,A) = {f : G × G → A|g1 · f(g2, g3) − f(g1, g2) = f(g1g2, g3) −

f(g1, g2g3)}.
Let us look at the de�nition of Z1(G,A) more closely. In addition to the left

action of G on A, we de�ne a trivial right action of G on A: a · g = a. Then a
function f : G→ A is a 1-cocycle if and only if

f(g1g2) = f(g1) · g2 + g1 · f(g2).

The reader will immediately recognize here the Leibnitz formula for the derivative
of the product. Hence, 1-cocycles f ∈ Z1(G,A) are called derivations of G with
values in A. The 1-coboundaries are called principal derivations. If A is trivial as
a left G-module, then, of course, all principal derivations are zero and derivations
are just homomorphisms G→ A.

Nonabelian derivations. The notions of derivation and principal derivation
can be extended to the case when the target group is nonabelian; we will use the
notation N for the target group with the binary operation ? and g ·n for the action
of G on N by automorphisms, i.e.,

g · n = ϕ(g)(n), where ϕ : G→ Aut(N) is a homomorphism.

Definition 3.61. A function d : G→ N is called a derivation if

d(g1g2) = d(g1) ? g1 · d(g2), ∀g1, g2 ∈ G.

A derivation is called principal if it is of the form d = dn, where

dn(g) = n−1 ? (g · n).

The space of derivations is denoted Der(G,N) and the subspace of principal deriva-
tions is denoted Prin(G,N) or, simply, P (G,N).

Exercise 3.62. Verify that every principal derivation is indeed a derivation.

Exercise 3.63. Verify that every derivation d satis�es
• d(1) = 1;

• d(g−1) = g−1 · [d(g)]
−1.
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We will use derivations in the context of free solvable groups in Section ??.
In section (�3.10) we will discuss derivations in the context of semidirect products,
while in �3.11 we explain how 2nd cohomology group H2(G,A) can be used to
describe central co-extensions.

Nonabelian cohomology. We would like to de�ne the 1-st cohomology
H1(G,N), where the group N is nonabelian and we have an action of G on N .
The problem is that neither Der(G,N) nor Prin(G,N) is a group, so taking quo-
tient Der(G,N)/Prin(G,N) makes no sense. Nevertheless, we can think of the
formula

f 7→ f + da, a ∈ A,
in the abelian case (de�ning action of Prin(G,A) on Der(G,A)) as the left action
of the group A on Der(G,A):

a(f) = f ′, f ′(g) = −a+ f(g) + (g · a).

The latter generalizes in the nonabelian case, the group N acts to the left on
Der(G,N) by

n(f) = f ′, f ′(g) = n−1 ? f(g) ? (g · n).

Then, one de�nes H1(G,N) as the quotient

N\Der(G,N).

Example 3.64. 1. Suppose that G-action on N is trivial. Then Der(G,N) =
Hom(G,N) and N acts on homomorphisms f : G → N by postcomposition with
inner automorphisms. Thus, H1(G,N) in this case is

N\Hom(G,N),

the set of conjugacy classes of homomorphisms G→ N .
2. Suppose that G ∼= Z = 〈1〉 and the action ϕ of Z on N is arbitrary. We

have η := ϕ(1) ∈ Aut(N). Then H1(G,N) is the set of twisted conjugacy classes
of elements of N : Two elements m1,m2 ∈ N are said to be in the same η-twisted
conjugacy class if there exists n ∈ N so that

m2 = n−1 ? m1 ? η(n).

Indeed, every derivation d ∈ Der(Z, N) is determined by the image m = d(1) ∈ N .
Then two derivations di so that mi = di(1) (i = 1, 2) are in the same N -orbit if
m1,m2 are in the same η-twisted conjugacy class.

3.9. Ring derivations

Our next goal is to extend the notion of derivation in the context of (noncom-
mutative) rings. Typical rings that the reader should have in mind are integer group
rings.

Group rings. The (integer) group ring ZG of a group G is the set of formal
sums

∑
g∈Gmg g, where mg are integers which are equal to zero for all but �nitely

many values of g. Then ZG is a ring when endowed with the two operations:
• addition: ∑

g∈G
mg g +

∑
g∈G

ng g =
∑
g∈G

(mg + ng) g
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• multiplication de�ned by the convolution of maps to Z, that is∑
a∈G

ma a+
∑
b∈G

nb b =
∑
g∈G

∑
ab=g

manb

 g .

According to a Theorem of G. Higman [Hig40], every group ring is an integral
domain. Both Z and G embed as subsets of ZG by identifying every m ∈ Z with
m1G and every g ∈ G with 1g. Every homomorphism between groups ϕ : G → H
induces a homomorphism between group rings, which by abuse of notation we shall
denote also by ϕ. In particular, the trivial homomorphism o : G → {1} induces a
retraction o : ZG→ Z, called the augmentation. If the homomorphism ϕ : G→ H
is an isomorphism then so is the homomorphism between group rings. This implies
that an action of a group G on another group H (by automorphisms) extends to
an action of G on the group ring ZH (by automorphisms).

Let L be a ring andM be an abelian group. We say thatM is a (left) L-module
if we are given a map

(`,m) 7→ ` ·m,L×M →M,

which is additive in both variables and so that

(3.3) (`1 ? `2) ·m = `1 · (`2 ·m),

where ? denotes the multiplication operation in L.
Similarly, the ring M is the right L-module if we are given an additive in both

variables map
(m, `) 7→ m · `,M × L→M,

so that

(3.4) m · (`1 ? `2) = (m · `1) · `2.
Lastly, M is an L-bimodule if M has structure of both left and right L-module.

Definition 3.65. LetM be an L-bimodule. A derivation (with respect to this
bimodule structure) is a map d : L→M so that:

(1) d(`1 + `2) = d(`1) + d(`2),
(2) d(`1 ? `2) = d(`1) · `2 + `1 · d(`2).

The space of derivations is an abelian group, which will be denoted Der(L,M).

Below is the key example of a bimodule that we will be using in the context
of derivations. Let G,H be groups, ϕ : G → Bij(H) is an action of G on H by
set-theoretic automorphisms. We let L := ZG,M := ZH, where we regard the ring
M as an abelian group and ignore its multiplicative structure.

Every action ϕ : Gy H determines the left L-module structure on M by:

(
∑
i

aigi) · (
∑
j

bihi) :=
∑
i,j

aibigi · hi, ai ∈ Z, bj ∈ Z,

where g · h = ϕ(g)(h) for g ∈ G, h ∈ H. We de�ne the structure of right L-module
on M by:

(m, `) 7→ mo(`) = o(`)m, o(`) ∈ Z
where o : L→ Z is the augmentation of ZG = L.

Derivations with respect for the above group ring bimodules will be called group
ring derivations.
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Exercise 3.66. Verify the following properties of group ring derivations:
(P1) d(1G) = 0, whence d(m) = 0 for every m ∈ Z ;

(P2) d(g−1) = −g−1 · d(g) ;

(P3) d(g1 · · · gm) =
∑m
i=1(g1 · · · gi−1) · d(gi)o(gi+1 · · · gm) .

(P4) Every derivation d ∈ Der(ZG,ZH) is uniquely determined by its values d(x)
on generators x of G.

Fox Calculus. We now consider the special case when G = H = FX , is
the free group on the generating set X. In this context, theory of derivations was
developed in [Fox53].

Lemma 3.67. Every map d : X →M = ZG extends to a group ring derivation
d ∈ Der(ZG,M).

Proof. We set
d(x−1) = −x−1 · d(x), ∀x ∈ X

and d(1) = 0. We then extend d inductively to the free group G by

d(yu) = d(y) + y · d(u),

where y = x ∈ X or y = x−1 and yu is a reduced word in the alphabet X ∪X−1.
We then extend d by additivity to the rest of the ring L = ZG. In order to verify
that d is a derivation, we need to check only that

d(uv) = d(u) + u · d(v),

where u, v ∈ FX . The veri�cation is a straightforward induction on the length of
the reduced word u and is left to the reader. �

Notation 3.68. To each generator xi ∈ X we associate a derivation ∂i, called
Fox derivative, de�ned by ∂ixj = δij ∈ Z ⊂ ZG. In particular,

∂i(x
−1
i ) = −x−1

i .

Proposition 3.69. Suppose that G = Fr is free group of rank r < ∞. Then
every derivation d ∈ Der(ZG,ZG) can be written as a sum

d =

r∑
i=1

ki∂i , where ki = d(xi) ∈ Z .

Furthermore, Der(ZG,ZG) is a free abelian group with the basis ∂i, i = 1, . . . , r.

Proof. The �rst assertion immediately follows from Exercise 3.66 (part (P4)),
and from the fact that both sides of the equation evaluated on xj equal kj . Thus,
the derivations ∂i, i = 1, . . . , k generate Der(ZG,ZG). Independence of these gen-
erators follows from ∂ixj = δij . �

3.10. Derivations and split extensions

Components of homomorphisms to semidirect products.

Definition 3.70. Let G and L be two groups and let N,H be subgroups in G.
(1) Assume that G = N × H. Every group homomorphism F : L → G

splits as a product of two homomorphisms F = (f1, f2), f1 : L → N and
f2 : L→ H, called the components of F .
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(2) Assume now that G is a semidirect product N o H. Then every homo-
morphism F : L → G is determines (and is determined by) a pair (d, f),
where
• f : L → H is a homomorphism (the composition of F and the re-
traction G→ H);

• a map d = dF : L → N , called derivation associated with F . The
derivation d is determined by the formula

F (`) = d(`)f(`).

Exercise 3.71. Show that d is indeed a derivation.

Exercise 3.72. Verify that for every derivation d and a homomorphism f :
L→ H there exists a homomorphism F : L→ G with the components d, f .

Extensions and co-extensions.

Definition 3.73. Given a short exact sequence

{1} −→ N −→G−→H −→ {1},
we call the group G an extension of N by H or a co-extension of H by N .

Given two classes of groups A and B, the groups that can be obtained as
extensions of N by H with N ∈ A and H ∈ B, are called A-by-B groups (e.g.
abelian-by-�nite, nilpotent-by-free etc.).

Two extensions de�ned by the short exact sequences

{1} −→ Ni
ϕi−→ Gi

ψi−→ Hi −→ {1}
(i = 1, 2) are equivalent if there exist isomorphisms

f1 : N1 → N2, f2 : G1 → G2, f3 : H1 → H2

that determine a commutative diagram:
1 - N1

- G1
- H1

- 1

1 - N2

f1

?
- G2

f2

?
- H2

f3

?
- 1

We now use the notion of isomorphism of exact sequences to reinterpret the
notion of split extension.

Proposition 3.74. Consider a short exact sequence

(3.5) 1→ N
ι→ G

π→ Q→ 1 .

The following are equivalent:

(1) the sequence splits;

(2) there exists a subgroup H in G such that the projection π restricted to H
becomes an isomorphism.

(3) the extension G is equivalent to an extension corresponding to a semidirect
product N oQ;

(4) there exists a subgroup H in G such G = N oH.
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Proof. It is clear that (2) ⇒ (1).
(1) ⇒ (2): Let σ : Q → σ(H) ⊂ G be a section. The equality π ◦ σ = idQ

implies that π restricted to H is both surjective and injective.
The implication (2) ⇒ (3) is obvious.
(3) ⇒ (2): Assume that there exists H such that π|H is an isomorphism.

The fact that it is surjective implies that G = NH. The fact that it is injective
implies that H ∩N = {1}.

(2) ⇒ (4): Since π restricted to H is surjective, it follows that for every
g ∈ G there exists h ∈ H such that π(g) = π(h), hence gh−1 ∈ Kerπ = Im ι.

Assume that g ∈ G can be written as g = ι(n1)h1 = ι(n2)h2, with n1, n2 ∈ N
and h1, h2 ∈ H. Then π(h1) = π(h2), which, by the hypothesis that π restricted to
H is an isomorphism, implies h1 = h2, whence ι(n1) = ι(n2) and n1 = n2 by the
injectivity of ι .

(4) ⇒ (2): The existence of the decomposition for every g ∈ G implies that
π restricted to H is surjective.

The uniqueness of the decomposition implies that H ∩ Im ι = {1}, whence π
restricted to H is injective. �

Remark 3.75. Every sequence with free nonabelian group Q splits: Construct
a section σ : Q → G by sending each free generator xi of Q to an element x̃i ∈ G
so that π(x̃i) = xi. In particular, every group which admits an epimorphism to a
free nonabelian group F , also contains a subgroup isomorphic to F .

Examples 3.76. (1) The short exact sequence

1 −→ (2Z)n −→ Zn −→ Zn2 −→ 1

does not split.

(2) Let Fn be a free group of rank n (see De�nition 4.16) and let F ′n be its
commutator subgroup (see De�nition 3.47). Note that the abelianization
of Fn as de�ned in Proposition 3.49, (3), is Zn. The short exact sequence

1 −→ F ′n −→ Fn −→ Zn −→ 1

does not split.

From now on, we restrict to the case of exact sequences

(3.6) 1→ A
ι→ G

π→ Q→ 1,

where A is an abelian group. Recall that the set of derivations Der(Q,A) has
natural structure of an abelian group.

Remarks 3.77. (1) The short exact sequence (3.6) uniquely de�nes an
action of Q in A. Indeed G acts on A by conjugation and, since the kernel
of this action contains A, it de�nes an action of Q on A. In what follows
we shall denote this action by (q, a) 7→ q ·a , and by ϕ the homomorphism
Q→ Aut(A) de�ned by this action.

(2) If the short exact sequence (3.6) splits, the group G is isomorphic to
Aoϕ Q .
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Classi�cation of splittings.
Below we discuss classi�cation of all splittings of short exact sequences (3.6)

which do split. We use the additive notation for the binary operation on A. We
begin with few observations. From now on, we �x a section σ0 and, hence, a
semidirect product decomposition G = AoQ. Note that every splitting of a short
exact sequence (3.6), is determined by a section σ : Q → G. Furthermore, every
section σ : Q → G is determined by its components (dσ, π) with respect to the
semidirect product decomposition given by σ0 (see Remark 3.70). Since π is �xed,
a section σ is uniquely determined by its derivation dσ. Conversely, every derivation
d ∈ Der(Q,A) determines a section σ, so that d = dσ. Thus, the set of sections of
(3.6) is in bijective correspondence with the abelian group of derivations Der(Q,A).

Our next goal is to discuss the equivalence relation between di�erent sections
(and derivations). We say that an automorphism α ∈ Aut(G) is a shearing (with
respect to the semidirect product decomposition G = AoQ) if α(A) = A,α|A = Id
and α projects to the identity on Q. Examples of shearing automorphisms are
principal shearing automorphisms, which are given by conjugations by elements
a ∈ A. It is clear that shearing automorphisms act on splittings of the short exact
sequence (3.6).

Exercise 3.78. The group of shearing automorphisms of G is isomorphic to the
abelian group Der(Q,A): Every derivation d ∈ Der(Q,A) determines a shearing
automorphism α = αd of G by the formula

α(a ? q) = (a+ d(q)) ? q

which gives the bijective correspondence.

In view of this exercise, the classi�cation of splittings modulo shearing auto-
morphisms yields a very boring answer: All sections are equivalent under the group
of shearing transformations. A �ner classi�cation of splittings is given by the fol-
lowing de�nition. We say that two splittings σ1, σ2 are A-conjugate if they di�er
by a principal shearing automorphism:

σ2(q) = aσ1(q)a−1,∀q ∈ Q,

where a ∈ A. If d1, d2 are the derivations corresponding to the sections σ1, σ2, then

(d2(q), q) = (a, 1)(d1(q), q)(−a, 1)⇔ d2(q) = d1(q)− [q · a− a] .

In other words, d1, d2 di�er by the principal derivation corresponding to a ∈ A.
Thus, we proved the following

Proposition 3.79. A-conjugacy classes of splittings of the short exact sequence
(3.6) are in bijective correspondence with the quotient

Der(Q,A)/Prin(Q,A),

where Prin(Q,A) is the subgroup of principal derivations.

Note that Der(Q,A) ∼= Z1(Q,A), Prin(Q,A) = B1(Q,A) and the quotient
Der(Q,A)/Prin(Q,A) is H1(Q,A), the �rst cohomology group of Q with coe�-
cients in the ZQ�module A.

Below is another application of H1(Q,A). Let L be a group and F : L→ G =
AoQ be a homomorphism. The group G, of course, acts on the homomorphisms
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F by postcomposition with inner automorphisms. Two homomorphisms are said to
be conjugate if they belong to the same orbit of this G-action.

Lemma 3.80. 1. A homomorphism F : L→ G is conjugate to a homomorphism
with the image in Q if and only if the derivation dF of F is principal.

2. Furthermore, suppose that Fi : L→ G are homomorphisms with components
(di, π), i = 1, 2. Then F1 and F2 are A-conjugate if and only if [d1] = [d2] ∈
H1(L,A).

Proof. Let g = qa ∈ G, a ∈ A, q ∈ Q. If (qa)F (`)(qa)−1 ∈ Q, then
aF (`)a−1 ∈ Q. Thus, for (1) it su�ces to consider A-conjugation of homomor-
phisms F : L → G. Hence, (2) ⇒ (1). To prove (2) we note that the composition
of F with an inner automorphism de�ned by a ∈ A has the derivation equal to
dF − da, where da is the principal derivation determined by a. �

3.11. Central co-extensions and 2-nd cohomology

We restrict ourselves to the case of central co-extensions (a similar result holds
for general extensions with abelian kernels, see e.g. [Bro82b]). In this case, A is
trivial as a G-module and, hence, H∗(G,A) ∼= Hk(K(G, 1), A). This cohomology
group can be also computed asHk(Y,A), where G = π1(Y ) and Y is k+1-connected
cell complex.

Let G be a group and A an abelian group. A central co-extension of G by A is
a short exact sequence

1→ A
ι−→ G̃

r−→ G→ 1

where ι(A) is contained in the center of G̃. Choose a set-theoretic section s : G→
G̃, s(1) = 1, r ◦ s = Id. Then, the group G̃ is be identi�ed (as a set) with the direct
product A×G. With this identi�cation, the group operation on G̃ has the form

(a, g) · (b, h) = (a+ b+ f(g, h), gh),

where f(1, 1) = 0 ∈ A. Here the function f : G×G→ A measures the failure of s
to be a homomorphism:

f(g, h) = s(g)s(h) (s(gh))
−1
.

Not every function f : G×G → A corresponds to a central extension: A function
f gives rise to a central co-extension if and only if it satis�es the cocycle identity:

f(g, h) + f(gh, k) = f(h, k) + f(g, hk).

In other words, the set of such functions is the abelian group of cocycles Z2(G,A),
see �3.8. We will refer to f simply as a cocycle.

Two central co-extensions are said to be equivalent if there exist an isomorphism
τ making the following diagram commutative:

1 - A - G̃1
- G - 1

1 - A

id

?
- G̃2

τ

?
- G

id

?
- 1

For instance, a co-extension is trivial, meaning equivalent to the product A×G,
if and only if the central co-extension splits. We will use the notation E(G,A) to
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denote the set of equivalence classes of co-extensions. In the language of cocycles,
r1 ∼ r2 if and only if

f1 − f2 = δc,

where c : G→ A, and
δc(g, h) = c(g) + c(h)− c(gh)

is the coboundary, c ∈ B2(G,A). Recall that H2(G,A) = Z2(G,A)/B2(G,A) is
the 2-nd cohomology group of G with coe�cients in A.

The set E(G,A) has natural structure of an abelian group, where the sum of
two co-extensions

A→ Gi
ri−→ G

is de�ned by

G3 = {(g1, g2) ∈ G1 ×G2|r1(g1) = r2(g2)} r−→ G,

r(g1, g2) = r1(g1) = r2(g2). The kernel of this co-extension is the subgroup A
embedded diagonally in G1 ×G2. In the language of cocycles f : G×G→ A, the
sum of co-extensions corresponds to the sum of cocycles and the trivial element is
represented by the cocycle f = 0.

To summarize:

Theorem 3.81 (See Chapter IV in [Bro82b].). There exists an isomorphism
of abelian groups

H2(K(G, 1), A) ∼= H2(G,A)→ E(G,A).

Co-extensions and group presentations. Below we describe the isomor-
phism in Theorem 3.81 in terms of generators and relators, which will require
familiarity with some of the material in Chapter 4.

Start with a presentation 〈X |R〉 of the group G and let Y 2 denote the corre-
sponding presentation complex (see De�nition 4.80). Embed Y 2 in a 3-connected
cell complex Y by attaching appropriate 3-cells to Y 2. Then H2(Y,A) ∼= H2(G,A).
Each cohomology class [ζ] ∈ H2(G,A) is realized by a cocycle ζ ∈ Z2(Y,A), which
will assigns elements of A to each 2-cell in Y . The 2-cells ci of Y are indexed by the
de�ning relators Ri, i ∈ I, of G. By abusing the notation, we set ζ(Ri) := ζ(ci), so
that ζ(R−1

i ) = −ζ(ci). Given such ζ, de�ne the group G̃ = G̃ζ by the presentation

G̃ =
〈
X̃ = X ∪A|[a, x] = 1,∀a ∈ A,∀x ∈ X̃ ;Ri(ζ(Ri))

−1 = 1, i ∈ I
〉
.

In particular, if w is a word in the alphabet X , which is a product of conjugates of
the relators Rtjij , tj = ±1, then

(3.7) w ·

∑
j

tjζ(cij )

 = 1

in G̃.
Clearly, we have the epimorphism r : G̃→ G which sends every a ∈ A ⊂ X̃ to

1 ∈ G. We need to identify the kernel r. We have a homomorphism ι : A → G̃,
de�ned by a → a ∈ A ⊂ X̃ , a ∈ A. Furthermore, ι(A) is a central subgroup of G̃,
hence, Ker(r) = ι(A), since the homomorphism r amounts to dividing G̃ by Ã.

We next show that ι is injective. Let Ỹ denote the presentation complex Ỹ
for G̃; the homomorphism r : G̃ → G is induced by the map F : Ỹ → Y which
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collapses each loop corresponding to a ∈ A to the vertex of Y and sends 2-cells
corresponding to the relators [x, a], x ∈ X, to the base-point in Y . So far we did
not use the assumption that ζ is a cocycle, i.e., that ζ(σ) = 0 whenever σ is the
boundary o a 3-cycle in Y . Suppose that ι(a) = 1 ∈ G̃, a ∈ A. Then the loop α
in Ỹ corresponding to a bounds a 2-disk σ̃ in Ỹ . The image of this disk under f
is a spherical 2-cycle σ in Y since F is constant on α. The spherical cycle σ is
null-homologous since Y is 2-connected, σ = ∂ξ, ξ ∈ C3(Y,A). Since ζ is a cocycle,
0 = ζ(∂ξ) = ζ(σ). Thus, equation (3.7), implies that a = ζ(σ) = 0 in A. This
means that ι is injective.

Suppose the cocycle ζ is a coboundary, ζ = δη, where η ∈ C1(Y 1, A), i.e., η
yields a homomorphism η′ : G→ A, η′(xk) = ak. We then de�ne a map s : G→ G̃

by s(xk) = xkak. Then relations Ri = ζ(Ri) imply that s(Ri) = 1 in G̃, so the
co-extension de�ned by ζ splits and, hence, is trivial.

We, thus, have a map from H2(Y,A) to the set E(G,A).
If, ζ ∈ Z2(Y,A) maps to a trivial co-extension G̃ → G of G by A, this means

that we have a section s : G→ G̃. Then, for every generator xk ∈ X of the group G,
we have s(xk) = xkak, for some ak ∈ A. Thus, we de�ne a 1-cochain η ∈ C1(Y 1, A)
by η(xk) = ak, where we identify xk with a 1-cell in Y 1. Then the same arguments
as above, run in the reverse, imply that ζ = δη and, hence [ζ] = 0 ∈ H2(Y,A).

Example 3.82. Let G be the fundamental group of a genus p > 1 closed
oriented surface S. Take the standard presentation ofG, so that S is the (aspherical)
presentation complex. Let A = Z and take [ζ] ∈ H2(G,Z) ∼= H2(S,Z) be the class
Poincaré dual to the fundamental class of S. Then for the unique 2-cell c in S
corresponding to the relator

R = [a1, b1] · · · [ap, bp],

we have ζ(c) = −1 ∈ Z. The corresponding group G̃ has the presentation

〈a1, b1, . . . , ap, bp, t| [a1, b1] · · · [ap, bp]t, [ai, t], [bi, t], i = 1, . . . , p〉 .

The conclusion, thus, is that a group G with nontrivial 2-nd cohomology group
H2(G,A) admits nontrivial central co-extensions with the kernel A. How does one
construct groups with nontrivial H2(G,A)? Suppose that G admits an aspherical
presentation complex Y so that χ(G) = χ(Y ) > 2. Then for A ∼= Z, we have

χ(G) = 1− b1(Y ) + b2(Y ) > 2⇒ b2(Y ) > 0.

The universal coe�cients theorem then shows that if A is an abelian group which
admits an epimorphism to Z, then H2(G,A) 6= 0 provided that χ(Y ) > 2 as before.

3.12. Residual �niteness

Even though, studying in�nite groups is our primary focus, questions in group
theory can be, sometimes, reduced to questions about �nite groups. Residual �nite-
ness is the concept that (sometimes) allows such reduction.

Definition 3.83. A group G is said to be residually �nite if⋂
i∈I

Gi = {1},

where {Gi : i ∈ I} is the set of all �nite-index subgroups in G.
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Clearly, subgroups of residually �nite groups are also residually �nite. In con-
trast, if G is an in�nite simple group, then G cannot be residually-�nite.

Lemma 3.84. A �nitely generated group G is residually �nite if and only if for
every g ∈ G \ {1}, there exists a �nite group Φ and a homomorphism ϕ : G → Φ,
so that ϕ(g) 6= 1.

Proof. Suppose that G is residually �nite. Then, for every g ∈ G \ {1} there
exists a �nite-index subgroup Gi 6 G so that g /∈ Gi. Since G is �nitely generated,
it contains a normal subgroup of �nite index Ni C G, so that Ni 6 Gi. Indeed, we
can take

Ni :=
⋂
x∈S

Gxi

where S is a �nite generating set of G and Gxi denotes the subgroup xGix
−1. Then

Ni is invariant under all inner automorphisms of G and, hence, is normal in G.
Clearly, g /∈ Ni and |G : Ni| <∞. Now, setting Φ := G/Ni, we obtain the required
homomorphism ϕ : G→ Φ.

Conversely, suppose that for every g 6= 1 we have a homomorphism ϕg : G →
Φg, where Φg is a �nite group, so that ϕg(g) 6= 1. Setting Ng := Ker(ϕg), we get⋂

g∈G
Ng = {1}.

The above intersection, of course, contains the intersection of all �nite index sub-
groups in G. �

Example 3.85. The group G = GL(n,Z) is residually �nite. Indeed, we take
subgroups Gp 6 G, Gp = Ker(ϕp), ϕp : G → GL(n,Zp)). If g ∈ G is a nontrivial
element, we consider its nonzero o�-diagonal entry gij 6= 0. Then gij 6= 0 mod p,
whenever p > |gij |. Thus, ϕp(g) 6= 1 and G is residually �nite.

Corollary 3.86. Free group of rank 2 F2 is residually �nite. Every free group
of (at most) countable rank is residually �nite.

Proof. We will see in Example 4.38 that F2 embeds in SL(2,Z). Furthermore,
every free group of (at most) countable rank embeds in F2. Now, the assertion
follows from the above example. �

The simple argument for GL(n,Z) is a model for a proof of a harder theorem:

Theorem 3.87 (A. I. Mal'cev [Mal40]). Let G be a �nitely generated subgroup
of GL(n,R), where R is a commutative ring with unity. Then G is residually �nite.

Mal'cev's theorem is complemented by the following result, known as Selberg
Lemma [Sel60]:

Theorem 3.88 (Selberg Lemma). Let G be a �nitely generated subgroup of
GL(n, F ), where F is a �eld of characteristic zero. Then G contains a torsion-free
subgroup of �nite index.

We refer the reader to [Rat94, �7.5] and [Nic] for the proofs. Note that Selberg
Lemma fails for �elds of positive characteristic, see e.g. [Nic].

3.13. Appendix by B. Nica: Proofs of Malcev's Theorem and Selberg
Lemma
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CHAPTER 4

Finitely generated and �nitely presented groups

4.1. Finitely generated groups

A group which has a �nite generating set is called �nitely generated.

Remark 4.1. In French, the terminology for �nitely generated groups is groupe
de type �ni. On the other hand, in English, group of �nite type is a much stronger
requirement than �nite generation (typically, this means that the group has type
F∞).

Exercise 4.2. Show that every �nitely generated group is countable.

Examples 4.3. (1) The group (Z,+) is �nitely generated by both {1}
and {−1}. Also, any set {p, q} of coprime integers generates Z.

(2) The group (Q,+) is not �nitely generated.

Exercise 4.4. Prove that the transposition (12) and the cycle (12 . . . n) gen-
erate the permutation group Sn.

Remarks 4.5. (1) Every quotient Ḡ of a �nitely generated group G is
�nitely generated; we can take as generators of Ḡ the images of the gen-
erators of G.

(2) If N is a normal subgroup of G, and both N and G/N are �nitely gen-
erated, then G is �nitely generated. Indeed, take a �nite generating set
{n1, .., nk} for N , and a �nite generating set {g1N, ..gmN} for G/N . Then

{gi, nj : 1 6 i 6 m}, 1 6 j 6 k}}
is a �nite generating set for G.

Remark 4.6. If N is a normal subgroup in a group G and G is �nitely gener-
ated, it does not necessarily follow that N is �nitely generated (not even if G is a
semidirect product of N and G/N).

Example 4.7. Let H be the group of permutations of Z generated by the
transposition t = (01) and the translation map s(i) = i+ 1. Let Hi be the group of
permutations of Z supported on [−i, i] = {−i,−i+ 1, . . . , 0, 1, . . . , i− 1, i}, and let
Hω be the group of �nitely supported permutations of Z (i.e. the group of bijections
f : Z→ Z such that f is the identity outside a �nite subset of Z),

Hω =

∞⋃
i=0

Hi .

Then Hω is a normal subgroup in H and H/Hω ' Z, while Hω is not �nitely
generated.
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Indeed from the relation skts−k = (k k+1) , k ∈ Z , it immediately follows that
Hω is a subgroup in H. It is likewise easy to see that skHis

−k ⊂ Hi+k, whence
skHωs

−k ⊂ Hω for every k ∈ Z .
If g1, . . . , gk is a �nite set generating Hω, then there exists an i ∈ N so that all

gj 's are in Hi, hence Hω = Hi. On the other hand, clearly, Hi is a proper subgroup
of Hω.

Exercise 4.8. 1. Let F be a non-abelian free group (see De�nition 4.16). Let
ϕ : F → Z be any non-trivial homomorphism. Prove that the kernel of ϕ is not
�nitely generated.

2. Let F be a free group of �nite rank with free generators x1, . . . , xn; set
G := F × F . Then G has the generating set

{(xi, 1), (1, xj) : 1 ≤ i, j ≤ n}.
De�ne homomorphism φ : G→ Z sending every generator of G to 1 ∈ Z. Show that
the kernel K of φ is �nitely generated. Hint: Use the elements (xi, x

−1
j ), (xix

−1
j , 1),

(1, xix
−1
j ), 1 ≤ i, j ≤ n, of the subgroup K.

We will see later that a �nite index subgroup of a �nitely generated group is
�nitely generated (Lemma 4.75 or Theorem 5.29).

Below we describe a �nite generating set for the group GL(n,Z). In the proof
we use elementary matrices Ni,j = In + Ei,j (i 6= j); here In is the identity n × n
matrix and the matrix Ei,j has a unique non-zero entry 1 in the intersection of the
i�th row and the j�th column.

Proposition 4.9. The group GL(n,Z) is generated by

s1 =


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0
0 0 0 . . . 1 0

 s2 =


0 1 0 . . . 0 0
1 0 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1



s3 =


1 1 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1

 s4 =


−1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1

 .

Proof. Step 1. The permutation group Sn acts (e�ectively) on Zn by per-
muting the basis vectors; we, thus, obtain a monomorphism ϕ : Sn → GL(n,Z),
so that ϕ(12 . . . n) = s1, ϕ(12) = s2. Consider now the corresponding action of
Sn on n × n matrices. Multiplication of a matrix by s1 on the left permutes rows
cyclically, multiplication to the right does the same with columns. Multiplication
by s2 on the left swaps the �rst two rows, multiplication to the right does the same
with columns. Therefore, by multiplying an elementary matrix A by appropriate
products of s1, s

−1
1 and s2 on the left and on the right, we obtain the matrix s3. In

view of Exercise 4.4, the permutation (12 . . . n) and the transposition (12) gener-
ate the permutation group Sn. Thus, every elementary matrix Nij is a product of
s1, s

−1
1 , s2 and s3.
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Let dj denote the diagonal matrix with the diagonal entries (1, . . . , 1,−1, 1, . . . 1),
where −1 occurs in j-th place. Thus, d1 = s4. The same argument as above, shows
that for every dj and s = (1j) ∈ Sn, sdjs = d1. Thus, all diagonal matrices dj
belong to the subgroup generated by s1, s2 and s4.

Step 2. Now, let g be an arbitrary element in GL(n,Z). Let a1, . . . , an be the
entries of the �rst column of g. We will prove that there exists an element p in
〈s1 , . . . , s4〉 ⊂ GL(n,Z), such that pg has the entries 1, 0, . . . , 0 in its �rst column.
We argue by induction on k = C1(g) = |a1|+ · · ·+ |an|. Note that k > 1. If k = 1,
then (a1, . . . , an) is a permutation of (±1, 0, . . . , 0); hence, it su�ces to take p in
〈s1 , s2, s4〉 permuting the rows so as to obtain 1, 0, . . . , 0 in the �rst column.

Assume that the statement is true for all integers 1 6 i < k; we will prove
it for k. After to permuting rows and multiplying by d1 = s4 and d2, we may
assume that a1 > a2 > 0. Then N1,2d2g has the following entries in the �rst
column: a1−a2,−a2, a3, . . . an. Therefore, C1 (N1,2d2g) < C1(g) . By the induction
assumption, there exists an element p of 〈s1 , . . . , s4〉 such that pN1,2d2g has the
entries of its �rst column equal to 1, 0, . . . , 0. This proves the claim.

Step 3. We leave it to the reader to check that for every pair of matrices
A,B ∈ GL(n− 1,R) and row vectors L = (l1, . . . , ln−1) and M = (m1, . . . ,mn−1)(

1 L
0 A

)
·
(

1 M
0 B

)
=

(
1 M + LB
0 AB

)
.

Therefore, the set of matrices{(
1 L
0 A

)
; A ∈ GL(n− 1,Z) , L ∈ Zn−1

}
is a subgroup of GL(n,Z) isomorphic to Zn−1 oGL(n− 1,Z) .

Using this, an induction on n and Step 2, one shows that there exists an element
p in 〈s1, . . . , s4〉 such that pg is upper triangular and with entries on the diagonal
equal to 1. It, therefore, su�ces to prove that every integer upper triangular matrix
as above is in 〈s1, . . . s4〉. This can be done for instance by repeating the argument
in Step 2 with multiplications on the right. �

The wreath product (see De�nition 3.59) is a useful construction of a �nitely
generated group from two �nitely generated groups:

Exercise 4.10. Let G and H be groups, and S and X be their respective
generating sets. Prove that G oH is generated by

{(fs, 1H) | s ∈ S} ∪ {(f1, x) | x ∈ X} ,
where fs : H → G is de�ned by fs(1H) = s , fs(h) = 1G , ∀h 6= 1H .

In particular, if G and H are �nitely generated then so is G oH .

Exercise 4.11. Let G be a �nitely generated group and let S be an in�nite
set of generators of G. Show that there exists a �nite subset F of S so that G is
generated by F .

Exercise 4.12. An element g of the group G is a non-generator if for every
generating set S of G, the complement S \ {g} is still a generating set of G.

(a) Prove that the set of non-generators forms a subgroup ofG. This subgroup
is called the Frattini subgroup.

91



(b) Compute the Frattini subgroup of (Z,+).
(c) Compute the Frattini subgroup of (Zn,+). (Hint: You may use the fact

that Aut(Zn) is GL(n,Z), and that the GL(n,Z)�orbit of e1 is the set of
vectors (k1, . . . , kn) in Zn such that gcd(k1, . . . , kn) = 1.)

Definition 4.13. A group G is said to have bounded generation property (or
is boundedly generated) if there exists a �nite subset {t1, . . . , tm} ⊂ G such that

every g ∈ G can be written as g = tk11 t
k2
2 · · · .tkmm , where k1, k2, . . . , km are integers.

Clearly, all �nitely generated abelian groups have the bounded generation prop-
erty, and so are all the �nite groups. On the other hand, the nonabelian free f
groups, which we will introduce in the next section, obviously, do not have the
bounded generation property. For other examples of boundedly generated groups
see Proposition ??.

4.2. Free groups

Let X be a set. Its elements are called letters or symbols. We de�ne the set
of inverse letters (or inverse symbols) X−1 = {a−1 | a ∈ X}. We will think of
X ∪X−1 as an alphabet.

A word in X ∪X−1 is a �nite (possibly empty) string of letters in X ∪X−1,
i.e. an expression of the form

aε1i1a
ε2
i2
· · · aεkik

where ai ∈ X, εi = ±1; here x1 = x for every x ∈ X. We will use the notation 1 for
the empty word (the one which has no letters).

Denote by X∗ the set of words in the alphabet X ∪ X−1, where the empty
word, denoted by 1, is included. For instance,

a1a2a
−1
1 a2a2a1 ∈ X∗.

The length of a word w is the number of letters in this word. The length of the
empty word is 0.

A word w ∈ X∗ is reduced if it contains no pair of consecutive letters of the
form aa−1 or a−1a. The reduction of a word w ∈ X∗ is the deletion of all pairs of
consecutive letters of the form aa−1 or a−1a.

For instance,
1, a2a1, a1a2a

−1
1

are reduced, while
a2a1a

−1
1 a3

is not reduced.
More generally, a word w is cyclically reduced if it is reduced and, in addition,

the �rst and the last letters of w are not inverses of each other.
We de�ne an equivalence relation on X∗ by w ∼ w′ if w can be obtained from

w′ by a �nite sequence of reductions and their inverses, i.e., the relation ∼ on X∗

is generated by
uaia

−1
i v ∼ uv, ua−1

i aiv ∼ uv
where u, v ∈ X∗.

Proposition 4.14. Any word w ∈ X∗ is equivalent to a unique reduced word.
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Proof. Existence. We prove the statement by induction on the length of a
word. For words of length 0 and 1 the statement is clearly true. Assume that it is
true for words of length n and consider a word of length n+ 1, w = a1 · · · anan+1,
where ai ∈ X ∪X−1. According to the induction hypothesis there exists a reduced
word u = b1 · · · bk with bj ∈ X ∪X−1 such that a2 · · · an+1 ∼ u. Then w ∼ a1u. If
a1 6= b−1

1 then a1u is reduced. If a1 = b−1
1 then a1u ∼ b2 · · · bk and the latter word

is reduced.
Uniqueness. Let F (X) be the set of reduced words in X ∪X−1. For every

a ∈ X ∪X−1 we de�ne a map La : F (X)→ F (X) by

La(b1 · · · bk) =

{
ab1 · · · bk if a 6= b−1

1 ,
b2 · · · bk if a = b−1

1 .

For every word w = a1 · · · an de�ne Lw = La1 ◦ · · · ◦ Lan . For the empty word
1 de�ne L1 = id. It is easy to check that La ◦ La−1 = id for every a ∈ X ∪X−1,
and to deduce from it that v ∼ w implies Lv = Lw.

We prove by induction on the length that if w is reduced then w = Lw(1). The
statement clearly holds for w of length 0 and 1. Assume that it is true for reduced
words of length n and let w be a reduced word of length n+1. Then w = au, where
a ∈ X ∪X−1 and u is a reduced word that does not begin with a−1, i.e. such that
La(u) = au. Then Lw(1) = La ◦ Lu(1) = La(u) = au = w.

In order to prove uniqueness it su�ces to prove that if v ∼ w and v, w are
reduced then v = w. Since v ∼ w it follows that Lv = Lw, hence Lv(1) = Lw(1),
that is v = w. �

Exercise 4.15. Give a geometric proof of this proposition using identi�cation
of w ∈ X∗ with the set of edge-paths pw in a regular tree T of valence 2|X|,
which start at a �xed vertex e. The reduced path p∗ in T corresponding to the
reduction w∗ of w is the unique geodesic in T connecting e to the terminal point of
p. Uniqueness of w∗ then translates to the fact that a tree contains no circuits.

Let F (X) be the set of reduced words in X ∪ X−1. Proposition 4.14 implies
that X∗/ ∼ can be identi�ed with F (X).

Definition 4.16. The free group over X is the set F (X) endowed with the
product de�ned by: w ∗w′ is the unique reduced word equivalent to the word ww′.
The unit is the empty word.

The cardinality of X is called the rank of the free group F (X).

The set F (X) with the product de�ned in De�nition 4.16 is indeed a group.
The inverse of a reduced word

w = aε1i1a
ε2
i2
· · · aεkik

by
w−1 = a−εkik

a
−εk−1

ik−1
· · · a−ε1i1

.

It is clear that ww−1 project to the empty word 1 in F .

Remark 4.17. A free group of rank at least two is not abelian. Thus free
non-abelian means free of rank at least two.

The free semigroup F s(X) with the generating set X is de�ned in the fashion
similar to F (X), except that we only allow the words in the alphabet X (and not
in X−1), in particular the reduction is not needed.

93



Proposition 4.18 (Universal property of free groups). A map ϕ : X → G
from the set X to a group G can be extended to a homomorphism Φ : F (X) → G
and this extension is unique.

Proof. Existence. The map ϕ can be extended to a map on X∪X−1 (which
we denote also ϕ) by ϕ(a−1) = ϕ(a)−1.

For every reduced word w = a1 · · · an in F (X) de�ne

Φ(a1 · · · an) = ϕ(a1) · · ·ϕ(an).

Set Φ(e) := 1, the identity element of G. We leave it to the reader to check that Φ
is a homomorphism.

Uniqueness. Let Ψ : F (X) → G be a homomorphism such that Ψ(x) = ϕ(x)
for every x ∈ X. Then for every reduced word w = a1 · · · an in F (X), Ψ(w) =
Ψ(a1) · · ·Ψ(an) = ϕ(a1) · · ·ϕ(an) = Φ(w). �

Corollary 4.19. Every group is the quotient of a free group.

Proof. Apply Proposition 4.18 to the group G and the set X = G. �

Lemma 4.20. A short exact sequence 1→ N → G
r→ F (X)→ 1 always splits.

In particular, G contains a subgroup isomorphic to F (X).

Proof. Indeed, for each x ∈ X consider choose an element tx ∈ G projecting to
x; the map x 7→ tx extends to a group homomorphism s : F (X)→ G. Composition
r ◦ s is the identity homomorphism F (X) → F (X) (since it is the identity on
the generating set X). Therefore, the homomorphism s is a splitting of the exact
sequence. Since r ◦ s = Id, s a monomorphism. �

Corollary 4.21. Every short exact sequence 1→ N → G→ Z→ 1 splits.

4.3. Presentations of groups

Let G be a group and S a generating set of G. According to Proposition 4.18,
the inclusion map i : S → G extends uniquely to an epimorphism πS : F (S)→ G.
The elements of KerπS are called relators (or relations) of the group G with the
generating set S.

N.B. In the above by an abuse of language we used the symbol s to designate
two di�erent objects: s is a letter in F (S), as well as an element in the group G.

If R = {ri | i ∈ I} ⊂ F (S) is such that KerπS is normally generated by R (i.e.
〈〈R〉〉 = KerπS) then we say that the ordered pair (S,R), usually denoted 〈S|R〉,
is a presentation of G. The elements r ∈ R are called de�ning relators (or de�ning
relations) of the presentation 〈S|R〉.

By abuse of language we also say that the generators s ∈ S and the relations
r = 1, r ∈ R, constitute a presentation of the group G. Sometimes we will write
presentations in the form

〈si, i ∈ I|rj = 1, j ∈ J〉
where

S = {xi}i∈I , R = {rj}j∈J .
If both S and R are �nite then the pair S,R is called a �nite presentation of G.

A group G is called �nitely presented if it admits a �nite presentation. Sometimes
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it is di�cult, and even algorithmically impossible, to �nd a �nite presentation of a
�nitely presented group, see [BW11].

Conversely, given an alphabet S and a set R of (reduced) words in the alphabet
S we can form the quotient

G := F (S)/ 〈〈R〉〉 .

Then 〈S|R〉 is a presentation of G. By abusing notation, we will often write

G = 〈S|R〉

if G is a group with the presentation 〈S|R〉. If w is a word in the generating set S,
we will use [w] to denote its projection to the group G. An alternative notation for
the equality

[v] = [w]

is
v ≡G w.

Note that the signi�cance of a presentation of a group is the following:

• every element in G can be written as a �nite product x1 · · ·xn with xi ∈
S ∪ S−1 = {s±1 : s ∈ S}, i.e., as a word in the alphabet S ∪ S−1;

• a word w = x1 · · ·xn in the alphabet S ∪ S−1 is equal to the identity in
G, w ≡G 1, if and only if in F (S) the word w is the product of �nitely
many conjugates of the words ri ∈ R, i.e.,

w =

m∏
i=1

ruii

for some m ∈ N, ui ∈ F (S) and ri ∈ R.
Below are few examples of group presentations:

Examples 4.22. (1) 〈a1, . . . , an | [ai, aj ], 1 6 i, j 6 n〉 is a �nite presen-
tation of Zn ;

(2)
〈
x, y | xn, y2, yxyx

〉
is a presentation of the �nite dihedral group D2n ;

(3)
〈
x, y | x2, y3, [x, y]

〉
is a presentation of the cyclic group Z6 .

Let 〈X|R〉 be a presentation of a group G. Let H be a group and ψ : X → H
be a map which �preserves the relators�, i.e., ψ(r) = 1 for every r ∈ R. Then:

Lemma 4.23. The map ψ extends to a group homomorphism ψ : G→ H.

Proof. By the universal property of free groups, the map ψ extends to a
homomorphism ψ̃ : F (X) → H. We need to show that 〈〈R〉〉 is contained in
Ker(ψ̃). However, 〈〈R〉〉 consists of products of elements of the form grg−1, where
g ∈ F, r ∈ R. Since ψ̃(grg−1) = 1, the claim follows. �

Exercise 4.24. The group
⊕

x∈X Z2 has presentation〈
x ∈ X|x2, [x, y],∀x, y ∈ X

〉
.
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Proposition 4.25 (Finite presentability is independent of the generating set).
Assume that a group G has �nite presentation 〈S | R〉, and let 〈X | T 〉 be an arbi-
trary presentation of G, so that X is �nite. Then there exists a �nite subset T0 ⊂ T
such that 〈X | T0〉 is a presentation of G.

Proof. Every element s ∈ S can be written as a word as(X) in X. The map
iSX : S → F (X), iSX(s) = as(X) extends to a unique homomorphism p : F (S)→
F (X). Moreover, since πX ◦ iSX is an inclusion map of S to F (X), and both πS
and πX ◦ p are homomorphisms from F (S) to G extending the map S → G, by the
uniqueness of the extension we have that πS = πX ◦ p. This implies that KerπX
contains p(r) for every r ∈ R.

Likewise, every x ∈ X can be written as a word bx(S) in S, and this de�nes
a map iXS : X → F (S), iXS(x) = bx(S), which extends to a homomorphism
q : F (X)→ F (S). A similar argument shows that πS ◦ q = πX .

For every x ∈ X, πX(p(q(x))) = πS(q(x)) = πX(x). This implies that for every
x ∈ X, x−1p(q(x)) is in KerπX .

Let N be the normal subgroup of F (X) normally generated by

{p(r) | r ∈ R} ∪ {x−1p(q(x)) | x ∈ X} .

We have that N 6 KerπX . Therefore, there is a natural projection

proj : F (X)/N → F (X)/KerπX .

Let p̄ : F (S) → F (X)/N be the homomorphism induced by p. Since p̄(r) = 1
for all r ∈ R, it follows that p̄(KerπS) = 1, hence p̄ induces a homomorphism
ϕ : F (S)/KerπS → F (X)/N .

The homomorphism ϕ is onto. Indeed, F (X)/N is generated by elements of
the form xN = p(q(x))N , and the latter is the image under ϕ of q(x) KerπS .

Consider the homomorphism proj ◦ ϕ : F (S)/KerπS → F (X)/KerπX . Both
the domain and the target groups are isomorphic to G. Each element x of the
generating set X is sent by the isomorphism G → F (S)/KerπS to q(x) KerπS .
The same element x is sent by the isomorphism G → F (X)/KerπX to xKerπX .
Note that

proj ◦ ϕ (q(x) KerπS) = proj(xN) = xKerπX .

This means that modulo the two isomorphisms mentioned above, the map proj ◦ϕ
is idG. This implies that ϕ is injective, hence, a bijection. Therefore, proj is also
a bijection. This happens if and only if N = KerπX . In particular, KerπX is
normally generated by the �nite set of relators

< = {p(r) | r ∈ R} ∪ {x−1p(q(x)) | x ∈ X}.

Since < = 〈〈T 〉〉, every relator ρ ∈ < can be written as a product∏
i∈Iρ

tvii

with vi ∈ F (X), ti ∈ T and Iρ �nite. It follows that KerπX is normally generated
by the �nite subset

T0 =
⋃
ρ∈<

{ti | i ∈ Iρ}

of T . �
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Proposition 4.25 can be reformulated as follows: if G is �nitely presented, X is
�nite and

1→ N → F (X)→ G→ 1

is a short exact sequence, then N is normally generated by �nitely many elements
n1, . . . , nk. This can be generalized to an arbitrary short exact sequence:

Lemma 4.26. Consider a short exact sequence

(4.1) 1→ N → K
π→ G→ 1 , with K �nitely generated.

If G is �nitely presented, then N is normally generated by �nitely many elements
n1, . . . , nk ∈ N .

Proof. Let S be a �nite generating set of K; then S = π(S) is a �nite gener-
ating set of G. Since G is �nitely presented, by Proposition 4.25 there exist �nitely
many words r1, . . . , rk in S such that〈

S | r1(S), . . . , rk(S)
〉

is a presentation of G.
Consider nj = rj(S), an element of N by the assumption.
Let n be an arbitrary element in N and w(S) a word in S such that n = w(S) in

K. Then w(S) = π(n) = 1, whence in F (S) the word w(S) is a product of �nitely
many conjugates of r1, . . . , rk. When projecting such a relation via F (S)→ K we
obtain that n is a product of �nitely many conjugates of n1, . . . , nk. �

Proposition 4.27. Suppose that N a normal subgroup of a group G. If both
N and G/N are �nitely presented then G is also �nitely presented.

Proof. Let X be a �nite generating set of N and let Y be a �nite subset of
G such that Ȳ = {yN | y ∈ Y } is a generating set of G/N . Let 〈X | r1, . . . , rk〉 be
a �nite presentation of N and let

〈
Ȳ | ρ1, . . . , ρm

〉
be a �nite presentation of G/N .

The group G is generated by S = X ∪ Y and this set of generators satis�es a list
of relations of the following form

(4.2) ri(X) = 1 , 1 6 i 6 k , ρj(Y ) = uj(X) , 1 6 j 6 m,

(4.3) xy = vxy(X) , xy
−1

= wxy(X)

for some words uj , vxy, wxy in S.
We claim that this is a complete set of de�ning relators of G.
All the relations above can be rewritten as t(X,Y ) = 1 for a �nite set T of

words t in S. Let K be the normal subgroup of F (S) normally generated by T .
The epimorphism πS : F (S) → G de�nes an epimorphism ϕ : F (S)/K → G.

Let wK be an element in Kerϕ, where w is a word in S. Due to the set of
relations (4.3), there exist a word w1(X) in X and a word w2(Y ) in Y , such that
wK = w1(X)w2(Y )K.

Applying the projection π : G → G/N , we see that π(ϕ(wK)) = 1, i.e.,
π(ϕ(w2(Y )K)) = 1. This implies that w2(Y ) is a product of �nitely many conju-
gates of ρi(Y ), hence w2(Y )K is a product of �nitely many conjugates of uj(X)K,
by the second set of relations in (4.2). This and the relations (4.3) imply that
w1(X)w2(Y )K = v(X)K for some word v(X) in X. Then the image ϕ(wK) =
ϕ(v(X)K) is in N ; therefore, v(X) is a product of �nitely many conjugates of
relators ri(X). This implies that v(X)K = K.
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We have thus obtained that Kerϕ is trivial, hence ϕ is an isomorphism, equiv-
alently that K = KerπS . This implies that KerπS is normally generated by the
�nite set of relators listed in (4.2) and (4.3). �

We continue with a list of �nite presentations of some important groups:

Examples 4.28. (1) Surface groups:

G = 〈a1, b1, . . . , an, bn|[a1, b1] · · · [an, bn]〉 ,

is the fundamental group of the closed connected oriented surface of genus
n, see e.g. [Mas91].

(2) Right�angled Artin groups (RAAGs). Let G be a �nite graph with the
vertex set V = {x1, . . . , xn} and the edge set E consisting of the edges
{[xi, xj ]}i,j . De�ne the right�angled Artin group by

AG := 〈V |[xi, xj ],whenever [xi, xj ] ∈ E〉 .

Here we commit a useful abuse of notation: In the �rst instance [xi, xj ]
denotes the commutator and in the second instance it denotes the edge of
G connecting xi to xj .

Exercise 4.29. a. If G contains no edges then AG is a free group on
n generators.

b. If G is the complete graph on n vertices then

AG ∼= Zn.

(3) Coxeter groups. Let G be a �nite simple graph. Let V and E denote be
the vertex and the edge set of G respectively. Put a label m(e) ∈ N \ {1}
on each edge e = [xi, xj ] of G. Call the pair

Γ := (G,m : E → N \ {1})

a Coxeter graph. Then Γ de�nes the Coxeter group CΓ:

CΓ :=
〈
xi ∈ V |x2

i , (xixj)
m(e), whenever there exists an edge e = [xi, xj ]

〉
.

See [Dav08] for the detailed discussion of Coxeter groups.

(4) Artin groups. Let Γ be a Coxeter graph. De�ne

AΓ :=

〈
xi ∈ V | xixj · · ·︸ ︷︷ ︸

m(e) terms

= xjxi · · ·︸ ︷︷ ︸
m(e) terms

, whenever e = [xi, xj ] ∈ E

〉
.

Then AΓ is a right-angled Artin group if and only if m(e) = 2 for every
e ∈ E. In general, CΓ is the quotient of AΓ by the subgroup normally
generated by the set

{x2
i : xi ∈ V }.
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(5) Shephard groups: Let Γ be a Coxeter graph. Label vertices of Γ with
natural numbers nx, x ∈ V (Γ). Now, take a group, a Shepherd group, SΓ

to be generated by vertices x ∈ V (Γ), subject to Artin relators and, in
addition, relators

xnx , x ∈ V (Γ).

Note that, in the case nx = 2 for all x ∈ V (Γ), the group which we obtain
is the Coxeter group CΓ. Shephard groups (and von Dyck groups below)
are complex analogues of Coxeter groups.

(6) Generalized von Dyck groups: Let Γ be a labeled graph as in the previous
example. De�ne a group DΓ to be generated by vertices x ∈ V (Γ), subject
to the relators

xnx , x ∈ V (Γ);

(xy)m(e), e = [x, y] ∈ E(Γ).

If Γ consists of a single edge, then DΓ is called a von Dyck group. Every
von Dyck group DΓ is an index 2 subgroup in the Coxeter group C∆,
where ∆ is the triangle with edge-labels p, q, r, which are the vertex-edge
labels of Γ.

(7) Integer Heisenberg group:

H2n+1(Z) := 〈x1, . . . , xn, y1, . . . , yn, z |

[xi, z] = 1, [yj , z] = 1, [xi, xj ] = 1, [yi, yj ] = 1, [xi, yj ] = zδij , 1 6 i, j 6 n
〉
.

(8) Baumslag�Solitar groups:

BS(p, q) =
〈
a, b|abpa−1 = bq

〉
.

Exercise 4.30. Show that H2n+1(Z) is isomorphic to the group appearing in
Example ??, (??).

Open problem 4.31. It is known that all (�nitely generated) Coxeter groups
are linear, see e.g. [Bou02]. Is the same true for all Artin groups, Shephard groups,
generalized von Dyck groups? Note that even linearity of Artin Braid groups was
unknown prior to [Big01]. Is it at least true that all these groups are residually
�nite?

An important feature of �nitely presented groups is provided by the following
theorem, see e.g. [Hat02]:

Theorem 4.32. Every �nitely generated group is the fundamental group of a
smooth compact manifold of dimension 4.

Presentations G = 〈X|R〉 provide a `compact' form for de�ning the group G.
They were introduced by Max Dehn in the early 20-th century. The main problem
of the combinatorial group theory is to derive algebraic information about G from
its presentation.

Algorithmic problems in the combinatorial group theory.
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Word Problem. Let G = 〈X|R〉 be a �nitely-presented group. Construct a
Turing machine (or prove its non-existence) that, given a word w in the generating
set X as its input, would determine if w represents the trivial element of G, i.e., if

w ∈ 〈〈R〉〉 .

Conjugacy Problem. Let G = 〈X|R〉 be a �nitely-presented group. Con-
struct a Turing machine (or prove its non-existence) that, given a pair of word v, w
in the generating set X, would determine if v and w represent conjugate elements
of G, i.e., if there exists g ∈ G so that

[w] = g−1[v]g.

To simplify the language, we will state such problems below as: Given a �nite
presentation of G, determine if two elements of G are conjugate.

Simultaneous Conjugacy Problem. Given n-tuples pair of words

(v1, . . . , vn), (w1, . . . , wn)

in the generating set X and a (�nite) presentation G = 〈X|R〉, determine if there
exists g ∈ G so that

[wi] = g−1[vi]g, i = 1, . . . , n.

Triviality Problem. Given a (�nite) presentation G = 〈X|R〉 as an input,
determine if G is trivial, i.e., equals {1}.

Isomorphism Problem. Given two (�nite) presentations Gi = 〈Xi|Ri〉 , i =
1, 2 as an input, determine if G1 is isomorphic to G2.

Embedding Problem. Given two (�nite) presentations Gi = 〈Xi|Ri〉 , i =
1, 2 as an input, determine if G1 is isomorphic to a subgroup of G2.

Membership Problem. Let G be a �nitely-presented group, h1, . . . , hk ∈ G
and H, the subgroup of G generated by the elements hi. Given an element g ∈ G,
determine if g belongs to H.

Note that a group with solvable conjugacy or membership problem, also has
solvable word problem. It was discovered in the 1950-s in the work of Novikov,
Boone and Rabin [Nov58, Boo57, Rab58] that all of the above problems are al-
gorithmically unsolvable. For instance, in the case of the word problem, given a �nite
presentation G = 〈X|R〉, there is no algorithm whose input would be a (reduced)
word w and the output YES is w ≡G 1 and NO if not. Fridman [Fri60] proved
that certain groups have solvable word problem and unsolvable conjugacy problem.
We will later see examples of groups with solvable word and conjugacy problems
but unsolvable membership problem (Corollary 8.143). Furthermore, there are ex-
amples [BH05] of �nitely-presented groups with solvable conjugacy problem but
unsolvable simultaneous conjugacy problem for every n ≥ 2.

Nevertheless, the main message of the geometric group theory is that under
various geometric assumptions on groups (and their subgroups), all of the above
algorithmic problems are solvable. Incidentally, the idea that geometry can help
solving algorithmic problems also goes back to Max Dehn. Here are two simple
examples of solvability of word problem:

Proposition 4.33. Free group F of �nite rank has solvable word problem.
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Proof. Given a word w in free generators xi (and their inverses) of F we
cancel recursively all possible pairs xix−1

i , x−1
i xi in w. Eventually, this results in a

reduced word w′. If w′ is nonempty, then w represents a nontrivial element of F ,
if w′ is empty, then w ≡ 1 in F . �

Proposition 4.34. Every �nitely-presented residually-�nite group has solvable
word problem.

Proof. First, note that if Φ is a �nite group, then it has solvable word problem
(using the multiplication table in Φ we can �compute� every product of generators
as an element of Φ and decide if this element is trivial or not). Given a residually
�nite group G with �nite presentation 〈X|R〉 we will run two Turing machines
T1, T2 simultaneously:

The machine T1 will look for homomorphism ϕ : G → Sn, where Sn is the
symmetric group on n letters (n ∈ N): The machine will try to send generators
x1, . . . , xm of G to elements of Sm and then check if the images of the relators in
G under this map are trivial or not. For every such homomorphism, T1 will check
if ϕ(g) = 1 or not. If T1 �nds ϕ so that ϕ(g) 6= 1, then g ∈ G is nontrivial and the
process stops.

The machine T2 will list all the elements of the kernel N of the quotient homo-
morphism Fm → G: It will multiply conjugates of the relators rj ∈ R by products
of the generators xi ∈ X (and their inverses) and transforms the product to a re-
duced word. Every element of N is such a product, of course. We �rst write g ∈ G
as a reduced word w in generators xi and their inverses. If T2 �nds that w equals
one of the elements of N , then it stops and concludes that g = 1 in G.

The point of residual �niteness is that, eventually, one of the machines stops
and we conclude that g is trivial or not. �

Laws in groups.

Definition 4.35. An identity (or law) is a non-trivial reduced word w =
w(x1, . . . , xn) in n letters x1, . . . , xn and their inverses. A group G is said to sat-
isfy the identity (law) w(x1, . . . , xn) = 1 if the equality is satis�ed in G whenever
x1, . . . , xn are replaced by arbitrary elements in G.

Examples 4.36 (groups satisfying a law). (1) Abelian groups. Here the
law is

w(x1, x2) = x1x2x
−1
1 x−1

2 .

(2) Solvable groups, see (??).

(3) Free Burnside groups. The free Burnside group

B(n,m) =
〈
x1, . . . , xn | wn for every word w in x±1

1 , . . . , x±1
n

〉
.

It is known that these groups are in�nite for su�ciently large m (see
[Ady79], [Ol'91], [Iva94], [Lys96], [DG] and references therein).

Note that free nonabelian groups (and, hence, groups containing them) do not
satisfy any law.
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4.4. Ping-pong lemma. Examples of free groups

Lemma 4.37 (Ping�pong, or Table�tennis, lemma). Let X be a set, and let
g : X → X and h : X → X be two bijections. If A,B are two non-empty subsets of
X, such that A 6⊂ B and

gn(A) ⊂ B for every n ∈ Z \ {0} ,

hm(B) ⊂ A for every m ∈ Z \ {0} ,
then g, h generate a free subgroup of rank 2 in the group Bij(X) with the binary
operation given by composition ◦.

Proof. Step 1. Let w be a non-empty reduced word in {g, g−1, h, h−1}. We
want to prove that w is not equal to the identity in Bij(X). We begin by noting
that it is enough to prove this when

(4.4) w = gn1hn2gn3hn4 . . . gnk , with nj ∈ Z \ {0} ∀j ∈ {1, . . . , k} .
Indeed:
• If w = hn1gn2hn3 . . . gnkhnk+1 , then gwg−1 is as in (4.4), and gwg−1 6=

id⇒ w 6= id.
• If w = gn1hn2gn3hn4 . . . gnkhnk+1 , then for any m 6= −n1, gmwg−m is as
in (4.4).
• If w = hn1gn2hn3 . . . gnk , then for any m 6= nk, gmwg−m 6= id is as in
(4.4).

Step 2. If w is as in (4.4) then

w(A) ⊂ gn1hn2gn3hn4 . . . gnk−2hnk−1(B) ⊂ gn1hn2gn3hn4 . . . gnk−1(A) ⊂ . . . ⊂

gn1(A) ⊂ B .

If w = id, then it would follow that A ⊂ B, a contradiction. �

Example 4.38. For any integer k > 2 the matrices

g =

(
1 k
0 1

)
and h =

(
1 0
k 1

)
generate a free subgroup of SL(2,Z).

1st proof. The group SL(2,Z) acts on the upper half plane H2 = {z ∈ C | =(z) > 0}
by linear fractional transformations z 7→ az+b

cz+d . The matrix g acts as a horizontal
translation z 7→ z + k, while

h =

(
0 1
−1 0

)(
1 −k
0 1

)(
0 −1
1 0

)
.

Therefore h acts as represented in Figure 4.1, where h sends the interior of the disk
bounded by C to the exterior of the disk bounded by C ′. We apply Lemma 4.37 to
g, h and the subsets A and B represented below, i.e. A is the strip

{z ∈ H2 : −k
2
< Re z <

k

2
}

and B is the complement of its closure, that is

B = {z ∈ H2 : Re z < −k
2
or Re z >

k

2
}.
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Hence gn(A) ⊂ B and hn(B) ⊂ A for all n 6= 0 . Therefore, the claim follows from
lemma 4.37.

��
��

��
��:

-
g

h

-k/2 -2/k 2/k

C C'

k/2

AB B

Figure 4.1. Example of ping-pong.

2nd proof. The group SL(2,Z) also acts linearly on R2, and we can apply Lemma
4.37 to g, h and the following subsets of R2

A =

{(
x
y

)
: |x| < |y|

}
and B =

{(
x
y

)
: |x| > |y|

}
.

�

Remark 4.39. The statement in the Example above no longer holds for k = 1.
Indeed, in this case we have

g−1hg−1 =

(
1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
=

(
0 1
−1 0

)
.

Thus, (g−1hg−1)2 = I2, and, hence, the group generated by g, h is not free.

Lemma 4.37 extends to the case of several bijections as follows.

103



Lemma 4.40 (The generalized Ping-pong lemma). Let X be a set, and let
gi : X → X , i ∈ {1, 2, . . . , k} , be bijections. Suppose that A1, . . . , Ak are non-

empty subsets of X, such that
⋃k
i=2Ai 6⊂ A1 and that for every i ∈ {1, 2, . . . , k}

gni

⋃
j 6=i

Aj

 ⊂ Ai for every n ∈ Z \ {0} .

Then g1, . . . , gk generate a free subgroup of rank k in the group of bijections Bij(X).

Proof. Consider a non-trivial reduced word w in
{
g±1

1 , . . . , g±1
k

}
. As in the

proof of Lemma 4.37, without loss of generality we may assume that the word w
begins with ga1 and ends with gb1, where a, b ∈ Z \ {0} . We apply w to

⋃k
i=2Ai ,

and obtain that the image is contained in A1 . If w = id in Bij(X), it would that⋃k
i=2Ai ⊂ A1, a contradiction. �

4.5. Ping-pong on a projective space

We will frequently use Ping-Pong lemma in the case when X is a projective
space. Since this application of the ping-pong argument is the key for the proof of
the Tits' Alternative, we explain it here in detail.

Let V be a �nite dimensional space over a normed �eld K, which is either R,C
or has discrete norm and uniformizer π, as in �1.7. We endow the projective space
P(V ) with the metric d as in �1.8.

Lemma 4.41. Every g ∈ GL(n,K) induces a bi-Lipschitz transformation of

P (Kn) with Lipschitz constant 6 |a1|2
|an|2 , where a1, . . . , an are the singular values of

g and

|a1| > . . . > |an|.

Proof. According to the Cartan decomposition g = kdk′ and since all ele-
ments in the subgroup K act by isometries on the projective space, it su�ces to
prove the statement when g is a diagonal matrix A with diagonal entries a1, . . . , an
which are arranged in the order as above. We will do the computation in the
case K = R and leave the other cases to the reader. Given nonzero vectors
x = (x1, . . . , xn), y = (y1, . . . , yn), we obtain:

|gx ∧ gy| = |
∑
i<j

aiajxixjei ∧ ej | 6 |a1|2|
∑
i<j

xixj | = |a1|2|x ∧ y|,

|gx| = |
∑
i

a2
ix

2
i |1/2 > |an||x|, |gy| > |an||y|

and, hence,

d(g[x], g[y]) 6
|a1|2

|an|2
|x ∧ y|
|x| · |y|

=
|a1|2

|an|2
d([x], [y]).

�

Let g be an element in GL(n,K) such that with respect to some ordered basis
{u1, . . . , un}, the matrix of g is diagonal with diagonal entries λ1, . . . , λn satisfying

|λ1| > |λ2| > |λ3| > . . . > |λn−1| > |λn| > 0 .

Let us denote by A(g) and by H(g) the projection to P (Kn) of the span of
{u1}, respectively of the span of {u2, . . . , un}. Note that then A(g−1) and H(g−1)
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are the respective projections to P (Kn) of the span of {un}, respectively, of the
span of {u1, . . . , un−1}. Obviously, A(g) ∈ H(g−1) and A(g−1) ∈ H(g).

Lemma 4.42. Assume that g and h are two elements in GL(n,K) as above,
which are diagonal with respect to bases {u1, . . . , un}, {v1, . . . , vn} respectively. As-
sume also that the points A(g±1) are not in H(h) ∪ H(h−1), and A(h±1) are not
in H(g) ∪ H(g−1). Then there exists a positive integer N such that gN and hN

generate a free non-abelian subgroup of GL(n,K).

Proof. We �rst claim that for every ε > 0 there exists N = N(ε) such that for
every m > N , g±m maps the complement of the ε-neighborhood of H(g±1) inside
the ball of radius ε and center A(g±1).

According to Lemma 4.41, it su�ces to prove the statement when {u1, . . . , un}
is the standard basis {e1, . . . , en} of V (since we can conjugate g to a matrix diagonal
with respect to the standard basis). In particular, A(g±1) is either [e1] or [en]. In
the former case we take f(x) = x · e1, in the latter case, take f(x) = x · en, so that
Ker(f) = H = H(g±1). Then, for a unit vector v = (x1, . . . , xn) ∈ V , according to
Exercise 1.80, dist([v], [H]) = |f(v)|. To simplify the notation, we will assume that
f(x) = x · e1, since the other case is obtained by relabeling. Then,

[v] /∈ Nε(H(g±1)) ⇐⇒ |x1| > ε.
We have

|gmv ∧ e1| = |
∑
i>1

λmi xiei ∧ e1| 6
√
n|λ2|m|v| =

√
n|λ2|m

while
|gmv| > |λ1|m|x1|,

which implies that

d(gm[v], [e1]) =
|gmv ∧ e1|
|gmv|

6

√
n

|x1|
|λ2|m

|λ1|m
6

√
n

ε

(
|λ2|
|λ1|

)m
The latter quantity converges to zero as m → ∞, since |λ1| > |λ2|. Thus, for all
large m, d(gm[v], [e1]) < ε. The same claim holds for h±1.

Now consider ε > 0 such that for every α ∈ {g, g−1} and be ∈ {h, h−1} the
points A(α) and A(β±1) are at distance at least 2ε from H(α). Let N be large
enough so that g±N maps the complement of the ε-neighborhood of H(g±1) inside
the ball of radius ε and center A(g±1), and h±N maps the complement of the
ε-neighborhood of H(h±1) inside the ball of radius ε and center A(h±1).

Let A := B(A(g), ε) t B(A(g−1), ε) and B := B(A(h), ε) t B(A(h−1), ε).
Clearly, gkN (A) ⊆ B and hkN (B) ⊆ A for every k ∈ Z. Hence by Lemma 4.37, gN

and hN generate a free group. �

4.6. The rank of a free group determines the group. Subgroups

Proposition 4.43. Two free groups F (X) and F (Y ) are isomorphic if and
only if X and Y have the same cardinality.

Proof. A bijection ϕ : X → Y extends to an isomorphism Φ : F (X)→ F (Y )
by Proposition 4.18. Therefore, two free groups F (X) and F (Y ) are isomorphic if
X and Y have the same cardinality.

Conversely, let Φ : F (X)→ F (Y ) be an isomorphism. Take N(X) 6 F (X), the
subgroup generated by the subset {g2 ; g ∈ F (X)}; clearly, N is normal in F (X).
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Then, Φ(N(X)) = N(Y ) is the normal subgroup generated by {h2 ; h ∈ F (Y )}. It
follows that Φ induces an isomorphism Ψ : F (X)/N(X)→ F (Y )/N(Y ).

Lemma 4.44. The quotient F̄ := F/N is isomorphic to A = Z⊕X2 , where
F = F (X).

Proof. Recall that A has the presentation〈
x ∈ X|x2, [x, y],∀x, y ∈ X

〉
,

see Exercise 4.24. We now prove the assertion of the lemma. Consider the map
η : F → A sending the generators of F to the obvious generators of A. Thus,
π(g) = π(g−1) for all g ∈ F . We conclude that for all g, h ∈ X,

1 = π((hg)2) = π([g, h]),

and, therefore, F̄ is abelian.
Since A satis�es the law a2 = 1 for all a ∈ A, it is clear that η = ϕ ◦ π, where

π : F → F̄ is the quotient map. We next construct the inverse ψ to φ. We de�ne ψ
on the generators x ∈ X of A: ψ(x) = x̄ = π(x). We need to show that ψ preserves
the relators of A (as in Lemma 4.23): Since F̄ is abelian, [ψ(x), ψ(y)] = 1 for all
x, y ∈ X. Moreover, ψ(x)2 = 1 since F̄ also satis�es the law g2 = 1. It is clear that
φ, ψ are inverses to each other. �

Thus, F (X)/N(X) is isomorphic to Z⊕X2 , while F (Y )/N(Y ) is isomorphic to
Z⊕Y2 . It follows that Z⊕X2

∼= Z⊕Y2 as Z2�vector spaces. Therefore, X and Y have
the same cardinality, by uniqueness of the dimension of vector spaces. �

Remark 4.45. Proposition 4.43 implies that for every cardinal number n there
exists, up to isomorphism, exactly one free group of rank n. We denote it by Fn.

Theorem 4.46 (Nielsen�Schreier). Any subgroup of a free group is a free group.

This theorem will be proven in Corollary 4.70 using topological methods; see
also [LS77, Proposition 2.11].

Proposition 4.47. The free group of rank two contains an isomorphic copy of
Fk for every �nite k and k = ℵ0.

Proof. Let x, y be the two generators of F2. Let S be the subset consisting
of all elements of F2 of the form xk := ykxy−k, for all k ∈ N. We claim that the
subgroup 〈S〉 generated by S is isomorphic to the free group of rank ℵ0.

Indeed, consider the set Ak of all reduced words with pre�x ykx. With the
notation of Section 4.2, the transformation Lxk : F2 → F2 has the property that
Lxk(Aj) ⊂ Ak for every j 6= k. Obviously, the sets Ak , k ∈ N , are pairwise
disjoint. This and Lemma 4.40 imply that {Lxk ; k ∈ N} generate a free subgroup
in Bij(F2), hence so do {xk ; k ∈ N} in F2. �

4.7. Free constructions: Amalgams of groups and graphs of groups

4.7.1. Amalgams. Amalgams (amalgamated free products and HNN exten-
sions) allow one to build more complicated groups starting with a given pair of
groups or a group and a pair of its subgroups which are isomorphic to each other.
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Amalgamated free products. As a warm-up we de�ne the free product of
groups G1 = 〈X1|R1〉 , G2 = 〈X2|R2〉 by the presentation:

G1 ∗G2 = 〈G1, G2| 〉
which is a shorthand for the presentation:

〈X1 tX2|R1 tR2〉 .
For instance, the free group of rank 2 is isomorphic to Z ∗ Z.

More generally, suppose that we are given subgroups Hi 6 Gi (i = 1, 2) and an
isomorphism

φ : H1 → H2

De�ne the amalgamated free product

G1 ∗H1
∼=H2

G2 =
〈
G1, G2|φ(h)h−1, h ∈ H1

〉
.

In other words, in addition to the relators in G1, G2 we identify φ(h) with h for
each h ∈ H1. A common shorthand for the amalgamated free product is

G1 ∗H G2

where H ∼= H1
∼= H2 (the embeddings of H into G1 and G2 are suppressed in this

notation).

HNN extensions. This construction is named after G. Higman, B. Neumann
and H. Neumann who �rst introduced it in [HNN49]. It is a variation on the
amalgamated free product where G1 = G2. Namely, suppose that we are given a
group G, its subgroups H1, H2 and an isomorphism φ : H1 → H2. Then the HNN
extension of G via φ is de�ned as

G?H1
∼=H2

=
〈
G, t|tht−1 = φ(h),∀h ∈ H1

〉
.

A common shorthand for the HNN extension is

G?H

where H ∼= H1
∼= H2 (the two embeddings of H into G are suppressed in this

notation).

Exercise 4.48. Suppose that H1 and H2 are both trivial subgroups. Then

G?H1
∼=H2
∼= G ∗ Z.

4.7.2. Graphs of groups. In this section, graphs are no longer assumed to
be simplicial, but are assumed to connected. The notion of graphs of groups is
a very useful generalization of both the amalgamated free product and the HNN
extension.

Suppose that Γ is a graph. Assign to each vertex v of Γ a vertex group Gv;
assign to each edge e of Γ an edge group Ge. We orient each edge e so it has the
initial and the terminal (possibly equal) vertices e− and e+. Suppose that for each
edge e we are given monomorphisms

φe+ : Ge → Ge+ , φe− : Ge → Ge− .

Remark 4.49. More generally, one can allow non-injective homomorphisms

Ge → Ge+ , Ge → Ge− ,

but we will not consider them here.
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The graph Γ together with the collection of vertex and edge groups and the
monomorphisms φe± is called a graph of groups G.

Definition 4.50. The fundamental group π(G) = π1(G) of the above graph of
groups is a group G satisfying the following:

1. There is a collection of compatible homomorphisms Gv → G,Ge → G, v ∈
V (Γ), e ∈ E(Γ), so that whenever v = e±, we have the commutative diagram

Gv

Ge -

-

G

-

2. The group G is universal with respect to the above property, i.e., given any
group H and a collection of compatible homomorphisms Gv → H,Ge → H, there
exists a unique homomorphism G→ H so that we have commutative diagrams

G

Gv -

-

H

-

for all v ∈ V (Γ).

Note that the above de�nition easily implies that π(G) is unique (up to an iso-
morphism). For the existence of π(G) see [Ser80] and discussion below. Whenever
G ∼= π(G), we will say that G determines a graph of groups decomposition of G.
The decomposition of G is called trivial if there is a vertex v so that the natural
homomorphism Gv → G is onto.

Example 4.51. 1. Suppose that the graph Γ is a single edge e = [1, 2],
φe−(Ge) = H1 6 G1, φe+(Ge) = H2 6 G2. Then

π(G) ∼= G1 ?H1
∼=H2 G2.

2. Suppose that the graph Γ is a single loop e = [1, 1], φe−(Ge) = H1 6 G1,
φe+(Ge) = H2 6 G1. Then

π(G) ∼= G1 ?H1
∼=H2

.

Once this example is understood, one can show that for every graph of groups
G, π1(G) exists by describing this group in terms of generators and relators in
the manner similar to the de�nition of the amalgamated free product and HNN
extension. In the next section we will see how to construct π1(G) using topology.

4.7.3. Converting graphs of groups to amalgams. Suppose that G is a
graph of groups and G = π1(G). Our goal is to convert G in an amalgam decom-
position of G. There are two cases to consider:

1. Suppose that the graph Γ underlying G contains a oriented edge e = [v1, v2]
so that e separates Γ in the sense that the graph Γ′ obtained form Γ by removing
e (and keeping v1, v2) is a disjoint union of connected subgraphs Γ1 t Γ2, where
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vi ∈ V (Γi). Let Gi denote the subgraph in the graph of groups G, corresponding to
Γi, i = 1, 2. Then set

Gi := π1(Gi), i = 1, 2, G3 := Ge.

We have composition of embeddings Ge → Gvi → Gi → G. Then the universal
property of π1(Gi) and π1(G) implies that G ∼= G1 ?G3

G2: One simply veri�es that
G satis�es the universal property for the amalgam G1 ?G3

G2.

2. Suppose that Γ contains an oriented edge e = [v1, v2] so e does not separate
Γ. Let Γ1 := Γ′, where Γ′ is obtained from Γ by removing the edge e as in Case 1.
Set G1 := π1(G1) as before. Then embeddings

Ge → Gvi , i = 1, 2

induce embeddings Ge → Gi with the images H1, H2 respectively. Similarly to the
Case 1, we obtain

G ∼= G1?Ge = G1?H1
∼=H2

where the isomorphism H1 → H2 is given by the composition

H1 → Ge → H2.

Clearly, G is trivial if and only if the corresponding amalgam G1 ?G3
G2 or

G1?Ge is trivial.

4.7.4. Topological interpretation of graphs of groups. Let G be a graph
of groups. Suppose that for all vertices and edges v ∈ V (Γ) and e ∈ E(Γ) we
are given connected cell complexes Mv,Me with the fundamental groups Gv, Ge
respectively. For each edge e = [v, w] assume that we are given a continuous map
fe± : Me → Me± which induces the monomorphism φe± . This collection of spaces
and maps is called a graph of spaces

GM := {Mv,Me, fe± : Me →Me± : v ∈ V (Γ), e ∈ E(Γ)}.

In order to construct GM starting from G, recall that each group G admits a
cell complex K(G, 1) whose fundamental group is G and whose universal cover is
contractible, see e.g. [Hat02]. Given a group homomorphism φ : H → G, there
exists a continuous map, unique up to homotopy,

f : K(H, 1)→ K(G, 1)

which induces the homomorphism φ. Then one can take Mv := K(Gv, 1), Me :=
K(Ge, 1), etc.

To simplify the picture (although this is not the general case), the reader can
think of eachMv as a manifold with several boundary components which are home-
omorphic to Me1 ,Me2 , . . ., where ej are the edges having v as their initial or �nal
vertex. Then assume that the maps fe± are homeomorphisms onto the respective
boundary components.

For each edge e form the productMe× [0, 1] and then form the double mapping
cylinders for the maps fe± , i.e. identify points ofMe×{0} andMe×{1} with their
images under fe− and fe+ respectively.

Let M denote the resulting cell complex. It then follows from the Seifert�Van
Kampen theorem [Mas91] that

Theorem 4.52. The group π1(M) is isomorphic to π(G).
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This theorem allows one to think of the graphs of groups and their fundamental
groups topologically rather than algebraically. Given the above interpretation, one
can easily see that for each vertex v ∈ V (Γ) the canonical homomorphism Gv →
π(G) is injective.

Example 4.53. The group F (X) is isomorphic to π1(∨x∈XS1).

4.7.5. Graphs of groups and group actions on trees. An action of a
group G on a tree T is an action G y T so that each element of G acts as an
automorphism of T , i.e., such action is a homomorphism G → Aut(T ). A tree T
with the prescribed action Gy T is called a G�tree. An action Gy T is said to be
without inversions if whenever g ∈ G preserves an edge e of T , it �xes e pointwise.
The action is called trivial if there is a vertex v ∈ T �xed by the entire group G.

Remark 4.54. Later on, we will encounter more complicated (non-simplicial)
trees and actions.

Our next goal is to explain the relation between the graph of groups decompo-
sitions of G and actions of G on simplicial trees without inversions.

Suppose that G ∼= π(G) is a graph of groups decomposition of G. We associate
with G a graph of spaces M = MG as above. Let X denote the universal cover
of the corresponding cell complex M . Then X is the disjoint union of the copies
of the universal covers M̃v, M̃e × (0, 1) of the complexes Mv and Me × (0, 1). We
will refer to this partitioning of X as the tiling of X. In other words, X has the
structure of a graph of spaces, where each vertex/edge space is homeomorphic to
M̃v, v ∈ V (Γ), M̃e × [0, 1], e ∈ E(Γ). Let T denote the graph corresponding to X:
Each copy of M̃v determines a vertex in T and each copy of M̃e × [0, 1] determines
an edge in T .

Example 4.55. Suppose that Γ is a single segment [1, 2], M1 and M2 are
surfaces of genus 1 with a single boundary component each. Let Me be the circle.
We assume that the maps fe± are homeomorphisms of this circle to the boundary
circles of M1,M2. Then, M is a surface of genus 2. The graph T is sketched in
Figure 4.2.

The Mayer�Vietoris theorem, applied to the above tiling of X, implies that
0 = H1(X,Z) ∼= H1(T,Z). Therefore, T = T (G) is a tree. The group G = π1(M)
acts on X by deck-transformations, preserving the tiling. Therefore we get the
induced action Gy T . If g ∈ G preserves some M̃e× (0, 1), then it comes from the
fundamental group of Me. Therefore such g also preserves the orientation on the
segment [0, 1]. Hence the action G y T is without inversions. Observe that the
stabilizer of each M̃v in G is conjugate in G to π1(Mv) = Gv. Moreover, T/G = Γ.

Example 4.56. Let G = BS(p, q) be the Baumslag-Solitar group described in
Example 4.28, (8). The group G clearly has the structure of a graph of groups since
it is isomorphic to the HNN extension of Z,

Z?H1
∼=H2

where the subgroups H1, H2 ⊂ Z have the indices p and q respectively. In order to
construct the cell complex K(G, 1) take the circle S1 = Mv, the cylinder S1× [0, 1]
and attach the ends to this cylinder to Mv by the maps of the degree p and q
respectively. Now, consider the associated G�tree T . Its vertices have valence
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Figure 4.2. Universal cover of the genus 2 surface.

p+ q: Each vertex v has q incoming and p outgoing edges so that for each outgoing
edge e we have v = e− and for each incoming edge we have v = e+. The vertex
stabilizer Gv ∼= Z permutes (transitively) incoming and outgoing edges among each
other. The stabilizer of each outgoing edge is the subgroup H1 and the stabilizer
of each incoming edge is the subgroup H2. Thus the action of Z on the incoming
vertices is via the group Z/q and on the outgoing vertices via the group Z/p.

v

outgoing
incoming

Figure 4.3. Tree for the group BS(2, 3).

Lemma 4.57. Gy T is trivial if and only if the graph of groups decomposition
of G is trivial.

Proof. Suppose that G �xes a vertex ṽ ∈ T . Then π1(Mv) = Gv = G, where
v ∈ Γ is the projection of ṽ. Hence the decomposition of G is trivial. Conversely,
suppose that Gv maps onto G. Let ṽ ∈ T be the vertex which projects to v. Then
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π1(Mv) is the entire π1(M) and hence G preserves M̃ṽ. Therefore, the group G
�xes ṽ. �

Conversely, each action of G on a simplicial tree T yields a realization of G
as the fundamental group of a graph of groups G, so that T = T (G). Here is the
construction of G. Furthermore, a nontrivial action leads to a nontrivial graph of
groups.

If the action Gy T has inversion, we replace T with its barycentric subdivision
T ′. Then the action G y T ′ is without inversions. If G y T were nontrivial, so
is G y T ′. Thus, from now on, we assume that G acts on T without inversions.
Then the quotient T/G is a graph Γ: V (Γ) = V (T )/G and E(Γ) = E(T )/G. For
every vertex ṽ and edge ẽ of T let Gṽ and Gẽ be their respective stabilizes in G.
Clearly, whenever ẽ = [ṽ, w̃], we get the embedding

Gẽ → Gṽ.

If g ∈ G maps oriented edge ẽ = [ṽ, w̃] to an oriented edge ẽ′ = [ṽ′, w̃′], we obtain
isomorphisms

Gṽ → Gṽ′ , Gw̃ → Gw̃′ , Gẽ → Gẽ′

induced by conjugation via g and the following diagram is commutative:

Gẽ - Gṽ

Gẽ′
?

- Gṽ′
?

We then set Gv := Gṽ, Ge := Gẽ, where v and e are the projections of ṽ and edge
ẽ to Γ. For every edge e of Γ oriented as e = [v, w], we de�ne the monomorphism
Ge → Gv as follows. By applying an appropriate element g ∈ G as above, we can
assume that ẽ = [ṽ, w̃]. Then We de�ne the embedding Ge → Gv to make the
diagram

Gẽ - Gṽ

Ge
?

- Gv
?

commutative. The result is a graph of groups G. We leave it to the reader to verify
that the functor (G y T ) → G described above is just the reverse of the functor
G → (G y T ) for G with G = π1(G). In particular, G is trivial if and only if the
action Gy T is trivial.

Definition 4.58. G → (G y T ) → G is the Bass�Serre correspondence be-
tween realizations of groups as fundamental groups of graphs of groups and group
actions on trees without inversions.

We refer the reader to [SW79] and [Ser80] for further details.
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4.8. Cayley graphs

Finitely generated groups may be turned into geometric object as follows. Given
a group G and its generating set S, one de�nes the Cayley graph of G with respect
to S. This is a symmetric directed graph Cayleydir(G,S) such that

• its set of vertices is G;
• its set of oriented edges is (g, gs), with s ∈ S.

Usually, the underlying non-oriented graph Cayley(G,S) of Cayleydir(G,S),
i.e. the graph such that:

• its set of vertices is G;
• its set of edges consists of all pairs of elements in G, {g, h}, such that
h = gs, with s ∈ S,

is also called Cayley graph of G with respect to S.
By abusing notation, we will also use the notation [g, h] = gh for the edge

{g, h}.
Since S is a generating set of G, it follows that the graph Cayley(G,S) is

connected.
One can attach a color (label) from S to each oriented edge in Cayleydir(G,S):

the edge (g, gs) is labeled by s.
We endow Cayley(G,S) with the standard length metric (where every edge has

unit length). The restriction of this metric to G is called the word metric associated
to S and it is denoted by distS or dS .

Notation 4.59. For an element g ∈ G and a generating set S we denote
distS(1, g) by |g|S , the word norm of g. With this notation, distS(g, h) = |g−1h|S =
|h−1g|S .

Convention 4.60. In this book, unless stated otherwise, all Cayley graphs are
for �nite generating sets S.

Much of the discussion in this section though remains valid for arbitrary gen-
erating sets, including in�nite ones.

Remark 4.61. 1. Every group acts on itself by left multiplication:

G×G→ G , (g, h) 7→ gh .

This action extends to any Cayley graph: if [x, xs] is an edge of Cayley(G,S) with
the vertices x, xs, we extend g to the isometry

g : [x, xs]→ [gx, gxs]

between the unit intervals. Both actions Gy G and Gy Cayley(G,S) are isomet-
ric. It is also clear that both actions are free, properly discontinuous and cocompact
(provided that S is �nite): The quotient Cayley(G,S)/G is homeomorphic to the
bouquet of n circles, where n is the cardinality of S.

2. The action of the group on itself by right multiplication de�nes maps

Rg : G→ G , Rg(h) = hg

that are in general not isometries with respect to a word metric, but are at �nite
distance from the identity map:

dist(id(h), Rg(h)) = |g|S .
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Exercise 4.62. Prove that the word metric on a group G associated to a
generating set S may also be de�ned

(1) either as the unique maximal left-invariant metric on G such that

dist(1, s) = dist(1, s−1) = 1 , ∀s ∈ S ;

(2) or by the following formula: dist(g, h) is the length of the shortest word
w in the alphabet S ∪ S−1 such that w = g−1h in G.

Below are two simple examples of Cayley graphs.

Example 4.63. Consider Z2 with set of generators

S = {a = (1, 0), b = (0, 1), a−1 = (−1, 0), b−1 = (0,−1)}.

The Cayley graph Cayley(G,S) is the square grid in the Euclidean plane: The
vertices are points with integer coordinates, two vertices are connected by an edge
if and only if either their �rst or their second coordinates di�er by ±1. See Figure
4.4

ab

b
-1

a

b

1-2
a

-1
a

2
a

Figure 4.4. Cayley graph of Z2.

The Cayley graph of Z2 with respect to the set of generators {±(1, 0),±(1, 1)}
has the same set of vertices as the above, but the vertical lines must be replaced
by diagonal lines.

Example 4.64. Let G be the free group on two generators a, b. Take S =
{a, b, a−1, b−1}. The Cayley graph Cayley(G,S) is the 4-valent tree (there are four
edges incident to each vertex).

See Figure 4.5.

Theorem 4.65. Fundamental group of every connected graph Γ is free.
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Figure 4.5. Free group.

Proof. By axiom of choice, Γ contains a maximal subtree Λ ⊂ Γ. Let Γ′

denote the subdivision of Γ where very edge e in E = E(Γ) \E(Λ) is subdivided in
3 sub-edges. For every such edge e let e′ denote the middle 3rd. Now, add to Λ all
the edges in E(Γ′) which are not of the form e′ (e ∈ E), and the vertices of such
edges, of course, and let T ′ denote the resulting tree. Thus, we obtain a covering of
Γ′ by the simplicial tree T ′ and the subgraph ΓE consisting of the pairwise disjoint
edges e′ (e ∈ E), and the incident vertices. To this covering we can now apply
Seifert�Van Kampen Theorem and conclude that G = π1(Γ) is free, with the free
generators indexed by the set E . �

Corollary 4.66. A connected graph is simply connected if and only if the
graph is a tree.

Corollary 4.67. 1. Every free group F (X) is the fundamental group of the
bouquet B of |X| circles. 2. The universal cover of B is a tree T , which is isomor-
phic to the Cayley graph of F (X) with respect to the generating set X.

Proof. 1. By Theorem 4.65, G = π1(B) is free; furthermore, the proof also
shows that the generating set of G is identi�ed with the set of edges of B. We
now orient every edge of B using this identi�cation. 2. The universal cover T of
B is a simply-connected graph, hence, a tree. We lift the orientation of edges of
B to orientation of edges of T . The group F (X) = π1(B) acts on T by covering
transformations, hence, the action on the vertex V (T ) set of T is simply-transitive.
Therefore, we obtain and identi�cation of V (T ) with G. Let v be a vertex of T . By
construction and the standard identi�cation of π1(B) with covering transformations
of T , every oriented edge e of B lifts to an oriented edge ẽ of T of the form [v, w].
Conversely, every oriented edge [v, w] of T projects to an oriented edge of B. Thus,
we labeled all the oriented edges of T with generators of F (X). Again, by the
covering theory, if an oriented edge [u,w] of T is labeled with a generator x ∈ F (X),
then x sends u to w. Thus, T is isomorphic to the Cayley graph of F (X). �

Corollary 4.68. A group G is free if and only if it can act freely by automor-
phisms on a simplicial tree T .
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Proof. By the covering theory, G ∼= π1(Γ) where Γ = T/G. Now, Theorem
4.65, G = π1(Γ) is free. See [Ser80] for another proof and more general discussion
of group actions on trees. �

Remark 4.69. The concept of a simplicial tree generalizes to the one of a real
tree. There are non-free groups acting isometrically and freely on real trees, e.g.,
surface groups and free abelian groups. Rips proved that every �nitely generated
group acting freely and isometrically on a real tree is a free product of surface
groups and free abelian groups, see e.g. [Kap01] for a proof.

Corollary 4.70 (Nielsen�Schreier). Every subgroup H of a free group F is
itself free.

Proof. Realize the free group F as the fundamental group of a bouquet Bof
circles; the universal cover T of B is a simplicial tree. The subgroup H 6 F also
acts on T freely. Thus, H is free. �

Exercise 4.71. Let G and H be �nitely generated groups, with S and X
respective �nite generating sets.

Consider the wreath product G oH as de�ned in De�nition 3.59, endowed with
the �nite generating set canonically associated to S and X described in Exercise
4.10. For every function f : H → G denote by supp f the set of elements h ∈ H
such that f(h) 6= 1G .

Let f and g be arbitrary functions from H to G with �nite support, and h, k
arbitrary elements in H. Prove that the word distance in G oH from (f, h) to (g, k)
with respect to the generating set mentioned above is

(4.5) dist ((f, h), (g, k)) =
∑
x∈H

distS(f(x), g(x)) + Length(supp g−1f ;h, k) ,

where Length(supp g−1f ;h, k) is the length of the shortest path in Cayley(H,X)
starting in h, ending in k and whose image contains the set supp g−1f .

Thus we succeeded in assigning to every �nitely generated group G a met-
ric space Cayley(G,S). The problem, however, is that this assignment G →
Cayley(G,S) is far from canonical: di�erent generating sets could yield completely
di�erent Cayley graphs. For instance, the trivial group has the presentations:

〈 | 〉 , 〈a|a〉 ,
〈
a, b|ab, ab2

〉
, . . . ,

which give rise to the non-isometric Cayley graphs:

Figure 4.6. Cayley graphs of the trivial group.

The same applies to the in�nite cyclic group:
In the above examples we did not follow the convention that S = S−1.

Note, however, that all Cayley graphs of the trivial group have �nite diameter;
the same, of course, applies to all �nite groups. The Cayley graphs of Z as above,
although they are clearly non-isometric, are within �nite distance from each other
(when placed in the same Euclidean plane). Therefore, when seen from a (very)
large distance (or by a person with a very poor vision), every Cayley graph of a
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Figure 4.7. Cayley graphs of Z = 〈x|〉 and Z =
〈
x, y|xy−1

〉
.

�nite group looks like a �fuzzy dot�; every Cayley graph of Z looks like a �fuzzy
line,� etc. Therefore, although non-isometric, they �look alike�.

Exercise 4.72. (1) Prove that if S and S̄ are two �nite generating sets of
G then the word metrics distS and distS̄ on G are bi-Lipschitz equivalent,
i.e. there exists L > 0 such that

(4.6)
1

L
distS(g, g′) 6 distS̄(g, g′) 6 LdistS(g, g′) ,∀g, g′ ∈ G .

(2) Prove that an isomorphism between two �nitely generated groups is a
bi-Lipschitz map when the two groups are endowed with word metrics.

Convention 4.73. From now on, unless otherwise stated, by a metric on a
�nitely generated group we mean a word metric coming from a �nite generating
set.

Exercise 4.74. Show that the Cayley graph of a �nitely generated in�nite
group contains an isometric copy of R, i.e. a bi-in�nite geodesic. Hint: Apply
Arzela-Ascoli theorem to a sequence of geodesic segments in the Cayley graph.

On the other hand, it is clear that no matter how poor your vision is, the Cayley
graphs of, say, {1}, Z and Z2 all look di�erent: They appear to have di�erent
�dimension� (0, 1 and 2 respectively).

Telling apart the Cayley graph Cayley1 of Z2 from the Cayley graph Cayley2

of the Coxeter group

∆ := ∆(4, 4, 4) :=
〈
a, b, c|a2, b2, c2, (ab)4, (bc)4, (ca)4

〉
seems more di�cult: They both �appear� 2-dimensional. However, by looking at
the larger pieces of Cayley1 and Cayley2, the di�erence becomes more apparent:
Within a given ball of radius R in Cayley1, there seems to be less vertices than in
Cayley2. The former grows quadratically, the latter grows exponentially fast as R
goes to in�nity.

The goal of the rest of the book is to make sense of this �fuzzy math�.
In Section 5.1 we replace the notion of an isometry with the notion of a quasi-

isometry, in order to capture what di�erent Cayley graphs of the same group have
in common.
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Lemma 4.75. A �nite index subgroup of a �nitely generated group is �nitely
generated.

Proof. It follows from Theorem 5.29. We give here another proof, as the set
of generators of the subgroup found here will be used in future applications.

Let G be a group and S a �nite generating set of G, and let H be a �nite index
subgroup in G. Then G = H t

⊔k
i=1Hgi for some elements gi ∈ G. Consider

R = max
16i6k

|gi|S .

Then G = HB(1, R). We now prove that X = H ∩B(1, 2R+ 1) is a generating set
of H.

Let h be an arbitrary element in H and let g0 = 1, g1, . . . , gn = h be the
consecutive vertices on a geodesic in Cayley(G,S) joining 1 and h. In particular,
this implies that distS(1, h) = n.

For every 1 6 i 6 n − 1 there exist hi ∈ H such that distS(gi, hi) 6 R. Set
h0 = 1 and hn = h. Then distS(hi, hi+1) 6 2R + 1, hence hi+1 = hixi for some
xi ∈ X, for every 0 6 i 6 n − 1. It follows that h = hn = x1x2 · · ·xn, whence X
generates H and |h|X 6 |h|S = n. �

4.9. Volumes of maps of cell complexes and Van Kampen diagrams

The goal of this section is to describe several notions of volumes of maps and to
relate them to each other and to the word reductions in �nitely-presented groups.
It turns out that most of these notions are equivalent, but, in few cases, there subtle
di�erences.

Recall that in section 2.1.4 we de�ned volumes of maps between Riemannian
manifolds. More generally, the same de�nition of volume of a map applies in the
context of Lipschitz maps of Euclidean simplicial complexes, i.e., simplicial com-
plexes where each k-simplex is equipped with the metric of the Euclidean simplex
where every edge has unit length. In order to compute n-volume of a map f , �rst
compute volumes of restrictions f |∆i, for all n-dimensional simplices and then add
up the results.

4.9.1. Simplicial and combinatorial volumes of maps. Suppose that
X,Y are simplicial complexes equipped with standard metrics and f : X → Y
is a simplicial map, i.e., a map which sends every simplex to simplex so that the
restriction is linear. Then the n-dimensional simplicial volume sV oln(f) of f is just
the number of n-dimensional simplices in the domain X. Note that this, somewhat
strange, concept, is independent of the map f but is, nevertheless, useful. The more
natural concept is the one of the combinatorial volume of the map f , namely,

cV oln(f) =
∑
∆

1

cn
V ol(f(∆))

where the sum is taken over all n-simplices in X and cn is the volume of the
Euclidean simplex with unit edges. In other words, cV oln counts the number of
n-simplices in X which are not mapped by f to simplices of lower dimension.

Both de�nitions extend in the context of cellular maps of cell-complexes.
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Definition 4.76. Let X,Y be n-dimensional almost regular cell complexes. A
cellular map f : X → Y is said to be regular if for every n-cell σ in X either:

(a) f collapses σ, i.e., f(σ) ⊂ Y (n−1), or
(b) f maps the interior of σ homeomorphically to the interior of an n-cell in Y .
For instance, simplicial map of simplicial complexes is regular.
We de�ne the combinatorial n-volume cV oln(f) of f to be the total number of

n-cells inX which are not collapsed by f . The combinatorial 2-volume is called area.
Thus, this de�nition agrees with the notion of combinatorial volume for simplicial
maps.

Geometric volumes of maps. Similarly, suppose that X,Y are regular n-
dimensional cell complexes. We de�ne smooth structure on each open n-cell in
X and Y by using the identi�cation of these cells with the open n-dimensional
Euclidean balls of unit volume, coming from the regular cell complex structure on
X and Y .

We say that a cellular map f : X → Y is smooth if for every y ∈ Y which
belongs to an open n-cell, f is smooth at every x ∈ f−1(y). At points x ∈ f−1(y)
for such y we have a continuous function |Jf (x)|. We declare |Jf (x)| to be zero at
all points x ∈ X which map to Y (n−1). Then we again de�ne the geometric volume
V ol(f) by the formula (2.2) where the integral is taken over all open n-cells in X.
We extend this de�nition to the case where f is not smooth over some open m-cells
by setting V ol(f) = ∞ in this case. In the case when n = 2, V ol(f) is called the
area of f and denoted Area(f).

We now assume that X is an n-dimensional �nite regular cell complex and
Z ⊂ X is a subcomplex of dimension n − 1. The example we will be primarily
interested in is when X is the 2-disk and Z is its boundary circle.

Lemma 4.77 (Regular cellular approximation). After replacing X with its sub-
division if necessary, every cellular map f : X → Y is homotopic, rel. Z, to a
smooth regular map h : X → Y so that

V ol(h) = cV oln(h) 6 cV oln(f)

i.e., the geometric volume equals the combinatorial volume for the map h.

Proof. First, without loss of generality, we may assume that f is smooth. For
each open n-cell σ◦ in Y we consider components U of f−1(σ◦). If for some U and
p ∈ σ◦, f(U) ⊂ σ◦ \ p, then we compose f |cl(U) with the retraction of σ to its
boundary from the point p. The resulting map f1 is clearly cellular, homotopic to
f rel. Z and its n-volume is at most the n-volume of f (for both geometric and
combinatorial volumes). Moreover, for every component U of f−1

1 (σ◦), f1(U) = σ◦.
We let m(f1, σ) denote the number of components of f−1(σ◦).

Our next goal is to replace f1 with a new (cellular) map f2 so that f2 is 1-1 on
each U as above. By Sard's theorem, for every n-cell σ in Y there exists a point
p = pσ ∈ σ◦ which is a regular value of f1. Let V = Vσ ⊂ σ◦ be a small closed ball
whose interior contains p and so that f1 is a covering map over V . Let ρσ : σ → σ
denote the retraction of σ to its boundary which sends V di�eomorphically to σ◦

and which maps σ \ V to the boundary of σ. Let ρ : Y → Y be the map whose
restriction to each closed n-cell σ is ρσ and whose restriction to Y (n−1) is the
identity map. Then we replace f1 with the composition f2 := ρ◦f1. It is clear that
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the new map f2 is cellular and is homotopic to f1 rel. Z. Moreover, f2 is a trivial
covering over each open n-cell in Y . By construction, we have:

(4.7) V oln(f2) =
∑
σ

m(f1, σ)V oln(σ) =
∑
σ

m(f2, σ)V oln(σ) 6 V oln(f),

where the sum is taken over all n-cells σ in Y . Furthermore, for each n-cell σ,
f−1

2 (σ◦) is a disjoint union of open n-balls, each of which is contained in an open
n-cell in X. Moreover, the restriction of f2 to the boundary of each of these balls
factors as the composition

eσ ◦ g
where g is a homeomorphism to the Euclidean ball Bn and eσ : ∂Bn → Y (n−1)

is the attaching map of the cell σ. We then subdivide the cell complex X so that
the closure of each f−1

2 (σ◦) is a cell. Then h := f2 is the required regular map.
The required equality (and inequality) of volumes is an immediate corollary of the
equation (4.7). �

4.9.2. Topological interpretation of �nite-presentability.

Lemma 4.78. A group G is isomorphic to the fundamental group of a �nite cell
complex Y if and only if G is �nitely-presented.

Proof. 1. Suppose that G has a �nite presentation

〈X|R〉 = 〈x1, . . . , xn|r1, . . . , rm〉 .
We construct a �nite 2-dimensional cell-complex Y , as follows. The complex Y
has unique vertex v. The 1-skeleton of Y is the n-rose, the bouquet of n circles
γ1, . . . , γn with the common point v, the circles are labeled x1, . . . , xn. Observe that
the free group FX is isomorphic to π1(Y 1, v) where the isomorphism sends each xi
to the circle in Y 1 with the label xi. Thus, every word w in X∗ determines a based
loop Lw in Y 1 with the base-point v. In particular, each relator ri determines a loop
αi := Lri . We then attach 2-cells σ1, . . . , σm to Y 1 using the maps αi : S1 → Y 1

as the attaching maps. Let Y be the resulting cell complex. It is clear from the
construction that Y is almost regular.

We obtain a homomorphism φ : FX → π1(Y 1) → π1(Y ). Since each ri lies in
the kernel of this homomorphism, φ descends to a homomorphism ψ : G→ π1(Y ).
It follows from the Seifert-Van Kampen theorem that ψ is an isomorphism.

2. Suppose that Y is a �nite complex with G ∼= π1(Y ). Pick a maximal subtree
T ⊂ Y 1 and let X be the complex obtained by contracting T to a point. Since T
is contractible, the resulting map Y → X (contracting T to a point v ∈ X0) is a
homotopy-equivalence. The 1-skeleton of X is an n-rose with the edges γ1, . . . , γn
which we will label x1, . . . , xn. It is now again follows from Seifert-Van Kampen
theorem that X is a presentation complex for a �nite presentation of G: The
generators xi are the loops γi and the relators are the 2-cells (or, rather, their
attaching maps S1 → X1). �

Definition 4.79. The complex Y constructed in this proof is called the pre-
sentation complex of G associated with the presentation 〈X|R〉.

Definition 4.80. The 2-dimensional complex Y constructed in the �rst part
of the above proof is called the presentation complex of the presentation

〈x1, . . . , xn|r1, . . . , rm〉 .
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4.9.3. Van Kampen diagrams and Dehn function. Van Kampen di-
agrams of relators. Suppose that 〈X|R〉 is a (�nite) presentation of a group G
and Y be the corresponding presentation complex. Suppose that w ∈ 〈〈R〉〉 < FX
is a relator in this presentation. Then w corresponds to a null-homotopic loop λw
in the 1-skeleton Y (1) of Y . Let f : D2 → Y be an extension of λw : S1 → Y . By
the cellular approximation theorem (see e.g. [Hat02]), after subdivision of D2 as
a regular cell complex, we can assume that f is cellular. Note, however, that some
edges in this cell complex structure on D2 will be mapped to vertices and some
2-cells will be mapped to 1-skeleton. A Van Kampen diagram if an convenient (and
traditional) way to keep track of these dimension reductions.

Definition 4.81. We say that a contractible �nite planar regular cell complex
K is a tree-graded disk (a tree of discs or a discoid) provided that every edge of
K is contained in the boundary of K. In other words, K is obtained from a �nite
simplicial tree by replacing some vertices with 2-cells, which is why we think of K
as a �tree of discs�.

Figure 4.8. Example of tree-graded disk.

Lemma 4.82. For every w as above, there exists a tree-graded disk K, a regular
cell complex structure K̃ on D2, a regular cellular map f : K̃ → Y extending λw
and cellular maps h : K → Y, κ : K̃ → K so that: f = h ◦ κ.

Proof. Write w as a product

w = v1 · · · vk, vi = uiriu
−1
i , i = 1, . . . , k,

where each ri ∈ R is a de�ning relator. Then the circle S1 admits a regular cell
complex structure so that λw sends each vertex to the unique vertex v ∈ Y and
for every edge αi, the based loop f |αi represents the word vi ∈ FX . Moreover, the
arcs αi are cyclically ordered on S1 in order of appearance of vi in w. Furthermore,
each αi is subdivided in 3 arcs α+

i , βi, α
−
i so that the loop f |α±i represents u±1

i and
f |βi represents ri. We then construct a collection of pairwise disjoint arcs τi ⊂ D2

which intersect S1 only at their end-points: For each pair α+
i , α

−
i we connect the
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end-points of α+
i to that of α−i by arcs ε±i . The result is a cell-complex structure

K̃ on D2 where every vertex is in S1. There three types of 2-cells in K̃:

1 Cells Ai bounded by bigons γi ∪ ε−i ,
2 Cells Bi bounded by rectangles α+

i ∪ ε+ ∪ α
−
i ∪ ε−,

3 The rest, not containing any edges in S1.

We now collapse each 2-cell of type (3) to a point, collapse each 2-cell of type
(2) to an edge ei (so that α±i map homeomorphically onto this edge while ε±i map
to the end-points of ei). Note that α±i with their orientation inherited from S1

de�ne two opposite orientations on ei.
The result is a tree-graded disk K and a collapsing map κ : K̃ → K. We de�ne

a map h : K1 → Y so that h ◦ κ|α±i = λv±1
i

while h ◦ κ|βi = λri . Lastly, we extend
h to the 2-cells Ci := κ(Ai) in K: h : Ci → Y are the 2-cells corresponding to the
de�ning relators ri. �

Definition 4.83. A map h : K → Y constructed in the above lemma is called
a Van Kampen diagram of w in Y .

The combinatorial area cArea(h) of the Van Kampen diagram h : K → Y is
the number of 2-cells in K, i.e., the number k of relators ri used to describe w as
a product of conjugates of de�ning relators. The (algebraic) area of the loop λw in
Y , denoted A(w), is

min
h:K→Y

cArea(h)

where the minimum is taken over all Van Kampen diagrams of w in Y . Alge-
braically, the area A(w) is the least number of de�ning relators in the represen-
tation of w as the product of conjugates of de�ning relators. This explains the
signi�cance of this notion of area: It captures the complexity of the word problem
for the presentation 〈X|R〉 of the group G.

We identify all open 2-cells in Y with open 2-disks of unit area. Our next
goal is to convert arbitrary disks that bound Lw to Van Kampen diagrams. Let
f : D2 → Y be a cellular map extending λw, where D2 is given structure of a
regular cell complex W . By Lemma 4.77, we can replace f with a regular cellular
map f1 : D2 → Y , which is homotopic to f rel. Z := ∂D2, so that cArea(f1) =
Area(f1) 6 Area(f).

We use the orientation induced from D2 on each 2-cell in W . Pick a base-point
x ∈ ∂D2 which is a vertex of W . Let σ1, . . . , σm be the 2-cells in W . For each
2-cell σ = σi of W we let pσ denote a path in W (1) connecting x to ∂σ. Then,
by attaching the �tail� pσ to each ∂σ (whose orientation is induced from σ) we
get an oriented loop τσ based at x. By abusing the notation we let τσ denote the
corresponding elements of π1(W (1), x). We let λ ∈ π1(W (1), x) denote the element
corresponding to the (oriented) boundary circle of D2. We leave it to the reader to
verify that the group π1(W (1), x) is freely generated by the elements τσ and that λ
is the product ∏

σ

τσ

(in some order) of the elements τσ where each τσ appears exactly once. (This can
be shown, for instance, by induction on the number of 2-cells in W .) We renumber
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the 2-cells in W so that the above product has the form∏
σ

τσ = τσ1 . . . τσm

For each σi set φi := π1(f1)(τσi) ∈ π1(Y (1), y), y = f1(x). Then, the element
π1(f1)(λ) ∈ π1(Y (1), y) (represented by the loop λw) is the product

(4.8) φ1 . . . φm

in the group π1(Y (1), y). For every 2-cell σi ofW either σi is collapsed by f1 or not.
In the former case, φi represents a trivial element of the free group π1(Y (1), y). In
the latter case, φi has the form

uirj(i)u
−1
i

where rj(i) ∈ R is one of the de�ning relators of the presentation 〈X|R〉 and the
word ui ∈ FX corresponds to the loop f1(pσi). Therefore, we can eliminate the
elements of the second type from the product (4.8) while preserving the identity

w = φi1 · · ·φik ∈ FX .
This product decomposition, as we observed above, corresponds to a Van Kampen
diagram h : K → Y . The number k is nothing but the combinatorial area of the
map f1 above. We conclude

Proposition 4.84 (Combinatorial area equals geometric area equals algebraic
area).

A(w) = min{cArea(f) = Area(f)|f : D2 → Y },
where the minimum is taken over all regular cellular maps f extending the map
λw : S1 → Y (1).

Definition 4.85 (Dehn function). Let G be a group with �nite presentation
〈X|R〉 and the corresponding presentation complex Y . The Dehn function of G
(with respect to the �nite presentation 〈X|R〉) equals

Dehn(n) := max{A(w) : |w| 6 n}
where w's are elements in X∗ representing trivial words in G. Geometrically speak-
ing,

Dehn(n) = max
λ,`(λ)6n

min{cArea(f)|f : D2 → Y, f |∂D2 = λ}

where λ's are homotopically trivial regular cellular maps of the triangulated circle
to Y and f 's are regular cellular maps of the triangulated disk D2 to Y .
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CHAPTER 5

Coarse geometry

5.1. Quasi-isometry

We now de�ne an important equivalence relation between metric spaces: the
quasi-isometry. The quasi-isometry has two equivalent de�nitions: one which is easy
to visualize and one which makes it easier to understand why it is an equivalence
relation. We begin with the �rst de�nition, continue with the second and prove
their equivalence.

Definition 5.1. Two metric spaces (X,distX) and (Y,distY ) are quasi-isometric
if and only if there exist A ⊂ X and B ⊂ Y , separated nets, such that (A,distX)
and (B, distY ) are bi-Lipschitz equivalent.

Examples 5.2. (1) A metric space of �nite diameter is quasi-isometric
to a point.

(2) The space Rn endowed with a norm is quasi-isometric to Zn with the
metric induced by that norm.

Historically, quasi-isometry was introduced in order to formalize the relation-
ship between some discrete metric spaces (most of the time, groups) and some
�non-discrete� (or continuous) metric spaces like for instance Riemannian manifolds
etc. A particular instance of this is the relationship between hyperbolic spaces and
certain hyperbolic groups.

When trying to prove that the quasi-isometry relation is an equivalence rela-
tion, re�exivity and symmetry are straightforward, but when attempting to prove
transitivity, the following question naturally arises:

Question 5.3 ([Gro93], p. 23). Can a space contain two separated nets that
are not bi-Lipschitz equivalent?

Theorem 5.4 ([BK98]). There exists a separated net N in R2 which is not
bi-Lipschitz equivalent to Z2.

Open question 5.5 ([BK02]). When placing a point in the barycenter of each
tile of a Penrose tiling, is the resulting separated net bi-Lipschitz equivalent to Z2?

A more general version of this question: embed R2 into Rn as a plane P with
irrational slope and take B, a bounded subset of Rn with non-empty interior. Con-
sider all z ∈ Zn such that z + B intersects P . The projections of all such z on P
compose a separated net. Is such a net bi-Lipschitz equivalent to Z2?

Fortunately there is a second equivalent way of de�ning the fact that two metric
spaces are quasi-isometric, which is as follows. We begin by loosening up the
Lipschitz concept.
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Definition 5.6. Let X,Y be metric spaces. A map f : X → Y is called
(L,C)�coarse Lipschitz if

(5.1) distY (f(x), f(x′)) 6 LdistX(x, x′) + C

for all x, x′ ∈ X. A map f : X → Y is called an (L,C)�quasi-isometric embedding
if

(5.2) L−1distX(x, x′)− C 6 distY (f(x), f(x′)) 6 LdistX(x, x′) + C

for all x, x′ ∈ X. Note that a quasi�isometric embedding does not have to be an
embedding in the usual sense, however distant points have distinct images.

If X is a �nite interval [a, b] then an (L,C)�quasi�isometric embedding q :
X → Y is called a quasi-geodesic (segment). If a = −∞ or b = +∞ then q is called
quasi-geodesic ray. If both a = −∞ and b = +∞ then q is called quasi-geodesic
line. By abuse of terminology, the same names are used for the image of q.

An (L,C)�quasi-isometric embedding is called an (L,C)�quasi�isometry if it
admits a quasi�inverse map f̄ : Y → X which is also an (L,C)�quasi�isometric
embedding so that:

(5.3) distX(f̄f(x), x) 6 C, distY (ff̄(y), y) 6 C

for all x ∈ X, y ∈ Y .
Two metric spaces X,Y are quasi-isometric if there exists a quasi-isometry

X → Y .

We will abbreviate quasi-isometry, quasi�isometric and quasi-isometrically to
QI.

Exercise 5.7. Let fi : X → X be maps so that f3 is (L3, A3) coarse Lipschitz
and dist(f2, idX) 6 A2. Then

dist(f3 ◦ f1, f3 ◦ f2, ◦f1) 6 L3A2 +A3.

Definition 5.8. A metric space X is called quasi-geodesic if there exist con-
stants (L,A) so that every pair of points in X can be connected by an (L,A)�quasi-
geodesic.

In most cases the quasi�isometry constants L,C do not matter, so we shall
use the words quasi�isometries and quasi-isometric embeddings without specifying
constants.

Exercise 5.9. (1) Prove that the composition of two quasi-isometric em-
beddings is a quasi-isometric embedding, and that the composition of two
quasi-isometries is a quasi-isometry.

(2) Prove that quasi-isometry of metric spaces is an equivalence relation.

Some quasi-isometries X → X are more interesting than others. The boring
quasi-isometries are the ones which are within �nite distance from the identity:

Definition 5.10. Given a metric space (X,dist) we denote by B(X) the set
of maps f : X → X (not necessarily bijections) which are bounded perturbations of
the identity, i.e. maps such that

dist(f, idX) = sup
x∈X

dist(f(x), x) is �nite.
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In order to mod out the semigroup of quasi-isometries X → X by B(X), one
introduces a group QI(X) de�ned below. Given a metric space (X,dist), consider
the set QI(X) of equivalence classes of quasi-isometries X → X, where two quasi-
isometries f, g are equivalent if and only if dist(f, g) is �nite. In particular, the set
of quasi-isometries equivalent to idX is B(X). It is easy to see that the composition
de�nes a binary operation on QI(X), that the quasi-inverse de�nes an inverse in
this group, and that QI(X) is a group when endowed with these operations.

Definition 5.11. The group (QI(X) , ◦) is called the group of quasi-isometries
of the metric space X.

There is a natural homomorphism Isom(X) → QI(X). In general, this homo-
morphism is not injective. For instance if X = Rn then the kernel is the full group
of translations Rn. Similarly, the entire group G = Zn × F , where F is a �nite
group, maps trivially to QI(G). In general, kernel K of G→ QI(G) is a subgroup
such that for every k ∈ K the G-centralizer of k has �nite index in G, see Lemma
??. Thus, every �nitely generated subgroup in K is virtually central. In particular,
if G = K then G is virtually abelian.

Question 5.12. Is the subgroup K 6 G always virtually central? Is it at least
true that K is always virtually abelian?

The group V I(G) of virtual automorphisms of G de�ned in Section 3.4 maps
naturally to QI(G) since every virtual isomorphism φ of G (φ : G1

∼=→ G2, where
G1, G2 are �nite-index subgroups of G) induces a quasi-isometry fφ : G → G.
Indeed, φ : G1 → G2 is a quasi-isometry. Since both Gi ⊂ G are nets, φ extends to
a quasi-isometry fφ : G→ G.

Exercise 5.13. Show that the map φ → fφ projects to a homomorphism
V I(G)→ QI(G).

When G is a �nitely generated group, QI(G) is independent of the choice
of word metric. More importantly, we will see (Corollary 5.62) that every group
quasi-isometric to G admits a natural homomorphism to QI(G).

Exercise 5.14. Show that if f : X → Y is a quasi-isometric embedding such
that f(X) is r-dense in Y for some r <∞ then f is a quasi-isometry.

Hint: Construct a quasi-inverse f̄ to the map f by mapping a point y ∈ Y to
x ∈ X such that

distY (f(x), y) 6 r.

Example 5.15. The cylinder X = Sn × R with a product metric is quasi-
isometric to Y = R; the quasi-isometry is the projection to the second factor.

Example 5.16. Let h : R→ R be an L�Lipschitz function. Then the map

f : R→ R2, f(x) = (x, h(x))

is a QI embedding.
Indeed, f is

√
1 + L2�Lipschitz. On the other hand, clearly,

dist(x, y) 6 dist(f(x), f(y))

for all x, y ∈ R.
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Example 5.17. Let ϕ : [1,∞)→ R+ be a di�erentiable function so that

lim
r→∞

ϕ(r) =∞,

and there exists C ∈ R for which |rϕ′(r)| 6 C for all r. For instance, take ϕ(r) =
log(r). De�ne the function F : R2 \ B(0, 1) → R2 \ B(0, 1) which in the polar
coordinates takes the form

(r, θ) 7→ (r, θ + ϕ(r)).

Hence F maps radial straight lines to spirals. Let us check that F is L�bi-Lipschitz
for L =

√
1 + C2. Indeed, the Euclidean metric in the polar coordinates takes the

form
ds2 = dr2 + r2dθ2.

Then
F ∗(ds2) = ((rϕ′(r))2 + 1)dr2 + r2dθ2

and the assertion follows. Extend F to the unit disk by the zero map. Therefore,
F : R2 → R2, is a QI embedding. Since F is onto, it is a quasi-isometry R2 → R2.

Exercise 5.18. If f, g : X → Y are within �nite distance from each other, i.e.

sup dist(f(x), g(x)) <∞

and f is a quasi-isometry, then g is also a quasi-isometry.

Proposition 5.19. Two metric spaces (X,distX) and (Y,distY ) are quasi-
isometric in the sense of De�nition 5.1 if and only if there exists a quasi-isometry
f : X → Y .

Proof. Assume there exists an (L,C)�quasi-isometry f : X → Y . Let δ =
L(C + 1) and let A be a δ�separated ε�net in X. Then B = f(A) is a 1�separated
(Lε+ 2C)�net in Y . Moreover for any a, a′ ∈ A,

distY (f(a), f(a′)) 6 LdistX(a, a′) + C 6

(
L+

C

δ

)
distX(a, a′)

and

distY (f(a), f(a′)) >
1

L
distX(a, a′)− C >

(
1

L
− C

δ

)
distX(a, a′) =

1

L(C + 1)
distX(a, a′) .

It follows that f restricted to A and with target B is bi-Lipschitz.

Conversely, assume that A ⊂ X and B ⊂ Y are two ε�separated δ�nets, and
that there exists a bi-Lipschitz map g : A → B which is onto. We de�ne a map
f : X → Y as follows: for every x ∈ X we choose one ax ∈ A at distance at most δ
from x and de�ne f(x) = g(ax).

N.B. The axiom of choice makes here yet another important appearance, if we
do not count the episodic appearance of Zorn's Lemma, which is equivalent to the
axiom of choice. Details on this axiom will be provided later on. Nevertheless, when
X is proper (for instance X is a �nitely generated group with a word metric) there
are �nitely many possibilities for ax, so the axiom of choice need not be assumed,
in the �nite case it follows from the Zermelo�Fraenkel axioms.
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Since f(X) = g(A) = B it follows that Y is contained in the ε�tubular nei-
ghborhood of f(X). For every x, y ∈ X,

distY (f(x), f(y)) = distY (g(ax), g(ay)) 6 LdistX(ax, ay) 6 L(distX(x, y) + 2ε) .

Also

distY (f(x), f(y)) = distY (g(ax), g(ay)) >
1

L
distX(ax, ay) >

1

L
(distX(x, y)− 2ε) .

Now the proposition follows from Exercise 5.14. �

Below is yet another variation on the de�nition of quasi-isometry, based on
relations.

First, some terminology: Given a relation R ⊂ X × Y , for x ∈ X let R(x)
denote {(x, y) ∈ X × Y : (x, y) ∈ R}. Similarly, de�ne R(y) for y ∈ Y . Let πX , πY
denote the projections of X × Y to X and Y respectively.

Definition 5.20. Let X and Y be metric spaces. A subset R ⊂ X × Y is
called an (L,A)�quasi-isometric relation if the following conditions hold:

1. Each x ∈ X and each y ∈ Y are within distance 6 A from the projection of
R to X and Y , respectively.

2. For each x, x′ ∈ πX(R)

distHaus(πY (R(x)), πY (R(x′))) 6 Ldist(x, x′) +A.

3. Similarly, for each y, y′ ∈ πY (R)

distHaus(πX(R(y)), πX(R(y′))) 6 Ldist(y, y′) +A.

Observe that for any (L,A)�quasi-isometric relation R, for all pair of points
x, x′ ∈ X, and y ∈ R(x), y′ ∈ R(x′) we have

1

L
dist(x, x′)− A

L
6 dist(y, y′) 6 Ldist(x, x′) +A.

The same inequality holds for all pairs of points y, y′ ∈ Y , and x ∈ R(y), x′ ∈ R(y′).
In particular, by using the axiom of choice as in the proof of Proposition 5.19,

if R is an (L,A)�quasi-isometric relation between nonempty metric spaces, then
it induces an (L1, A1)�quasi-isometry X → Y . Conversely, every (L,A)�quasi-
isometry is an (L2, A2)�quasi-isometric relation.

In some cases, in order to show that a map f : X → Y is a quasi-isometry, it
su�ces to check a weaker version of (5.3). We discuss this weaker version below.

Let X,Y be topological spaces. Recall that a (continuous) map f : X → Y is
called proper if the inverse image f−1(K) of each compact in Y is a compact in X.

Definition 5.21. A map f : X → Y between proper metric spaces is called
uniformly proper if f is coarse Lipschitz and there exists a function ψ : R+ → R+

such that diam(f−1(B(y,R))) 6 ψ(R) for each y ∈ Y,R ∈ R+. Equivalently, there
exists a proper continuous function η : R+ → R+ such that dist(f(x), f(x′)) >
η(dist(x, x′)).

The functions ψ and η are called upper and lower distortion function, respec-
tively.

For instance, the following function is L-Lipschitz, proper, but not uniformly
proper:

f(x) = (|x|, arctan(x)).

129



Exercise 5.22. 1. Composition of uniformly proper maps is again uniformly
proper.

2. If f1, f2 : X → Y are such that dist(f1, f2) <∞ and f1 is uniformly proper,
then so is f2.

Lemma 5.23. Suppose that Y is a geodesic metric space, f : X → Y is a
uniformly proper map whose image is r-dense in Y for some r < ∞. Then f is a
quasi-isometry.

Proof. Construct a quasi-inverse to the map f . Given a point y ∈ Y pick
a point f̄(y) := x ∈ X such that dist(f(x), y) 6 r. Let us check that f̄ is coarse
Lipschitz. Since Y is a geodesic metric space it su�ces to verify that there is a
constant A such that for all y, y′ ∈ Y with dist(y, y′) 6 1, one has:

dist(f̄(y), f̄(y′)) 6 A.

Pick t > 2r+ 1 which is in the image of the lower distortion function η. Then take
A ∈ η−1(t).

It is also clear that f, f̄ are quasi-inverse to each other. �

Lemma 5.24. Suppose that G is a �nitely generated group equipped with word
metric and G y X is a properly discontinuous isometric action on a metric space
X. Then for every o ∈ X the orbit map f : G → X, f(g) = g · o, is uniformly
proper.

Proof. 1. Let S denote the �nite generating set of G and set

L = max
s∈S

(d(s(o), o).

Then for every g ∈ G, dS(gs, g) = 1, while

d(gs(o), g(o)) = d(s(o), o) 6 L.

Therefore, f is L-Lipschitz.
2. De�ne the function

η(n) = min{d(go, o) : |g| = n}.

Since the action Gy X is properly discontinuous,

lim
n→∞

η(n) =∞.

We extend η linearly to unit intervals [n, n + 1] ⊂ R and retain the notation η for
the extension. Thus, η : R+ → R+ is continuous and proper. By de�nition of the
function η, for every g ∈ G,

d(f(g), f(1)) = d(go, o) > η(d(g, 1)).

Since G acts on itself and on X isometrically, it follows that

d(f(g), f(h)) > η(d(g, h)), ∀g, h ∈ G.

Thus, the map f is uniformly proper. �

Coarse convergence.

Definition 5.25. Suppose that X is a proper metric space. A sequence (fi)
of maps X → Y is said to coarsely uniformly converge to a map f : X → Y on
compacts, if:
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There exists a number R < ∞ so that for every compact K ⊂ X, there exits
iK so that for all i > iK ,

∀x ∈ K, d(fi(x), f(x)) 6 R.

Proposition 5.26 (Coarse Arzela�Ascoli theorem.). Fix real numbers L,A
and D and let X,Y be proper metric spaces so that X admits a separated R-net.
Let fi : X → Y be a sequence of (L1, A1)-Lipschitz maps, so that for some points
x0 ∈ X, y0 ∈ Y we have d(f(x0), y0) 6 D. Then there exists a subsequence (fik),
and a (L2, A2)�Lipschitz map f : X → Y , so that

c

lim
k→∞

fi = f.

Furthermore, if the maps fi are (L1, A1) quasi-isometries, then f is also an (L3, A3)
quasi-isometry.

Proof. Let N ⊂ X be a separated net. We can assume that x0 ∈ N . Then the
restrictions fi|N are L′-Lipschitz maps and, by the usual Arzela-Ascoli theorem,
the sequence (fi|N) subconverges (uniformly on compacts) to an L′ -Lipschitz map
f : N → Y . We extend f to X by the rule: For x ∈ X pick x′ ∈ N so that
d(x, x′) 6 R and set f(x) := f(x′). Then f : X → Y is an (L2, A2)�Lipschitz.
For a metric ball B(x0, r) ⊂ X, r > R, there exists ir so that for all i > ir and
all x ∈ N ∩ B(x0, r), we have d(fi(x), f(x)) 6 1. For arbitrary x ∈ K, we �nd
x′ ∈ N ∩B(x0, r +R) so that d(x′, x) 6 R. Then

d(fi(x), f(x)) 6 d(fi(x
′), f(x′)) 6 L1(R+ 1) +A.

This proves coarse convergence. The argument for quasi-isometries is similar. �

5.2. Group-theoretic examples of quasi-isometries

We begin by noting that given a �nitely generated group G endowed with a
word metric the space B(G) is particularly easy to describe. To begin with it
contains all the right translations Rg : G→ G, Rg(x) = xg (see Remark 4.61).

Lemma 5.27. In a �nitely generated group (G,distS) endowed with a word
metric, the set of maps B(G) is consisting of piecewise right translations. That
is, given a map f ∈ B(G) there exist �nitely many elements h1, . . . , hn in G and
a decomposition G = T1 t T1 t . . . t Tn such that f restricted to Ti coincides with
Rhi .

Proof. Since f ∈ B(G) there exists a constant R > 0 such that for every
x ∈ G, dist(x, f(x)) 6 R. This implies that x−1f(x) ∈ B(1, R). The ball B(1, R) is
a �nite set. We enumerate its distinct elements {h1, . . . , hn}. Thus for every x ∈ G
there exists hi such that f(x) = xhi = Rhi(x) for some i ∈ {1, 2, . . . , n}. We de�ne
Ti = {x ∈ X ; f(x) = Rhi(x)}. If there exists x ∈ Ti ∩ Tj then f(x) = xhi = xhj ,
which implies hi = hj , a contradiction. �

The main example of quasi-isometry, which partly justi�es the interest in such
maps, is given by the following result, proved in the context of Riemannian mani-
folds �rst by A. Schwarz [�va55] and, 13 years later, by J. Milnor [Mil68]. At the
time, both were motivated by relating volume growth in universal covers of compact
Riemannian manifolds and growth of their fundamental groups. Note that in the
literature it is at times this theorem (stating the equivalence between the growth
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function of the fundamental group of a compact manifold and that of the universal
cover of the manifold) that is referred to as the Milnor�Schwarz Theorem, and not
Theorem 5.29 below.

In fact, it had been observed already by V.A. Efremovich in [Efr53] that two
growth functions as above (i.e. of the volume of metric balls in the universal cover of
a compact Riemannian manifold, and of the cardinality of balls in the fundamental
group with a word metric) increase at the same rate.

Remark 5.28 (What is in the name?). Schwarz is a German-Jewish name
which was translated to Russian (presumably, at some point in the 19-th century)
as Xvarc. In the 1950-s, the AMS, in its in�nite wisdom, decided to translate
this name to English as �varc. A. Schwarz himself eventually moved to the United
States and is currently a colleague of the second author at University of California,
Davis. See http://www.math.ucdavis.edu/∼schwarz/bion.pdf for his mathematical
autobiography. The transformation

Schwarz→Xvarc → �varc

is a good example of a composition of a quasi-isometry and its quasi-inverse.

Theorem 5.29 (Milnor�Schwarz). Let (X,dist) be a proper geodesic metric
space (which is equivalent, by Theorem 1.29, to X being a length metric space
which is complete and locally compact) and let G be a group acting geometrically
on X. Then:

(1) the group G is �nitely generated;
(2) for any word metric distw on G and any point x ∈ X, the map G → X

given by g 7→ gx is a quasi-isometry.

Proof. We denote the orbit of a point y ∈ X by Gy. Given a subset A in X
we denote by GA the union of all orbits Ga with a ∈ A.

Step 1: The generating set.

As every geometric action, the action G y X is cobounded: There exists a
closed ball B of radius D such that GB = X. Since X is proper, B is compact.
De�ne

S = {s ∈ G ; s 6= 1 , sB ∩B 6= ∅} .
Note that S is �nite because the action of G is proper, and that S−1 = S by the
de�nition of S.

Step 2: Outside of the generating set.
Now consider inf{dist(B, gB) ; g ∈ G \ (S ∪ {1})}. For some g ∈ G \ (S ∪ {1})

the distance dist(B, gB) is a positive constant R, by the de�nition of S. The set
H of elements h ∈ G such that dist(B, hB) 6 R is contained in the set {g ∈
G ; gB(x,D+R)∩B(x,D+R) 6= ∅}, hence it is �nite. Now inf{dist(B, gB) ; g ∈
G\ (S∪{1})} = inf{dist(B, gB) ; g ∈ H \ (S∪{1})} and the latter in�mum is over
�nitely many positive numbers, therefore there exists h0 ∈ H \ (S ∪ {1}) such that
dist(B, h0B) realizes that in�mum, which is therefore positive. Let then 2d be this
in�mum. By de�nition dist(B, gB) < 2d implies that g ∈ S ∪ {1}.

Step 3: G is �nitely generated.

Consider a geodesic [x, gx] and k =
⌊

dist(x,gx)
d

⌋
. Then there exists a �nite

sequence of points on the geodesic [x, gx], y0 = x, y1, . . . , yk, yk+1 = gx such that
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dist(yi, yi+1) 6 d for every i ∈ {0, . . . , k}. For every i ∈ {1, . . . , k} let hi ∈ G
be such that yi ∈ hiB. We take h0 = 1 and hk+1 = g. As dist(B, h−1

i hi+1B) =

dist(hiB, hi+1B) 6 dist(yi, yi+1) 6 d it follows that h−1
i hi+1 = si ∈ S, that is

hi+1 = hisi. Then g = hk+1 = s0s1 · · · sk. We have thus proved that G is generated
by S, consequently G is �nitely generated.

Step 4: The quasi-isometry.
Since all word metrics on G are bi-Lipschitz equivalent it su�ces to prove (2)

for the word metric distS , where S is the �nite generating set found as above
for the chosen arbitrary point x. The space X is contained in the 2D�tubular
neighborhood of the image Gx of the map de�ned in (2). It therefore remains to
prove that the map is a quasi-isometric embedding. The previous argument proved
that |g|S 6 k + 1 6 1

ddist(x, gx) + 1. Now let |g|S = m and let w = s′1 · · · s′m be a
word in S such that w = g in G. Then, by the triangle inequality,

dist(x, gx) = dist(x, s′1 · · · s′mx) 6 dist(x, s′1x) + dist(s′1x, s
′
1s
′
2x) + . . .+

+dist(s′1 · · · s′m−1x, s
′
1 · · · s′mx) =

m∑
i=1

dist(x, s′ix) 6 2Dm = 2D|g|S .

We have, thus, obtained that for any g ∈ G,

ddistS(1, g)− d 6 dist(x, gx) 6 2distS(1, g) .

Since both the word metric distS and the metric dist on X are left-invariant
with respect to the action of G, in the above argument, 1 ∈ G can be replaced by
any element h ∈ G. �

Corollary 5.30. Given M a compact connected Riemannian manifold, let M̃
be its universal covering endowed with the pull-back Riemannian metric, so that the

fundamental group π1(M) acts isometrically on M̃ .

Then the group π1(M) is �nitely generated, and the metric space M̃ is quasi-
isometric to π1(M) with some word metric.

A natural question to ask is whether two in�nite �nitely generated groupsG and
H that are quasi-isometric are also bi-Lipschitz equivalent. In fact, this question
was asked in [Gro93], p. 23. We discuss this question in Chapter ??.

Corollary 5.31. Let G be a �nitely generated group.

(1) If G1 is a �nite index subgroup in G then G1 is also �nitely generated;
moreover the groups G and G1 are quasi-isometric.

(2) Given a �nite normal subgroup N in G, the groups G and G/N are quasi-
isometric.

Proof. (1) is a particular case of Theorem 5.29, with G2 = G and X a Cayley
graph of G.

(2) follows from Theorem 5.29 applied to the action of the group G on a Cayley
graph of the group G/N . �
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Lemma 5.32. Let (X,disti), i = 1, 2, be proper geodesic metric spaces. Suppose
that the action G y X is geometric with respect to both metrics dist1,dist2. Then
the identity map

id : (X,dist1)→ (X,dist2)

is a quasi-isometry.

Proof. The group G is �nitely generated by Theorem 5.29, choose a word
metric distG on G corresponding to any �nite generating set. Pick a point x0 ∈ X;
then the maps

fi : (G,distG)→ (X,disti), fi(g) = g(x0)

are quasi-isometries, let f̄i denote their quasi-inverses. Then the map

id : (X,dist1)→ (X,dist2)

is within �nite distance from the quasi-isometry f2 ◦ f̄1. �

Corollary 5.33. Let dist1,dist2 be as in Lemma 5.32. Then any geodesic γ
with respect to the metric dist1 is a quasi-geodesic with respect to the metric dist2.

Lemma 5.34. Let X be a proper geodesic metric space, Gy X is a geometric
action. Suppose, in addition, that we have an isometric properly discontinuous
action Gy X ′ on another metric space X ′ and a G-equivariant coarsely Lipschitz
map f : X → X ′. Then f is uniformly proper.

Proof. Pick a point p ∈ X and set o := f(p). We equip G with a word metric
corresponding to a �nite generating set S of G; then the orbit map φ : g 7→ g(p), φ :
G→ X is a quasi-isometry by Milnor�Schwarz theorem. We have the second orbit
map ψ : G→ X ′, ψ(g) = g(p). The map ψ is uniformly proper according to Lemma
5.24. We leave it to the reader to verify that

dist(f ◦ φ, ψ) <∞.

Thus, the map f ◦ φ is uniformly proper as well (see Exercise 5.22). Taking φ̄ :
X → G, a quasi-inverse to φ, we see that the composition

f ◦ φ ◦ φ̄

is uniformly proper too. Since

dist(f ◦ φ ◦ φ̄, f) <∞,

we conclude that f is also uniformly proper. �

Let G y X,G y X ′ be isometric actions and let f : X → X ′ be a quasi-
isometric embedding. We say that f is (quasi) equivariant if for every g ∈ G

dist(g ◦ f, f ◦ g) 6 C,

where C <∞ is independent of G.

Lemma 5.35. Suppose that X,X ′ are proper geodesic metric spaces, G,G′ are
groups acting geometrically on X and X ′ respectively and ρ : G→ G′ is an isomor-
phism. Then there exists a ρ�equivariant quasi-isometry f : X → X ′.
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Proof. Pick points x ∈ X, x′ ∈ X ′. According to Theorem 5.29 the maps

G→ G · x ↪→ X, G′ → G′ · x′ ↪→ X ′

are quasi-isometries; therefore the map

f : G · x→ G′ · x, f(gx) := ρ(g)x

is also a quasi-isometry.
We now de�ne a G�equivariant projection π : X → X such that π(X) = G · x,

and π is at bounded distance from the identity map on X. We start with a closed
ball B in X such that GB = X. Using the axiom of choice, pick a subset ∆ of B
intersecting each orbit of G in exactly one point. For every y ∈ X, there exists a
unique g ∈ G such that gy ∈ ∆. De�ne π(y) = g−1x . Clearly distX(y, π(y)) =
dist(gy, x) 6 diam(B).

Then the map f̃ below is a ρ�equivariant quasi-isometry:

f̃ : X → X ′, f̃ = f ◦ π,
since f̃ is a composition of two equivariant quasi-isometries. �

Corollary 5.36. Two virtually isomorphic (VI) �nitely generated groups are
quasi-isometric (QI).

Proof. Let G be a �nitely generated group, H < G a �nite index subgroup
and F /H a �nite normal subgroup. According to Corollary 5.31, G is QI to H/F .

Recall now that two groups G1, G2 are virtually isomorphic if there exist �nite
index subgroups Hi < Gi and �nite normal subgroups Fi / Hi, i = 1, 2, so that
H1/F1

∼= H2/F2. Since Gi is QI to Hi/Fi, we conclude that G1 is QI to G2. �

The next example shows that VI is not equivalent to QI.

Example 5.37. Let A be a matrix diagonalizable over R in SL(2,Z) so that
A2 6= I. Thus the eigenvalues λ, λ−1 of A have absolute value 6= 1. We will use the
notation Hyp(2,Z) for the set of such matrices. De�ne the action of Z on Z2 so
that the generator 1 ∈ Z acts by the automorphism given by A. Let GA denote the
associated semidirect product GA := Z2 oA Z. We leave it to the reader to verify
that Z2 is a unique maximal normal abelian subgroup in GA. By diagonalizing the
matrix A, we see that the group GA embeds as a discrete cocompact subgroup in
the Lie group

Sol3 = R2 oD R
where

D(t) =

[
et 0
0 e−t

]
, t ∈ R.

In particular, GA is torsion-free. The group Sol3 has its left-invariant Riemannian
metric, so GA acts isometrically on Sol3 regarded as a metric space. Hence, every
group GA as above is QI to Sol3. We now construct two groups GA, GB of the
above type which are not VI to each other. Pick two matrices A,B ∈ Hyp(2,Z) so
that for every n,m ∈ Z \ {0}, An is not conjugate to Bm. For instance, take

A =

[
2 1
1 1

]
, B =

[
3 2
1 1

]
.

(The above property of the powers of A and B follows by considering the eigenvalues
of A and B and observing that the �elds they generate are di�erent quadratic
extensions of Q.) The group GA is QI to GB since they are both QI to Sol3. Let us
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check that GA is not VI to GB . First, since both GA, GB are torsion-free, it su�ces
to show that they are not commensurable, i.e., do not contain isomorphic �nite
index subgroups. Let H = HA be a �nite index subgroup in GA. Then H intersects
the normal rank 2 abelian subgroup of GA along a rank 2 abelian subgroup LA.
The image of H under the quotient homomorphism GA → GA/Z2 = Z has to be
an in�nite cyclic subgroup, generated by some n ∈ N. Therefore, HA is isomorphic
to Z2 oAn Z. For the same reason, HB

∼= Z2 oBm Z. It is easy to see that an
isomorphism HA → HB would have to carry LA isomorphically to LB . However,
this would imply that An is conjugate to Bm. Contradiction.

Example 5.38. Another example where QI does not imply VI is as follows.
Let S be a closed oriented surface of genus n > 2. Let G1 = π1(S) × Z. Let M
be the total space of the unit tangent bundle UT (S) of S. Then the fundamental
group G2 = π1(M) is a nontrivial central extension of π1(S):

1→ Z→ G2 → π1(S)→ 1,

G2 =
〈
a1, b1, . . . , an, bn, t|[a1, b1] · · · [an, bn]t2n−2, [ai, t], [bi, t], i = 1, . . . , n

〉
.

We leave it to the reader to check that passing to any �nite index subgroup in G2

does not make it a trivial central extension of the fundamental group of a hyperbolic
surface. On the other hand, since π1(S) is hyperbolic, the groups G1 and G2 are
quasi-isometric, see section 8.14.

Another example of quasi-isometry is the following.

Example 5.39. All non-abelian free groups of �nite rank are quasi-isometric
to each other.

Proof. We present two proofs: One is algebraic and the other is geometric.
1. Algebraic proof. We claim that all free groups Fn, 2 6 n <∞ groups are

commensurable. Indeed, let a, b denote the generators of F2. De�ne the epimor-
phism ρm : F2 → Zm by sending a to 1 and b to 0. Then the kernel Km of ρm has
index m in F2. Then Km is a �nitely generated free group F . In order to compute
the rank of F , it is convenient to argue topologically. Let R be a �nite graph with
the (free) fundamental group π1(R). Then χ(R) = 1 − b1(R) = 1 − rank (π1(R)).
Let R2 be such a graph for F2, then χ(R2) = 1−2 = −1. Let R→ R2 be them-fold
covering corresponding to the inclusion Fn ↪→ F2. Then χ(R) = mχ(R2) = −m.
Hence, rank (F ) = 1 − χ(R) = 1 + m. Thus, for every n = 1 + m > 2, we have
a �nite-index inclusion Fn ↪→ F2. Since commensurability is a transitive relation
which implies quasi-isometry, the claim follows.

2. Geometric proof. The Cayley graph of Fn with respect to a set of n
generators and their inverses is the regular simplicial tree of valence 2n.

We claim that all regular simplicial trees of valence at least 3 are quasi-isometric.
We denote by Tk the regular simplicial tree of valence k and we show that T3 is
quasi-isometric to Tk for every k > 4.

We de�ne a piecewise-linear map q : T3 → Tk as in Figure 5.1: Sending all
edges drawn in thin lines isometrically onto edges and collapsing each edge-path of
length k − 3 (drawn in thick lines) to a single vertex. The map q thus de�ned is
surjective and it satis�es the inequality

1

k − 2
dist(x, y)− 1 6 dist(q(x), q(y)) 6 dist(x, y) .

136



1

2

31

2

3

1

2

3 1 1

1

2

3

1

1

11
1

1

T

q
5

3
T6

Figure 5.1. All regular simplicial trees are quasi-isometric.

�

5.3. Metric version of the Milnor�Schwarz Theorem

In the case of a Riemannian manifold, or more generally a metric space, without
a geometric action of a group, one can still use a purely metric argument and create
a discretization of the manifold/space, that is a simplicial graph quasi-isometric to
the manifold. We begin with a few simple observations.

Lemma 5.40. Let X and Y be two discrete metric spaces that are bi-Lipschitz
equivalent. If X is uniformly discrete then so is Y .

Proof. Assume f : X → Y is an L�bi-Lipschitz bijection� where L > 1, and
assume that φ : R+ → R+ is a function such that for every r > 0 every closed ball
B(x, r) in X contains at most φ(r) points. Every closed ball B(y,R) in Y is in
1-to-1 correspondence with a subset of B(f−1(y), LR), whence it contains at most
φ(LR) points. �

Notation: Let A be a subset in a metric space. We denote by Gκ(A) the simplicial
graph with set of vertices A and set of edges

{(a1, a2) | a1, a2 ∈ A, 0 < dist(a1, a2) 6 κ} .

In other words, Gκ(A) is the 1-skeleton of the Rips complex Ripsκ(A).
As usual, we will equip Gκ(A) with the standard metric.
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Theorem 5.41. (1) Let (X,dist) be a proper geodesic metric space (equiv-
alently a complete, locally compact length metric space, see Theorem 1.29).
Let N be an ε�separated δ�net, where 0 < ε < 2δ < 1 and let G be the
metric graph G8δ(N) . Then the metric space (X,dist) and the graph G
are quasi-isometric. More precisely, for all x, y ∈ N we have that

(5.4)
1

8δ
distX(x, y) 6 distG(x, y) 6

3

ε
distX(x, y) .

(2) If, moreover, (X,dist) is either a complete Riemannian manifold of bounded
geometry or a metric simplicial complex of bounded geometry, then G is a
graph of bounded geometry.

Proof. (1) Let x, y be two �xed points in N . If distX(x, y) 6 8δ then, by
construction, distG(x, y) = 1 and both inequalities in (5.4) hold. Let us suppose
that distX(x, y) > 8δ.

The distance distG(x, y) is the length s of an edge-path e1e2 . . . es, where x is
the initial vertex of e1 and y is the terminal vertex of es. It follows that

distG(x, y) = s >
1

8δ
distX(x, y) .

The distance distX(x, y) is the length of a geodesic c : [0,distX(x, y)]→ X. Let

t0 = 0, t1, t2, . . . , tm = distX(x, y)

be a sequence of numbers in [0,distX(x, y)] such that 5δ 6 ti+1−ti 6 6δ, for every i ∈
{0, 1, . . . ,m− 1}.

Let xi = c(ti), i ∈ {0, 1, 2, . . . ,m}. For every i ∈ {0, 1, 2, . . . ,m} there exists
wi ∈ N such that distX(xi, wi) 6 δ . We note that w0 = x,wm = y. The choice of
ti implies that

3δ 6 distX(wi, wi+1) 6 8δ , for every i ∈ {0, . . . ,m− 1}

In particular:
• wi and wi+1 are the endpoints of an edge in G , for every i ∈ {0, . . . ,m−1} ;

• distX(xi, xi+1) > dist(wi, wi+1)− 2δ > dist(wi, wi+1)− 2
3dist(wi, wi+1) =

1
3dist(wi, wi+1) .

We can then write
(5.5)

distX(x, y) =

m−1∑
i=0

distX(xi, xi+1) >
1

3

m−1∑
i=0

dist(wi, wi+1) >
ε

3
m >

ε

3
distG(x, y) .

(2) According to the discussion following De�nition 2.60, the graph G has
bounded geometry if and only if its set of vertices with the induced simplicial
distance is uniformly discrete. Lemma 5.40 implies that it su�ces to show that the
set of vertices of G (i.e. the net N) with the metric induced from X is uniformly
discrete.

When X is a Riemannian manifold, this follows from Lemma 2.58. When X
is a simplicial complex this follows from the fact that the set of vertices of X is
uniformly discrete. �
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Note that one can also discretize a Riemannian manifold M (i.e. of replace M
by a quasi-isometric simplicial complex) using Theorem 2.62, which implies:

Theorem 5.42. Every Riemannian manifold M of bounded geometry is quasi-
isometric to a simplicial complex homeomorphic to M .

5.4. Metric �lling functions

In this section we de�ne notions of loops, �lling disks and minimal �lling area
in the setting of geodesic metric spaces, following [Gro93]. Let X be a geodesic
metric space and δ > 0 be a �xed constant. In this present setting of isoperimetric
inequalities, by loops we always mean Lipschitz maps c from the unit circle S1 to
X. We will use the notation `X for the length of an arc in X.

A δ-loop in X is a triangulated circle S1 together with a (Lipschitz) map c :
S1 → X, so that for `X(c(e)) 6 δ for every edge e of the triangulation.

A �lling disk of c is a pair consisting of a triangulation D of the 2-dimensional
unit disk D2 extending the triangulation of its boundary circle S1 and a map

d : D(0) → X

extending the map c restricted to the set of boundary vertices. Here D(0) is the set
of vertices in D. Sometimes by abuse of language we call the image of the map d
also �lling disk of c.

We next extend the map d to the 1-skeleton of D. For every edge e of D
(not contained in the boundary circle) we pick a geodesic connecting the images of
the end-points of e under d. For every boundary edge e of the 2-disk we use the
restriction of the map d to e in order to connect the images of the vertices. The
triangles in X thus obtained are called bricks. The length of a brick is the sum of
the lengths of its edges. The mesh of a �lling disk is the maximum of the lengths
of its bricks. By abusing the notation, we will refer to this extension of d to D(1)

as a δ-�lling disk as well.
A δ-�lling disk of c is a �lling disk with mesh at most δ. The combinatorial

area of such a disk is just the number of 2-simplices in the triangulation of D2.

Definition 5.43. The δ-�lling area of c is the minimal combinatorial area of a
δ-�lling disk of c. We will use the double notation Arδ(c) = P (c, δ) for the δ-�lling
area.

Note that Arδ is a function de�ned on the set Ω of loops and taking values in
Z+.

We, likewise, de�ne the δ-�lling radius function as

rδ : Ω→ R+,

rδ(c) = inf

{
max
x∈D(0)

distX(d(x), c(S1)) ; d is a δ − �lling disk of the loop c

}
.

Both functions depend on the parameter δ, and may take in�nite values. In
order to obtain �nite valued functions, we add the hypothesis that there exists a
su�ciently large µ so that for all δ > µ, every loop has a δ-�lling disk. Such spaces
will be called µ-simply connected.

Exercise 5.44. Show that a geodesic metric space is coarsely simply-connected
in the sense of De�nition 6.13 if and only if X is µ-simply connected for some µ.
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In the sequel we only deal with µ-simply connected metric spaces. We occa-
sionally omit to recall this hypothesis.

We can now de�ne the δ-�lling function Arδ : R+ → Z+, Arδ(`) := the maximal
area needed to �ll a loop of length at most `. For our convenience, we use in parallel
the notation P (`, δ) for this function. We will also use the name δ-isoperimetric
function for Arδ(`).

To get a better feel for the δ-�lling function, let us relate Arδ with the usual
area function in the case X = R2. Recall (see [Fed69]) that every loop c in R2

satis�es the Euclidean isoperimetric inequality

(5.6) 4πA(c) 6 `2(c),

where the equality is realized in the case when c is a round circle. Suppose that c
is a loop in R2 and d : D(1) → X is a δ-�lling disk for c. Then d extends to a map
d : D2 → R2, where we extend the restriction of d to each 2-simplex σ by the least
area disk bounded by the loop d|∂σ. In view of the isoperimetric inequality (5.6)
he resulting map d will have area

(5.7) Area(d) 6
∑
σ

`(d∂σ) 6 Arδ(d)
δ2

4π
,

where the sum is taken over all 2-simplices in D. In general, it is impossible to
estimate Arδ from above, however, one can do so for carefully chosen maps d.
Namely, we will think of the map c as a function f of the angular coordinate
θ ∈ [0, 2π]. Suppose that f is L-Lipschitz. Choose coordinates in R2 so that the
origin is c(0) and de�ne a function

F (r, θ) = rc(θ).

Then F is L′ =
√

1 + 4π2L-Lipschitz. Subdivide the rectangle [0, 1] × [0, 2π] (the
domain of F ) in subrectangles of width ε1 and height ε2 and draw the diagonal in
each rectangle. Then the restriction of F to the boundary of each 2-simplex of the
resulting triangulation is a 2L′(ε1 + ε2)-brick. Therefore, in order to ensure that F
is a δ-�lling of the map f , we take:

n = d4L
′

δ
e,m = d8πL

′

δ
e.

Hence, Arδ(c) is at most

2nm 6
1

δ2
32(L′)2 =

1 + 4π2

δ2
L2.

In terms of the length ` of c,

Arδ(c) 6
1 + 4π2

δ24π2
`2 6

2

δ2
`2.

Likewise, using the radius function we de�ne the �lling radius function as

r : R+ → R+, r(`) = sup{r(c) ; c loop of length 6 `} .

Two �lling functions corresponding to di�erent δ's for a metric space, or, more
generally, for two quasi-isometric metric spaces, satisfy a certain equivalence rela-
tion.
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In a geodesic metric space X that is µ-simply connected, if µ 6 δ1 6 δ2 then
one can easily see, by considering partitions of bricks of length at most δ2 into
bricks of length at most δ1 that

Aδ1(`) 6 Aδ2(`) 6 Aδ2(δ1)Aδ1(`)

and that
rδ1(`) 6 rδ2(`) 6 rδ2(δ1) rδ1(`) .

Exercise 5.45. (1) Prove that if two geodesic metric spaces Xi, i = 1, 2,
are coarsely simply connected and quasi-isometric, then their �lling func-
tions, respectively their �lling radii, are asymptotically equal. Hint: Sup-
pose that f : X1 → X2 is an (L,A)-quasi-isometry. Start with a 1-loop
c1 : S1 → X1, then �ll-in c2 = f ◦ c in X2 using a δ2-disk D2, where
δ2 = L + A; then compose D2 with quasi-inverse to f in order to �ll-in
the original loop c1 using a δ1-disk D1, where δ1 = Lδ2 + A. Now, argue
that Arδ1(c) 6 Arδ2(c2)).

(2) Prove that for a �nitely presented group G the metric �lling function
for an arbitrary Cayley graph ΓG and the Dehn function have the same
order. Hint: It is clear that Dehn(`) 6 Arµ(`), where µ is the length
of the longest relators of G. Use optimal Van Kampen diagrams for a
loop c of length `, to construct µ-�lling disks in ΓG whose area is 6
Dehn(`) + 4(`+ 1).

Note that one can also de�ne Riemannian �lling functions in the context of
simply-connected Riemannian manifolds M : Given a Lipschitz loop c in M one de-
�nes Area(c) to be the least area of a disk inM bounding c. Then the isoperimetric
function IPM (`) of the manifold M is

IPM (`) = sup{A(c) : length(c) 6 `}
where `(c) is the length of c. Then, assuming that M admits a geometric action of
a group G, we have

Arδ(`) ≈ Dehn(`) ≈ IPM (`),

see [BT02].
The order of the �lling function of a metric space X is also called the �lling

order of X. Besides the fact that it is a quasi-isometry invariant, the interest of
the �lling order comes from the following result, a proof of which can be found for
instance in [Ger93].

Proposition 5.46. In a �nitely presented group G the following statements
are equivalent.

(S1) G has solvable word problem.
(S2) the Dehn function of G is recursive.
(S3) the �lling radius function of G is recursive.

If in a metric space X the �lling function Ar(`) satis�es Ar(`) ≺ ` or `2 or e`,
it is said that the space X satis�es a linear, quadratic or exponential isoperimetric
inequality .

Filling area in Rips complex. Suppose that X is µ-connected. Instead of
�lling closed curves in X by δ-disks, one can �ll in polygonal loops in P = Ripsδ(X)
with simplicial disks. Let c be a δ-loop in X. Then we have a triangulation of the
circle S1 so that diam(c(∂e)) 6 δ for every edge e of the triangulation. Thus,
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we de�ne a loop cδ in P by replacing arcs c(∂e) with edges of P connecting the
end-points of these arcs. Then

δc− length(cδ) = δlength(cδ) > length(c)

since every edge of P has unit length. It is clear that for δ > 0 the map

{loops in X of length 6 `} → {loops in P of length 6
`

δ
}

c 7→ cδ

is surjective. Furthermore, every δ-disk D which �lls in c yields a simplicial map
Dδ : D2 → P which is an extension of cδ: The maps D and Dδ agree on the vertices
of the triangulation of D2, and for every 2-simplex σ in D2, the map Dδ|σ is the
canonical linear extension of D|σ(0) to the simplex (of dimension 6 2) in P spanned
by the vertices D(σ(0)). Furthermore, area is preserved by this construction:

cArea(Dδ) = Arδ(D).

This construction produces all simplicial disks in P bounding cδ and we obtain

cArea(cδ) = Arδ(c).

Summarizing all this, we obtain

ARipsδ(X)(`) = Arδ(
`

δ
).

The same argument applies to the �lling radius and we obtain:

Observation 5.47. Studying �lling area and �lling radius functions in X (up
to the equivalence relation ≈) is equivalent to studying combinatorial �lling area
and �lling radius functions in Ripsδ(X).

Besikovitch inequality. The following proposition relates �lling areas of
curvilinear quadrilaterals in X to the product among of separation of their sides.

Proposition 5.48 (The quadrangle or Besikovitch inequality). Let X be a
µ�simply connected geodesic metric space and let δ > µ.

Consider a loop c ∈ ΩX and its decomposition c(S1) = α1∪α2∪α3∪α4 into four
consecutive paths. Then, with the notation d1 = dist(α1, α3) and d2 = dist(α2, α4)
we have that

Arδ(c) >
2π

δ2
d1d2 .

Proof. Let d : D(1) → X be a �lling disk of c realizing the �lling area.
Consider a map β : X → R2 de�ned by

β(x) = (dist(x, α1) , dist(x, α2)) .

Since each of its components is a 1�Lipschitz map, the map β is
√

2�Lipschitz.
The image β(α1) is a vertical segment connecting the origin to a point (0, y1), with
y1 > d2, while β(α2) is a horizontal segment connecting the origin to a point (x2, 0),
with x2 > d1 . Similarly, the image β(α3) is a path to the right of the vertical line
x = d1 and β(α4) another path above the horizontal line y = d2. Thus, the rectangle
R with the vertices (0, 0), (d1, 0), (d1, d2), (0, d2) is separated from in�nity by the
curve βc(S1) (see Figure 5.2). In particular, the image of any extension F of β ◦ d
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to D2 contains the rectangle R. Thus, A(F ) > A(R) = d1d2, hence, by inequality
(5.7),

d1d2 6
2δ2

4π
Ar√2δ(β ◦ c).

Furthermore, since β is
√

2-Lipschitz,

Ar√2δ(β ◦ c) 6 2Arδ(c).

Putting this all together, we get

Arδ(c) >
π

δ2
d1d2

as required. �

Figure 5.2. The map β.

Besikovitch's inequality generalizes from curvilinear quadrilaterals to curvi-
linear triangles: This generalization below is has interesting applications to δ-
hyperbolic spaces. We �rst need a de�nition which would generalize the condition
of separation of the opposite edges of a curvilinear quadrilateral.

Definition 5.49. Given a topological triangle T , i.e. a loop c composed of a
concatenation of three paths τ1, τ2, τ3, the minimal size (minsize) of T is de�ned as

minsize(T ) = inf{diam{y1, y2, y3} ; yi ∈ τi, i = 1, 2, 3} .

Proposition 5.50 (Minsize inequality). Let X be a µ�simply connected geo-
desic metric space and let δ > µ.

Given a topological triangle T ∈ Ω, we have that

Arδ(c) >
2π

δ2
[minsize(T )]2 .
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Proof. As before, de�ne a
√

2�Lipschitz map β : X → R2,

β(x) = (β1(x), β2(x)) = (dist(x, τ1), dist(x, τ2))

and note that, as in the proof of Besikovitch's inequality, β maps τ1, τ2 to coordinate
segments, while the restriction of β to τ3 satis�es:

min(β1(x), β2(x)) > m,

where m = minsize(T ). Therefore, the loop β ◦ c separates from in�nity the square
Q with the vertices (0, 0), (m, 0), (m,m), (0,m). Then, as before,

m2 6
δ2

2π
Ar(c)

and claim follows. �

The Dehn function/area �lling function can be generalized to higher dimensions
and n-Dehn functions, which give information about the way to �ll topological
spheres Sn with topological balls Bn+1 ([Gro93, Chapter 5], [ECH+92, Chapter
10], [Pap00]). The following result was proven by P. Papasoglou:

Theorem 5.51 (P. Papasoglou, [Pap00]). The second Dehn function of a group
of type F3 is bounded by a recursive function.

The condition FP3 is a 3-dimensional version of the condition of �nite pre-
sentability of a group: A group G is of type F3 if there exists a �nite simplicial
complex K with G = π1(K) and π2(K) = 0. A basic sphere in the 2-dimensional
skeleton of K is the boundary of an oriented 3-simplex together with a path con-
necting its vertex to a base-point v in K.

This theorem represents a striking contrast with the fact that there are �nitely-
presented groups with unsolvable word problem and, hence, Dehn function which
is not bounded above by any recursive function.

The idea of the proof of Theorem 5.51 is to produce an algorithm which, given
n ∈ N, �nds in �nite time an upper bound on the number N of basic spheres σj ,
so that (in π2(K, v))

N∑
i=1

σj = σ,

where σ is a spherical 2-cycle in K which consists of at most n 2-dimensional
simplices. The algorithm only gives a recursive bound of the second Dehn function,
because the �lling found by it might be not the smallest possible.

The above algorithm does not work for the ordinary Dehn function since it
would require one to recognize which loops in K are homotopically trivial.

5.5. Summary of various notions of volume and area

(1) V ol(f) is the Riemannian volume of a map; geometric volume of a smooth
map of regular cell-complexes. For n = 2, V ol(f) = Area(f).

(2) Combinatorial volume: cV oln(f), the number of n-simplices in the domain
not collapsed by f . For n = 2, cV ol2(f) = cArea(f).

(3) Simplicial volume: sV oln(f) is the number of n-simplices in the domain
of f .
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(4) Combinatorial area: A(w), minimal �lling combinatorial area for a triv-
ial word w (algebraic area); algebraically speaking, it equals area of the
minimal van Kampen diagram with the given boundary loop w.

(5) Coarse area: Arδ(c), the δ-�lling area of a δ-loop c in a coarsely simply-
connected metric space X.

(6) Dehn function: DehnG(n), the Dehn function of a presentation complex
Y of a group G.

(7) Isoperimetric function IPM (`) of a simply-connected Riemannian mani-
fold M .

Summary of relationships between the volume/area concepts:
(1) Functions DehnG(n) and IPM (`) are approximately equivalent to each

other, provided that G acts geometrically onM ; both functions are QI in-
variant, provided that one considers them up to approximate equivalence.

(2) Arδ(c) � AreaP (c), where P = Ripsδ(X) and c is the loop in P obtained
from c by connecting �consecutive points� by the edges in P .

5.6. Topological coupling

We �rst introduce Gromov's interpretation of quasi-isometry between groups
using the language of topological actions.

Given groups G1, G2, a topological coupling of these groups is a metrizable lo-
cally compact topological space X together with two commuting cocompact prop-
erly discontinuous topological actions ρi : Gi y X, i = 1, 2. (The actions commute
if and only if ρ1(g1)ρ2(g2) = ρ2(g2)ρ1(g1) for all gi ∈ Gi, i = 1, 2.) Note that the
actions ρi are not required to be isometric. The following theorem was �rst proven
by Gromov in [Gro93]; see also [dlH00, page 98].

Theorem 5.52. If G1, G2 are �nitely generated groups, then G1 is QI to G2 if
and only if there exists a topological coupling between these groups.

Proof. 1. Suppose that G1 is QI to G2. Then there exists an (L,A) quasi-
isometry q : G1 → G2. Without loss of generality, we may assume that q is
L�Lipschitz. Consider the space X of such maps G1 → G2. We will give X the
topology of pointwise convergence. By Arzela�Ascoli theorem,X is locally compact.

The groups G1, G2 act on X as follows:

ρ1(g1)(f) := f ◦ g−1
1 , ρ2(g2)(f) := g2 ◦ f, f ∈ X.

It is clear that these actions commute and are topological. For each f ∈ X there
exist g1 ∈ G1, g2 ∈ G2 so that

g2 ◦ f(1) = 1, f ◦ g−1
1 (1) ∈ B(1, A).

Therefore, by Arzela�Ascoli theorem, both actions are cocompact. We will check
that ρ2 is properly discontinuous as the case of ρ1 is analogous. Let K ⊂ X be a
compact subset. Then there exists R <∞ so that for every f ∈ K, f(1) ∈ B(1, R).
If g2 ∈ G2 is such that g2 ◦ f ∈ K for some f ∈ K, then

(5.8) g2(B(1, R)) ∩B(1, R) 6= ∅.
Since the action of G2 on itself is free, it follows that the collection of g2 ∈ G2

satisfying (5.8) is �nite. Hence, ρ2 is properly discontinuous.
Lastly, the space X is metrizable, since it is locally compact, 2nd countable

and Hausdor�; more explicitly, one can de�ne distance between functions as the
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Gromov�Hausdor� distance between their graphs. Note that this metric is G1�
invariant.

2. Suppose that X is a topological coupling of G1 and G2. If X were a
geodesic metric space and the actions of G1, G2 were isometric, we would not need
commutation of these action. However, there are examples of QI groups which
do not act geometrically on the same geodesic metric space, see Theorem 5.29.
Nevertheless, the construction of a quasi-isometry below is pretty much the same
as in the proof of Milnor-Schwarz theorem.

Since Gi y X is cocompact, there exists a compact K ⊂ X so that Gi ·K = X;
pick a point p ∈ K. Then for each gi ∈ Gi there exists φi(gi) ∈ Gi+1 so that
gi(p) ∈ φi(gi)(K), here and below i is taken mod 2. We have maps φi : Gi → Gi+1.

a. Let us check that these maps are Lipschitz. Let s ∈ Si, a �nite generating
set of Gi, we will use the word metric on Gi with respect to Si, i = 1, 2. De�ne C
to be the union

∪i=1,2

⋃
s∈Si

s(K).

Since ρi are properly discontinuous actions, the sets GCi := {h ∈ Gi : h(C)∩C 6= ∅}
are �nite for i = 1, 2. Therefore, the word-lengths of the elements of these sets are
bounded by some L < ∞. Suppose now that gi+1 = φi(gi), s ∈ Si. Then gi(p) ∈
gi+1(K), sgi(p) ∈ g′i+1(K) for some g′i+1 ∈ Gi+1. Therefore, sgi+1(K)∩g′i+1(K) 6= ∅
hence g−1

i+1g
′
i+1(K)∩s(K) 6= ∅. (This is where we are using the fact that the actions

of G1 and G2 onX commute.) Therefore, g−1
i+1g

′
i+1 ∈ GCi+1, hence d(gi+1, g

′
i+1) 6 L.

Consequently, φi is L�Lipschitz.
b. Let φi(gi) = gi+1, φi+1(gi+1) = g′i. Then gi(K) ∩ g′i(K) 6= ∅ hence g−1

i g′i ∈
GCi . Therefore, dist(φi+1◦φi, IdGi) 6 L and φi : Gi → Gi+1 is a quasi-isometry. �

The more useful direction of this theorem is, of course, from QI to a topological
coupling, see e.g. [Sha04, Sau06].

Definition 5.53. Two groups G1, G2 are said to have a common geometric
model if there exists a proper quasi-geodesic metric space X such that G1, G2 both
act geometrically on X.

In view of Theorem 5.29, if two groups have a common geometric model then
they are quasi-isometric. The following theorem shows that the converse is false:

Theorem 5.54 (L. Mosher, M. Sageev, K. Whyte, [MSW03]). Let G1 :=
Zp ∗ Zp, G2 := Zq ∗ Zq, where p, q are distinct odd primes. Then the groups G1, G2

are quasi-isometric (since they are virtually isomorphic to the free group on two
generators) but do not have a common geometric model.

This theorem, in particular, implies that in Theorem 5.52 one cannot assume
that both group actions are isometric (for the same metric).

5.7. Quasi-actions

The notion of an action of a group on a space is replaced, in the context of
quasi-isometries, by the one of quasi-action. Recall that an action of a group G
on a set X is a homomorphism φ : G → Aut(X), where Aut(X) is the group of
bijections X → X. Since quasi-isometries are de�ned only up to �bounded error�,
the concept of a homomorphism has to be modi�ed when we use quasi-isometries.
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Definition 5.55. Let G be a group and X be a metric space. An (L,A)-quasi-
action of G on X is a map φ : G→Map(X,X), so that:

• φ(g) is an (L,A)-quasi-isometry of X for all g ∈ G.
• d(φ(1), idX) ≤ A.
• d(φ(g1g2), φ(g1)φ(g2)) ≤ A for all g1, g2 ∈ G.

Thus, φ is �almost� a homomorphism with the error A.

By abusing notation, we will denote quasi-actions by φ : Gy X, even though,
what we have is not an action.

Example 5.56. Suppose that G is a group and φ : G → R ⊂ Isom(R) is a
function. Then φ, of course, satis�es (1), while properties (2) and (3) are equivalent
to the single condition:

|φ(g1g2)− φ(g1)− φ(g2)| ≤ A.

Such maps φ are called quasi-morphisms. and they appear frequently in geometric
group theory, in the context of 2nd bounded cohomology, see e.g. [EF97a]. Many
interesting groups do not admit nontrivial homomorphisms of R but admit un-
bounded quasi-morphisms. For instance, a hyperbolic Coxeter group G does not
admit nontrivial homomorphisms to R. However, unless G is virtually abelian, it
has in�nite-dimensional space of equivalence classes quasi-morphisms, where

φ1 ∼ φ2 ⇐⇒ ‖φ1 − φ2‖ <∞.

See [EF97a].

Exercise 5.57. Let QI(X) denote the group of (equivalence classes of) quasi-
isometries X → X. Show that every quasi-action determines a homomorphism
φ̂ : G→ QI(X) given by composing φ with the projection to QI(X).

The kernel of the quasi-action φ : G y X is the kernel of the homomorphism
φ̂.

Exercise 5.58. Construct an example of a geometric quasi-action G y R
whose kernel is the entire group G.

We can also de�ne proper discontinuity and cocompactness for quasi-actions
by analogy with isometric actions:

Definition 5.59. Let φ : Gy X be a quasi-action.
1. We say that φ is properly discontinuous if for every x ∈ X,R ∈ R+, the set

{g ∈ G|d(x, φ(g)(x)) ≤ R}

is �nite. Note that if X proper and φ is an isometric action, this de�nition is
equivalent to proper discontinuity of Gy X.

2. We say that φ is cobounded if there exists x ∈ X,R ∈ R+ so that for every
x′ ∈ X there exists g ∈ G so that d(x′, φ(g)(x)) ≤ R. Equivalently, there exists R′
so that d(x, φ(g)(x′)) ≤ R.

3. Lastly, we say that quasi-action φ is geometric if it is both properly discon-
tinuous and cobounded.

Below we explain how quasi-actions appear in the context of QI rigidity prob-
lems. Suppose that G1, G2 are groups, ψi : Gi y Xi are isometric actions; for
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instance, Xi could be Gi or its Cayley graph. Suppose that f : X1 → X2 is a quasi-
isometry with quasi-inverse f̄ . We then de�ne a conjugate quasi-action φ = f∗(ψ2)
of G2 on X1 by

(5.9) φ(g) = f̄ ◦ g ◦ f.
More generally, we say that two quasi-actions ψi : G y Xi are quasi-conjugate if
there exists a quasi-isometry f : X1 → X2, so that ψ1 and f∗(ψ2) project to the
same homomorphism

G→ QI(X1).

Lemma 5.60. 1. Under the above assumptions, φ = f∗(ψ2) is a quasi-action.
2. If ψ2 is geometric, so is φ.

Proof. 1. Suppose that f is an (L,A)-quasi-isometry. It is clear that φ
satis�es Parts 1 and 2 of the de�nition, we only have to verify (3):

dist(φ(g1g2), φ(g1)φ(g2)) = dist(f̄g1g2f, f̄g1ff̄g2f) ≤ LA+A

in view of Exercise 5.7.
2. In order to verify that φ is geometric, one needs to show proper discontinuity

and coboundedness. We will verify the former since the proof of the latter is similar.
Pick x ∈ X,R ∈ R+, and consider the set the set

Gx,R = {g ∈ G = G2|d(x, φ(g)(x)) ≤ R} ⊂ G.
By de�nition, φ(g)(x) = f̄gf(x). Thus, d(x, g(x)) ≤ LR + 2A. Hence, by proper
discontinuity of the action Gy X2, the set Gx,R is �nite. �

The same construction of a conjugate quasi-action applies if G2 y X2 is not
an action, but merely a quasi-action.

Exercise 5.61. Suppose that φ2 : Gy X2 is a quasi-action, f : X1 → X2 is a
quasi-isometry and φ1 : Gy X1 is the conjugate quasi-action. Then φ2 is properly
discontinuous (respectively, cobounded, or geometric) if and only if φ1 is properly
discontinuous (respectively, cobounded, or geometric).

Corollary 5.62. Let G1 and G2 be �nitely generated quasi-isometric groups
and let f : G1 → G2 be a quasi-isometry. Then:

1. The quasi-isometry f induces (by conjugating actions and quasi-actions on
G2) an isomorphism QI(G2)→ QI(G1) and a homomorphism f∗ : G2 → QI(G1)

2. The kernel of f∗ is quasi-�nite: For every K ≥ 0, the set of g ∈ G2 such
that dist(f∗(g), idG1

) 6 K, is �nite.

Proof. To construct f∗ apply Lemma 5.60 to the isometric action ψ2 : G2 y
G2. Quasi�niteness of the kernel of f∗ follows from proper discontinuity of the
quasi-action G2 y G1. The isomorphism QI(G2) → QI(G1) is de�ned via the
formula (5.9). The inverse to this homomorphism is de�ned by switching the roles
of f and f̄ . �

Remark 5.63. For many groups G = G1, if h : G → G is an (L,A)-quasi-
isometry, so that dist(f, IdG) <∞, then dist(f, IdG) ≤ D(L,A). For instance, this
holds when G is a non-elementary hyperbolic group, see Lemma 8.86. (This is also
true for isometry groups of irreducible symmetric spaces and Euclidean buildings
and many other spaces, see e.g. [KKL98].) In this situation, quasi-�nite kernel of
f∗ above is actually �nite.
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The following theorem is a weak converse to the construction of a conjugate
quasi-action:

Theorem 5.64 (B. Kleiner, B. Leeb, [KL09]). Suppose that φ : G y X1 is a
quasi-action. Then there exists a metric space X2, a quasi-isometry f : X1 → X2

and an isometric action ψ : Gy X2, so that f quasi-conjugates ψ to φ.

Thus, every quasi-action is conjugate to an isometric action, but, a priori, on
a di�erent metric space. The key issue of the QI rigidity is:

Can one, under some conditions, take X2 = X1?

Most proofs of QI rigidity theorems follow this route:
1. Suppose that groups G1, G2 are quasi-isometric. Find a �nice space� X1 on

which G1 acts geometrically. Take a quasi-isometry f : X1 → X2 = G2, where
ψ : G2 y G2 is the action by left multiplication.

2. De�ne the conjugate quasi-action φ = f∗(ψ) of G2 on X1.
3. Show that the quasi-action φ has �nite kernel (or, at least, identify the

kernel, prove that it is, say, abelian).
4. Extend, if necessary, the quasi-action G2 y X1 to a quasi-action φ̂ on a

larger space X̂1.
5. Show that φ̂ has the same projection to QI(X̂1) as a isometric action φ′ :

G2 y X̂1 by verifying, for instance, that X̂1 has very few quasi-isometries, namely,
every quasi-isometry of X is within �nite distance from an isometry. (Well, maybe
no all quasi-isometries of X̂1, but the ones which extend from X1.) Then conclude
either that G2 y X̂1 is geometric, or, that the isometric actions of G1, G2 are
commensurable, i.e., the images of G1, G2 in Isom(X̂2) have a common �nite-index
subgroup.

We will see how R. Schwarz's proof of QI rigidity for nonuniform lattices follows
this line of arguments: X1 will be a truncated hyperbolic space and X̂1 is the
hyperbolic space itself. The same is true for QI rigidity of higher rank non-uniform
lattices (A. Eskin's theorem [Esk98]). This is also true for uniform lattices in
the isometry groups of nonpositively curved symmetric spaces other than Hn and
CHn (P. Pansu, [Pan89], B. Kleiner and B. Leeb [KL98]; A. Eskin and B. Farb
[EF97b]), except one does not have to enlarge X1. Another example of such
argument is the proof by M. Bourdon and H. Pajot [BP00] and X. Xie [Xie06] of
QI rigidity of groups acting geometrically on 2-dimensional hyperbolic buildings.

5'. Part 5 may fail if X has too many quasi-isometries, e.g. if X1 = Hn or
X1 = CHn. Then, instead, one shows that every geometric quasi-action G2 y X1

is quasi-conjugate to a geometric (isometric!) action. We will see such a proof in
the case of Sullivan�Tukia rigidity theorem for uniform lattices in Isom(Hn), n ≥ 3.
Similar arguments apply in the case of groups quasi-isometric to the hyperbolic
plane.

Not all quasi-isometric rigidity theorems are proven in this fashion. An alterna-
tive route is to show QI rigidity of a certain algebraic property (P) is to show that
it is equivalent to some geometric property (P'), which is QI invariant. Examples of
such proofs are QI rigidity of the class of virtually nilpotent groups and of virtually
free groups. The �rst property is equivalent, by Gromov's theorem, to polynomial
growth; the argument in the second case is less direct (see Theorem ??), but the
key fact is that geometric condition of having in�nitely many ends is equivalent to
the algebraic condition that a group splits over a �nite subgroup.
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CHAPTER 6

Coarse topology

The goal of this section is to provide tools of algebraic topology for studying
quasi-isometries and other concepts of the geometric group theory. The class of
metric cell complexes with bounded geometry provides a class of spaces for which
application of algebraic topology is possible.

6.1. Ends of spaces

In this section we review the oldest coarse topological notion, the one of ends
of a topological space. Let X be a connected, locally path-connected topological
space which admits an exhaustion by compact subsets, i.e., an increasing family of
compact subsets {Ki}i∈I , where I is an ordered set,

Ki ⊂ Kj , i 6 j,

so that ⋃
i∈I

Ki = X.

The key example to consider is when X is a proper metric space, Ki = B(o, i),
i ∈ N and o ∈ X is a �xed point. We will refer to this as the standard example. (An
important special case to keep in mind is the Cayley graph of a �nitely-generated
group, where o is a vertex.) For each K = Ki we let Kc = X \K.

We then let J denote the set whose elements are connected components of
various Kc

i . The set J has the partial order: C 6 C ′ i� C ′ ⊂ C. Thus, the �larger�
C's are the ones which correspond to bigger K's.

Definition 6.1. The set Ends(X) = ε(X) of ends ofX, is the set of unbounded
(from above) increasing chains in the poset J . Every such chain is called an end of
X.

In the standard example, each end is a sequence of connected nonempty sets

C1 ⊃ C2 ⊃ C3 ⊃ . . .

where each Ci is a component of Kc
i .

Equivalently, since we assumed that X is locally path-connected, each element
of J is an element of the set π0(Kc

i ) for some i. Thus, we have the inverse system
of sets {π0(Kc

i )} indexed by I, where

fi,j : π0(Kc
j )→ π0(Kc

i ), i 6 j,

is the map induced by the inclusion Kc
j ⊂ Kc

i . Then there is a natural bijection
between the inverse limit

π∞0 (X) = lim←−π0(Kc
i )
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of this system and the set of ends ε(X): Choosing an element σ of π0(Kc
j ) is

equivalent to choosing the connected component of Kc
i which gives rise to σ. Note

that if X is a Cayley graph, then each π0(Kc
i ) is a �nite set.

We say that a family of points (xi)i∈I , xi ∈ Ci, Ci ⊂ Kc
i , represents the

corresponding end of X, since each xi represents an element of π0(Kc
i ). We will

use the notation x• for this end.

We next topologize ε(X). We equip each π0(Kc
i ) with the discrete topology

(which makes sense in view of the Cayley graph example) and then put the initial
topology on the inverse limit as explained in Section 1.1.

Concretely, one describes this topology as follows. Pick some C ∈ J , which is
a component of Kc

i . Then C de�nes a subset εC ⊂ X, which consists of ends which
are represented by those families (xj) so that, xj ∈ C for all j > i. These sets form
a basis of the inverse limit topology on ε(X) described above. Since ε(X) is the
inverse limit of sets with discrete topology, the space ε(X) is totally disconnected.
Furthermore, clearly, ε(X) is Hausdor�.

Exercise 6.2. 1. The above topology on ε(X) de�nes a compacti�cation X̄ =
X ∪ ε(X) of the topological space X.

2. Let G be a group of homeomorphisms of X. Then the action of G on X
extends to a topological action of G on X̄.

Remark 6.3. 1. Some of the sets εC could be empty: They correspond to the
sets C which are relatively compact. This, of course, means that one should discard
such sets C when thinking about the ends of X.

2. There is a terminological confusion here coming from the literature in di�er-
ential geometry and geometric analysis, where X is a smooth manifold: An analyst
would call each set C an end of X.

Example 6.4. 1. Every compact topological space X has empty set of ends.
Conversely, if ε(X) = ∅, then X is compact.

2. If X = R, then ε(X) is a 2-point set. If X = Rn, n > 2, then ε(X) is a single
point.

3. If X is a binary (i.e., tri-valent) tree then ε(X) is homeomorphic to the
Cantor set.

See Figure 6.1 for an example. The spaceX in this picture has 5 visibly di�erent
ends: ε1, ..., ε5. We have K1 ⊂ K2 ⊂ K3. The compact K1 separates the ends ε1, ε2.
The next compact K2 separates ε3 from ε4. Finally, the compact K3 separates ε4
from ε5.

Analogously, one de�nes higher homotopy groups π∞k (X,x•) at in�nity of X,
k > 1. We now assume that the set I is the set of natural numbers with the usual
order. For each end x• ∈ ε(X) pick a representing sequence (xi)i∈I . For each i 6 j,
pick a path pij in Kc

i connecting xi to xj . The concatenation of such paths is a
proper map p : R+ → X. The proper homotopy class of p is denoted x•. Given p,
we then have the inverse system of group homomorphisms

πk(Kc
j , xj)→ πk(Kc

i , xi), i 6 j,

induced by inclusion maps of the components Cj ↪→ Ci, where xi ∈ Ci, xj ∈ Xj .
Note that the paths pij are needed here since we are using di�erent base-points for
the homotopy groups.
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Figure 6.1. Ends of X.

The group π∞k (X,x•) then is the inverse limit

lim←−πk(Kc
i , xi).

Exercise 6.5. Verify that this construction depends only on x• and not on
the paths pij .

For the rest of the book, we will not need π∞k for k > 0.

Proposition 6.6. If f : X → Y is an (L,A)�quasi-isometry of proper geodesic
metric spaces then f induces a homeomorphism ε(X)→ ε(Y ).

Proof. For geodesic metric spaces, path-connectedness is equivalent to con-
nectedness. Since f is a quasi-isometry, for each bounded subset K ⊂ X, the image
f(K) is again bounded. Note that f need not map connected sets to connected
sets since f is not required to be continuous. nevertheless, we have

Lemma 6.7. The open A′ = A + 1-neighborhood NA′(f(C)) is connected for
every connected subset C ⊂ X.

Proof. For points x, x′ ∈ C, and every δ > 0 there exists a chain x0 =
x, x1, ..., xn = x′, so that xi ∈ C and dist(xi, xi+1) 6 δ, i = 0, ..., n − 1. Then we
obtain a chain yi = f(xi), i = 0, ..., n, so that

dist(yi, yi+1) 6 δ′ = Lδ +A

It follows that a geodesic segment [yiyi+1] is contained in Nδ′(f(C)). Hence, the
δ′�neighborhood of f(C) is path-connected for every δ > 0. We conclude that
NA′(f(C)) is connected by taking δ = 1. �

Without loss of generality, we may assume that Ki = B(o, i) is a closed metric
ball in X and i ∈ N. We de�ne a map ε(f) : ε(X) → ε(Y ) as follows. Set
R := A + 1. Suppose that η ∈ ε(X) is represented by a nested sequence (Ci),
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where Ci is a connected component of X \Ki, Ki ⊂ X is compact. By reindexing
our system of compacts Ki, without loss of generality we may assume that for
each i, NR(Ci) ⊂ Ci−1. Thus we get a nested sequence of connected subsets
NR(f(Ci)) ⊂ Y each of which is contained in a connected component Vi of the
complement to the bounded subset f(Ki−1) ⊂ Y . Thus we send η to the end
ε(f)(η) represented by (Vi). By considering the quasi-inverse f̄ to f , we see that
ε(f) has the inverse map ε(f̄). It is also clear from the construction that both ε(f)
and ε(f̄) are continuous. �

If G is a �nitely generated group then the space of ends ε(G) is de�ned to be
the set of ends of its Cayley graph. The previous lemma implies that ε(G) does
not depend on the choice of a �nite generating set and that quasi-isometric groups
have homeomorphic sets of ends.

Theorem 6.8 (Properties of ε(X)). 1. The topological space ε(X) is compact,
Hausdor� and totally disconnected; ε(X) is empty if and only if X is compact.

2. Suppose that G is a �nitely-generated group. Then ε(G) consists of 0, 1, 2
points or has cardinality of continuum. In the latter case the set ε(G) is perfect:
Each point is a limit point.

3. ε(G) is empty i� G is �nite. ε(G) consists of 2-points i� G is virtually
(in�nite) cyclic.

4. |ε(G)| > 1 i� G splits nontrivially over a �nite subgroup.

Corollary 6.9. 1. If G is quasi-isometric to Z then G contains Z as a �nite
index subgroup.

2. Suppose that G splits nontrivially as G1 ?G2 and G′ is quasi-isometric to G.
Then G′ splits nontrivially as G′1 ?F G

′
2 (amalgamated product) or as G′1?F (HNN

splitting), where F is a �nite group.

Note that we already know that ε(X) is Hausdor� and totally-disconnected.
Compactness of ε(X) follows from the fact that each Kc has only �nitely many
components which are not relatively compact. Properties 2 and 3 in Theorem 6.8
are also relatively easy, see for instance [BH99, Theorem 8.32] for the detailed
proofs. The hard part of this theorem is

Theorem 6.10. If |ε(G)| > 1 then G splits nontrivially over a �nite subgroup.

This theorem is due to Stallings [Sta68] (in the torsion-free case) and Bergman
[Ber68] for groups with torsion. To this day, there is no simple proof of this
result. A geometric proof could be found in Niblo's paper [Nib04]. For �nitely
presented groups, there is an easier combinatorial proof due to Dunwoody using
minimal tracks, [Dun85]; a combinatorial version of this argument could be found
in [DD89]. In Chapters ?? and ?? we prove Theorem 6.10 �rst for �nitely-presented
and then for all �nitely-generated groups. We will also prove QI rigidity of the class
of virtually free groups.

6.2. Rips complexes and coarse homotopy theory

6.2.1. Rips complexes. Let X be a uniformly discrete metric space (see
De�nition 1.19). Recall that the R-Rips complex of X is the simplicial complex
whose vertices are points of X; vertices x1, ..., xn span a simplex if and only if

dist(xi, xj) 6 R,∀i, j.
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For each pair 0 6 R1 6 R2 <∞ we have a natural simplicial embedding

ιR1,R2
: RipsR1

(X)→ RipsR2
(X)

and
ιR1,R2

= ιR2,R3
◦ ιR1,R2

provided that R1 6 R2 6 R3. Thus, the collection of Rips complexes of X forms a
direct system Rips•(X) of simplicial complexes indexed by positive real numbers.

Following the construction in Section 2.2.2, we metrize (connected) Rips com-
plexes RipsR(X) using the standard length metric on simplicial complexes. Then,
each embedding ιR1,R2

is isometric on every simplex and 1-Lipschitz overall. Note
that the assumption that X is uniformly discrete implies that RipsR(X) is a sim-
plicial complex of bounded geometry (De�nition 2.60) for every R.

Exercise 6.11. Suppose that X = G, a �nitely-generated group with a word
metric. Show that for every R, the action of G on itself extends to a simplicial
action of G on RipsR(G). Show that this action is geometric.

The following simple observation explains why Rips complexes are useful for
analyzing quasi-isometries:

Lemma 6.12. Let f : X → Y be an (L,A)�coarse Lipschitz map. Then f
induces a simplicial map RipsR(X)→ RipsLR+A(Y ) for each R > 0.

Proof. Consider an m-simplex σ in RipsR(X); the vertices of σ are distinct
points x0, x1, ..., xm ∈ X within distance 6 R from each other. Since f is (L,A)�
coarse Lipschitz, the points f(x0), ..., f(xm) ∈ Y are within distance 6 LR + A
from each other, hence they span a simplex σ′ of dimension 6 m in RipsLR+A(Y ).
The map f sends vertices of σ to vertices of σ′; we extend this map linearly to a
map σ → σ′. It is clear that this extension de�nes a simplicial map of simplicial
complexes RipsR(X)→ RipsLR+A(Y ). �

The idea behind the next de�nition is that the �coarse homotopy groups� of a
metric space X are the homotopy groups of the Rips complexes RipsR(X) of X.
Literally speaking, this does not make much sense since the above homotopy groups
depend on R. To eliminate this dependence, we have to take into account the maps
ιr,R.

Definition 6.13. 1. A metric space X is coarsely connected if Ripsr(X) is
connected for some r. (Equivalently, RipsR(X) is connected for all su�ciently
large R.)

2. A metric space X is coarsely k-connected if for each r there exists R > r so
that the mapping Ripsr(X)→ RipsR(X) induces trivial maps of the i-th homotopy
groups

πi(Ripsr(X), x)→ πi(RipsR(X), x)

for all 0 6 i 6 k and x ∈ X.
In particular, X is coarsely simply-connected if it is coarsely 1-connected.

In other words, X is coarsely connected if there exists a number R such that
each pair of points x, y ∈ X can be connected by an R-chain of points xi ∈ X, i.e.,
a �nite sequence of points xi, where dist(xi, xi+1) 6 R for each i.

The de�nition of coarse k-connectedness is not quite satisfactory since it only
deals with �vanishing� of coarse homotopy groups without actually de�ning these
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groups for general X. One way to deal with this issue is to consider pro-groups
which are direct systems

πi(Ripsr(X)), r ∈ N
of groups. Given such algebraic objects, one can de�ne their pro-homomorphisms,
pro-monomorphisms, etc., see [KK05] where this is done in the category of abelian
groups (the homology groups). Alternatively, one can work with the direct limit of
the homotopy groups.

6.2.2. Direct system of Rips complexes and coarse homotopy.

Lemma 6.14. Let X be a metric space. Then for r, c < ∞, each simplicial
spherical cycle σ of diameter 6 c in Ripsr(X) bounds a disk of diameter 6 r + c
within Ripsr+c(X).

Proof. Pick a vertex x ∈ σ. Then Ripsr+c(X) contains a simplicial cone τ(σ)
over σ with vertex at x. Clearly, diam(τ) 6 r + c. �

Proposition 6.15. Let f, g : X → Y be maps within distance 6 c from each
other, which extend to simplicial maps

f, g : Ripsr1(X)→ Ripsr2(Y )

Then for r3 = r2 + c, the maps f, g : Ripsr1 → Ripsr3(Y ) are homotopic via a
1-Lipschitz homotopy F : Ripsr1(X)× I → Ripsr3(Y ). Furthermore, tracks of this
homotopy have length 6 (n+ 1), where n = dim(Ripsr1(X)).

Proof. We give the product Ripsr1(X) × I the standard structure of a sim-
plicial complex with the vertex set X × {0, 1} (by triangulating the each k + 1-
dimensional prisms σ × I, where σ are simplices in X, this triangulation has in
6 (k + 1) top-dimensional simplices); we equip this complex with the standard
metric.

The map F of the zero-skeleton of Ripsr1(X) × I is, of course, F (x, 0) =

f(x), F (x, 1) = g(x). Let σ ⊂ Ripsr1(X)×I be an i�simplex. Then diam(F (σ0)) 6
r3 = r2 + c, where σ0 is the vertex set of σ. Therefore, F extends (linearly) from
σ0 to a (1-Lipschitz) map F : σ → Ripsr3(Y ) whose image is the simplex spanned
by F (σ0).

To estimate the lengths of the tracks of the homotopy F , we note that for each
x ∈ Ripsr1(X), the path F (x, t) has length 6 1 since the interval x × I is covered
by 6 (n+ 1) simplices, each of which has unit diameter. �

In view of the above lemma, we make the following de�nition:

Definition 6.16. Maps f, g : X → Y are coarsely homotopic if for all r1, r2 so
that f and g extend to

f, g : Ripsr1(X)→ Ripsr2(Y ),

there exist r3 and r4 so that the maps

f, g : Ripsr1 → Ripsr3(Y )

are homotopic via a homotopy whose tracks have lengths 6 r4.

We then say that a map f : X → Y determines a coarse homotopy equivalence
(between the direct systems of Rips complexes of X,Y ) if there exists a map g :
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Y → X so that the compositions g ◦ f, f ◦ g are coarsely homotopic to the identity
maps.

The next two corollaries, then, are immediate consequences of Proposition 6.15.

Corollary 6.17. Let f, g : X → Y be L�Lipschitz maps within �nite distance
from each other. Then they are coarsely homotopic.

Corollary 6.18. If f : X → Y is a quasi-isometry, then f induces a coarse
homotopy-equivalence of the Rips complexes: Rips•(X)→ Rips•(Y ).

The following corollary is a coarse analogue of the familiar fact that homotopy
equivalence preserves connectivity properties of a space:

Corollary 6.19. Coarse k-connectedness is a QI invariant.

Proof. Suppose that X ′ is coarsely k-connected and f : X → X ′ is an L�
Lipschitz quasi-isometry with L�Lipschitz quasi-inverse f̄ : X ′ → X. Let γ be
a spherical i-cycle in Ripsr(X), 0 6 i 6 k. Then we have the spherical i-cycle
f(γ) ⊂ RipsLr(X

′). Since X ′ is coarsely k-connected, there exists r′ > Lr such
that f(γ) bounds a singular (i+1)�disk β within Ripsr′(X

′). Consider now f̄(β) ⊂
RipsL2r(X). The boundary of this singular disk is a singular i-sphere f̄(γ). Since
f̄ ◦f is homotopic to id within Ripsr′′(X), r′′ > L2r, there exists a singular cylinder
σ in Ripsr′′(X) which cobounds γ and f̄(γ). Note that r′′ does not depend on γ. By
combining σ and f̄(β) we get a singular (i+ 1)�disk in Ripsr′′(X) whose boundary
is γ. Hence X is coarsely k-connected. �

6.3. Metric cell complexes

We now introduce a concept which generalizes simplicial complexes, where the
notion of bounded geometry does not imply �nite-dimensionality.

A metric cell complex is a cell complex X together with a metric d de�ned
on its 0-skeleton X(0). Note that if X is connected, its 1-skeleton X(1) us a
graph, and, hence, can be equipped with the standard metric dist. Then the map
(X(0), d) → (X(1),dist) in general need not be a quasi-isometry. However, in the
most interesting cases, coming from �nitely-generated groups, this map is actually
an isometry. Therefore, we impose, from now on, the condition:

Axiom 1. The map (X(0), d)→ (X(1),dist) is a quasi-isometry.

Even though this assumption could be avoided in what follows, restricting to
complexes satisfying this axiom will make our discussion more intuitive.

Our �rst goal to de�ne, using the metric d, certain metric concepts on the entire
complex X. We de�ne inductively a map c which sends cells in X to �nite subsets
of X(0) as follows. For v ∈ X(0) we set c(v) = {v}. Suppose that c is de�ned on
X(i). For each i + 1-cell e, the support of e is the smallest subcomplex Supp(e) of
X(i) containing the image of the attaching map of e to X(i). We then set

c(σ) = c(Supp(e)).

For instance, for every 1-cell σ, c(σ) consists of one or two vertices of X to which
σ is attached.
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Remark 6.20. The reader familiar with the concepts of controlled topology, see
e.g. [Ped95], will realize that the coarsely de�ned map c : X → X(0) is a control

map for X and (X(0), d) is the control space. In particular, a metric cell complex
is a special case of a metric chain complex de�ned in [KK05].

We now say that the diameter diam(σ) of a cell σ in X is the diameter of c(σ).

Example 6.21. Take a simplicial complex X and restrict its standard metric
to X(0). Then, the diameter of a cell in X (as a simplicial complex) is the same as
its diameter in the sense of metric cell complexes.

Definition 6.22. A metric cell complex X is said to have bounded geometry
if there exists a collections of increasing functions φk(r) and numbers Dk < ∞ so
that the following axioms hold:

Axiom 2. For each ball B(x, r) ⊂ X(0), the set of k-cells σ such that c(σ) ⊂
B(x, r), contains at most φk(r) cells.

Axiom 3. The diameter of each k-cell is at most Dk = Dk,X , k = 1, 2, 3, .....
Axiom 4. D0 := inf{d(x, x′)|x 6= x′ ∈ X(0)} > 0.

Note that we allow X to be in�nite-dimensional. We will refer to the function
φk(r) and the numbers Dk as geometric bounds on X, and set

(6.1) DX = sup
k>0

Dk,X .

Exercise 6.23. 1. Suppose that X is a simplicial complex. Then the two
notions of bounded geometry coincide for X. We will use this special class of
metric cell complexes in Section 6.6.

2. If X is a metric cell complex of bounded geometry and S ⊂ X is a
connected subcomplex, then for every two vertices u, v ∈ S there exists a chain
x0 = u, x1, ..., xm = v, so that d(xi, xi+1) 6 D1 for every i. In particular, if X is
connected, the identity map (X(0), d)→ (X(1),dist) is D1-Lipschitz.

3. Let X(0) := G be a �nitely-generated group with its word metric, X be the
Cayley graph of G. Then X is a metric cell complex of bounded geometry.

As a trivial example, consider spheres Sn with the usual cell structure (single
0-cell and single n-cell). Thus, the cellular embeddings Sn ↪→ Sn+1 give rise to an
in�nite-dimensional cell complex S∞. This complex has bounded geometry (since
it has only one cell in every dimension). Therefore, the concept of metric cell
complexes is more �exible than the one of simplicial complexes.

Exercise 6.24. Let X,Y be metric cell complexes. Then the product cell�
complex X × Y is also a metric cell complex, where we equip the zero-skeleton
X(0)×Y (0) of X×Y with the product�metric. Furthermore, if X,Y have bounded
geometry, then so does X × Y .

We now continue de�ning metric concepts for metric cell complexes. The
(coarse) R-ball B(x,R) centered at a vertex x ∈ X(0) is the union of the cells
σ in X so that c(σ) ⊂ B(x,R).

We will say that the diameter diam(S) of a subcomplex S ⊂ X is the diameter
of c(S). Given a subcomplex W ⊂ X, we de�ne the closed R-neighborhood N̄R(W )
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ofW inX to be the largest subcomplex S ⊂ X so that for every σ ∈ S, there exists a
vertex τ ∈W so that distHaus(c(v), c(w)) 6 R. A cellular map f : X → Y between
metric cell complexes is called L�Lipschitz if for every cell σ in X, diam(f(σ)) 6 L.
In particular, f : (X(0), d)→ (Y (0), d) is L/D0-Lipschitz as a map of metric spaces.

Exercise 6.25. Suppose that fi : Xi → Xi+1 are Li-Lipschitz for i = 1, 2.
Show that f2 ◦ f1 is L3-Lipschitz with

L3 = L2 max
k

(φX2,k(L1))

Exercise 6.26. Construct examples of a cellular map f : X → Y between
metric graphs of bounded geometry, so that the restriction f |X(0) is L�Lipschitz
but f is not L′�Lipschitz, for any L′ <∞.

A map f : X → Y of metric cell complexes is called uniformly proper if f is
cellular, L-Lipschitz for some L <∞ and f |X(0) is uniformly proper: There exists
a proper monotonically increasing function η(R) so that

η(d(x, x′)) 6 d(f(x), f(x′))

for all x, x′ ∈ X. The function η(R) is called the distortion function of f .

We will now relate metric cell complexes of bounded geometry to simplicial
complexes of bounded geometry:

Exercise 6.27. LetX be a �nite-dimensionalmetric cell complexes of bounded
geometry. Then there exists a simplicial complex Y of bounded geometry and a
cellular homotopy-equivalence X → Y which is a quasi-isometry in the following
sense: f and has homotopy-inverse f̄ so that:

1. Both f, f̄ are L-Lipschitz for some L <∞.
2. f ◦ f̄ , f̄ ◦ f are homotopic to the identity.
3. f : X(0) → Y (0), f̄ : Y (0) → X(0) are quasi-inverse to each other:

d(f ◦ f̄ , Id) 6 A, d(f̄ ◦ f, Id) 6 A.

Hint: Apply the usual construction which converts a �nite-dimensional CW-
complex to a simplicial complex.

Recall that quasi-isometries are not necessarily continuous. In order to use
algebraic topology, we, thus, have to approximate quasi-isometries by cellular maps
in the context of metric cell complexes. In general, this is of course impossible, since
one complex in question can be, say, 0-dimensional and the other 1-dimensional.
The uniform contractibility hypothesis allows one to resolve this issue.

Definition 6.28. A metric cell complex X is said to be uniformly contractible
if there exists a continuous function ψ(R) so that for every x ∈ X(0) the map

B(x,R)→ B(x, ψ(R))

is null-homotopic.
Similarly, X is uniformly k-connected if there exists a function ψk(R) so that

for every x ∈ X(0) the map

B(x,R)→ B(x, ψk(R))

induces trivial map on πi, 0 6 i 6 k.
We will refer to ψ,ψk as the contractibility functions of X.
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Example 6.29. Suppose that X is a connected metric graph with the standard
metric. Then X is uniformly 0-connected.

In general, even for simplicial complexes of bounded geometry, contractibility
does not imply uniform contractibility. For instance, start with a triangulated 2-
torus T 2, let X be an in�nite cyclic cover of T 2. Of course, X is not contractible,
but we attach a triangulated disk D to X along a simple homotopically nontrivial
loop in X(1). The result is a contractible 2-dimensional simplicial complex Y which
clearly has bounded geometry.

Exercise 6.30. Show that Y is not uniformly contractible.

Y

Figure 6.2. Contructible but not uniformly constructible space.

We will see, nevertheless, in Lemma 6.34, that under certain assumptions (pres-
ence of a cocompact group action) contractibility implies uniform contractibility.

The following proposition is a metric analogue of the cellular approximation
theorem:

Proposition 6.31. Suppose that X,Y are metric cell complexes, where X
is �nite-dimensional and has bounded geometry, Y is uniformly contractible, and
f : X(0) → Y (0) is an L�Lipschitz map. Then f admits a (continuous) cellular
extension g : X → Y , which is an L′�Lipschitz map, where L′ depends on L and
geometric bounds on the complex X and the uniform contractibility function of Y .
Furthermore, g(X) ⊂ N̄L′(f(X(0))).

Proof. The proof of this proposition is a prototype of most of the proofs which
appear in this chapter. We extend f by induction on skeleta of X. We claim that
(for certain constants Ci, C ′i+1, i > 0) we can construct a sequence of extensions
fk : X(k) → Y (k) so that

1. diam(f(σ)) 6 Ck for every k-cell σ.
2. diam(f(∂τ)) 6 C ′k+1 for every (k + 1)�cell τ in X.

Base of induction. We already have f = f0 : X(0) → Y (0) satisfying (1) with
C0 = 0. If x, x′ belong to the boundary of a 1-cell τ in X then dist(f(x), f(x′)) 6
LD1, where D1 = D1,X is the upper bound on the diameter of 1-cells in X. This
establishes (2) in the base case.
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Inductively, assume that f = fk was de�ned on Xk, so that (1) and (2) hold.
Let σ be a (k + 1)�cell in X. Note that

diam(f(∂σ)) 6 C ′k+1

by the induction hypothesis. Then, using uniform contractibility of Y , we extend
f to σ so that diam(f(σ)) 6 Ck+1 where Ck+1 = ψ(C ′k). Let us verify that the
extension f : Xk+1 → Y k+1 satis�es (2).

Suppose that τ is a (k + 2)�cell in X. Then, since X has bounded geometry,
diam(τ) 6 Dk+2 = Dk+2,X . In particular, ∂τ is connected and is contained in the
union of at most φ(Dk+2, k + 1) cells of dimension k + 1. Therefore,

diam(f(∂τ)) 6 Ck+1 · φ(Dk+2, k + 1) =: C ′k+2.

This proves (2).
Since X is, say, n-dimensional the induction terminates after n steps. The

resulting map f : X → Y satis�es

L′ := diam(f(σ)) 6 max
i=1,...,n

Ci.

for every cell σ in X. Therefore, f : X → Y is L′�Lipschitz. The second assertion
of the proposition follows from the de�nition of Ci's. �

We note that the above proposition can be relativized:

Lemma 6.32. Suppose that X,Y are metric cell complexes, X is �nite-dimen-
sional and has bounded geometry, Y is uniformly contractible, and Z ⊂ X is a
subcomplex. Suppose that f : Z → Y is a continuous cellular map which extends to
an L�Lipschitz map f : X(0) → Y (0). Then f : Z∪X(0) → Y admits a (continuous)
cellular extension g : X → Y , which is an L′�Lipschitz map, where L′ depends on
L and geometric bounds on X and contractibility function of Y .

Proof. The proof is the same induction on skeleta argument as in Proposition
6.31. �

Corollary 6.33. Suppose that X,Y are as above and f0, f1 : X → Y are L�
Lipschitz cellular maps so that dist(f0, f1) 6 C in the sense that d(f0(x), f1(x)) 6 C
for all x ∈ X(0). Then there exists an L′�Lipschitz homotopy f : X×I → Y between
the maps f0, f1.

Proof. Consider the map f0 ∪ f1 : X × {0, 1} → Y , where X × {0, 1} is a
subcomplex in the metric cell complex W := X × I (see Exercise 6.24). Then the
required extension f : W → Y of this map exists by Lemma 6.32. �

6.4. Connectivity and coarse connectivity

Our next goal is to �nd a large supply of examples of metric spaces which are
coarsely k-connected.

Lemma 6.34. If X is a �nite-dimensional m-connected complex which admits
a geometric (properly discontinuous cocompact) cellular group action Gy X, then
X is uniformly m-connected.

Proof. Existence of geometric action Gy X implies that X is locally �nite.
Pick a base-vertex x ∈ X and let r < ∞ be such that G-orbit of B(x, r) ∩X(0) is
the entire X(0). Therefore, if C ⊂ X has diameter 6 R/2, there exists g ∈ G so
that C ′ = g(C) ⊂ B(x, r +R).
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Since C is �nite, π1(C ′) is �nitely-generated. Thus, simple connectivity of X
implies that there exists a �nite subcomplex C ′′ ⊂ X so that each generator of
π1(C ′) vanishes in π1(C ′′). Consider now πi(C

′), 2 6 i 6 m. Then, by Hurewicz
theorem, the image of πi(C ′) in πi(X) ∼= Hi(X), is contained in the image of Hi(C

′)
in Hi(X). Since C ′ is a �nite complex, we can choose C ′′ above so that the map
Hi(C

′)→ Hi(C
′′) is zero. To summarize, there exists a �nite subcomplex C ′′ in X

containing C ′, so that all maps πi(C ′)→ πi(C
′′) are trivial, 1 6 i 6 m.

Since C ′′ is a �nite complex, there exists R′ <∞ be such

C ′′ ⊂ B(x, r +R+R′).

Hence, the map
πk(B(x, r +R))→ πk(B(x, r +R+R′))

is trivial for all k 6 m. Set ψ(k, r) = ρ = r + R′. Therefore, if C ⊂ X is a
subcomplex of diameter 6 R/2, then maps

πk(C)→ πk(Nρ(C))

are trivial for all k 6 m. �

Theorem 6.35. Suppose that X is a uniformly n-connected metric cell complex
of bounded geometry. Then Z := X(0) is coarsely n-connected.

Proof. Let γ : Sk → RipsR(Z) be a sphericalm-cycle in RipsR(Z), 0 6 k 6 n.
Without loss of generality (using simplicial approximation) we can assume that γ
is a simplicial cycle, i.e. the sphere Sk is given a triangulation τ so that γ sends
simplices of Sk to simplices in RipsR(Z) and the restriction of γ to each simplex is
a linear map.

Lemma 6.36. There exists a cellular map γ′ : (Sk, τ)→ X which agrees with γ
on the vertex set of τ and so that diam(γ′(Sk)) 6 R′, where R′ > R depends only
on R and contractibility functions ψi(k, ·) of X, i = 0, ..., k.

Proof. We construct γ′ by induction on skeleta of (Sk, τ). The map is already
de�ned on the 0-skeleton, namely, it is the map γ and images of all vertices of τ
are within distance 6 R from each other. Suppose we constructed γ′ on i-skeleton
τ i of τ so that diam(γ′(τ i)) 6 Ri = Ri(R,ψ(k, ·)). Let σ be an i+ 1-simplex in τ .
We already have a map γ′ de�ned on the boundary of σ and diam(γ′(∂σ)) 6 Ri.
Then, using uniform contractibility of X we extend ≥′ to σ, so that the resulting
map satis�es

diam(γ′(σ)) 6 ψ(i+ 1, Ri),

which implies that the image is contained in B(γ(v), 2ψ(i + 1, Ri), where v is a
vertex of σ. Thus,

diam(γ′(τ i+1) 6 Ri+1 := R+ ψ(i+ 1, Ri).

Now, lemma follows by induction. Figure 6.3 illustrates the proof in the case
k = 1. �

Since X is k-connected, the map γ′ extends to a cellular map γ′ : Dk+1 →
X(k+1), where Dk+1 is a triangulated disk whose triangulation τ extends the tri-
angulation τ of Sk. Our next goal is to �push� γ′ to a map γ′′ : Dk+1 → RipsR′(Z)
relative to the boundary, where we want γ′′|Sk. Let σ be a simplex Dk+1. A sim-
plicial map is determined by images of vertices. By de�nition of the number R′,
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images of vertices of σ under γ′ are within distance 6 R′ from each other. There-
fore, we have a canonical extension of γ′|σ(0) to a map σ → RipsR′(Z). If σ1 ⊂ σ2,
then γ′′ : σ1 → RipsR′(Z) agrees with the restriction of γ′′ : σ2 → RipsR′(Z),
since maps are determined by their vertex values. We thus obtain a simplicial
map Dk+1 → RipsR′(Z) which, by construction of γ′ and γ′′, agrees with γ on the
boundary sphere.

Thus, the inclusion map RipsR(Z) → RipsR′(Z) induces trivial maps on k-th
homotopy groups, 0 6 k 6 n. �

As a simple illustration of this theorem, consider the case n = 0.

Corollary 6.37. If a bounded geometry metric cell complex X is connected,
then X is quasi-isometric to a connected metric graph (with the standard metric).

Proof. By connectivity of X, for every pair of vertices x, y ∈ Z, there exists
a path p in X connecting x to y, so that p is a concatenation of 1-cells in X.
Since X has bounded geometry diameter of each 1-cell is 6 R = D1, where D1

is a geometric bound on X as in De�nition 6.22. Therefore, consecutive vertices
of X which appear in p are within distance 6 R from each other. It follows that
Γ = RipsR(Z) is connected. Without loss of generality, we may assume that R > 1.
Then the map ι : Z → RipsR(Z) (sending Z to the vertex set of the Rips complex)
is 1-Lipschitz. It is also clear that this map is a R−1-quasi-isometric embedding.
Thus, ι is an (R, 1)-quasi-isometry. �

We saw, so far, how to go from uniform k-connectivity of a metric cell complex
X to coarse k-connectivity of its 0-skeleton. Our main goal now is to go in the
opposite direction. This, of course, may require modifying the complex X. The
simplest instance of the �inverse� relation is

Exercise 6.38. Suppose that Z is a coarsely connected uniformly discrete
metric space. Then Z is the 0-skeleton of a connected metric graph Γ of bounded
geometry so that the inclusion map is a quasi-isometry. Hint: Γ is the 1-skeleton
of a connected Rips complex RipsR(Z). Bounded valence property comes from the
uniform discreteness assumption on Z.

Below we consider the situation k > 1 in the group-theoretic context, starting
with k = 1.
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Lemma 6.39. Let G be a �nitely-generated group with word metric. Then G
is coarsely simply-connected if and only if RipsR(G) is simply-connected for all
su�ciently large R.

Proof. One direction is clear, we only need to show that coarse simple con-
nectivity of G implies that RipsR(G) is simply-connected for all su�ciently large
R. Our argument is similar to the proof of Theorem 6.35. Note that 1-skeleton of
Rips1(G) is just the Cayley graph of G. Using coarse simple connectivity of G, we
�nd D > 1 such that the map

π1(Rips1(G))→ π1(RipsD(G))

is trivial. We claim that for all R > D the Rips complex RipsR(G) is simply-
connected. Let γ ⊂ RipsR(G) be a polygonal loop. For every edge γi := [xi, xi+1]
of γ we let γ′i ⊂ Rips1(X) denote a geodesic path from xi to xi+1. Then, by the
triangle inequality, γ′i has length 6 R. Therefore, all the vertices of γ

′
i are contained

in the ball B(xi, R) ⊂ G and, hence, they span a simplex in RipsR(G). Thus, the
paths γi, γ′i are homotopic in RipsR(G) rel. their end-points. Let γ′ denote the
loop in Rips1(G) which is the concatenation of the paths γ′i. Then, by the above
observation, γ′ is freely homotopic to γ in RipsR(G). On the other hand, γ′ is
null-homotopic in RipsR(G) since the map

π1(Rips1(G))→ π1(RipsR(G))

is trivial. We conclude that γ is null-homotopic in RipsR(G) as well. �

Corollary 6.40. Suppose that G is a �nitely generated group with the word
metric. Then G is �nitely presented if and only if G is coarsely simply-connected.
In particular, �nite-presentability is a QI invariant.

Proof. Suppose that G is �nitely-presented and let Y be its �nite presentation
complex (see De�nition 4.80). Then the universal cover X of Y is simply-connected.
Hence, by Lemma 6.34, X is uniformly simply-connected and hence by Theorem
6.35, the group G is coarsely simply-connected.

Conversely, suppose that G is coarsely simply-connected. Then, by Lemma
6.39, the simplicial complex RipsR(G) is simply-connected for some R. The group
G acts on X := RipsR(G) simplicially, properly discontinuously and cocompactly.
Therefore, by Corollary 3.28, G admits a properly discontinuous, free cocom-
pact action on another simply-connected cell complex Z. Therefore, G is �nitely-
presented. �

We now proceed to k > 2. Recall (see De�nition 3.26) that a group G has type
Fn (n 6 ∞) if its admits a free cellular action on a cell complex X such that for
each k 6 n: (1) X(k+1)/G is compact. (2) X(k+1) is k-connected.

Example 6.41 (See [Bie76b]). Let F2 be free group on 2 generators a, b.
Consider the group G = Fn2 which is the direct product of F2 with itself n times.
De�ne a homomorphism φ : G → Z which sends each generator ai, bi of G to the
same generator of Z. Let K := Ker(φ). Then K is of type Fn−1 but not of type
Fn.

Analogously to Corollary 6.40 we obtain:

Theorem 6.42 (See 1.C2 in [Gro93]). Type Fn is a QI invariant.
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Proof. Our argument is similar to the proof of Corollary 6.40, except we
cannot rely on n − 1-connectivity of Rips complexes RipsR(G) for large R. If G
has type Fn then it admits a free cellular action Gy X on some (possibly in�nite-
dimensional) n− 1-connected cell complex X so that the quotient of each skeleton
is a �nite complex. By combining Lemma 6.34 and Theorem 6.35, we see that the
group G is coarsely n− 1-connected. It remains, then to prove

Proposition 6.43. If G is a coarsely n− 1-connected group, then G has type
Fn.

Proof. Note that we already proved this statement for n = 2: Coarsely
simply-connected groups are �nitely-presented (Corollary 6.40). The proof below
follows [KK05].

Our goal is to build the complex X on which G would act as required by the
de�nition of type Fn. We construct this complex and the action by induction on
skeleta X(0) ⊂ ... ⊂ Xn−1 ⊂ Xn. Furthermore, we will inductively construct cellu-
lar G-equivariant maps f : X(i) → YRi = RipsRi(G) and equivariant �deformation
retractions� ρi : Y

(i)
Ri
→ X(i), i = 0, ..., n, which are G-equivariant cellular maps

so that composition hi = ρi ◦ fi : X(i) → X(i) is homotopic to the identity for
i = 0, ..., n− 1. We �rst explain the construction in the case when G is torsion-free
and then show how to modify the construction for groups with torsion.

Torsion-free case. In this case G-action on every Rips complex is free and
cocompact. The construction is by induction on i.

i = 0. We let X(0) = G,R0 = 0 and let f0 = ρ0 : G→ G be the identity map.

i = 1. We let R1 = 1 and let X1 = Y
(1)
R1

be the Cayley graph of G. Again
f1 = ρ1 = Id.

i = 2. According to Lemma 6.39, there exists R2 so that YR is simply-connected
for all R > R2. We then take X2 := Y

(2)
R2

. Again, we let f2 = ρ2 = Id.

i⇒ i+ 1. Suppose now that 3 6 i 6 n− 1, X(i), fi, ρi are constructed and Ri
chosen; we will construct X(i+1), fi+1, ρi+1.

We �rst construct X(i+1).

Lemma 6.44. There are �nitely many spherical i-cycles σα, α ∈ A′, in X(i)

such that their G-orbits generate πi(X
(i)).

Proof. Let R′ > R = Ri be such that the map

YR = RipsR(G)→ YR′ = RipsR′(G)

induces zero map on πk, k = 0, ..., i. Let τα : Si → (YR)(i), α ∈ A, denote the
attaching maps of the i+ 1-cells τ̂α in Y (i+1)

R′ , these maps are just simplicial home-
omorphic embeddings from the boundary Si of the standard i + 1-simplex to the
boundaries of the i + 1-simplices in Y

(i)
R′ . Since the map Hi(YR) → Hi(YR+1) is

zero, the spherical cycles τα, α ∈ A, generate the image of the map

ηi : Hi(Y
(i)
R )→ Hi(Y

(i)
R′ ).

Since the action of G on YR is cocompact, there are �nitely many of these spherical
cycles {τα, α ∈ A′}, whose G-images generate the entire image of ηi. We then let
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σα := ρi(τα), α ∈ A′. We claim that this �nite set of spherical cycles does the job.
Note that for every σ ∈ πi(X(i)),

[f(σ)] =
∑
α∈A′

∑
g∈G

zg,α · g([τα)]), g ∈ G, zg,α ∈ Z,

in the group Hi(YR′). Applying the retraction ρi and using the fact that hi = ρi◦fi
is homotopic to the identity, we get

σ =
∑
α∈A′

∑
g∈G

zg,α · g([σα)]). �

We now equivariantly attach i+1-cells σ̂g,α along the spherical cycles g(σα), α ∈
A′. We let X(i+1) denote the resulting complex and we extend the G-action to
X(i+1) in obvious fashion. It is clear that G y X(i+1) is properly discontinuous,
free and cocompact. By the construction X(i+1) is i-connected.

We next construct maps fi+1 and ρi+1. To construct the map fi+1 : X(i+1) →
YR′ we extend fi|σ1,α to σ̂1,α using the fact that the map

πi(YR)→ πi(YR′)

is trivial. We extend fi+1 to the rest of the cells σ̂g,α, α ∈ A′, by G-equivariance.
We extend ρi to each gτ̂α using the attaching map gσ̂α. We extend the map to the
rest of Y (i+1)

R′ by induction on the skeleta, G-equivariance and using the fact that
X(i+1) is i-connected. Lastly, we observe that hi+1 is homotopic to the identity.
Indeed, for each i + 1-cell g(σ̂α), the map fi(gσα) is homotopic to gτα in YR′ (as
πi(YR)→ πi(YR′) is zero) and fi+1(gτ̂α) = g(σ̂α). (Note that we do not claim that
hn is homotopic to the identity.)

If n < ∞, this construction terminates after �nitely many steps, otherwise, it
takes in�nitely many steps. In either case, the result is n− 1-connected complex X
and a free action Gy X which is cocompact on each skeleton. This concludes the
proof in the case of torsion-free groups G.

General Case. We now explain what to do in the case when G is not torsion-
free. The main problem is that a group G with torsion will not act freely on its
Rips complexes. Thus, while equivariant maps fi would still exist, we would be
unable to construct equivariant maps ρi : RipsR(G)→ X(i). Furthermore, it could
happen that for large R the complex YR is contractible: This is clearly true if G is
�nite, it also holds for all Gromov-hyperbolic groups. If were to have fi and ρi as
before, we would be able to conclude that X(i) is contractible for large i, while a
group with torsion cannot act freely on a contractible cell complex.

We, therefore, have to modify the construction. For each R we let ZR denote
the barycentric subdivision of Y (i)

R = RipsR(G)(i). Then G acts on ZR without
inversions (see De�nition 3.22). Let ẐR denote the regular cell complex obtained
by applying the Borel construction to ZR, see section 3.2. The complex ẐR is
in�nite-dimensional if G has torsion, but this does not cause problems since at each
step of induction we work only with �nite skeleta. The action G y ZR lifts to a
free (properly discontinuous) action Gy ẐR which is cocompact on each skeleton.
We then can apply the arguments from the torsion-free case to the complexes ẐR
instead of RipsR(G). The key is that, since the action of G on ẐR is free, the
construction of the equivariant retractions ρi : Y

(i)
Ri
→ X(i) goes through. Note also
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that in the �rst steps of the induction we used the fact that YR is simply-connected
for su�ciently large R in order to construct X(2). Since the projection ẐR → ZR
is homotopy-equivalence, 2-skeleton of ẐR is simply-connected for the same values
of R. �

This �nishes the proof of Theorem 6.42 as well. �

There are other group-theoretic �niteness conditions, for instance, the condi-
tion FPn which is a cohomological analogue of the �niteness condition Fn. The
arguments used in this section apply in the context of FPn-groups as well, see
Proposition 11.4 in [KK05]. The main di�erence is that instead of metric cell
complexes, one works with metric chain complexes and instead of k-connectedness
of the system of Rips complexes, one uses acyclicity over R.

Theorem 6.45. Let R be a commutative ring with neutral element. Then the
property of being FPn over R is QI invariant.

Question 6.46. 1. Is the homological dimension of a group QI invariant?
2. Suppose that G has geometric dimension n < ∞. Is there a bounded

geometry uniformly contractible n-dimensional metric cell complex with free G-
action Gy X?

3. Is geometric dimension QI invariant for torsion-free groups?

Note that cohomological dimension is known to equal geometric dimension,
except there could be groups satisfying

2 = cd(G) ≤ gd(G) ≤ 3,

see [Bro82b]. On the other hand,

cd(G) ≤ hd(G) ≤ cd(G) + 1,

see [Bie76a]. Here cd stands for cohomological dimension, gd is the geometric
dimension and hd is the homological dimension.

6.5. Retractions

The goal of this section is to give a non-equivariant version of the construction
of the retractions ρi from the proof of Proposition 6.43 in the previous section.

Suppose that X,Y are uniformly contractible �nite-dimensional metric cell
complexes of bounded geometry. Consider a uniformly proper map f : X → Y .
Our goal is to de�ne a coarse left-inverse to f , a retraction ρ which maps an r-
neighborhood of V := f(X) back to X.

Lemma 6.47. Under the above assumptions, there exist numbers L,L′, A, func-
tion R = R(r) which depend only on the distortion function of f and on the geom-
etry of X and Y so that:

1. For every r ∈ N there exists a cellular L�Lipschitz map ρ = ρr : Nr(V )→ X
so that dist(ρ ◦ f, idX) 6 A. Here and below we equip W (0) with the restriction of

the path-metric on the metric graph W (1) in order to satisfy Axiom 1 of metric cell
complexes.

2. ρ ◦ f is homotopic to the identity by an L′�Lipschitz cellular homotopy.
3. The composition h = f ◦ ρ : Nr(V ) → V ⊂ NR(V ) is homotopic to the

identity embedding id : V → NR(V ).
4. If r1 6 r2 then ρr2 |Nr1(V ) = ρr1 .
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Proof. Let D0 = 0, D1, D2, ... denote the geometric bounds on Y and

max
k>0

Dk = D <∞.

Since f is uniformly proper, there exists a proper monotonic function η : R+ → R+

so that
η(d(x, x′)) 6 d(f(x), f(x′)),∀x, x′ ∈ X(0).

Let A0, A1 denote numbers such that

η(t) > 0, ∀t > A0,

η(t) > 2r +D1, ∀t > A1,

Recall that the neighborhood W := N̄r(V ) is a subcomplex of Y . For each vertex
y ∈ W (0) we pick a vertex ρ(y) := x ∈ X(0) such that the distance dist(y, f(x))
is the smallest possible. If there are several such points x, we pick one of them
arbitrarily. The fact that f is uniformly proper, ensures that

dist(ρ ◦ f, idX(0)) 6 A := A0.

Indeed, if ρ(f(x)) = x′, then f(x) = f(x′); if d(x, x′) > A0, then

0 < η(d(x, x′)) 6 d(f(x), f(x′)),

contradicting that f(x) = f(x′). Thus, by our choice of the metric on W (0) coming
from W 1, we conclude that ρ is A1-Lipschitz.

Next, observe also that for each 1-cell σ in W , diam(ρ(∂σ)) 6 A1. Indeed,
if ∂σ = {y1, y2}, d(y1, y2) 6 D1 by the de�nition of a metric cell complex. For
y′i := f(xi), d(yi, y

′
i) 6 r. Thus, d(y′1, y

′
2) 6 2r + D1 and d(x1, x2) 6 A1 by the

de�nition of A1. Now, existence of L-Lipschitz extension ρ : W → X follows from
Proposition 6.31. This proves (1).

Part (2) follows from Corollary 6.33. To prove Part (3), observe that h = f ◦ρ :
N̄r(V ) → V is L′′-Lipschitz (see Exercise 6.25), dist(h, Id) 6 r. Now, (3) follows
from Corollary 6.33 since Y is also uniformly contractible.

Lastly, in order to guarantee (4), we can construct the retractions ρr by induc-
tion on the values of r and using the extension Lemma 6.32. �

Corollary 6.48. There exists a function α(r) > r so that for every r the
map h = f ◦ ρ : Nr(V ) → Nα(r)(V ) is properly homotopic to the identity, where
V = f(X).

We will think of this lemma and its corollary as a proper homotopy-equivalence
between X and the direct system of metric cell complexes NR(V ), R > 1. Re-
call that the usual proper homotopy-equivalence induces isomorphisms of com-
pactly supported cohomology groups. In our case we get an �approximate isomor-
phism� of H∗c (X) to the inverse system of compactly supported cohomology groups
H∗c (NR(V )):

Corollary 6.49. 1. The induced maps ρ∗R : H∗c (X) → H∗c (NR(W )) are in-
jective.

2. The induced maps ρ∗R are approximately surjective in the sense that the
subgroup coker(ρ∗α(R)) maps to zero under the map induced by restriction map

restR : H∗c (Nα(R)(V ))→ H∗c (NR(V )).
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Proof. 1. Follows from the fact that ρ◦f is properly homotopic to the identity
and, hence, induces the identity map of H∗c (X), which means that f∗ is the right-
inverse to ρ∗R.

2. By Corollary 6.48 the restriction map restR equals the map ρ∗R ◦ f∗. There-
fore, the cohomology group H∗c (Nα(R)(W )) maps via restR to the image of ρ∗R.
The second claim follows. �

6.6. Poincaré duality and coarse separation

In this section we discuss coarse implications of Poincaré duality in the context
of triangulated manifolds. For a more general version of Poincaré duality, we refer
the reader to [Roe03]; this concept was coarsi�ed in [KK05], where coarse Poincaré
duality was introduced and used in the context of metric cell complexes. We will be
working work with metric cell complexes which are simplicial complexes, the main
reason being that Poincaré duality has cleaner statement in this case.

Let X be a connected simplicial complex of bounded geometry which is a
triangulation of a (possibly noncompact) n-dimensional manifold without boundary.
Suppose that W ⊂ X is a subcomplex, which is a triangulated manifold (possibly
with boundary). We will use the notation W ′ to denote its barycentric subdivision.
We then have the Poincaré duality isomorphisms

Pk : Hk
c (W )→ Hn−k(W,∂W ) = Hn−k(X,X \W ).

Here H∗c are cohomology groups with compact support. The Poincaré duality
isomorphisms are natural in the sense that they commute with proper embeddings
of manifolds and manifold pairs. Furthermore, the isomorphisms Pk move cocycles
by uniformly bounded amount: Suppose that ζ ∈ Zkc (W ) is a simplicial cocycle
supported on a compact subcomplex K ⊂ W . Then the corresponding relative
cycle Pk(ζ) ∈ Zn−k(W,∂W ) is represented by a simplicial chain in W ′ where each
simplex has nonempty intersection with K.

Exercise 6.50. If W ( X is a proper subcomplex, then Hn
c (W ) = 0.

We will also have to use the Poincaré duality in the context of subcomplexes
V ⊂ X which are not submanifolds with boundary. Such V , nevertheless, admits a
(closed) regular neighborhood W = N (V ), which is a submanifold with boundary.
The neighborhood W is homotopy-equivalent to V .

We will present in this section two applications of Poincaré duality to the coarse
topology of X.

Coarse surjectivity

Theorem 6.51. Let X,Y be uniformly contractible simplicial complexes of
bounded geometry homeomorphic to Rn. Then every uniformly cellular proper map
f : X → Y is surjective.

Proof. Assume to the contrary, i.e, V = f(X) 6= Y is a proper subcomplex.
Thus, Hn

c (V ) = 0 by Exercise 6.50. Let ρ : V → X be a retraction constructed
in Lemma 6.47. By Lemma 6.47, the composition h = ρ ◦ f : X → X is properly
homotopic to the identity. Thus, this map has to induce an isomorphism H∗c (X)→
H∗c (X). However, Hn

c (X) ∼= Z since X is homeomorphic to Rn, while Hn
c (V ) = 0.

Contradiction. �
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Corollary 6.52. Let X,Y be as above an f : X(0) → Y (0) is a quasi-isometric
embedding. Then f is a quasi-isometry.

Proof. Combine Proposition 6.31 with Theorem 6.51. �

Coarse separation.
Suppose that X is a simplicial complex andW ⊂ X is a subcomplex. Consider,

NR(W ), the open metric R-neighborhoods of W in X and their complements CR
in X.

For a component C ⊂ CR de�ne the inradius, inrad(C), of C to be the supre-
mum of radii of metric balls B(x,R) in X contained in C. A component C is called
shallow if inrad(C) is <∞ and deep if inrad(C) =∞.

Example 6.53. Suppose that W is compact. Then deep complementary com-
ponents of CR are components of in�nite diameter. These are the components
which appears as neigborhoods of ends of X.

A subcomplex W is said to coarsely separate X if there is R such that NR(W )
has at least two distinct deep complementary components.

Example 6.54. The simple properly embedded curve Γ in R2 need not coarsely
separate R2 (see Figure 6.4). A straight line in R2 coarsely separates R2.

Γ

Figure 6.4. A separating curve which does not coarsely separate
the plane.

Theorem 6.55. Suppose that X,Y are uniformly contractible simplicial com-
plexes of bounded geometry which are homeomorphic to Rn−1 and Rn respectively.
Then for each uniformly proper cellular map f : X → Y , the image V = f(X)
coarsely separates Y . Moreover, for all su�ciently large R, Y \NR(V ) has exactly
two deep components.

Proof. Actually, our proof will use the assumption on the topology of X only
weakly: To get coarse separation it su�ces to assume that Hn−1

c (X) 6= 0.
Recall that in Section 6.5 we constructed a system of retractions ρR : NR(V )→

X, R ∈ N, and proper homotopy-equivalences f ◦ ρ ≡ Id and ρR ◦ f |NR(V ) ≡ Id :
NR(V )→ Nα(R)(V ). Furthermore, we have the restriction maps

restR1,R2 : H∗c (N̄R2(V ))→ H∗c (N̄R1(V )), R1 6 R2.

These maps satisfy
restR1,R2

◦ ρ∗R2
= ρ∗R1
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by Part 4 of Lemma 6.47. We also have the projection maps

projR1,R2
: H∗(Y, Y − N̄R2

(V ))→ H∗(Y, Y − N̄R1
(V )) R1 6 R2.

induced by inclusion maps of pairs (Y, Y − N̄R2(V )) ↪→ (Y, Y − N̄R1(V )). Poincaré
duality in Rn also gives us a system of isomorphisms

P : Hn−1
c (N̄R(V )) ∼= H1(X,X \ NR(V )).

By naturality of Poincaré duality we have a commutative diagram:

H∗c (N̄R2(V ))
P- Hn−∗(Y,CR2)

H∗c (N̄R1
(V ))

restR1,R2

?
P- Hn−∗(Y,CR1)

projR1,R2

?

Let ω be a generator of Hn−1
c (X) ∼= R. Given R > 0 consider the pull-back

ωR := ρ∗R(ω) and the relative cycle σR = P (ωR). Then ωr = restr,R(ωR) and

σr = projr,R(σR) ∈ H1(Y,Cr)

for all r < R, see Figure 6.5. Observe that for every r, ωr is non-zero, since
f∗ ◦ ρ∗ = id on the compactly supported cohomology of X. Hence, every σr is
nonzero as well.

Contractibility of Y and the long exact sequence of the homology groups of the
pair (Y,Cr) implies that

H1(Y,Cr) ∼= H̃0(Cr).

We let τr denote the image of σr under this isomorphism. Thus, each τr is rep-
resented by a 0-cycle, the boundary of the chain representing σr. Running the
Poincaré duality in the reverse and using the fact that ω is a generator of Hn−1

c (X),
we see that τr is represented by the di�erence y′r−y′′r , where y′r, y′′r ∈ Cr. Nontrivial-
ity of τr means that y′r, y

′′
r belong to distinct components C ′r, C

′′
r of Cr. Furthermore,

since for r < R,
projr,R(σR) = σr,

it follows that
C ′R ⊂ C ′r, C ′′R ⊂ C ′′r .

Since this could be done for arbitrarily large r,R, we conclude that components
C ′r, C

′′
r are both deep.
The same argument run in the reverse implies that there are exactly two deep

complementary components. �
We refer to [FS96], [KK05] for further discussion and generalization of coarse

separation and coarse Poincaré/Alexander duality.
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CHAPTER 7

Hyperbolic Space

The real hyperbolic space is the oldest and easiest example of hyperbolic space.
A good reference for hyperbolic spaces in general is [?]. The real-hyperbolic space
has its origin in the following classical question that has challenged the geometers
for nearly 2000 years:

Question 7.1. Does Euclid's �fth postulate follow from the rest of the axioms
of Euclidean geometry? (The �fth postulate is equivalent to the statement that
given a line L and a point P in the plane, there exists exactly one line through P
parallel to L.)

After a long history of unsuccessful attempts to establish a positive answer to
this question, N.I. Lobachevski, J. Bolyai and C.F. Gauss independently (in the
early 19th century,) developed a theory of non-Euclidean geometry (which we now
call �hyperbolic geometry�), where Euclid's �fth postulate is replaced by the axiom:

�For every point P which does not belong to L, there are in�nitely many lines
through P parallel to L.�

Independence of the 5th postulate from the rest of the Euclidean axioms was
proved by E. Beltrami in 1868, via a construction of a model of the hyperbolic
geometry. In this chapter we will use the unit ball and the upper half-space models
of hyperbolic geometry, the latter of which is due to H. Poincaré.

7.1. Moebius transformations

We will think of the sphere Sn as the 1-point compacti�cation of Rn. Ac-
cordingly, we will regard the 1-point compacti�cation of a hyperplane in Rn as
a round sphere (of in�nite radius) and the 1-points compacti�cation of a line in
Rn as a round circle (of in�nite radius). Recall that the inversion in the r-sphere
Σr = {x : ‖x‖ = r} is the map

JΣ : x 7→ r2x

‖x‖2
, JΣ(0) =∞, JΣ(∞) = 0.

One de�nes the inversion JΣ in the sphere Σ = {x : ‖x− a‖ = r} by the formula

Ta ◦ JΣr ◦ T−a
where Ta is the translation by the vector a. Inversions map round spheres to round
spheres and round circles to circles; inversions also preserve the Euclidean angles,
and the cross-ratio

[x, y, z, w] :=
|x− y|
|y − z|

· |z − w|
|w − x|

,

see e.g. [Rat94, Theorem 4.3.1]. We will regard the re�ection in a Euclidean
hyperplane as an inversion (such inversion �xes ∞).
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Definition 7.2. A Moebius transformation of Rn (or, rather, Sn) is a compo-
sition of �nitely many inversions in Rn. The group of all Moebius transformations
of Rn is denoted Mob(Rn) or Mob(Sn).

In particular, Moebius transformations preserve angles, cross-ratios and map
circles to circles and spheres to spheres.

For instance, every translation is a Moebius transformation, since it is the
composition of two re�ections in parallel hyperplanes. Every rotation in Rn is the
composition of at most n inversions (re�ections), since every rotation in R2 is the
composition of two re�ections. Every dilation x 7→ λx, λ > 0 is the composition of
two inversions in spheres centered at 0.

Lemma 7.3. The subgroup Mob∞,0(Rn) of Mob(Rn) �xing ∞ and 0 equals the
group CO(n) = R+ ·O(n).

Proof. We just observed that CO(n) is contained in Mob∞,0(Rn). We, thus,
need to prove the opposite inclusion. Consider the coordinate lines L1, ..., Ln in
Rn. Then every g ∈ Mob∞(Rn) sends these lines to pairwise orthogonal lines
L′1, ..., L

′
n through the origin (since Moebius transformations map circles to circles

and preserve angles). By postcomposing g with an element of O(n), we can assume
that g preserves each coordinate line Ln and, furthermore, preserves the orientation
on this line. By postcomposing g with dilation we can also assume that g maps
the unit vector e1 to itself. Thus, g maps the unit sphere Σ1 to the round sphere
which is orthogonal to the coordinate lines and passes through the point e1. Hence,
d(Σ1) = Σ1. We claim that such g is the identity. Indeed, if L is a line through
the origin, then the line g(L) has the same angles with Li as L for each i = 1, ..., n.
Thus, g(L) = L for every such L. By considering intersections of these lines with
Σ1, we conclude that g restricts to the identity on Σ1. It remains to show that g is
the identity on every sphere centered at the origin. Equivalently, we need to show
that g is the identity on the line L1.

Let x ∈ L1 be outside of Σ1 and let L be a line in the x1x2-plane through x
and tangent to Σ1 at a point y. Then g(L) is also a line through g(x), y, tangent to
Σ1 at y. Since g preserves the orientation on L1, g(L) = L and, hence, g(x) = x.
We leave the case of points x ∈ L1 contained inside Σ1 to the reader. �

Example 7.4. Let us construct a Moebius transformation σ sending the unit
ball Bn = B(0, 1) ⊂ Rn to the upper half-space Un = Rn+,

Rn+ = {(x1, ...xn) : xn > 0}.

We take σ to be the composition of translation x 7→ x+ en, where en = (0, ..., 0, 1),
inversion JΣ, where Σ = ∂Bn, translation x 7→ x − 1

2en and, lastly, the similarity
x→ 2x. The reader will notice that the restriction of σ to the boundary sphere Σ
of Bn is nothing but the stereographic projection with the pole at −en.

Note that the map σ sends the origin 0 ∈ Bn to the point en ∈ Un.

Low-dimensional Moebius transformations. Suppose now that n = 2.
The group SL(2,C) acts on the extended complex plane S2 = C ∪ ∞ by linear-
fractional transformations:

(7.1)
(
a b
c d

)
· z =

az + b

cz + d
.
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Note that the matrix −I lies in the kernel of this action, thus, the above action
factors through the group PSL(2,C) = SL(2,C)/± I. If we identify the complex-
projective line CP1 with the sphere S2 = C ∪ ∞ via the map [z : w] 7→ z/w, the
above action of SL(2,C) is nothing but the action of SL(2,C) on CP1 obtained via
projection of the linear action of SL(2,C) on C2 \ 0.

Exercise 7.5. Show the group PSL(2,C) acts faithfully on S2.

Exercise 7.6. Prove that the subgroup SL(2,R) ⊂ SL(2,C) preserves the
upper half-plane U2 = {z : Im(z) > 0}. Moreover, SL(2,R) is the stabilizer of U2

in SL(2,C).

Exercise 7.7. Prove that any matrix in SL(2,C) is either of the form(
a b
0 a−1

)
or it can be written as a product(

a b
0 a−1

)(
0 −1
1 0

)(
1 x
0 1

)
Hint: If a matrix is not of the �rst type then it is a matrix(

a b
c d

)
such that c 6= 0. Use this information and multiplications on the left and on the
right by matrices (

1 x
0 1

)
to create zeroes on the diagonal in the matrix.

Lemma 7.8. PSL(2,C) is the subgroup Mob+(S2) of Moebius transformations
of S2 which preserve orientation.

Proof. 1. Every linear-fractional transformation is a composition of j : z 7→
z−1, translations, dilations and rotations (see Exercise 7.7). Note that j(z) is the
composition of the complex conjugation with the inversion in the unit circle. Thus,
PSL(2,C) ⊂ Mob+(S2). Conversely, let g ∈ Mob(S2) and z0 := g(∞). Then
h = j ◦ τ ◦ g �xes the point ∞, where τ0(z) = z − z0. Let z1 = h(0). Then
composition f of h with the translation τ1 : z 7→ z − z1 has the property that
f(∞) =∞, f(0) = 0. Thus, f ∈ CO(2) and h preserves orientation. It follows that
f has the form f(z) = λz, for some λ ∈ C \ 0. Since f , τ0, τ − 1, j are Moebius
transformation, it follows that g is also a Moebius transformation. �

7.2. Real hyperbolic space

Upper half-space model. We equip Un = Rn+ with the Riemannian metric

(7.2) ds2 =
dx2

x2
n

=
dx2

1 + ...+ dx2
n

x2
n

The Riemannian manifold (Un, ds2) is called the n-dimensional hyperbolic space and
denoted Hn. This space is also frequently called the real-hyperbolic space, in order
to distinguish it from other spaces also called hyperbolic (e.g., complex-hyperbolic
space, quaternionic-hyperbolic space, Gromov-hyperbolic space, etc.). We will use
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the terminology hyperbolic space for Hn and add adjective real in case when other
notions of hyperbolicity are involved in the discussion. In case n = 2, we identify
R2 with the complex plane, so that U2 = {z|Im(z) > 0}, z = x+ iy, and

ds2 =
dx2 + dy2

y2
.

Note that the hyperbolic Riemannian metric ds2 on Un is conformally-Euclidean,
hence, hyperbolic angles are equal to the Euclidean angles. One computes hyper-
bolic volumes of solids in Hn by the formula

V ol(Ω) =

ˆ
Ω

dx1...dxn
xnn

Consider the projection to the xn-axis in Un given by the formula

π : (x1, ..., xn) 7→ (0, ..., 0, xn).

Exercise 7.9. 1. Verify that dxπ does not increase the length of tangent
vectors v ∈ TxHn for every x ∈ Hn.

2. Verify that for a unit vector v ∈ TxHn, ‖dxπ(v)‖ = 1 if and only if v is
�vertical�, i.e., it has the form (0, ..., 0, vn).

Exercise 7.10. Suppose that p = aen, q = ben, where 0 < a < b. Let α be the
vertical path α(t) = (1 − t)p + tq, t ∈ [0, 1] connecting p to q. Show that α is the
shortest path (with respect to the hyperbolic metric) connecting p to q in Hn. In
particular, α is a hyperbolic geodesic and

d(p, q) = log(b/a).

Hint: Use the previous exercise.

We note that the metric ds2 on Hn is clearly invariant under the �horizontal�
Euclidean translations x 7→ x + v, where v = (v1, ..., vn−1, 0) (since they preserve
the Euclidean metric and the xn-coordinate). Similarly, ds2 is invariant under the
dilations

h : x 7→ λx, λ > 0

since h scales both numerator and denominator in (7.2) by λ2. Lastly, ds2 is
invariant under Euclidean rotations which �x the xn-axis (since they preserve the
xn-coordinate). Clearly, compositions of such isometries of Hn act transitively on
Hn, which means that Hn is a homogeneous Riemannian manifold.

Exercise 7.11. Show that Hn is a complete Riemannian manifold. You can
either use homogeneity of Hn or show directly that every Cauchy sequence in Hn
lies in a compact subset of Hn.

Exercise 7.12. Show that the inversion J = JΣ in the unit sphere Σ centered
at the origin, is an isometry of Hn, i.e., ds2

B = J∗(ds2). The proof is easy but
(somewhat) tedious calculation, which is best done using calculus interpretation of
the pull-back Riemannian metric.

Exercise 7.13. Show that every inversion preserving Hn is an isometry of
Hn. To prove this, use compositions of the inversion JΣ in the unit sphere with
translations and dilations.
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In order to see clearly other isometries of Hn, it is useful to consider the unit
ball model of the hyperbolic space.

Unit ball model. Consider the open unit Euclidean n-ball Bn := {x : |x| < 1}
in Rn. We equip Bn with the Riemannian metric

ds2
B = 4

dx2
1 + ...+ dx2

n

(1− |x|2)2
.

The Riemannian manifold (Bn, ds2) is called the unit ball model of the hyperbolic
n-space. What is clear in this model is that the group O(n) of orthogonal trans-
formations of Rn preserves ds2

B (since its elements preserve |x| and, hence, the
denominator of ds2

B). The two models of the hyperbolic space are related by the
Moebius transformation σ : Bn → Un de�ned in the previous section.

Exercise 7.14. Show that ds2
B = σ∗(ds2). The proof is again a straightforward

calculation similar to the Exercise 7.12. Namely, �rst, pull-back ds2 via dilatation
x → 2x, then apply pull-back via the translation x 7→ x− 1

2en, etc. Thus, σ is an
isometry of the Riemannian manifolds (Bn, ds2

B), (Un, ds2).

Lemma 7.15. The group O(n) is the stabilizer of 0 in the group of isometries
of (Bn, ds2

B).

Proof. Note that if g ∈ Isom(Bn) �xes 0, then its derivative at the origin dg0

is an orthogonal transformation u. Thus, h = u−1g ∈ Isom(Bn) has the property
dh0 = Id. Therefore, for every geodesic γ in Hn so that γ(0) = 0, dh(γ′(0)) = γ′(0).
Since geodesic in a Riemannian manifold is uniquely determined by its initial point
and initial velocity, we conclude that h(γ(t)) = γ(t) for every t. Since Bn is
complete, for every q ∈ Bn there exists a geodesic hyperbolic γ connecting p to q.
Thus, h(q) = q and, therefore, g = u ∈ O(n). �

Corollary 7.16. The stabilizer of the point p = en ∈ Un in the group
Isom(Hn) is contained in the group of Moebius transformations.

Proof. Note that σ sends 0 ∈ Bn to p = en ∈ Un, and σ is Moebius. Thus,
σ : Bn → Un conjugates the stabilizer O(n) of 0 in Isom(Bn, ds2

B) to the stabilizer
K = σ−1O(n)σ of p in Isom(Un, ds2). Since O(n) ⊂Mob(Sn), σ ∈Mob(Sn), claim
follows. �

Corollary 7.17. a. Isom(Hn) equals the group Mob(Hn) of Moebius trans-
formations of Sn preserving Hn. b. Isom(Hn) acts transitively on the unit tangent
bundle UHn of Hn.

Proof. a. Since two models of Hn di�er by a Moebius transformation, it
su�ces to work with Un.

1. We already know that the Isom(Hn)∩Mob(Hn) contains a subgroup acting
transitively on Hn. We also know, that the stabilizer K of p in Isom(Hn) is con-
tained in Mob(Hn). Thus, given g ∈ Isom(Hn) we �rst �nd h ∈ Mob(Hn) ∩
Isom(Hn) so that k = h ◦ g(p) = p. Since k ∈ Mob(Hn), we conclude that
Isom(Hn) ⊂Mob(Hn).

2. We leave it to the reader to verify that the restriction homomorphism
Mob(Hn) → Mob(Sn−1) is injective. Every g ∈ Mob(Sn−1) extends to a com-
position of inversions preserving Hn. Thus, the above restriction map is a group
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isomorphism. We already know that inversions J ∈Mob(Hn) are hyperbolic isome-
tries. Thus, Mob(Hn) ⊂ Isom(Hn).

b. Transitivity of the action of Isom(Hn) on UHn follows from the fact that
this group acts transitively on Hn and that the stabilizer of p acts transitively on
the set of unit vectors in TpHn. �

Lemma 7.18. Geodesics in Hn are arcs of circles orthogonal to the boundary
sphere of Hn. Furthermore, for every such arc α in Un, there exists an isometry
of Hn which carries α to a segment of the xn-axis.

Proof. It su�ces to consider complete hyperbolic geodesics α : R → Hn.
Since σ : Bn → Un sends circles to circles and preserves angles, it again su�ces to
work with the upper half-space model. Let α be a hyperbolic geodesic in Un. Since
Isom(Hn) acts transitively on UHn, there exists a hyperbolic isometry g so that the
hyperbolic geodesic β = g ◦ α satis�es: β(0) = p = en and the vector β′(0) has the
form en = (0, ..., 0, 1). We already know that the curve γ(t) = eten is a hyperbolic
geodesic, see Exercise 7.10. Furthermore, γ′(0) = en and γ(0) = p. Thus, β = γ is a
(generalized) circle orthogonal to the boundary of Hn. Since Isom(Hn) = Mob(Hn)
and Moebius transformations map circles to circles and preserve angles, lemma
follows. �

Corollary 7.19. The space Hn is uniquely geodesic, i.e., for every pair of
points in Hn there exists a unique unit speed geodesic segment connecting these
points.

Proof. By the above lemma, it su�ces to consider points p, q on the xn-
axis. But, according to Exercise 7.10, the vertical segment is the unique length-
minimizing path between such p and q. �

Corollary 7.20. Let H ⊂ Hn be the intersection of Hn with a round k-sphere
orthogonal to the boundary of Hn. Then H is a totally-geodesic subspace of Hn,
i.e., for every pair of points p, q ∈ H, the unique hyperbolic geodesic γ connecting
p and q in Hn, is contained in H. Furthermore, if ι : H → Hn is the embedding,
then the Riemannian manifold (H, ι∗ds2) is isometric to Hk.

Proof. The �rst assertion follows from the description of geodesics in Hn. To
prove the second assertion, by applying an appropriate isometry of Hn, it su�ces
to consider the case when H is contained in a coordinate k-dimensional subspace
in Rn:

H = {(0, ..., 0, xn−k+1, .., xn) : xn > 0}.
Then

ι∗ds2 =
dx2

n−k+1 + ...+ dx2
n

x2
n

is isometric to the hyperbolic metric on Hk (by relabeling the coordinates). �
We will refer to the submanifolds H ⊂ Hn as hyperbolic subspaces.

Exercise 7.21. Show that the hyperbolic plane violates the 5th Euclidean
postulate: For every (geodesic) line L ⊂ H2 and every point P /∈ L, there are
in�nitely many lines through P which are parallel to L (i., disjoint from L).

Exercise 7.22. Prove that
• the unit sphere Sn−1 is the ideal boundary (in the sense of De�nition 2.44)
of the hyperbolic space Hn in the unit ball model;
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• the extended Euclidean space Rn−1 ∪ {∞} = Sn−1 is the ideal boundary
of the hyperbolic space Hn in the upper half-space model.

Note that the Moebius transformation σ : Bn → Un carries the ideal boundary
of Bn to the ideal boundary of Un. Note also that all Moebius transformations
which preserve Hn in either model, induce Moebius transformations of the ideal
boundary of Hn.

It follows from Corollaries 7.20 and 7.33 that Hn has sectional curvature −1,
therefore all the considerations in Section 2.1.8, in particular those concerning the
ideal boundary, apply to it. Later on, in Section 8.9 of Chapter 8, we will give
another more intrinsic de�nition of ideal boundaries, for metric hyperbolic spaces
in the sense of Gromov.

Lorentzian model of Hn. We refer the reader to [Rat94] and [Thu97] for
the material below.

Consider the Lorentzian space Rn,1 which is Rn+1 equipped with the quadratic
form

q(x) = x2
1 + . . .+ x2

n − x2
n+1.

Let H denote the upper sheet of the 2-sheeted hyperboloid in Rn,1:

x2
1 + . . .+ x2

n − x2
n+1 = −1, xn+1 > 0.

Restriction of q to the tangent bundle of H is positive-de�nite and de�nes a Rie-
mannian metric ds2 on H. We identify the unit ball Bn in Rn with the ball

{(x1, . . . , xn, 0) : x+
1 . . .+ x2

n < 1} ⊂ Rn+1.

Let π : H → Bn denote the radial projection from the point −en+1:

π(x) = tx− (1− t)en+1, t =
1

xn+1 + 1
.

One then veri�es that

π : (H, ds2)→ Hn =

(
Bn,

4dx2

(1− |x|2)2

)
is an isometry.

The stabilizer PO(n, 1) of H in O(n, 1) acts isometrically on H. Furthermore,
PO(n, 1) is the entire isometry group of (H, ds2). Thus, Isom(Hn) ∼= PO(n, 1) ⊂
SO(n, 1); in particular, the Lie group Isom(Hn) is linear.

7.3. Hyperbolic trigonometry

In this section we consider geometry of triangles in the hyperbolic plane. We
refer to [?, Rat94, Thu97] for the proofs of the hyperbolic trigonometric formulae
introduced in this section. Recall that a (geodesic) triangle T = T (A,B,C) as
a 1-dimensional object. From the Euclidean viewpoint, a hyperbolic triangle T
is a concatenations of circular arcs connecting points A,B,C in H2, where the
circles containing the arcs are orthogonal to the boundary of H2. Besides such
�conventional� triangles, it is useful to consider generalized hyperbolic triangles
where some vertices are ideal, i.e., they belong to the ideal boundary of H2. Such
triangles are easiest to introduce by using Euclidean interpretation of hyperbolic
triangles: One simply allows some (or, even all) vertices A,B,C to be points on the
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boundary circle of H2, the rest of the de�nition is exactly the same. However, we
no longer allow two vertices which belong to the boundary circle S1 to be the same.

The vertices of T which happen to be points of the boundary circle S1 are called
the ideal vertices of T . The angle of T at its ideal vertex is just the Euclidean angle.
In general, we will use the notation α = ∠A(B,C) to denote the angle of T at a.
From now on, a hyperbolic triangle means either a usual triangle or a triangle where
some vertices are ideal. We still refer to such triangles as triangles in H2, even
though, some of the vertices could lie on the ideal boundary, so, strictly speaking,
an ideal hyperbolic triangle in H2 is not a subset of H2. An ideal hyperbolic
triangle, is a triangle where all the vertices are distinct ideal points in H2. The
same conventions will be used for hyperbolic triangles in Hn.

Exercise 7.23. If A is an ideal vertex of a hyperbolic triangle T , then T has
zero angle at A. Hint: It su�ces to consider the case when A = 0 and the side
[A,B] of T is contained in the vertical line L. Show that the side [A,C] of T is a
circular arc tangent to L at A.

a

b

c
α

β

γ

T

Figure 7.1. Geometry of a general hyperbolic triangle.

1. General triangles. Consider hyperbolic triangles T in H2 with the side-
lengths a, b, c and the opposite angles α, β, γ, see Figure 7.1.

a. Hyperbolic Sine Law:

(7.3)
sinh(a)

sin(α)
=

sinh(b)

sin(β)
=

sinh(c)

sin(γ)
.

b. Hyperbolic Cosine Law:
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(7.4) cosh(c) = cosh(a) cosh(b)− sinh(a) sinh(b) cos(γ)

c. Dual Hyperbolic Cosine Law:

(7.5) cos(γ) = − cos(α) cos(β) + sin(α) sin(β) cosh(c)

2. Right triangles. Consider a right-angled hyperbolic triangle with the
hypotenuse c, the other side-lengths a, b and the opposite angles α, β. Then, hy-
perbolic cosine laws become:

(7.6) cosh(c) = cosh(a) cosh(b),

(7.7) cos(α) = sin(β) cosh(a),

(7.8) cos(α) =
tanh b

tanh c

In particular,

(7.9) cos(α) =
cosh(a) sinh(b)

sinh(c)
.

3. First variation formula for right triangles. We now hold the side a
�xed and vary the hypotenuse in the above right-angled triangle. By combining
(7.6) and (7.4) we obtain the First Variation Formula:

(7.10) c′(0) =
cosh(a) sinh(b)

sinh(c)
b′(0) = cos(α)b′(0).

The equation c′(0) = cos(α)b′(0) is a special case of the First Variation Formula in
Riemannian geometry, which applies to general Riemannian manifolds.

As an application of the �rst variation formula, consider a hyperbolic triangle
with vertices A,B,C, side-lengths a, b, c and the angles β, γ opposite to the sides
b, c. Then

Lemma 7.24. a+ b− c > ma, where
m = min{|1− cos(β)|, |1− cos(γ)|}.

Proof. We let g(t) denote the unit speed parameterizations of the segment
[BC], so that g(0) = C, g(a) = B. Let c(t) denote the distance dist(A, g(t)) (so
that b = c(0), c = c(a)) and let β(t) denote the angle ∠Ag(t)B. We leave it to the
reader to verify that

|1− cos(β(t))| > m.
Consider the function

f(t) = t+ b− c(t), f(0) = 0, f(a) = a+ b− c.
By the 1st variation formula,

c′(t) = cos(β(t))

and, hence,
f ′(t) = 1− cos(β(t)) > m
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Thus,

a+ b− c = f(a) > ma �

Exercise 7.25. [Monotonicity of the hyperbolic distance] Let Ti, i = 1, 2 be
right hyperbolic triangles with vertices Ai, Bi, Ci (where Ai or Bi could be ideal
vertices) so that A = A1 = A2, [A1, B1] ⊂ [A2, B2], α1 = α2 and γ1 = γ2 = π/2.
See Figure 7.2. Then a1 6 a2. Hint: Use either (7.8).

In other words, if σ(t), τ(t) are hyperbolic geodesic with unit speed parameter-
izations, so that σ(0) = τ(0) = A ∈ H2, then the distance d(σ(t), τ) from the point
σ(t) to the geodesic τ , is a monotonically increasing function of t.

a
1

C
1

B
1

A

C

B
2

2

a
2

α

Figure 7.2. Monotonicity of distance.

7.4. Triangles and curvature of Hn

Given points A,B,C ∈ Hn we de�ne the hyperbolic triangle T = [A,B,C] =
∆ABC with vertices A,B,C. We topologize the set Tri(Hn) of hyperbolic triangles
T in Hn by using topology on triples of vertices of T , i.e., a subset topology in (B̄n)3.

Exercise 7.26. Angles of hyperbolic triangles are continuous functions on
Tri(Hn).

Exercise 7.27. Every hyperbolic triangle T in Hn is contained in (the com-
pacti�cation of) a 2-dimensional hyperbolic subspace H ⊂ Hn. Hint: Consider a
triangle T = [A,B,C], where A,B belong to a common vertical line.

So far, we considered only geodesic hyperbolic triangles, we now introduce their
2-dimensional counterparts. First, let T = T (A,B,C) be a generalized hyperbolic
triangle in H2. We will assume that T is nondegenerate, i.e., is not contained
in a hyperbolic geodesic. Such triangle T cuts H2 in several (2, 3 or 4) convex
regions, one of which has the property that its boundary is the triangle T . The
closure of this region is called solid (generalized) hyperbolic triangle and denoted
N = N(A,B,C). It T is degenerate, we set N = T . More generally, if T ⊂ Hn
is a hyperbolic triangle, then the solid triangle bounded by T is the solid triangle
bounded by T in the hyperbolic plane H ⊂ Hn containing T . We will retain the
notation N for solid triangles in Hn.
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Exercise 7.28. Let S be a hyperbolic triangle with the sides σi, i = 1, 2, 3.
Then there exists an ideal hyperbolic triangle T in H2 with the sides τi, i = 1, 2, 3,
bounding solid triangle N, so that S ⊂ N and σ1 is contained in the side τ1 of T .
See Figure 7.3.

2 S

T

τ
1

σ
1

τ

σ

H 2

σ
2τ

3

3

Figure 7.3. Triangles in the hyperbolic plane.

Lemma 7.29. Isom(H2) acts transitively on the set of ordered triples of pairwise
distinct points in H2.

Proof. Let a, b, c ∈ R∪∞ be distinct points. By applying inversion we send a
to∞, so we can assume a =∞. By applying a translation in R we get b = 0. Lastly,
composing a map of the type x→ λx, λ ∈ R \ 0, we send c to 1. The composition
of the above maps is a Moebius transformation of S1 and, hence, equals to the
restriction of an isometry of H2. �

Corollary 7.30. All ideal hyperbolic triangles are congruent to each other.

Exercise 7.31. Generalize the above corollary to: Every hyperbolic triangle
is uniquely determined by its angles. Hint: Use hyperbolic trigonometry.

We will use the notation Tα,β,γ to denote unique (up to congruence) triangle
with the angles α, β, γ.

Given a hyperbolic triangle T bounding a solid triangle N, the area of T is the
area of N

Area(T ) =

¨
N

dxdy

y2
.
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Area of a degenerate hyperbolic triangle is, of course, zero. Here is an example of the
area calculation. Consider the triangle T = T0,α,π/2 (which has angles π/2, 0, α).
We can realize T as the triangle with the vertices i,∞, eiα. Computing hyperbolic
area of this triangle (and using the substitution x = cos(t), α 6 t 6 π/2), we obtain

Area(T ) =

¨
N

dxdy

y2
=
π

2
− α.

For T = T0,0,α, we subdivide T in two right triangles congruent to T0,α/2,π/2 and,
thus, obtain

(7.11) Area(T0,0,α) = π − α.
In particular, area of the ideal triangle equals π.

Lemma 7.32. Area(Tα,β,γ) = π − (α+ β + γ).

Proof. The proof given here is due to Gauss, it appears in the letter from
Gauss to Bolyai, see [?]. We realize T = Tα,β,γ as a part of the subdivision of
an ideal triangle T0,0,0 in four triangles, the rest of which are T0,0,α′ , T0,0,β′ , T0,0,γ′ ,
where θ′ = π − θ is the complementary angle. See Figure 7.4. Using additivity of
area and equation (7.11), we obtain the area formula for T . �

α’
’β

T

γ ’

Figure 7.4. Computation of area of the triangle T .

Curvature computation. Our next goal is to compute sectional curvature
of Hn. Since Isom(Hn) acts transitively on pairs (p, P ), where P ⊂ TpM is a 2-
dimensional subspace, it follows that Hn has constant sectional curvature κ (see
Section 2.1.6). Since H2 ⊂ Hn is a totally-geodesic isometric embedding (in the
sense of Riemannian geometry), κ is the same for Hn and H2.
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Corollary 7.33. The Gaussian curvature κ of H2 equals −1.

Proof. Instead of computing curvature tensor (see e.g. [dC92] for the com-
putation), we will use Gauss-Bonnet formula. Comparing the area computation
given in Lemma 7.32 with Gauss-Bonnet formula (Theorem 2.21) we conclude that
κ = −1. �

Note that scaling properties of the sectional curvature (see Section 2.1.6) imply
that sectional curvature of (

Un,
adx2

x2
n

)
equals −a2 for every a > 0.

7.5. Distance function on Hn

We begin by de�ning the following quantities:

(7.12) dist (z, w) = arccosh

(
1 +

|z − w|2

2 Im z Imw

)
z, w ∈ U2

and, more generally,

(7.13) dist (p, q) = arccosh

(
1 +
|p− q|2

2pnqn

)
p, q ∈ Un

It is immediate that dist(p, q) = dist(q, p) and that dist(p, q) = 0 if and only
if p = q. However, it is, a priori, far from clear that dist satis�es the triangle
inequality.

Lemma 7.34. dist is invariant under Isom(Hn) = Mob(Un).

Proof. First, it is clear that dist is invariant under the group Euc(Un) of
Euclidean isometries which preserve Un. Next, any two points in Un belong to a
vertical half-plane in Un. Applying elements of Euc(Un) to this half-plane, we can
transform it to the coordinate half-plane U2 ⊂ Un. Thus, the problem reduces to
the case n = 2 and orientation-preserving Moebius transformations of H2. We leave
it to the reader as an exercise to show that the map z 7→ − 1

z (which is an element
of PSL(2,R)) preserves the quantity

|z − w|2

Im z Imw

and, hence, dist. Now, the assertion follows from Exercise 7.7 and Lemma 7.8. �
Recall that d(p, q) denotes the hyperbolic distance between points p, q ∈ Un.

Proposition 7.35. dist(p, q) = d(p, q) for all points p, q ∈ Hn. In particular,
the function dist is indeed a metric on Hn.

Proof. As in the above lemma, it su�ces to consider the case n = 2. We can
also assume that p 6= q. First, suppose that p = i and q = ib, b > 1. Then, by
Exercise 7.10,

dist(p, q) =

ˆ b

1

dt

t
= log(b), exp(d(p, q)) = b.
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On the other hand, the formula (7.12) yields:

dist(p, q) = arccosh

(
1 +

(b− 1)2

2b

)
.

Hence,

cosh(dist(p, q)) =
edist(p,q) + e−dist(p,q)

2
= 1 +

(b− 1)2

2b
.

Now, the equality dist(p, q) = d(p, q) follows from the identity

1 +
(b− 1)2

2b
=
b+ b−1

2
.

For general points p, q in H2, by Lemma 7.18, there exists a hyperbolic isometry
which sends p to i and q to a point of the form ib, b > 1. We already know that
both hyperbolic distance d and the quantity dist are invariant under the action of
Isom(H2). Thus, the equality d(p, q) = dist(p, q) follows from the special case of
points on the y-axis. �

Exercise 7.36. Deduce from (7.12) that

ln

(
1 +

|z − w|2

2 Im z Imw

)
≤ d(z, w) ≤ ln

(
1 +

|z − w|2

2 Im z Imw

)
+ ln 2

for all points z, w ∈ U2.

7.6. Hyperbolic balls and spheres

Pick a point p ∈ Hn and a positive real number R. Then the hyperbolic sphere
of radius R centered at p is the set

Sh(p,R) = {x ∈ Hn : d(x, p) = R}.

Exercise 7.37. 1. Prove that Sh(en, R) ⊂ Hn = Un equals the Euclidean
sphere of center cosh(R)en and radius sinh(R). Hint. It follows immediately from
the distance formula (7.12).

2. Suppose that S = S(x,R) ⊂ Un is a Euclidean sphere with Euclidean radius
R and the center x so that xn = a. Then S = Sh(p, r), where the hyperbolic radius
r equals

1

2
(log(a+R)− log(a−R)) .

Since group generated by dilations and horizontal translations acts transitively
on Un, it follows that every hyperbolic sphere is also a Euclidean sphere. A non-
computational proof of this fact is as follows: Since the hyperbolic metric ds2

B on
Bn is invariant under O(n), it follows that hyperbolic spheres centered at 0 in Bn

are also Euclidean spheres. The general case follows from transitivity of Isom(Hn)
and the fact that isometries of Hn are Moebius transformations, which, therefore,
send Euclidean spheres to Euclidean spheres.

Lemma 7.38. Suppose that B(x1, R1) ⊂ B(x2, R2) are hyperbolic balls. Then
R1 6 R2.

Proof. It follows from the triangle inequality that the diameter of a metric
ball B(x,R) is the longest geodesic segment contained in B(x,R). Therefore, let
γ ⊂ B(x1, R1) be a diameter. Then γ is contained in B(x2, R2) and, hence, its
length is 6 2R2. However, length of γ is 2R1, therefore, R1 6 R2. �

186



7.7. Horoballs and horospheres in Hn

Consider the unit ball model Bn of Hn, α a point in the ideal boundary (here
identi�ed with the unit sphere Sn−1) and r a geodesic ray with r(∞) = α, i.e.
according to Lemma 7.18, an arc of circle orthogonal to Sn−1 in α with the other
endpoint x in the interior of Bn. By Lemma 2.52, the open horoball B(α) de�ned
by the inequality fr < 0, where fr is the Busemann function for the ray r, equals
the union of open balls

⋃
t>0B(r(t), t) . The discussion in Section 7.6, in particular

Exercise 7.37, implies that each ball B(r(t), t) is a Euclidean ball with center in
a point r(Tt) with Tt > t . Therefore, the above union is the open Euclidean ball
with boundary tangent to Sn−1 at α, and containing the point x. According to
Lemma 2.54, the closed horoball and the horosphere de�ned by fr 6 0 and fr = 0,
respectively, are the closed Euclidean ball and the boundary sphere, both with the
point α removed.

We conclude that the set of horoballs (closed or open) with center α is the same
as the set of Euclidean balls (closed or open) tangent to Sn−1 at α, with the point
α removed.

Applying the map σ : Bn → Un to horoballs and horospheres in Bn, we
obtain horoballs and horospheres in the upper-half space model Un of Hn. Be-
ing a Moebius transformation, σ carries Euclidean spheres to Euclidean spheres
(recall that a compacti�ed Euclidean hyperplane is also regarded as a Euclidean
sphere). It is then clear that hyperbolic isometries carry horoballs/horospheres to
horoballs/horospheres.

Recall that σ(−en) = ∞. Therefore, every horosphere in Bn centered at −en
is sent by σ to an n−1-dimensional Euclidean subspace E of Un whose compacti�-
cation contains the point ∞. Hence, E has to be a horizontal Euclidean subspace,
i.e., a subspace of the form

{x ∈ Un : xn = t}
for some �xed t > 0. Restricting the metric ds2 to such E we obtain the Euclidean
metric rescaled by t−2. Thus, the restriction of ds2 to every horosphere is isometric
to the �at metric on Rn−1.

Exercise 7.39. Consider the upper half-space model for the hyperbolic space
Hn and the vertical geodesic ray r in Hn:

r = {(0, . . . , 0, xn) : xn > 1}.

Show that the Busemann function fr for the ray r is given by

fr(x1, . . . , xn) = − log(xn).

7.8. Hn is a symmetric space

A symmetric space is a complete simply connected Riemannian manifold X
such that for every point p there exists a global isometry of X which is a geodesic
symmetry σp with respect to p, that is for every geodesic g through p, σp(g(t)) =
g(−t). Let us verify that such X is a homogeneous Riemannian manifold. Indeed,
given points p, q ∈ X, let m denote the midpoint of a geodesic connecting p to q.
Then σm(p) = q. Besides being homogeneous, symmetric spaces also admit large
discrete isometry groups: For every symmetric space X, there exists a subgroup
Γ ⊂ Isom(X) which acts geometrically on X.
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Details on symmetric spaces can be found for instance in [Hel01] and [?].
The rank of a symmetric space X is the largest number r so that X contains a
totally-geodesic submanifold F ⊂ X which is isometric to an open disk in Rr.

We note that in the unit ball model of Hn we clearly have the symmetry σp
with respect to p = 0, namely, σ0 : x 7→ −x. Since Hn is homogeneous, it follows
that it has a symmetry at every point. Thus, Hn is a symmetric space.

Exercise 7.40. Prove that the linear-fractional transformation σi ∈ PSL(2,R)

de�ned by ±Si, where Si =

(
0 −1
1 0

)
�xes i and is a symmetry with respect to

i.

We proved in Section 7.4 that Hn has negative curvature −1. In particular, it
contains no totally-geodesic Euclidean subspaces of dimension > 2 and, thus, Hn
has rank 1.

It turns out that besides real-hyperbolic space Hn, there are three other fami-
lies of rank 1 negatively curved symmetric spaces: CHn, n > 2 (complex-hyperbolic
spaces) HHn, n > 2 (quaternionic hyperbolic spaces) and OH2 (octonionic hyper-
bolic plane). The rank 1 symmetric spacesX are also characterized among symmet-
ric spaces by the property that any two segments of the same length are congruent
in X. Below is a brief discussion of these spaces, we refer to Mostow's book [?] and
Parker's survey [?] for a more detailed discussion.

In all four cases, the symmetric X will appear as a projectivization of a certain
cone equipped with a hermitian form 〈·, ·〉 and the distance function in X will be
given by the formula:

(7.14) cosh2(dist(p, q)) =
〈p, q〉 〈q, p〉
〈p, p〉 〈q, q〉

,

where p, q ∈ C represent points in X.

Complex-hyperbolic space. Consider Cn+1 equipped with the Hermitian
bilinear form

〈v, w〉 =

n∑
k=1

vkw̄k − vn+1w̄n+1.

The group U(n, 1) is the group of complex-linear automorphisms of Cn+1 preserving
this bilinear form. Consider the negative light cone

C = {v : 〈v, v〉 < 0} ⊂ Cn+1.

Then the complex-hyperbolic space CHn is the projectivization of C. The group
PU(n, 1) acts naturally on X = CHn. One can describe the Riemannian metric on
CHn as follows. Let p ∈ C be such that 〈p, p〉 = 1; tangent space at the projection of
p to X is the projection of the orthogonal complement p⊥ in Cn+1. Let v, w ∈ Cn+1

be such that 〈p, v〉 = 0, 〈p, w〉. Then set

(v, w)p := −Im 〈v, w〉 .
This determines a PU(n, 1)-invariant Riemannian metric on X. The corresponding
distance function (7.14) will be G-invariant.

Quaternionic-hyperbolic space. Consider the ring H of quaternions; the
elements of the quaternion ring have the form

q = x+ iy + jz + kw, x, y, z, w ∈ R.
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The quaternionic conjugation is given by

q̄ = x− iy − jz − kw

and
|q| = (qq̄)1/2 ∈ R+

is the quaternionic norm. A unit quaternions is a quaternion of the unit norm. Let
V be a left n+ 1-dimensional free module over H:

V = {q = (q1, . . . , qn+1) : qm ∈ H}.

Consider the quaternionic-hermitian inner product of signature (n, 1):

〈p,q〉 =

n∑
m=1

pmq̄m − pn+1q̄n+1.

Then the group G = Sp(n, 1) is the group of automorphisms of the module V pre-
serving this inner product. The quotient of V by the group of nonzero quaternions
H× (with respect to the multiplication action) is the n-dimensional quaternionic-
projective space PV . Analogously to the case of real and complex hyperbolic spaces,
we consider the negative light cone

C = {q ∈ V : 〈q, q〉 < 0}.

The groupG acts naturally on PC ⊂ PV through the group PSp(n, 1) (the quotient
of G by the subgroup of unit quaternions embedded in the subgroup of diagonal
matrices in G). The space PC is called the n-dimensional quaternionic-hyperbolic
space HHn

Octonionic-hyperbolic plane. One de�nes octonionic-hyperbolic plane OH2

analogously to HHn, only using the algebra O of Cayley octonions instead of quater-
nions. An extra complication comes from the fact that the algebra O is not asso-
ciative, so one cannot talk about free O-modules; we refer the reader to [?, ?] for
the details.

7.9. Inscribed radius and thinness of hyperbolic triangles

Suppose that T is a hyperbolic triangle in the hyperbolic plane H2 with the
sides τi, i = 1, 2, 3, so that T bounds the solid triangle N. For a point x ∈ N de�ne
the quantities

∆x(T ) := max
i=1,2,3

d(x, τi).

and
∆(T ) := inf

x∈N
∆x(T ).

The goal of this section is to estimate ∆(T ) from above. It is immediate that the
in�mum in the de�nition of ∆(T ) is realized by a point xo ∈ N which is equidistant
from all the three sides of T , i.e., by the intersection point of the angle bisectors.

De�ne the inscribed radius inrad(T ) of T is the supremum of radii of hyperbolic
disks contained in N.

Lemma 7.41. ∆(T ) = Inrad(T ).
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Proof. Suppose that D = B(X,R) ⊂ N is a hyperbolic disk. Unless D
touches two sides of T , there exists a disk D′ = B(X ′, R′) ⊂ N which contains D
and, hence, has larger radius, see Lemma 7.38. Suppose, therefore, that D ⊂ N
touches two boundary edges of T , hence, center X of D belongs to the bisector σ
of the corner ABC of T . Unless D touches all three sides of T , we can move the
center X of D along the bisector σ away from the vertex B so that the resulting
disk D′ = B(X ′, R′) still touches only the sides [A,B], [B,C] of T . We claim that
the (radius R′ of D′ is larger than the radius R of D. In order to prove this,
consider hyperbolic triangles [X,Y,B] and [X ′, Y ′, B′], where Y, Y ′ are the points
of tangency between D,D′ and the side [BA]. These right-angled triangles have
the common angle ∠bxy and satisfy

d(B,X) 6 d(B,X ′).

Thus, the inequality R 6 R′ follows from the Exercise 7.25. �

Thus, we need to estimate inradius of hyperbolic triangles from above. Recall
that by Exercise 7.28, for every hyperbolic triangle S in H2 there exists an ideal
hyperbolic triangle T , so that S ⊂ N. Clearly, inrad(S) 6 inrad(T ). Since all ideal
hyperbolic triangles are congruent, it su�ces to consider the ideal hyperbolic trian-
gle T in U2 with the vertices −1, 1,∞. The inscribed circle C in T has Euclidean
center (0, 2) and Euclidean radius 1. Therefore, by Exercise 7.37, its hyperbolic
radius equals log(3)/2. By combining these observations with Exercise 7.27, we
obtain

Proposition 7.42. For every hyperbolic triangle T , ∆(T ) = inrad(T ) 6 log(3)
2 .

In particular, for every hyperbolic triangle in Hn, there exists a point p ∈ Hn so

that distance from p to all three sides of T is 6 log(3)
2 .

Another way to measure thinness of a hyperbolic triangle T is to compute
distance from points of one side of T to the union of the two other sides. Let T be
a hyperbolic triangle with sides τj , j = 1, 2, 3. De�ne

δ(T ) := max
j

sup
p∈τj

d(p, τj+1 ∪ τj+2),

where indices of the sides of T are taken modulo 3. In other words, if δ = δ(T )
then each side of T is contained in the δ-neighborhood of the union of the other
two sides.

Proposition 7.43. For every geodesic triangle S in Hn, δ(S) 6 arccosh(
√

2).

Proof. First of all, as above, it su�ces to consider the case n = 2. Let
σj , j = 1, 2, 3 denote the edges of S. We will estimate d(p, σ2∪σ3) (from above) for
p ∈ σ1. We enlarge the hyperbolic triangle S to an ideal hyperbolic triangle T as
in Figure 7.5. For every p ∈ σ1, every geodesic segment g connecting p to a point
of τ2 ∪ τ3 has to cross σ2 ∪ σ3. In particular,

d(p, σ2 ∪ σ3) 6 d(p, τ2 ∪ τ3).

Thus, it su�ces to show that δ(T ) 6 arccosh(
√

2) for the ideal triangle T as above.
We realize T as the triangle with the (ideal) vertices A1 =∞, A2 = −1, A3 = 1 in
∂∞H2. We parameterize sides τi = [Aj−1, Aj+1], j = 1, 2, 3 modulo 3, according to
their orientation. Then, by the Exercise 7.25, for every i,

d(τj(t), τj−1)
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Figure 7.5. Enlarging hyperbolic triangle S.

is monotonically increasing. Thus,

sup
t
d(τ1(t), τ2 ∪ τ3)

is achieved at the point p = τ1(t) = i =
√
−1 and equals d(p, q), where q = −1+

√
2i.

Then, using formula 7.13, we get d(p, q) = arccosh(
√

2). Note that alternatively,
one can get the formula for d(p, q) from (7.7) by considering the right triangle
[p, q,−1] where the angle at p equals π/4. �

As we will see in Section 8.1, the above propositions mean that all hyperbolic
triangles are uniformly thin.

7.10. Existence-uniqueness theorem for triangles

Proof of Lemma 2.31. We will prove this result for the hyperbolic plane H2,
this will imply lemma for all κ < 0 by rescaling the metric on H2. We leave the
cases κ ≥ 0 to the reader as the proof is similar. The proof below is goes back to
Euclid (in the case of R2). Let c denote the largest of the numbers a, b, c. Draw a
geodesic γ ⊂ H2 through points x, y so that d(x, y) = c. Then

γ = γx ∪ [x, y] ∩ γy,

where γx, γy are geodesic rays emanating from x and y respectively. Now, consider
circles S(x, b) and S(y, a) centered at x, y and having radii b, a respectively. Since
c ≥ max(a, b),

γx ∩ S(y, a) ⊂ {x}, γy ∩ S(x, b) ⊂ {y},
while

S(x, b) ∩ [x, y] = p, S(y, a) ∩ [x, y] = y.

By the triangle inequality on c ≤ a + b, p separates q from y (and q separates x
from p). Therefore, both the ball B(x, b) and its complement contain points of the
circle S(y, a), which (by connectivity) implies that S(x, b)∩S(y, a) 6= ∅. Therefore,
the triangle with the side-lengths a, b, c exists. Uniqueness (up to congruence) of
this triangle follows, for instance, from the hyperbolic cosine law. �
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7.11. Lattices

Recall that a lattice in a Lie group G is a discrete subgroup Γ such that the
quotient Γ \ G has �nite volume. Here, the left-invariant volume form on G is
de�ned by taking a Riemannian metric on G which is left-invariant under G and
right-invariant under K, the maximal compact subgroup of G. Thus if X := G/K,
then this quotient manifold has a Riemannian metric which is (left) invariant under
G. Hence, Γ is a lattice i� Γ acts on X properly discontinuously so that V ol(Γ\X)
is �nite. Note that the action of Γ on X need not be free. Recall also that a lattice
Γ is uniform if Γ \X is compact and Γ is nonuniform otherwise.

Each lattice is �nitely-generated (this is clear for uniform lattices but is not at
all obvious otherwise); in the case of the hyperbolic spaces �nite generation follows
from the thick-thin decomposition discussed below. Thus, if Γ is a lattice in a
linear Lie group, then, by Selberg lemma 3.88, Γ contains a torsion-free subgroup
of �nite index. In particular, if Γ is a lattice in PO(n, 1) (which is isomorphic to
the isometry group of the hyperbolic n-space) then Γ is virtually torsion-free. We
also note that a �nite-index subgroup in a lattice is again a lattice. Passing to a
�nite-index subgroup, of course, does not a�ect uniformity of a lattice.

Example 7.44. Consider the group G = PO(2, 1) and a non-uniform lattice
Γ < G. After passing to a �nite-index subgroup in Γ, we may assume that Γ is
torsion-free. Then the quotient H2/Γ is a non-compact surface with the fundamen-
tal group Γ. Therefore, Γ is a free group of �nite rank.

Exercise 7.45. Show that groups Γ in the above example cannot be cyclic.

Recall that a horoball in Hn (in the unit ball model) is a domain bounded by
a round Euclidean ball B ⊂ Hn, whose boundary is tangent to the boundary of
Hn in a single point (called the center or footpoint of the horoball). The boundary
of a horoball in Hn is called a horosphere. In the upper half-space model, the
horospheres with the footpoint ∞ are horizontal hyperplanes

{(x1, ..., xn−1, t) : (x1, ..., xn−1) ∈ Rn−1},
where t is a positive constant.

Lemma 7.46. Suppose that Γ < PO(n, 1) is a torsion-free discrete group con-
taining a parabolic element γ. Then Γ is a non-uniform lattice.

Proof. Recall that every parabolic isometry of Hn has unique �xed point
in the ideal boundary sphere Sn−1. By conjugating Γ by an isometry of Hn, we
can assume that γ �xes the point ∞ in the upper half-space model Rn+ of Hn.
Therefore, γ acts on as a Euclidean isometry on Rn+. After conjugating γ by a
Euclidean isometry, γ has the form

x 7→ Ax+ v,

where v ∈ Rn−1 \ {0} and A is an orthogonal transformation �xing the vector v.
Hence, γ preserves the Euclidean line L ⊂ Rn−1 (spanned by v) and the restriction
of γ to L is the translation x 7→ x + v. Let H denote the hyperbolic plane in Hn,
which is the vertical Euclidean half-plane above the line L. Again, γ acts on H as
the translation x 7→ x+ v. We introduce the coordinates (x, y) on H, where x ∈ R
and y > 0. Then for every z = (x, y) ∈ H,

d(z, γz) <
|v|
y
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where |v| is the Euclidean norm of the vector v. Let cz denote the projection of the
geodesic [z, γz] to the hyperbolic manifold M = Hn/Γ. By sending y to in�nity, we
conclude that the (nontrivial) free homotopy class [γ] in M = Hn/Γ represented by
γ ∈ Γ, contains loops cz of arbitrarily short length. This is impossible if M were a
compact Riemannian manifold. �

The converse to the above lemma is much less trivial and follows from

Theorem 7.47 (Thick-thin decomposition). Suppose that Γ is a nonuniform
lattice in Isom(Hn). Then there exists an (in�nite) collection C of open horoballs
C := {Bj , j ∈ J}, with pairwise disjoint closures, so that

Ω := Hn \
⋃
j∈J

Bj

is Γ-invariant and Mc := Ω/Γ is compact. Furthermore, every parabolic element
γ ∈ Γ preserves (exactly) one of the horoballs Bj.

The proof of this theorem is based on a mild generalization of the Zassenhaus
theorem due to Kazhdan and Margulis, see e.g. [?], [Kap01], [Rat94], [Thu97].

The quotient Mc is called the thick part of M = Hn/Γ and its (noncompact)
complement inM is called the thin part ofM . If Γ is torsion-free, then it acts freely
on Hn and M has natural structure of a hyperbolic manifold of �nite volume. If Γ
is not torsion-free, then M is a hyperbolic orbifold. Clearly, when Γ < PO(n, 1) is
a lattice, the quotient M = Hn/Γ is compact if and only if C = ∅.

Ω

B
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45
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thin

T   R
+
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H 
n

/ Γ

H 
n

Figure 7.6. Truncated hyperbolic space and thick-thin decomposition.

The set Ω is called a truncated hyperbolic space. The boundary horospheres of
Ω are called peripheral horospheres. Since each closed horoballs used to de�ne Ω
are pairwise disjoint, Ω is contractible. In particular, if Γ is torsion-free, then it has
�nite type. In general, Γ is of type F∞.

Note that the stabilizer Γj of each horosphere ∂Bj acts on this horosphere
cocompactly with the quotient Tj := ∂Bj/Γj . The quotient Bj/Γj is naturally
homeomorphic to Tj×R+, this product decomposition is inherited from the foliation
of Bj by the horospheres with the common footpoint ξj and the geodesic rays
asymptotic to ξj . If Γ is torsion-free, orientation preserving and n = 3, the quotients
Tj are 2-tori.
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Observe that a hyperbolic horoball cannot be stabilized by a hyperbolic isom-
etry. Indeed, by working with the upper half-space model of Hn, we can assume
that the (open) horoball in question is given by

B = {(x1, . . . , xn) : xn > 1}.
Every hyperbolic isometry γ stabilizing B would have to �x ∞ and act and a
Euclidean isometry on the boundary horosphere of B. Thus, γ is either elliptic or
parabolic. In particular, stabilizers of the horoballs Bj in Theorem 7.47 contain no
hyperbolic elements. Since we can assume that Γ is torsion-free, we obtain

Corollary 7.48. A lattice in PO(n, 1) is uniform if and only if it does not
contain parabolic elements.

Arithmetic groups provide a general source for lattices in Lie groups. Recall
that two subgroups Γ1,Γ2 of a group G are called commensurable if Γ1 ∩ Γ2 has
�nite index in Γ1,Γ2. Let G be a Lie group with �nitely many components.

Definition 7.49. An arithmetic subgroup in G is a subgroup of G commensu-
rable to the subgroup of the form Γ := φ−1(GL(N,Z)) for a (continuous) homo-
morphism φ : G→ GL(N,R) with compact kernel.

It is clear that every arithmetic subgroup is discrete in G. It is a much deeper
theorem that every arithmetic subgroup is a lattice in a Lie subgroup H 6 G, see
e.g. [?, ?].

Bianchi groups. We now describe a concrete class of non-uniform arithmetic
lattices in the isometry group of hyperbolic 3-space, called Bianchi groups. Let D
denote a square-free negative integer, i.e., an integer which is not divisible by the
square of a prime number. Consider the imaginary quadratic �eld

Q(
√
D) = {a+

√
Db : a, b ∈ Q}

in C. Set
ω :=

√
D, if D ≡ 2, 3, mod 4

ω :=
1 +
√
D

2
, if D ≡ 1, mod 4

Then the ring of integers of Q(
√
D) is

OD = {a+ ωb : a, b ∈ Z}.
For instance, if D = −1, then OD is the ring of Gaussian integers

{a+ ib : a, b ∈ Z}.
A Bianchi group is the group of the form

SL(2, OD) < SL(2,C)

for some D. Since the ring OD is discrete in C, it is immediate the every Bianchi
subgroup is discrete in SL(2,C). By abusing terminology, one also refers to the
group PSL(2, OD) as a Bianchi subgroup of PSL(2,C).

Bianchi groups Γ are arithmetic lattices in SL(2,C); in particular, quotients
H3/Γ has �nite volume. Furthermore, every arithmetic lattice in SL(2,C) is com-
mensurable to a Bianchi group. We refer the reader to [?] for the detailed discussion
of these and other facts about Bianchi groups.

Commensurators of lattices.
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Recall (see �3.4) that the commensurator of a subgroup Γ in a group G is the
subgroup CommG(Γ) < G consisting of elements g ∈ G such that the groups gΓg−1

and Γ are commensurable, i.e. |Γ : gΓg−1 ∩ Γ| <∞, |gΓg−1 : gΓg−1 ∩ Γ| <∞.
Below we consider commensurators in the situation when Γ is a lattice in a Lie

group G.

Exercise 7.50. Let Γ := SL(2, OD) ⊂ G := SL(2,C) be a Bianchi group.
1. Show that CommG(Γ) ⊂ SL(2,Q(ω)). In particular, CommG(Γ) is dense

in G.
2. Show that the set of �xed points of parabolic elements in Γ (in the upper

half-space model of H3) is
Q(ω) ∪ {∞}.

3. Show that CommG(Γ) = SL(2,Q(ω)).

G. Margulis proved (see [?], Chapter IX, Theorem B and Lemma 2.7; see also
[?], Theorem 6.2.5) that a lattice in a semisimple real Lie group G is arithmetic if
and only if its commensurator is dense in G.

Consider now the case when G is either a Lie group or a �nitely-generated
group and Γ 6 G is a �nitely-generated subgroup. We note that each element
g ∈ CommG(Γ) determines a quasi-isometry f : Γ → Γ. Indeed, the Hausdor�
distance between Γ and gΓg−1 is �nite. Hence the quasi-isometry f is given by
composing g : Γ→ gΓg−1 with the nearest-point projection to Γ.

The main goal of the remainder of the chapter is to prove the following

Theorem 7.51 (R. Schwartz [?]). Let Γ ⊂ G = Isom(Hn) be a nonuniform
lattice, n > 3. Then:

(a) For each quasi-isometry f : Γ → Γ there exists γ ∈ CommG(Γ) which is
within �nite distance from f . The distance between these maps depends only on Γ
and on the quasi-isometry constants of f .

(b) Suppose that Γ,Γ′ are non-uniform lattices which are quasi-isometric to
each other. Then there exists an isometry g ∈ Isom(Hn) such that the groups Γ′

and gΓg−1 are commensurable.
(c) Suppose that Γ′ is a �nitely-generated group which is quasi-isometric to a

nonuniform lattice Γ above. Then the groups Γ,Γ′ are virtually isomorphic

Our proof will mostly follow [?].
Note that this theorem fails in the case of the hyperbolic plane (except for the

last part). Indeed, every free group Fr of rank > 2 can be realized as a non-uniform
lattice Γ acting on H2. In view of thick-thin decomposition of the hyperbolic surface
M = H2/Γ, Γ contains only �nitely many Γ-conjugacy classes of maximal parabolic
subgroups: Every such class corresponds to a component of M \Mc. Suppose now
that r > 3. Then there are atoroidal automorphisms φ of Fr, so that for every
nontrivial cyclic subgroup C ⊂ Fn and every m, φm(C) is not conjugate to C,
see e.g. [?]. Therefore, such φ cannot send parabolic subgroups of Γ to parabolic
subgroups of Γ. Hence, the quasi-isometry of Fn given by φ cannot extend to a
quasi-isometry H2 → H2. It follows that (a) fails for n = 2. Similarly, one can show
that (b) fails, since commensurability preserves arithmeticity and there are both
arithmetic and non-arithmetic lattices in Isom(H2). All these lattices are virtually
free, hence, virtually isomorphic.
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CHAPTER 8

Gromov-hyperbolic spaces and groups

The goal of this chapter is to de�ne and review basic properties of δ-hyperbolic
spaces and word-hyperbolic groups, which are far-reaching generalizations of the
real-hyperbolic space Hn and groups acting geometrically on Hn. The advantage
of δ-hyperbolicity is that it can be de�ned in the context of arbitrary metric spaces
which need not even be geodesic. These spaces were introduced in the seminal
essay by Mikhail Gromov on hyperbolic groups, although ideas of combinatorial
curvature and (in retrospect) hyperbolic properties of �nitely-generated groups are
much older. They go back to work of Max Dehn (on word problem in groups),
Martin Grindlinger (small cancelation theory), Alexandr Ol'shanskii (who used
what we now would call relative hyperbolicity in order to construct �nitely-generated
groups with exotic properties) and many others.

8.1. Hyperbolicity according to Rips

We begin our discussion of δ-hyperbolic spaces with the notion of hyperbolicity
in the context of geodesic metric spaces, which (according to Gromov) is due to Ilya
(Eliyahu) Rips. This de�nitions will be then applied to Cayley graphs of groups,
leading to the concept of a hyperbolic group discussed later in this chapter. Rips
notion of hyperbolicity is based on the thinness properties of hyperbolic triangles
which are established in section 7.9.

Let (X, d) be a geodesic metric space. As in section 7.4, a geodesic triangle T
in X is a concatenation of three geodesic segments τ1, τ2, τ3 connecting the points
A1, A2, A3 (vertices of T ) in the natural cyclic order. Unlike the real-hyperbolic
space, we no longer have uniqueness of geodesics, thus T is not (in general) deter-
mined by its vertices. We de�ne a measure of the thinness of T similar to the one
in Section 7.9 of Chapter 7.

Definition 8.1. The thinness radius of the geodesic triangle T is the number

δ(T ) := max
j=1,2,3

(
sup
p∈τj

d(p, τj+1 ∪ τj+2)

)
,

A triangle T is called δ-thin if δ(T ) 6 δ.

Definition 8.2 (Rips' de�nition of hyperbolicity). A geodesic hyperbolic space
X is called δ-hyperbolic (in the sense of Rips) if every geodesic triangle T in X is
δ-thin. A space X which is δ-hyperbolic for some δ <∞ is called Rips�hyperbolic.
In what follows, we will refer to δ�hyperbolic spaces in the sense of Rips simply as
being δ�hyperbolic.

Below are few simple but important geometric features of δ-hyperbolic spaces.
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First, not that general Rips�hyperbolic metric spaces X are by no means
uniquely geodesics. Nevertheless, next lemma shows that geodesics in X between
given pair of points are �almost unique�:

Lemma 8.3. If X is δ�hyperbolic, then every pair of geodesics [x, y], [x, z] with
d(y, z) 6 D are at Hausdor� distance at most D + δ. In particular, if α, β are
geodesic segments connecting points x, y ∈ X, then distHaus(α, β) 6 δ.

Proof. Every point p on [x, y] is, either at distance at distance at most δ from
[x, z], or at distance at most δ from [y, z]; in the latter case p is at distance at most
D + δ from [x, z]. �

The next lemma, the fellow-traveling property of hyperbolic geodesics sharpens
the conclusion of Lemma 8.3.

Lemma 8.4. Let α(t), β(t) be geodesics in a δ-hyperbolic space X, so that α(0) =
β(0) = o and d(α(t0), β(t0)) 6 D for some t0 > 0. Then for all t ∈ [0, t0],

d(α(t), β(t)) 6 2(D + δ).

Proof. By previous lemma, for every t ∈ [0, t0] there exists s ∈ [0, t0] so that

d(β(t), α(s)) 6 c = δ +D.

By applying the triangle inequality, we see that

|t− s| 6 c,
hence, d(α(t), β(t)) 6 2c = 2(δ +D). �

The notion of thin triangles generalizes naturally to the concept of thin poly-
gons. A geodesic n-gon in a metric space X is a concatenation of geodesic segments
σi, i = 1, . . . , n, connecting points Pi, i = 1, . . . , n, in the natural cyclic order. A
polygon P is called η-thin if every side of P is contained in the η-neighborhood of
the union of the other sides.

Exercise 8.5. Suppose that X is a δ-hyperbolic metric space. Show that
every n-gon in X is δ(n−2)-thin. Hint: Triangulate an n-gon P by n−3 diagonals
emanating from a single vertex . Now, use δ-thinness of triangles in X inductively.

We next improve the estimate provided by this exercise.

Lemma 8.6 (thin polygons). If X is δ�hyperbolic then every geodesic n-gon in
X is ηn-thin for

ηn = 2δ log2 n.

Proof. We prove the estimate on thinness of n-gons by induction on m. For
n 6 3 the statement follows from δ-thinness of bigons and triangles. Suppose n > 4
and the inequality holds for all m 6 n− 1. Consider a geodesic n-gon P which has
edges τi = [Ai, Ai+1] and consider its edge τ = τn of P . We will consider the case
when n is odd, n = 2k + 1, since the other case is similar. We subdivide P in two
k + 1-gons P ′, P ′′ and one triangle T by introducing the diagonals [A1, Ak+1] and
[Ak+1, An]. By the induction hypothesis, P ′, P ′′ are ηk+1-thin, while the triangle
T is δ-thin. Therefore, τ is within distance 6 ηk+1 + δ from the union of the other
sides of P . We leave it to the reader to check that

2 log2(k + 1) + 1 6 2 log(n) = 2 log2(2k + 1). �

We now give some examples of Rips�hyperbolic metric spaces.

198



Example 8.7. (1) Proposition 7.42 implies that Hn is δ-hyperbolic for
δ = arccos(

√
2).

(2) Suppose that (X, d) is δ-hyperbolic and a > 0. Then the metric space
(X, a ·d) is aδ-hyperbolic. Indeed, distances in (X, a ·d) are obtained from
distances in (X, d) by multiplication by a. Therefore, the same is true for
distances between the edges of geodesic triangles.

(3) Let Xκ is the model surface of curvature κ < 0 as in section 2.1.8. Then
Xκ is δ-hyperbolic for

δκ = |κ|−1/4arccos(
√

2).

Indeed, the Riemannian metric on Xκ is obtained by multiplying the
Riemannian metric on H2 by |κ|−1/2. This has e�ect of multiplying all
distances in H2 by |κ|−1/4. Hence, if d is the distance function on H2 then
|κ|−1/4d is the distance function on Xκ.

(4) Suppose that X is a CAT (κ)-space where κ < 0, see section 2.1.8. Then
X is δκ-hyperbolic. Indeed, all triangles in X are thinner then triangles
in Xκ. Therefore, given a geodesic triangle T with edges τi, i = 1, 2, 3
and a points P1 ∈ τ1 we take the comparison triangle T̃ ⊂ Xκ and the
comparison point P̃1 ∈ τ̃1 ⊂ T̃ . Since T̃ is δκ-thin, there exists a point
P̃i ∈ τ̃i, i = 2 or i = 3, so that d(P̃1, P̃i) 6 δκ. Let Pi ∈ τi be the
comparison point of P̃i. Then, by the comparison inequality

d(P1, Pi) 6 d(P̃1, P̃i) 6 δκ.

Hence, T is δκ-thin. In particular, ifX is a simply-connected complete Rie-
mannian manifold of sectional curvature 6 κ < 0, thenX is δκ-hyperbolic.

(5) Let X be a simplicial tree, and d be a path-metric on X. Then, by the
Exercise 2.36, X is CAT (−∞). Thus, by (4), X is δκ-hyperbolic for every
δκ = |κ|−1/4arccos(

√
2). Since

inf
κ
δκ = 0,

it follows that X is 0-hyperbolic. Of course, this fact one can easily see
directly by observing that every triangle in X is a tripod.

(6) Every geodesic metric space of diameter 6 δ <∞ is δ-hyperbolic.

Exercise 8.8. Let X be the circle of radius R in R2 with the induced path-
metric d. Thus, (X, d) has diameter πR. Show that X is πR/2-hyperbolic and is
not δ-hyperbolic for any δ < πR/2.

Not every geodesic metric space is hyperbolic:

Example 8.9. For instance, let us verify that R2 is not δ-hyperbolic for any δ.
Pick a nondegenerate triangle T ⊂ R2. Then δ(T ) = k > 0 for some k. Therefore,
if we scale T by a positive constant c, then δ(cT ) = ck. Sending c→∞, show that
R2 is not δ-hyperbolic for any δ > 0. More generally, if a metric space X contains
an isometrically embedded copy of R2, then X is not hyperbolic.

Here is an example of a metric space which is not hyperbolic, but does not
contain a quasi-isometrically embedded copy of R2 either. Consider the wedge X
of countably many circles Ci each given with path-metric of overall length 2πi,
i ∈ N. We equip X with the path-metric so that each Ci is isometrically embedded.
Exercise 8.8 shows that X is not hyperbolic.
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Exercise 8.10. Show that X contains no quasi-isometrically embedded copy
of R2. Hint: Use coarse topology.

More interesting examples of non-hyperbolic spaces containing no quasi�isometri-
cally embedded copies of R2 are given by various solvable groups, e.g. the Sol3
group and Cayley graph of the Baumslag�Solitar group BS(n, 1), see [?].

Below we describe brie�y another measure of thinness of triangles which can
be used as an alternative de�nition of Rips�hyperbolicity. It is also related to the
minimal size of the triangle, described in De�nition 5.49, consequently it is related
to the �lling area of the triangle via a Besikovitch type inequality as described in
Proposition 5.50.

Definition 8.11. For a geodesic triangle T ⊂ X with the sides τ1, τ2, τ3, de�ne
the inradius of T to be

∆(T ) := inf
x∈X

max
i=1,2,3

d(x, τi).

In the case of the real-hyperbolic plane, as we saw in Lemma 7.41, this de�nition
coincides with the radius of the largest circle inscribed in T . Clearly, ∆(T ) 6 δ(T )
and

∆(T ) 6 minsize(T ) 6 2∆(T ) + 1 .

It turns out that

(8.1) minsize(T ) 6 2δ.

Indeed, let τ1, τ2, τ3 be the sides of T , we will assume that τ1 is parameterized so
that

τ1(0) ∈ Im(τ3), τ1(a1) = Im(τ2),

where a1 is the length of τ1. Then by the intermediate value theorem, applied to
the di�erence

d(τ1(t)− Im(τ2))− d(τ1(t)− Im(τ3))

we conclude that there exists t1 so that d(τ1(t1), Im(τ2)) = d(τ1(t1), Im(τ3)) 6 δ.
Taking p1 = τ1(t1) and pi ∈ Im(τi), i = 2, 3, the points nearest to p1, we get

d(p1, p2) 6 δ, d(p1, p3) 6 δ,

hence,
minsize(T ) 6 2δ.

8.2. Geometry and topology of real trees

In this section we consider a special type of hyperbolic spaces, the real trees.

Definition 8.12. A 0�hyperbolic (geodesic) metric space is called a real tree.

Exercise 8.13. 1. Show that every real tree is a CAT (0) space.
2. Show that every real tree is a CAT (κ) space for every κ.

It follows from Exercise 8.5 that every polygon in a real tree is 0-thin.

Lemma 8.14. If X is a real tree then any two points in X are connected by a
unique topological arc in X.
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Proof. Let D = d(x, y). Consider a continuous injective map (i.e., a topo-
logical arc) x = α(0), y = α(1). Let α∗ = [x, y], α∗ : [0, D] → X be the geodesic
connecting x to y. We claim that the image of α contains the image of α∗. Indeed,
we can approximate α by piecewise-geodesic (nonembedded!) arcs

αn = [x0, x1] ∪ ... ∪ [xn−1, xn], x0 = x, xn = y.

Since the n + 1-gon P in X,which is the concatenation of αn with [y, x] is 0-thin,
α∗ ⊂ αn. Therefore, the image of α also contains the image of α∗. Consider
the continuous map (α∗)−1 ◦ α : [0, D] → [0, D]. Applying the intermediate value
theorem to this function, we see that the images of α and α∗ are equal. �

Exercise 8.15. Prove the converse to the above lemma.

Definition 8.16. Let T be a real tree and p be a point in T . The space of
directions at p, denoted Σp, is de�ned as the space of germs of geodesics in T
emanating from p, i.e., the quotient Σp := <p/ ∼, where

<p = {r : [0, a)→ T | a > 0, r isometry, r(0) = p}
and

r1 ∼ r2 ⇐⇒ ∃ ε > 0 such that r1|[0,ε) ≡ r2|[0,ε).
Simplest examples of real trees are given by simplicial trees equipped with path-

metrics. We will see, however, that other real trees also arise naturally in geometric
group theory.

By Lemma 8.14, for every homeomorphism c : [a, b] → T the image c([a, b])
coincides with the geodesic segment [c(a), c(b)]. It follows that we may also de�ne
Σp as the space of germs of topological arcs =p/ ∼, where

=p = {c : [0, a)→ T | a > 0, c homeomorphism, c(0) = p}
and

c1 ∼ c2 ⇐⇒ ∃ ε1 > 0, ε2 > 0 such that c1([0, ε1)) = c2([0, ε2)).

Definition 8.17. De�ne valence val(p) of a point p in a real tree T to be the
cardinality of the set Σp. A branch�point of T is a point p of valence > 3. The
valence of T is the supremum of valences of points in T .

Exercise 8.18. Show that val(p) equals the number of connected components
of T \ {p}.

Definition 8.19. A real tree T is called α�universal if every real tree with
valence at most α can be isometrically embedded into T .

See [?] for a study of universal trees. In particular, the following holds:

Theorem 8.20 ([?]). For every cardinal number α > 2 there exists an α�
universal tree, and it is unique up to isometry.

Fixed-point properties.
Part 1 of Exercise 8.13 together with Corollary 2.43 implies:

Corollary 8.21. If G is a �nite group acting isometrically on a complete real
tree T , then G �xes a point in T .

Definition 8.22. A group G is said to have Property FA if for every isometric
action Gy T on a complete real tree T , G �xes a point in T .

Thus, all �nite groups have property FA.
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8.3. Gromov hyperbolicity

One drawback of the Rips de�nition of hyperbolicity is that it uses geodesics.
Below is an alternative de�nition of hyperbolicity, due to Gromov, where one needs
to verify certain inequalities only for quadruples of points in a metric space (which
need not be geodesic). Gromov's de�nition is less intuitive than the one of Rips,
but, as we will see, it is more suitable in certain situations.

Let (X,dist) be a metric space (which is no longer required to be geodesic). Pick
a base-point p ∈ X. For each x ∈ X set |x|p := dist(x, p) and de�ne the Gromov
product

(x, y)p :=
1

2
(|x|p + |y|p − dist(x, y)) .

Note that the triangle inequality immediately implies that (x, y)p > 0 for all x, y, p;
the Gromov product measures how far the triangle inequality for the points x, y, p
is from being an equality.

Remark 8.23. The Gromov product is a generalization of the inner product
in vector spaces with p serving as the origin. For instance, suppose that X = Rn
with the usual inner product, p = 0 and |v|p := ‖v‖ for v ∈ Rn. Then

1

2

(
|x|2p + |y|2p − ‖x− y‖2

)
= x · y.

Exercise 8.24. Suppose that X is a metric tree. Then (x, y)p is the distance
dist(p, γ) from p to the geodesic segment γ = [xy].

In general a direct calculation shows that for each point z ∈ X
(p, x)z + (p, y)z 6 |z|p − (x, y)p

with equality

(8.2) (p, x)z + (p, y)z = |z|p − (x, y)p.

if and only d(x, z) + d(z, y) = d(x, y). Thus, for every z ∈ γ = [x, y],

(x, y)p = d(z, p)− (p, x)z − (p, y)z 6 d(z, p).

In particular, (x, y)p 6 dist(p, γ).

Lemma 8.25. Suppose that X is δ�hyperbolic in the sense of Rips. Then the
Gromov product in X is �comparable� to dist(p, γ): For every x, y, p ∈ X and
geodesic γ = [x, y],

(x, y)p 6 dist(p, γ) 6 (x, y)p + 2δ.

Proof. The inequality (x, y)p 6 dist(p, γ) was proved above; so we have to
establish the other inequality. Note that since the triangle ∆(pxy) is δ�thin, for
each point z ∈ γ = [x, y] we have

min{(x, p)z, (y, p)z} 6 min{dist(z, [p, x]),dist(z, [p, y])} 6 δ.
By continuity of the distance function, there exists a point z ∈ γ such that
(x, p)z, (y, p)z 6 δ. By applying the equality (8.2) we get:

|z|p − (x, y)p = (p, x)z + (p, y)z 6 2δ.

Since |z|p 6 dist(p, γ), we conclude that dist(p, γ) 6 (x, y)p + 2δ. �

Now, for a metric space X de�ne a number δp = δp(X) ∈ [0,∞] as follows:

δp := sup{min((x, z)p, (y, z)p)− (x, y)p}
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where the supremum is taken over all triples of points x, y, z ∈ X.

Exercise 8.26. If δp 6 δ then δq 6 2δ for all q ∈ X.

Definition 8.27. A metric space X is said to be δ�hyperbolic in the sense
of Gromov, if δp 6 δ < ∞ for all p ∈ X. In other words, for every quadruple
x, y, z, p ∈ X, we have

(x, y)p > min((x, z)p, (y, z)p)− δ.

Exercise 8.28. The real line with the usual metric is 0-hyperbolic in the sense
of Gromov.

Exercise 8.29. Gromov�hyperbolicity is invariant under (1, A)-quasi-isometries.

Exercise 8.30. Let X be a metric space and N ⊂ X be an R-net. Show that
the embedding N ↪→ X is an (1, R)-quasi-isometry. In particular, X is Gromov�
hyperbolic if and only if N is Gromov�hyperbolic. In particular, a group (G, dS)
with word metric dS is Gromov�hyperbolic if and only if the Cayley graph ΓG,S of
G is Rips�hyperbolic.

Lemma 8.31. Suppose that X is δ�hyperbolic in the sense of Rips. Then it is
3δ�hyperbolic in the sense of Gromov. In particular, a geodesic metric space is a
real tree if and only if it is 0-hyperbolic in the sense of Gromov.

Proof. Consider points x, y, z, p ∈ X and the geodesic triangle T (xyz) ⊂ X
with vertices x, y, z. Let m ∈ [x, y] be the point nearest to p. Then, since the
triangle T (x, y, z) is δ�thin, there exists a point n ∈ [x, z]∪[y, z] so that dist(n,m) ≤
δ. Assume that n ∈ [y, z]. Then, by Lemma 8.25,

(y, z)p 6 dist(p, [y, z]) 6 dist(p, [x, y]) + δ.

On the other hand, by Lemma 8.25,

dist(p, [x, y]) 6 (x, y)p − 2δ.

By combining these two inequalities, we obtain

(y, z)p 6 (x, y)p − 3δ.

Therefore, (x, y)p > min ((x, z)p, (y, z)p)− 3δ. �

We now prove the �converse� to the above lemma:

Lemma 8.32. Suppose that X is a geodesic metric space which is δ�hyperbolic
in the sense Gromov, then X is 2δ�hyperbolic in the sense of Rips.

Proof. 1. We �rst show that in such space geodesics connecting any pair of
points are �almost� unique, i.e., if α is a geodesic connecting x to y and p is a point
in X such that

dist(x, p) + dist(p, y) 6 dist(x, y) + 2δ

then dist(p, α) 6 2δ. We suppose that dist(p, x) 6 dist(p, y). If dist(p, x) >
dist(x, y) then dist(x, y) 6 2δ and thus min(dist(p, x), p(y)) 6 2δ and we are done.

Therefore, assume that dist(p, x) < dist(x, y) and let z ∈ α be such that
dist(z, y) = dist(p, y). Since X is δ�hyperbolic in the sense Gromov,

(x, y)p > min((x, z)p, (y, z)p)− δ.
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Thus we can assume that (x, y)p > (x, z)p. Then

dist(y, p)− dist(x, y) > dist(z, p)− dist(x, z)− 2δ ⇐⇒

dist(z, p) 6 2δ.

Thus dist(p, α) 6 2δ.

2. Consider now a geodesic triangle [x, y, p] ⊂ X and let z ∈ [x, y]. Our goal is
to show that z belongs to N4δ([p, x] ∪ [p, y]). We have:

(x, y)p > min((x, z)p, (y, z)p)− δ.

Assume that (x, y)p > (x, z)p − δ. Set α := [p, y]. We will show that z ∈ N2δ(α).
By combining dist(x, z) + dist(y, z) = dist(x, y) and (x, y)p > (x, z)p − δ, we

obtain
dist(y, p) > dist(y, z) + dist(z, p)− 2δ.

Therefore, by Part 1, z ∈ N2δ(α) and hence the triangle T (x, y, z) is 2δ�thin. �

Corollary 8.33 (M. Gromov, [?], section 6.3C.). For geodesic metric spaces,
Gromov�hyperbolicity is equivalent to Rips�hyperbolicity.

The drawback is that in this generality, Gromov�hyperbolicity fails to be QI
invariant:

Example 8.34 (Gromov�hyperbolicity is not QI invariant ). This example is
taken from [?]. Consider the graph X of the function y = |x|, where the metric
on X is the restriction of the metric on R2. (This is not a path-metric!) Then the
map f : R→ X, f(x) = (x, |x|) is a quasi-isometry:

|x− x′| 6 d(f(x), f(x′)) 6
√

2|x− x′|.

Let p = (0, 0) be the base-point in X and for t > 0 we let x := (2t, 2t), y := (−2t, 2t)
and z := (t, t). The reader will verify that

min((x, z)p, (y, z)p)− (x, y)p) = t

(
7
√

2

2
− 3

)
> t.

Therefore, the quantity min((x, z)p, (y, z)p) − (x, y)p) is not bounded from above
as t → ∞ and hence X is not δ-hyperbolic for any δ < ∞. Thus X is QI to a
Gromov�hyperbolic space R, but is not Gromov�hyperbolic itself. We will see, as a
corollary of Morse Lemma (Corollary 8.39), that in the context of geodesic spaces,
Gromov�hyperbolicity is a QI invariant.

8.4. Ultralimits and stability of geodesics in Rips�hyperbolic spaces

In this section we will see that every hyperbolic geodesic metric spaces X
globally resembles a tree. This property will be used to prove Morse Lemma,
which establishes that quasi-geodesics in δ-hyperbolic spaces are uniformly close
to geodesics.

Lemma 8.35. Let (Xi)i∈N be a sequence of geodesic δi�hyperbolic spaces with
δi tending to 0. Then for every non-principal ultra�lter ω each component of the
ultralimit Xω is a metric tree.
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Proof. First, according to Lemma ??, ultralimit of geodesic metric spaces is
again a geodesic metric space. Thus, in view of Lemma 8.32, it su�ces to verify
that Xω is 0-hyperbolic in the sense of Gromov (since it will be 0-hyperbolic in the
sense of Rips and, hence, a metric tree). This is one of the few cases where Gromov�
hyperbolicity is superior to Rips�hyperbolicity: It su�ces to check hyperbolicity
condition only for quadruples of points.

We know that for every quadruple xi, yi, zi, pi in Xi,

(xi, yi)pi > min((xi, zi)pi , (yi, zi)pi)− δi.

By taking ω-lim of this inequality, we obtain (for every quadruple of points xω, yω,
zω, pω in Xω):

(xω, yω)pω > min((xω, zω)pω , (yω, zω)pω ),

since ω-lim δi = 0. Thus, Xω is 0-hyperbolic. �

Exercise 8.36. Find a �aw in the following �proof� of this lemma: Since Xi is
δi-hyperbolic, it follows that every geodesic triangle Ti inXi is δi-thin. Suppose that
ω-lim d(xi, ei) < ∞, ω-lim d(pi, ei) < ∞. Taking limit in the de�nition of thinness
of triangles, we conclude that the ultralimit of triangles Tω = ω-limTi ⊂ X± is
0-thin. Therefore, every geodesic triangle in Xω is 0-thin.

Corollary 8.37. Every geodesic in the tree Xω is a limit geodesic.

The following fundamental theorem in the theory of hyperbolic spaces is called
Morse Lemma or stability of hyperbolic geodesics.

Theorem 8.38 (Morse Lemma). There exists a function θ = θ(L,A, δ), so that
the following holds. If X be a δ�hyperbolic geodesic space, then for every (L,A)�
quasigeodesic f : [a, b]→ X the Hausdor� distance between the image of f and the
geodesic segment [f(a), f(b)] ⊂ X is at most θ.

Proof. Set c = d(f(a), f(b)). Given quasi-geodesic f and geodesic f∗ : [0, c]→
X parameterizing [f(a), f(b)], we de�ne two numbers:

Df = sup
t∈[a,b]

d(f(t), Im(f∗))

and
D∗f = sup

t∈[0,c]

d(f∗(t), Im(f)).

Then distHaus(Im(f), Im(f∗)) is max(Df , D
∗
f ). We will prove that Df is uniformly

bounded in terms of L,A, δ, since the proof for D∗f is completely analogous.
Suppose that the quantities Df are not uniformly bounded, that is, exists a

sequence of (L,A)�quasigeodesics fn : [−n, n]→ Xn in δ-hyperbolic geodesic metric
spaces Xn, such that

lim
n→∞

Dn =∞.

where Dn = Dfn . Pick points tn ∈ [−n, n] such that

|dist(fn(tn), [f(−n), f(n)])−Dn| 6 1.

As in the de�nition of asymptotic cones, consider two sequences of pointed metric
spaces (

1

Dn
Xn, fn(tn)

)
,

(
1

Dn
[−n, n], tn

)
.
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Note that ω-lim n
Dn

could be in�nite. Let

(Xω, xω) = ω-lim
(

1

Dn
Xn, fn(tn)

)
and

(Y, y) := ω-lim
(

1

Dn
[−n, n], tn

)
.

The metric space Y is either a nondegenerate segment in R or a closed geodesic ray
in R or the whole real line. Note that the distance from points Im(fn) to Im(f∗n)
in the rescaled metric space 1

Dn
Xn is at most 1 + 1/dn. Each map

fn : Yn →
1

dn
Xn

is an (L,A/Dn)�quasi-geodesic. Therefore the ultralimit

fω = ω-lim fn : (Y, y)→ (Xω, xω)

is an (L, 0)�quasi-isometric embedding, i.e. it is a L-bi-Lipschitz map. In particular
this map is a continuous embedding. Therefore, the image of fω is a geodesic γ in
Xω, see Lemma 8.14.

On the other hand, the sequence of geodesic segments [fn(−n), fn(n)] ⊂ 1
dn
Xn

also ω�converges to a geodesic γ∗ ⊂ Xω, this geodesic is either a �nite geodesic
segment or a geodesic ray or a complete geodesic. In any case, by our choice of the
points xn, γ is contained in 1-neighborhood of the geodesic γ∗ and, at the same
time, γ 6= γ∗ since xω ∈ γ \ γ∗. This contradicts the fact that Xω is a real tree. �

Historical Remark. Morse [?] proved a special case of this theorem in the case
of H2 where the quasi-geodesics in question where geodesics in another Riemannian
metric onH2, which admits a cocompact group of isometries. Busemann, [?], proved
a version of this lemma in the case of Hn, where metrics in question were not
necessarily Riemannian. A version in terms of quasi-geodesics is due to Mostow
[?], in the context of negatively curved symmetric spaces, although his proof is
general.

Corollary 8.39 (QI invariance of hyperbolicity). Suppose that X,X ′ are
quasi�isometric geodesic metric spaces and X ′ is hyperbolic. Then X is also hyper-
bolic.

Proof. Suppose that X ′ is δ′-hyperbolic and f : X → X ′ is an (L,A)�quasi-
isometry and f ′ : X ′ → X is its quasi-inverse. Pick a geodesic triangle T ⊂ X. Its
image under f is a quasi-geodesic triangle S in X ′ whose sides are (L,A)�quasi-
geodesic. Therefore each of the quasi-geodesic sides σi of S is within distance 6 θ =
θ(L,A, δ′) from a geodesic σ∗i connecting the end-points of this side. See Figure 8.1.
The geodesic triangle S∗ formed by the segments σ∗1 , σ

∗
2 , σ
∗
3 is δ′-thin. Therefore,

the quasi-geodesic triangle f ′(S∗) ⊂ X is ε := Lδ′+A�thin, i.e. each quasi-geodesic
τ ′i := f ′(σ∗i ) is within distance 6 ε from the union τ ′i−1, τ

′
i+1. However,

distHaus(τi, τ
′
i) 6 Lθ + 2A.

Putting this all together, we conclude that the triangle T is δ-thin with

δ = 2(Lθ + 2A) + ε = 2(Lθ + 2A) + Lδ′ +A. �
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Figure 8.1. Image of a geodesic triangle.

Note that in Morse Lemma, we are not claiming, of course, that the distance
d(f(t), f∗(t)) is uniformly bounded, only that for every t there exist s and s∗ so
that

d(f(t), f∗(s)) 6 θ,

and
d(f∗(t), f(s∗)) 6 θ.

Here s = s(t), s∗ = s∗(t). However, applying triangle inequalities one gets for
B = A+ θ the following estimates:

(8.3) L−1t−B 6 s 6 Lt+B

and

(8.4) L−1(t−B) 6 s∗ 6 L(t+B)

8.5. Quasi-convexity in hyperbolic spaces

The usual notion of convexity does not make much sense in the context of
hyperbolic geodesic metric spaces. For instance, there is an example of a geodesic
Gromov�hyperbolic metric space X where the convex hull of a �nite subset is the
entire X. The notion of convex hull is then replaces with

Definition 8.40. Let X be a geodesic metric space and Y ⊂ X. Then the
quasiconvex hull H(Y ) of Y in X is the union of all geodesics [y1, y2] ⊂ X, where
y1, y2 ∈ Y .

Accordingly, a subset Y ⊂ X is R-quasiconvex if H(Y ) ⊂ NR(Y ). A subset Y
is called quasiconvex if it is quasiconvex for some R <∞.

Example 8.41. Let X be a δ-hyperbolic geodesic metric space. Then thin
triangle property immediately implies:

1. Every metric ball B(x,R) in is δ-quasiconvex.
2. let Yi ⊂ X be Ri-quasiconvex, i = 1, 2, and Y1 ∩ Y2 6= ∅. Then Y1 ∪ Y2 is

R1 +R2 + δ-quasiconvex.
3. Intersection of any family of R-quasiconvex sets is again R-quasiconvex.

An example of a non-quasiconvex subset is a horosphere in Hn: Its quasiconvex
hull is the horoball bounded by this horosphere.
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The construction of quasiconvex hull could be iterated and, by applying the
fact that quadrilaterals in X are 2δ-thin, we obtain:

Lemma 8.42. Let Y ⊂ X be a subset. Then H(Y ) is 2δ-quasiconvex in X.

The following results connect quasiconvexity and quasi-isometry for subsets of
Gromov�hyperbolic geodesic metric spaces.

Theorem 8.43. Let X,Y be geodesic metric spaces, so that X is δ-hyperbolic
geodesic metric space. Then for every quasi-isometric embedding f : Y → X, the
image f(Y ) is quasiconvex in X.

Proof. Let y1, y2 ∈ Y and α = [y1, y2] ⊂ Y be a geodesic connecting y1 to y2.
Since f is an (L,A) quasi-isometric embedding, β = f(α) is an (L,A) quasi-geodesic
in X. By Morse Lemma,

distHaus(β, β
∗) 6 R = θ(L,A, δ),

where β∗ is any geodesic in X connecting x1 = f(y1) to x2 = f(y2). Therefore,
β∗ ⊂ NR(f(Y ), and f(Y ) is R-quasi-convex. �

The map f : Y → f(Y ) is a quasi-isometry, where we use the restriction of the
metric from X to de�ne a metric on f(Y ). Of course, f(Y ) is not a geodesic metric
space, but it is quasi-convex, so applying the same arguments as in the proof of
Theorem 8.39, we conclude that Y is also hyperbolic.

Conversely, let Y ⊂ X be a coarsely connected subset, i.e., there exists a
constant c <∞ so that the complex RipsC(Y ) is connected for all C > c, where we
again use the restriction of the metric d from X to Y to de�ne the Rips complex.
Then we de�ne a path-metric dY,C on Y by looking at in�ma of lengths of paths in
RipsC(Y ) connecting points of Y . The following is a converse to Theorem 8.43:

Theorem 8.44. Suppose that Y ⊂ X is coarsely connected and Y is quasi-
convex in X. Then the identity map f : (Y, dY,C)→ (X,distX) is a quasi-isometric
embedding for all C > 2c+ 1.

Proof. Let C be such that H(Y ) ⊂ NC(Y ). First, if dY (y, y′) 6 C then
distX(y, y′) 6 C as well. Hence, f is coarsely Lipschitz. Let y, y′ ∈ Y and γ is a
geodesic in X of length L connecting y, y′. Subdivide γ in n = [L] subintervals of
unit intervals and an interval of the length L− n:

[z0, z1], ..., [zn−1, zn], [zn, zn+1],

where z0 = y, zn+1 = y′. Since each zi belongs to Nc(Y ), there exist points yi ∈ Y
so that distX(yi, zi) 6 c, where we take y0 = z0, yn+1 = zn+1. Then

distX(zi, zi+1) 6 2c+ 1 6 C

and, hence, zi, zi+1 are connected by an edge (of length C) in RipsC(Y ). Now it is
clear that

dY,C(y, y′) 6 C(n+ 1) 6 CdistX(y, y′) + C. �

Remark 8.45. It is proven in [?] that in the context of subsets of negatively
pinched complete simply-connected Riemannian manifolds X, quasi-convex hulls
Hull(Y ) are essentially the same as convex hulls:

There exists a function L = L(C) so that for every C-quasiconvex subset Y ⊂
X,

H(Y ) ⊂ Hull(Y ) ⊂ NL(C)(Y ).
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8.6. Nearest-point projections

In general, nearest-point projections to geodesics in δ-hyperbolic geodesic spaces
are not well de�ned. The following lemma shows, nevertheless, that they are
coarsely-well de�ned:

Let γ be a geodesic in δ-hyperbolic geodesic space X. For a point x ∈ X let
p = πγ(x) be a point nearest to x.

Lemma 8.46. Let p′ ∈ γ be such that d(x, p′) < d(x, p) +R. Then

d(p, p′) 6 2(R+ 2δ).

In particular, if p, p′ ∈ γ are both nearest to x then

d(p, p′) 6 4δ.

Proof. Consider the geodesics α, α′ connecting x to p and p′ respectively.
Let q′ ∈ α′ be the point within distance δ + R from p′ (this point exists unless
d(x, p) < δ +R in which case d(p, p′) 6 2(δ +R) by the triangle inequality). Since
the triangle ∆(x, p, p′) is δ-thin, there exists a point q ∈ [xp]∪ [pp′] ⊂ [xp]∪γ within
distance δ from q. If q ∈ γ, we obtain a contradiction with the fact that the point
p is nearest to x on γ (the point q will be closer). Thus, q ∈ [xp]. By the triangle
inequality

d(x, p′)− (R+ δ) = d(x, q′) 6 d(x, q) + δ 6 d(x, p)− d(q, p) + δ.

Thus,
d(q, p) 6 d(x, p)− d(x, p′) +R+ 2δ 6 R+ 2δ.

Since d(p′, q) 6 R+ 2δ, we obtain d(p′, p) 6 2(R+ 2δ). �

This lemma can be strengthened, we now show that the nearest-point projection
to a quasi-geodesic subspace in a hyperbolic space is coarse Lipschitz:

Lemma 8.47. Let X ′ ⊂ X be an R-quasiconvex subset. Then the nearest-point
projection π = πX′ : X → X ′ is (2, 2R+ 9δ)-coarse Lipschitz.

Proof. Suppose that x, y ∈ X so that d(x, y) = D. Let x′ = π(x), y′ = π(y).
Consider the quadrilateral formed by geodesic segments [x, y]∪[y, y′], [y′, x′]∪[x′, x].
Since this quadrilateral is 2δ-thin, there exists a point q ∈ [x′, y′] which is within
distance 6 2δ from [x′, x] ∪ [xy] and [x, y] ∪ [y, y].

Case 1. We �rst assume that there are points x′′ ∈ [x, x′], y′′ ∈ [y, y] so that

d(q, x′′) 6 2δ, d(q, y′′) 6 2δ.

Let q′ ∈ X ′ be a point within distance 6 R from q. By considering the paths

[x, x′′] ∪ [x′′, q] ∪ [q, q′], [y, y′′] ∪ [y′′, q] ∪ [q, q′]

and using the fact that x′ = π(x), y′ = π(y), we conclude that

d(x′, x′′) 6 R+ 2δ, d(y′, y′′) 6 R+ 2δ.

Therefore,
d(x′, y′) 6 2R+ 9δ.

Case 2. Suppose that there exists a point q′′ ∈ [x, y] so that d(q, q′′) 6 2δ.
Setting D1 = d(x, q′′), D2 = d(y, q′′), we obtain

d(x, x′) 6 d(x, q′) 6 D1 +R+ 2δ, d(y, y′) 6 d(y, q′) 6 D2 +R+ 2δ
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which implies that
d(x′, y′) 6 2D + 2R+ 4δ.

In either case, d(x′.y′) 6 2d(x, y) + 2R+ 9δ. �

x y

X’

x’ y’q’

x" y"

q

R

2δ 2δ

Figure 8.2. Projection to a quasiconvex subset.

8.7. Geometry of triangles in Rips�hyperbolic spaces

In the case of real-hyperbolic space we relied upon hyperbolic trigonometry in
order to study geodesic triangles. Trigonometry no longer makes sense in the con-
text of Rips�hyperbolic spaces X, so instead one compares geodesic triangles in X
to geodesic triangles in real trees, i.e., to tripods, in the manner similar to the com-
parison theorems for CAT (κ)-spaces. In this section we describe comparison maps
to tripods, called collapsing maps. We will see that such maps are (1, 14δ)-quasi-
isometries. We will use the collapsing maps in order to get a detailed information
about geometry of triangles in X.

A tripod T̃ is a metric graph which is the union of three Euclidean line segments
(called legs of the tripod) joined at a common vertex o, called the centroid of T̃ .
By abusing the notation, we will regard a tripod T̃ as a geodesic triangle whose
vertices are the extreme points (leaves) x̃i of T̃ ; hence, we will use the notation
T = T̃ = T (x̃1, x̃2, x̃3).

Remark 8.48. Using the symbol ∼ in the notation for a tripod is motivated
by the comparison geometry, as we will compare geodesic triangles in δ-hyperbolic
spaces with the tripods T̃ : This is analogous to comparing geodesic triangles in
metric spaces to geodesic triangles in constant curvature spaces, see De�nition
2.33.

Exercise 8.49. Given three numbers ai ∈ R+, i = 1, 2, 3 satisfying the triangle
inequalities ai 6 aj+ak ({1, 2, 3} = {i, j, k}), there exists a unique (up to isometry)
tripod T̃ = Ta1,a2,a3 with the side-lengths a1, a2, a3.
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Figure 8.3. Collapsing map of triangle to a tripod.

Now, given a geodesic triangle T = T (x1, x2, x3) with side-lengths ai, i = 1, 2, 3
in a metric space X, there exists a unique (possibly up to postcomposition with an
isometry T̃ → T̃ ) map κ to the �comparison� tripod T̃ ,

κ : T → T̃ = Ta1,a2,a3
which is isometric on every edge of T : The map κ sends the vertices xi of T to the
leaves x̃i of the tripod T̃ . The map κ is called the collapsing map for T . We say
that points x, y ∈ T are dual to each other if κ(x) = κ(y).

Exercise 8.50. 1. The collapsing map κ preserves the Gromov-products
(xi, xj)xk .

2. κ is 1-Lipschitz.

Then,
(xi, xj)xk = d(x̃k, [x̃i, x̃j ]) = d(x̃k, o).

By taking the preimage of o ∈ T̃ under the maps κ|[xi, xj ] we obtain points

xij ∈ [xi, xj ]

called the central points of the triangle T :

d(xi, xij) = (xj , xk)xi .

Lemma 8.51 (Approximation of triangles by tripods). Assume that a geodesic
metric space X is δ�hyperbolic in the sense of Rips, and consider an arbitrary
geodesic triangle T = ∆(x1, x2, x3) with the central points xij ∈ [xi, xj ]. Then for
every {i, j, k} = {1, 2, 3} we have:

1. d(xij , xjk) 6 6δ.
2. dHaus([xj , xji], [xj , xkj ]) 6 7δ.
3. Distances between dual points in T are 6 14δ. In detail: Suppose that

αji, αjk : [0, tj ]→ X (tj = d(xj , xij) = d(xj , xjk)) are unit speed parameterizations
of geodesic segments [xj , xji], [xj , xjk]. Then

d(αji(t), αjk(t)) 6 14δ

for all t ∈ [0, tj ].

211



Proof. The geodesic [xi, xj ] is covered by the closed subsets N δ([xi, xk]) and
N δ([xj , xk]), hence by connectedness there exists a point p on [xi, xj ] at distance at
most δ from both [xi, xk] and [xj , xk]. Let p′ ∈ [xi, xk] and p′′ ∈ [xj , xk] be points
at distance at most δ from p. The inequality

(xj , xk)xi =
1

2
[d(xi, p) + d(p, xj) + d(xi, p

′) + d(p′, xk)− d(xj , p
′′)− d(p′′, xk)]

combined with the triangle inequality implies that

|(xj , xk)xi − d(xi, p)| 6 2δ,

and, hence d(xij , p) 6 2δ. Then d(xik, p
′) 6 3δ, whence d(xij , xik) 6 6δ. It remains

to apply Lemma 8.3 to obtain 2 and Lemma 8.4 to obtain 3. �

We thus obtain

Proposition 8.52. κ is a (1, 14δ)-quasi-isometry.

Proof. The map κ is a surjective 1-Lipschitz map. On the other hand, Part
3 of the above lemma implies that

d(x, y)− 14δ 6 d(κ(x), κ(y))

for all x, y ∈ T . �
Proposition 8.52 allows one to reduce (up to a uniformly bounded error) study

of geodesic triangles in δ-hyperbolic spaces to study of tripods. For instance suppose
that mij ∈ [xi, xj ] be points so that

d(mij ,mjk) 6 r

for all i, j, k. We already know that this property holds for the central points xij
of T (with r = 6δ). Next result shows that points mij have to be uniformly close
to the central points:

Corollary 8.53. Under the above assumptions, d(mij , xij) 6 r + 14δ.

Proof. Since κ is 1-Lipschitz,

d(κ(mik), κ(mjk)) 6 r

for all i, j, k. By de�nition of the map κ, all three points κ(mij) cannot lie in the
same leg of the tripod T̃ , except when one of them is the center o of the tripod.
Therefore, d(κ(mij), o) 6 r for all i, j. Since κ is (1, 14δ)-quasi-isometry,

d(mij , xij) 6 d(κ(mik), κ(mjk)) + 14δ 6 r + 14δ.

Definition 8.54. We say that a point p ∈ X is an R-centroid of a triangle
T ⊂ X if distances from p to all three sides of T are 6 R.

Corollary 8.55. Every two R-centroids of T are within distance at most
φ(R) = 4R+ 28δ from each other.

Proof. Given an R-centroid p, let mij ∈ [xi, xj ] be the nearest points to p.
Then

d(mij ,mjk) 6 2R

for all i, j, k. By previous corollary,

d(mij , xij) 6 2R+ 14δ.
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Thus, triangle inequalities imply that every two centroids are within distance at
most 2(2R+ 14δ) from each other. �

Let p3 ∈ γ12 = [x1, x2] be a point closest to x3. Taking R = 2δ and combining
Lemma 8.25 with Lemma 8.46, we obtain:

Corollary 8.56. d(p3, x12) 6 2(2δ + 2δ) = 6δ.

We now can de�ne a continuous quasi-inverse κ̄ to κ as follows: We map
[x̃1, x̃2] ⊂ T̃ ] isometrically to a geodesic [x1, x2]. We send [o, x̃3] onto a geodesic
[x12, x3] by an a�ne map. Since

d(x12, x32) 6 6δ

and
d(x3, x32) = d(x̃3, 0),

we conclude that the map κ̄ is (1, 6δ)-Lipschitz.

Exercise 8.57.
d(κ̄ ◦ κ, Id) 6 32δ.

8.8. Divergence of geodesics in hyperbolic metric spaces

Another important feature of hyperbolic spaces is the exponential divergence of
its geodesic rays. This can be deduced from the thinness of polygons described in
Lemma 8.6, as shown below. Our arguments are inspired by those in [?].

Lemma 8.58. Let X be a geodesic metric space, δ�hyperbolic in the sense of
Rips' de�nition. If [x, y] is a geodesic of length 2r and m is its midpoint then every

path joining x, y outside the open ball B(m, r) has length at least 2
r−1
2δ .

Proof. Consider such a path p, of length `. Divide it �rst into two arcs
of length `

2 , then into four arcs of length `
4 etc, until we obtain k arcs of length

`
2k
6 1. Consider the minimal k satisfying this, i.e. k is the integer part blog2 `c. Let

x0 = x, x1, ..., xk = y be the consecutive points on p obtained after this procedure.
Lemma 8.6 applied to a geodesic polygon with vertices x0 = x, x1, ..., xk = y with
[x, y] as an edge, implies that m is contained in the (2δk)�tubular neighborhood
of
⋃k−1
i=0 [xi, xi+1], hence in the (2δk + 1)�tubular neighborhood of p. However, we

assumed that dist(m, p) > r. Thus,

r 6 2δk + 1 6 2 log2 `+ 1⇒ ` > 2
r−1
2δ .

�

Lemma 8.59. Let X be a geodesic metric space, δ�hyperbolic in the sense of
Rips' de�nition, and let x and y be two points on the sphere S(o,R) such that
dist(x, y) = 2r. Every path joining x and y outside B(o,R) has length at least

ψ(r) = 2
r−1
2δ −3 − 12δ.

Proof. Let m ∈ [x, y] be the midpoint. Since d(o, x) = d(o, y), it follows that
m is also one of the center-points of the triangle ∆(x, y, o) in the sense of Section
8.7. Then, by using Lemma 8.51 (Part 1), we see that d(m, o) 6 (R − r) + 6δ.
Therefore, the closed ball B(m, r − 6δ) is contained in B(o,R). Let p be a path
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joining x and y outside B(o,R), and let [x, x′] and [y′, y] be subsegments of [x, y] of
length 6δ. Lemma 8.58 implies that the path [x′, x] ∪ p ∪ [y, y′] has length at least

2
r−6δ−1

2δ

whence p has length at least
2
r−1
δ −3 − 12δ.

�

Lemma 8.60. Let X be a δ�hyperbolic in the sense of Rips, and let x and y
be two points on the sphere S(o, r1 + r2) such that there exist two geodesics [x, o]
and [y, o] intersecting the sphere S(o, r1) in two points x′, y′ at distance larger than
14δ. Then every path joining x and y outside B(o, r1 + r2) has length at least

ψ(r2 − 15δ) = 2
r2−1
δ −18 − 12δ.

Proof. Let m be the midpoint m of [x, y], since ∆(x, y, o) is isosceles, m is
one of the centroids of this triangle. Since d(x′, y′) > 14δ, they cannot be dual
point on ∆(x, y, o) in the sense of Section 8.7. Let x′′, y′′ ∈ [x, y] be dual to x′, y′.
Thus (by Lemma 8.51 (Part 3)),

d(o, x′′) 6 r1 + 14δ, d(o, x′′) 6 r1 + 14δ.

Furthermore, by the de�nition of dual points, since m is a centroid of ∆(x, y, o), m
belongs to the segment [x′′, y′′] ⊂ [x, y]. Thus, by quasiconvexity of metric balls,
see Section 8.5,

d(m, o) 6 r1 + 14δ + δ = r1 + 15δ.

By the triangle inequality,

r1 + r2 = d(x, o) 6 r + d(m, o) 6 r + r1 + 15δ, r2 − 15δ 6 r.

Since the function ψ in Lemma 8.59 is increasing,

ψ(r2 − 15δ) 6 ψ(r).

Combining this with Lemma 8.59 (where we take R = r1 + r2), we get the required
inequality. �

For a more detailed treatment of divergence in metric spaces, see [?, ?, ?, ?,
?, ?].

8.9. Ideal boundaries

We consider the general notion of ideal boundary de�ned in Section 2.1.10 of
Chapter 1 in the special case when X is geodesic, δ�hyperbolic and locally compact
(equivalently, proper).

Lemma 8.61. For each p ∈ X and each element α ∈ ∂∞X there exists a
geodesic ray ρ with initial point p and such that ρ(∞) = α .

Proof. Let ρ′ be a geodesic ray from the equivalence class α , with initial point
x0. Consider a sequence of geodesic segments γn : [0, Dn] → X, connecting p to
xn = ρ′(n), where Dn = d(p, ρ′(n)). The δ-hyperbolicity of X implies that Im(γn)
is at Hausdor� distance at most δ + dist(p, x0) from [x0, xn], where [x0, xn] is the
initial subsegment of ρ′.
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Combining the properness of X with the Arzela-Ascoli theorem, we see that
the geodesic maps γn subconverge to a geodesic ray ρ, ρ(0) = p. Clearly, Im(ρ) is
at Hausdor� distance at most δ+ dist(p, x0) from Im(ρ)). In particular, ρ ∼ ρ. �

Lemma 8.61 is very similar to the result in the case of X CAT (0)�space. The
important di�erence with respect to that case is that the ray ρ may not be unique.
Nevertheless we shall still use the notation [p, α) to designate a geodesic (one of the
geodesics) with initial point x in the equivalence class α.

In view of this lemma, in order to understand ∂∞X it su�ces to restrict to the
set Rayp(X) of geodesic rays in X emanating from p ∈ X.

It is convenient to extend the topology τ de�ned on ∂∞X (i.e. the quotient
topology of the compact-open topology on the set of rays) to a topology on X̄ =
X ∪ ∂∞X. Namely, we say that a sequence xn ∈ X converges to a point ξ ∈ ∂∞X
if a sequence of geodesics [p, xn] converges (uniformly on compacts) to a ray [p, ξ).
Then ∂∞X ⊂ X̄ is a closed subset. Consider the setGeop(X) consisting of geodesics
in X (�nite or half-in�nite) emanating from p. We again quip Geop(X) with the
compact-open topology. There is a natural quotient map Geop(X) → X̄ which
sends a �nite geodesic or a geodesic ray emanating from p to its terminal point in
X̄.

Corollary 8.62. If X is geodesic, hyperbolic and proper, then X̄ is compact.

Proof. The space Geop(X) is compact by Arzela-Ascoli theorem. Since a
quotient of a compact is compact, the claim follows. �

Lemma 8.63 (Asymptotic rays are uniformly close). Let ρ1, ρ2 be asymptotic
geodesic rays in X such that ρ1(0) = ρ2(0) = p. Then for each t,

d(ρ1(t), ρ2(t)) 6 2δ.

Proof. Suppose that the rays ρ1, ρ2 are within distance 6 C from each other.
Take T � t. Then (since the rays are asymptotic) there exists S ∈ R+ such that

d(ρ1(T ), ρ2(S)) 6 C.

By δ�thinness of the triangle ∆(pρ1(T )ρ2(S)), the point ρ1(t) is within distance
6 δ from a point either on [p, ρ2(S)] or on [ρ1(T ), ρ2(S)]. Since the length of
[ρ1(T ), ρ2(S)] is 6 C and T � t, it follows that there exists t′ such that

dist(ρ1(t), ρ2(t′)) 6 δ.

By the triangle inequality, |t− t′| 6 δ. It follows that dist(ρ1(t), ρ2(t)) 6 2δ. �

Corollary 8.64. ∂∞X is Hausdor�.

Proof. Let ρn, ρ′n be sequences of rays emanating from p ∈ X, so that ρn ∼ ρ′n
and

lim
n→∞

ρn = ρ, lim
n→∞

ρ′n = ρ′.

We claim that ρ ∼ ρ′. Suppose not. Then there exists a > 0 so that d(ρ(a), ρ′(a)) >
2δ + 1. For all su�ciently large n

d(ρn(a), ρ(a)) < 1/2, d(ρ′n(a), ρ′(a)) < 1/2,

while
d(ρn(a), ρ′n(a)) 6 2δ.

Thus, d(ρ(a), ρ′(a)) < 2δ + 1, contradicting our choice of a. �
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Exercise 8.65. Show that X̄ is also Hausdor�.

Given a number k > 2δ, de�ne the topology τk on Rayp(X)/ ∼, where the
basis of neighborhoods of a point ρ(∞) given by

(8.5) Uk,n(ρ) := {ρ′ : dist(ρ′(t), ρ(t)) < k, t ∈ [0, n]}, n ∈ R+.

Lemma 8.66. Topologies τ and τk coincide.

Proof. 1. Suppose that ρj is a sequence of rays emanating from p such that
ρj /∈ Uk,n(ρ) for some n. If limj ρj = ρ′ then ρ′ /∈ Uk,n and by Lemma 8.63,
ρ′(∞) 6= ρ(∞).

2. Conversely, if for each n, ρj ∈ Uk,n(ρ) (provided that j is large enough),
then the sequence ρj subconverges to a ray ρ′ which belongs to each Uk,n(ρ). Hence
ρ′(∞) = ρ(∞). �

Lemma 8.67. Suppose that ρ, ρ′ ∈ Rayp(X) are inequivalent rays. Then for
every sequence tn diverging to ∞,

lim
i→∞

d(ρ(ti), ρ
′(ti)) =∞.

Proof. Suppose to the contrary, there exists a divergent sequence ti so that
d(ρ(ti), ρ

′(ti)) 6 D. Then, by Lemma 8.4, for every t 6 ti,

d(ρ(t), ρ′(t)) 6 2(D + δ).

Since lim ti =∞, it follows that ρ ∼ ρ′. Contradiction. �

Lemma 8.68. Let X be a proper geodesic Gromov�hyperbolic space. Then for
each pair of distinct points ξ, η ∈ ∂∞X there exists a geodesic γ in X which is
asymptotic to both ξ and η.

Proof. Consider geodesic rays ρ, ρ′ emanating from the same point p ∈ X and
asymptotic to ξ, η respectively. Since ξ 6= η, by previous lemma, for each R < ∞
the set

K(R) := {x ∈ X : dist(x, ρ) 6 R,dist(x, ρ′) 6 R}
is compact. Consider the sequences xn := ρ(n), x′n := ρ′(n) on ρ, ρ′ respectively.
Since the triangles [p, xn, x

′
n] are δ�thin, each segment γn := [xn, x

′
n] contains a

point within distance 6 δ from both [p, xn], [p, x′n], i.e. γn ∩K(δ) 6= ∅. Therefore,
by Arzela-Ascoli theorem, the sequence of geodesic segments γn subconverges to a
complete geodesic γ in X. Since γ ⊂ Nδ(ρ ∪ ρ′) it follows that γ is asymptotic to
ξ and η. �

Exercise 8.69. Suppose that X is δ-hyperbolic. Show that there are no com-
plete geodesics γ in X so that

lim
n→∞

γ(−n) = lim
n→∞

γ(n).

Hint: Use the fact that geodesic bigons in X are δ-thin.

Exercise 8.70 (Ideal bigons are 2δ-thin). Suppose that α, β are geodesics
in X which are both asymptotic to points ξ, η ∈ ∂∞X. Then distHaus(α, β) 6
2δ. Hint: For n ∈ N de�ne zn, wn ∈ Im(β) to be the nearest points to xn =
α(n), yn = α(−n). Let [xn, yn], [zn, wn] be the subsegments of α, β between xn, yn
and yn, zn respectively. Now use the fact that the quadrilateral in X with the edges
[xn, yn], [yn, wn], [wn, zn], [zn, xn] is 2δ-thin.
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We now compute two examples of ideal boundaries of hyperbolic spaces.
1. Suppose that X = Hn is the real-hyperbolic space. We claim that ∂∞X

is naturally homeomorphic to the sphere Sn−1, the boundary sphere of Hn in the
unit ball model. Every ray ρ ∈ Rayo(X) (which is a Euclidean line segment [o, ξ),
ξ ∈ Sn−1) determines a unique point on the boundary sphere Sn−1, namely the
point ξ. Furthermore, we claim that distinct rays ρ1, ρ2 ∈ Rayo(X) are never
asymptotic. Indeed, consider the equilateral triangle [o, ρ1(t), ρ2(t)] with the angle
γ > 0 at o. Then the hyperbolic cosine law (7.4), implies that

cosh(d(ρ1(t), ρ2(t))) = 1 + sinh2(t)(1− cos(γ)).

It is clear that this quantity diverges to ∞ as t→∞. We, thus, obtain a bijection

Rayo(X)→ ∂∞(X).

We equip Rayp(X) with the topology given by the initial velocities ρ′(0) of the
geodesic rays ρ ∈ Rayo(X). Clearly, the map Rayo(X) → Sn−1, sending each ray
ρ = [o, ξ) to ξ ∈ Sn−1 is a homeomorphism. It is also clear that the above topology
on Rayo(X) coincides with the compact-open topology on geodesic rays since the
latter depend continuously on their initial velocities. Thus, the composition

Sn−1 → Rayo(X)→ ∂∞X

is a homeomorphism.
2. Suppose that X is a simplicial tree of �nite constant valence val(X) > 3,

metrized so that every edge has unit length. As before, it su�ces to restrict to
rays in Rayp(X), where p ∈ X is a �xed vertex. Note that ρ, ρ′ ∈ Rayp(X) are
equivalent if and only they are equal. We know that X is 0-hyperbolic. Our claim
then is that ∂∞X is homeomorphic to the Cantor set. Since we know that ∂∞X
is compact and Hausdor�, it su�ces to verify that ∂∞X is totally disconnected
and contains no isolated points. Let ρ ∈ Rayp(X) be a ray. For each n pick a ray
ρn ∈ Rayp(X) which coincides with ρ on [0, n] , but ρn(t) 6= ρ(t) for all t > n (this
is where we use the fact that val(X) > 3. It is then clear that

lim
n→∞

ρn = ρ

uniformly on compacts. Hence, ∂∞X has no isolated points. Recall that for k = 1
2 ,

we have open sets Un,k(ρ) forming a basis of neighborhoods of ρ. We also note that
each Un,k(ρ) is also closed, since (for a tree X as in our example) it is also given by

{ρ′ : ρ(t) = ρ′(t), t ∈ [0, n]}.

Therefore, ∂∞X is totally-disconnected as for any pair of distinct points ρ, ρ′ ∈
Rayp(X), there exist open, closed and disjoint neighborhoods Un,k(ρ), Un,k(ρ′) of
the points ρ, ρ′. Thus, ∂∞X is compact, Hausdor�, perfect, consists of at least 2
points and is totally-disconnected. Therefore, ∂∞X is homeomorphic to the Cantor
set.

Gromov topology on X̄ = X ∪∂∞X. The above de�nition of X̄ was worked
�ne for geodesic hyperbolic metric spaces. Gromov extended this de�nition to the
case when X is an arbitrary hyperbolic metric space. Pick a base-point p ∈ X.
Gromov boundary ∂GromovX of X consists of equivalence classes of sequences (xn)
in X so that lim d(p, xn) =∞, where (xn) ∼ (yn) if

lim
n→∞

(xn, yn)p =∞.

217



One then de�nes the Gromov�product (ξ, η)p ∈ [0,∞] for points ξ, η in Gromov-
boundary of X by

(ξ, η)p = lim supn→∞(xn, yn)p

where (xn) and (yn) are sequences representing ξ, η respectively. Then, Gromov
topologizes X̄ = X ∪ ∂GromovX by:

limxn = ξ, ξ ∈ ∂GromovX

if and only if
lim
n→∞

(xn, ξ)p =∞.

It turns out that this topology is independent of the choice of p. In case when X
is also a geodesic metric space, there is a natural map

X ∪ ∂∞X → X ∪ ∂GromovX

which is the identity on X and which sends ξ = [ρ] in ∂∞X to the equivalence class
of the sequence (ρ(n)). This map is a homeomorphism provided that X is proper.

Hyperbolic triangles with ideal vertices. We return to the case when X is
a δ-hyperbolic proper geodesic metric space. We now generalize (geodesic) triangles
in X to triangles where some vertices are in ∂∞X, similarly to the de�nitions made
in section 7.3. Namely a (generalized) geodesic triangle in X̄ is a concatenation of
geodesics connecting (consecutively) three points A,B,C in X̄; geodesics are now
allowed to be �nite, half-in�nite and in�nite. The points A,B,C are called vertices
of the triangle. As in the case of Hn, we do not allow two ideal vertices of a triangle
T to be the same. By abusing terminology, we will again refer to such generalized
triangles as hyperbolic triangles.

An ideal triangle is a triangle where all three vertices are in ∂∞X. We topologize
the set Tri(X) of hyperbolic triangles in X by compact-open topology on the set
of their geodesic edges. Given a hyperbolic triangle T = T (A,B,C) in X, we �nd
a sequence of �nite triangles Ti ⊂ X whose vertices converge to the respective
vertices of T . Passing to a subsequence if necessary and taking a limit of the sides
of the triangles Ti, we obtain limit geodesics connecting vertices A,B,C of T . The
resulting triangle T ′, of course, need not be equal to T (since geodesics connecting
points in X̄ need not be unique), however, in view of Exercise 8.70, sides of T ′ are
thin distance 6 2δ from the respective sides of T . We will say that the sequence of
triangles Ti coarsely converges to the triangle T (cf. De�nition 5.25).

Exercise 8.71. Every (generalized) hyperbolic triangle T in X is 5δ-thin. In
particular,

minsize(T ) 6 4δ.

Hint: Use a sequence of �nite triangles which coarsely converges to T and the fact
that �nite triangles are δ-thin.

This exercise allows one to de�ne a centroid of a triangle T in X (with sides
τi, i = 1, 2, 3) to be a point p ∈ X so that

d(p, τi) 6 5δ, i = 1, 2, 3.

More generally, as in De�nition 8.54, we say that a point p ∈ X is an R-centroid T
it p is within distance 6 R from all three sides of T .
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Lemma 8.72. Distance between any two R-centroids of a hyperbolic triangle T
is at most

r(R, δ) = 4R+ 32δ.

Proof. Let p, q be R-centroids of T . We coarsely approximate T by a sequence
of �nite triangles Ti ⊂ X. Then for every ε > 0, for all su�ciently large i, the points
p, q are R+ 2δ+ ε-centroids of Ti. Therefore, by Corollary 8.55 applied to triangles
Ti,

d(p, q) 6 φ(R+ 2δ + ε) = 4(R+ 2δ + ε) + 28δ = 4R+ 32δ + 2ε

Since this holds for every ε > 0, we conclude that d(p, q) 6 4R+ 32δ. �
We thus, de�ne the correspondence

center : Trip(∂∞X)→ X

which sends every triple of distinct points in ∂∞X �rst to the set of ideal triangle
T that they span and then to the set of centroid of these ideal triangles. Then
Lemma 8.72 implies

Corollary 8.73. For every ξ ∈ Trip(∂∞X),

diam(center(ξ)) 6 r(7δ, δ) = 60δ.

Exercise 8.74. Suppose that γn are geodesics in X which limit to points
ζn, etan ∈ ∂∞X and

lim
n
ζn = ζ, lim

n
ηn = η, η 6= ζ.

Show that geodesics γn subconverge to a geodesic which is asymptotic to both ξ
and η.

Use this exercise to conclude:

Exercise 8.75. If K ⊂ Trip(∂∞X) is a compact subset, then center(K) is a
bounded subset of X.

Conversely,

Exercise 8.76. Let B ⊂ X be a bounded subset and K ⊂ Trip(∂∞X) is a
subset such that center(K) ⊂ B. Show thatK is relatively compact in Trip(∂∞X).
Hint: For every ξ ∈ K, every ideal edge of a triangle spanned by ξ intersects 5δ-
neighborhood of B. Now, use Arzela-Ascoli theorem.

Loosely speaking, the two exercises show that the correspondence center is
coarsely continuous (image of a compact is bounded) and coarsely proper (preimage
of a bounded subset is relatively compact).

Cone topology. Suppose that X is a proper geodesic hyperbolic metric space.
Later on, it will be convenient to use another topology on X̄, called cone topology.
This topology is not equivalent to the topology τ : With few exceptions, X̄ is
noncompact with respect to this topology (even if X = Hn, n > 2).

Definition 8.77. We say that a sequence xn ∈ X converges to a point ξ =
ρ(∞) ∈ ∂∞X in the cone topology if there is a constant C such that xn ∈ NC(ρ)
and the geodesic segments [x1xn] converge to a geodesic ray asymptotic to ξ.

Exercise 8.78. If a sequence xn converges to ξ ∈ ∂∞X in the cone topology,
then it also converges to ξ in the topology τ on X̄.
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As an example, considerX = Hm in the upper half-space model, ξ = 0 ∈ Rm−1,
L is the vertical geodesic from the origin. Then a sequence xn ∈ X converges ξ in
the cone topology if and only if all the points xn belong to the Euclidean cone with
the axis L and the Euclidean distance from xn to 0 tends to zero. See Figure 8.4.
This explains the name cone topology.

Exercise 8.79. Suppose that a sequence (xi) converges to a point ξ ∈ ∂∞Hn
along a horosphere centered at ξ. Show that the sequence (xi) contains no conver-
gent subsequence in the cone topology on X̄.

m

m-1

n

R

0

L

x

H

Figure 8.4. Convergence in the cone topology.

8.10. Extension of quasi-isometries of hyperbolic spaces to the ideal
boundary

The goal of this section is to explain how quasi-isometries of Rips�hyperbolic
spaces extend to their ideal boundaries.

We �rst extend Morse lemma to the case of quasi-geodesic rays and complete
geodesics.

Lemma 8.80 (Extended Morse Lemma). Suppose that X is a proper δ�hyperbolic
geodesic space. Let ρ be an (L,A)�quasigeodesic ray or a complete (L,A)�quasi-
geodesic. Then there is ρ∗ which is either a geodesic ray or a complete geodesic in
X so that the Hausdor� distance between Im(ρ) and Im(ρ∗) is 6 θ(L,A, δ). Here
θ is the function which appears in Morse lemma.

Moreover, there are two functions s = s(t), s∗ = s∗(t) so that

(8.6) L−1t−B 6 s 6 Lt+B

and

(8.7) L−1(t−B) 6 s∗ 6 L(t+B)

and for every t, d(ρ(t), ρ∗(s)) 6 θ, d(ρ∗(t), ρ(s∗)) 6 θ. Here B = A+ θ.
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Proof. We will consider only the case of quasigeodesic rays ρ : [0,∞)→ X as
the other case is similar. Let ρi := ρ|[0, i], i ∈ N. Consider the sequence of geodesic
segments ρ∗i = [ρ(0)ρ(i)] as in Morse lemma. By Morse lemma,

distHaus(ρi, ρ
∗
i ) 6 θ(L,A, δ).

By properness, the geodesic segments ρ∗i subconverge to a complete geodesic ray
ρ∗. It is now clear that

distHaus(ρ, ρ
∗) 6 θ(L,A, δ).

Estimates (8.6) and (8.7) follow from the estimates (8.3) and (8.4) in the case of
�nite geodesic segments. �

Corollary 8.81. If ρ is a quasi-geodesic ray as in the above lemma, there
exists a point ξ ∈ ∂∞X so that limt→∞ ρ(t) = ξ.

Proof. Take ξ = ρ∗(∞). Since d(ρ(t), Im(ρ∗)) 6 θ, it follows that

lim
t→∞

ρ(t) = ξ. �

We will refer to the point η as ρ(∞). Note that if ρ′ is another quasi-geodesic
ray which is Hausdor�-close to ρ then ρ(∞) = ρ′(∞).

Below is another useful application of the Extended Morse Lemma. Given a
geodesic γ in X we let πγ : X → γ denote the nearest-point projection.

Proposition 8.82 (Quasi-isometries commute with projections). There exists
C = C(L,A, δ) so that the following holds. Let X be a δ-hyperbolic geodesic metric
space and let f : X → X be an (L,A)-quasi-isometry. Let α be a (�nite or in�nite)
geodesic in X, and β ⊂ X be a geodesic which is θ(L,A, δ)-close to f(α). Then the
map f almost commutes with the nearest-point projections πα, πβ:

d(f(πα(x)), πβf(x)) 6 C, ∀x ∈ X.

Proof. For a (�nite or in�nite) geodesic γ ⊂ X consider the triangle ∆ = ∆x,γ

where one side is γ and x is a vertex: The other two sides are geodesics connecting
x to the (�nite or ideal) end-points of γ. Let c = center(∆) ∈ γ denote a centroid
of ∆: The distance from c to each side of ∆ is 6 6δ. By Corollary 8.56,

d(c, πγ(x)) 6 21δ.

Applying f to the centroid c(∆x,α) we obtain a point a ∈ X whose distance to each
side of the quasi-geodesic triangle f(∆x,α) is 6 2δL+A. Hence, the distance from
a to each side of the geodesic triangle ∆y,β , y = f(x) is at most R := 2δL + A +
D(L,A, δ). Hence, a is an R-centroid of ∆y,β . By Lemma 8.72, it follows that

d(a, c(∆y,β)) 6 8R+ 32δ.

Since d(πβ(y), c(∆y,β)) 6 21δ, we obtain:

d(f(πα(x)), πβf(x)) 6 C := 21δ + 8R+ 27δ + 21δL+A. �

Below is the main theorem of this section, which is a fundamental fact of the
theory of hyperbolic spaces:

Theorem 8.83 (Extension Theorem). Suppose that X and X ′ are Rips�hyper-
bolic proper metric spaces. Let f : X → X ′ be a quasi-isometry. Then f admits a
homeomorphic extension f∞ : ∂∞X → ∂∞X

′. This extension is such that the map
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f ∪ f∞ is continuous at each point η ∈ ∂∞X with respect to the topology τ on X̄.
The extension satis�es the following functoriality properties:

1. For every pair of quasi-isometries fi : Xi → Xi+1, i = 1, 2, we have

(f2 ◦ f1)∞ = (f2)∞ ◦ (f1)∞.

2. For every pair of quasi-isometries f1, f2 : X → X ′ satisfying dist(f1, f2) <
∞, we have (f2)∞ = (f1)∞.

Proof. First, we construct the extension f∞. Let η ∈ ∂∞X, η = ρ(∞) where
ρ is a geodesic ray in X. The image of this ray f ◦ ρ : R+ → X ′ is a quasi-geodesic
ray, hence we set f∞(η) := fρ(∞). Observe that f∞(η) does not depend on the
choice of a geodesic ray asymptotic to η.

We will verify continuity for the map f∞ : ∂∞X → ∂∞X and leave the case of
X̄ as an exercise to the reader. Let ηn ∈ ∂∞X be a sequence which converges to
η. Let ρn be a sequence of geodesic rays asymptotic to ηn with ρn(0) = ρ(0) = x0.
Then, by Lemma 8.66, for each a ∈ R+ there exists n0 such that for all n > n0 and
t ∈ [0, a] we have

d(ρ(t), ρn(t)) 6 3δ,

where δ is the hyperbolicity constant of X. Let ρ′n := (f ◦ ρn)∗, ρ′ := (fρ)∗ denote
a geodesic rays given by Lemma 8.80. Thus, for all t ∈ [0, a] there exist s and sn,

L−1t−A− θ 6 min(s, sn),

so that
d(fρn(t), ρ′n(sn)) 6 θ,

d(fρ(t), ρ′(s)) 6 θ,

and for all t ∈ [0, a],
d(fρn(t), fρ(t)) 6 3δL+A.

Thus, by the triangle inequalities, for the above s, sn we get

d(ρ′n(sn), ρ′(s)) 6 C = 3δL+A+ 2θ.

Since ρ′n, ρ
′ are geodesic, |s − sn| 6 C. In particular, for t = a, and b the corre-

sponding value of s, we obtain

d(ρ′(b), ρ′n(b)) 6 2C.

By the fellow-traveling property of hyperbolic geodesics, for all u ∈ [0, b],

d(ρ′(u), ρ′n(u)) 6 k := 2(2C + δ).

Since b > L−1a−A− θ and
lim
a→∞

(L−1a−A− θ) =∞,

it follows that lim ρ′n(∞) = ρ′(∞) in the topology τk. Since topologies τ and τk
agree, it follows that limn f∞(ξn) = f∞(ξ). Hence, f∞ is continuous.

Functoriality properties (1) and (2) of the extension are clear from the construc-
tion (in view of Morse Lemma). They also follow from continuity of the extension.

Let f̄ be a quasi-inverse of f : X → X ′. Then, by the functoriality prop-
erties, (f̄)∞ is inverse of f∞. Thus, extension of a quasi-isometry X → X ′ is a
homeomorphism ∂∞X → ∂∞X

′. �

Exercise 8.84. Suppose that f is merely a QI embedding X → X ′. Show that
the continuous extension f∞ given by this theorem is 1-1.
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Remark 8.85. The above extension theorem was �rst proven by Efremovich
and Tikhomirova in [?] for the real-hyperbolic space and, soon afterwards, reproved
by Mostow [?]. We will see later on that the homeomorphisms f∞ are quasi-
symmetric, in particular, they enjoy certain regularity properties which are critical
for proving QI rigidity theorems in the context of hyperbolic groups and spaces.

We thus obtained a functor from quasi-isometries between Rips�hyperbolic
spaces to homeomorphisms between their boundaries.

The following lemma is a �converse� to the 2nd functoriality property in The-
orem 8.83:

Lemma 8.86. Let X and Y be proper geodesic δ�hyperbolic spaces. In addition
we assume that centroids of ideal triangles in X form an R-net in X. Suppose that
f, f ′ : X → Y are (L,A)�quasi-isometries such that f∞ = f ′∞ Then dist(f, f ′) 6
D(L,A,R, δ),

Proof. Let x ∈ X and p ∈ X be a centroid of an ideal triangle T in X, so
that d(x, p) 6 R. (Recall that p is a centroid of T if p is within distance 6 4δ from
all three sides of T ). Then, by Lemma 8.80, q = f(p), q′ = f ′(q′) are C-centroids
of the ideal geodesic triangle S ⊂ Y whose ideal vertices are the images of the
ideal vertices of T under f∞. Here C = 4δL + A + θ(L,A, δ). By Lemma 8.72,
d(q, q′) 6 r(C, δ). Therefore,

d(f(x), f ′(x)) 6 D(L,A,R, δ) = 2(LR+A) + r(C, δ). �

Suppose that X is Gromov�hyperbolic and ∂∞X contains at least 3 points.
Then X has at least one ideal triangle and, hence, at least one centroid of an ideal
triangle. If, in addition, X is quasi-homogeneous, then centroids of ideal triangles
in X form a net. Thus, the above lemma applies to the real-hyperbolic space and,
as we will sees soon, every non-elementary hyperbolic group.

Example 8.87. The line X = R is 0-hyperbolic, its ideal boundary consists of
2 points. Take a translation f : X → X, f(x) = x + a. Then f∞ is the identity
map of {−∞,∞} but there is no bound on the distance from f to the identity.

Corollary 8.88. Let X be a Rips�hyperbolic space. Then the map f 7→ f∞
(where f : X → X are quasi-isometries) descends to a homomorphism QI(X) →
Homeo(X). Furthermore, under the hypothesis of Lemma 8.86, this homomor-
phism is injective.

In Section ?? we will identify the image of this homomorphism in the case
of real-hyperbolic space Hn, it will be a subgroup of Homeo(Sn−1) consisting of
quasi-Moebius homeomorphisms.

Boundary extension and quasi-actions. In view of Corollary 8.88, we have

Corollary 8.89. Every quasi-action φ of a group G on X extends (by g 7→
φ(g)∞) to an action φ∞ of G on ∂∞X by homeomorphisms.

Lemma 8.90. Suppose that X satis�es the hypothesis of Lemma 8.86 and the
quasi-action G y X is properly discontinuous. Then the kernel for the action φ∞
is �nite.
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Proof. The kernel K of φ∞ consists of the elements g ∈ G such that the
distance from φ(g) to the identity is �nite. Since φ(g) is an (L,A)-quasi-isometry
of X, it follows from Lemma 8.86, that

dist(φ(g), id) 6 D(L,A,R, δ).

Since φ was properly discontinuous, K is �nite. �

Conical limit points of quasi-actions.
Suppose that φ is a quasi-action of a group G on a Rips�hyperbolic space X.

A point ξ ∈ ∂∞X is called a conical limit point for the quasi-action φ if there exists
a sequence gi ∈ G so that φ(gi)(x) converges to ξ in the conical topology. In other
words, for some (equivalently every) geodesic ray γ ⊂ X asymptotic to ξ, and some
(equivalently every) point x ∈ X, there exists a constant R <∞ so that:

• limi→∞ φ(g)(x) = ξ.
• d(φ(gi)(x), γ) 6 R for all i.

Lemma 8.91. Suppose that ψ : G y X is a cobounded quasi-action. Then
every point of the ideal boundary ∂∞X is a conical limit point for ψ.

Proof. Let ξ ∈ ∂∞X and let xi ∈ X be a sequence converging to ξ in conical
topology (e.g., we can take xi = γ(i), where γ is a geodesic ray in X asymptotic to
ξ). Fix a point x ∈ X and a ball B = BR(x) so that for every x′ ∈ X there exists
g ∈ G so that d(x′, φ(g)(x)) 6 R. Then, by coboundedness of the quasi-action ψ,
there exists a sequence gi ∈ G so that

d(xi, φ(gi)(x)) 6 R.

Thus, ξ is a conical limit point of the quasi-action. �

Corollary 8.92. Suppose that G is a group and f : X → G is a quasi-
isometry, G y G is isometric action by left multiplication. Let ψ : G y X be the
quasi-action, obtained by conjugating GyG via f . Then every point of ∂∞X is a
conical limit point for the quasi-action ψ.

Proof. The action G y G by left multiplication is cobounded, hence, the
conjugate quasi-action ψ : Gy X is also cobounded. �

If φ∞ is a topological action of a group G on ∂∞X which is obtained by exten-
sion of a quasi-action φ of G on X, then we will say that conical limit points of the
action Gy ∂∞X are the conical limit points for the quasi-action Gy X.

8.11. Hyperbolic groups

We now come to the raison d'être for δ-hyperbolic spaces, namely, hyperbolic
groups.

Definition 8.93. A �nitely-generated group G is called Gromov�hyperbolic or
word-hyperbolic, or simply hyperbolic if one of its Cayley graphs is hyperbolic.

Example 8.94. 1. Every �nitely-generated free groups is hyperbolic: Taking
Cayley graphs corresponding to a free generating set, we obtain a simplicial tree,
which is 0-hyperbolic.

2. Finite groups are hyperbolic.
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Many examples of hyperbolic groups can be constructed via small cancelation
theory, see e.g. [?, ?]. For instance, let G be a 1-relator group with the presentation

〈x1, . . . , xn|wm〉 ,
where m > 2 and w is a cyclically reduced word in the generators xi. Then G
is hyperbolic. (This was proven by B. B. Newman in [?, Theorem 3] before the
notion of hyperbolic groups was introduced; Newman proved that for such groups
G Dehn's algorithm applies, which is equivalent to hyperbolicity, see �8.13.)

Below is a combinatorial characterization of hyperbolic groups among Coxeter
groups. Let Γ be a �nite Coxeter graph and G = CΓ be the corresponding Coxeter
group. A parabolic subgroup of Γ is the Coxeter subgroup de�ned by a subgraph Λ
of Γ. It is clear that every parabolic subgroup of G admits a natural homomorphism
to G; it turns out that such homomorphisms are always injective.

Theorem 8.95 (G. Moussong [?]). A Coxeter group G is Gromov�hyperbolic
if and only if the following condition holds:

No parabolic subgroup of G is virtually isomorphic to the direct product of two
in�nite groups.

In particular, a Coxeter group is hyperbolic if and only if it contains no free
abelian subgroup of rank 2.

Problem 8.96. Is there a similar characterization of Gromov�hyperbolic groups
among Shephard groups and generalized von Dyck groups?

Since changing generating set does not alter the quasi-isometry type of the
Cayley graph and Rips�hyperbolicity is invariant under quasi-isometries (Corollary
8.39), we conclude that a groupG is hyperbolic if and only if all its Cayley graphs are
hyperbolic. Furthermore, if groups G,G′ are quasi-isometric then G is hyperbolic if
and only if G′ is hyperbolic. In particular, if G,G′ are virtually isomorphic, then G
is hyperbolic if and only if G′ is hyperbolic. For instance, all virtually free groups
are hyperbolic.

In view of Milnor-Schwarz lemma,

Observation 8.97. If G is a group acting geometrically on a Rips�hyperbolic
metric space, then G is also hyperbolic.

Definition 8.98. A group G is called CAT (κ) if it admits a geometric action
on a CAT (κ) space.

Thus, every CAT (−1) group is hyperbolic. In particular, fundamental groups
of compact Riemannian manifolds of negative curvature are hyperbolic.

The following is an outstanding open problem in geometric group theory:

Open problem 8.99. Construct a hyperbolic group G which is not a CAT (−1)
or even a CAT (0) group.

Definition 8.100. A hyperbolic group is called elementary if it is virtually
cyclic. A hyperbolic group is called non-elementary otherwise.

Here are some examples of non-hyperbolic groups:
1. Zn is not hyperbolic for every n > 2. Indeed, Zn is QI to Rn and Rn is not

hyperbolic (see Example 8.9).
2. A deeper fact is that if a group G contains a subgroup isomorphic to Z2

then G is not hyperbolic, see e.g. [BH99].
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3. More generally, if G contains a solvable subgroup S then G is not hyperbolic
unless S is virtually cyclic.

4. Even more generally, for every subgroup S of a hyperbolic group G, the
group S is either elementary hyperbolic or contains a nonabelian free subgroup. In
particular, every amenable subgroup of a hyperbolic group is virtually cyclic. See
e.g. [BH99].

5. Furthermore, if Z 6 G is a central subgroup of a hyperbolic group, then
either Z is �nite, or G/Z is �nite.

Remark 8.101. There are hyperbolic groups which contain non-hyperbolic
�nitely-generated subgroups, see Theorem 8.142. A subgroup H 6 G of a hyper-
bolic group G is called quasiconvex if it is a quasiconvex subset of a Cayley graph
of G. If H 6 G is a quasiconvex subgroup , then, according to Theorem 8.44, H is
quasi-isometrically embedded in G and, hence, is hyperbolic itself.

Examples of quasiconvex subgroups are given by �nite subgroups (which is
clear) and (less obviously) in�nite cyclic subgroups. Let G be a hyperbolic group
with a word metric d. De�ne the translation length of g ∈ G to be

‖g‖ := lim
n→∞

d(gn, e)

n
.

It is clear that ‖g‖ = 0 if g has �nite order. On the other hand, every cyclic
subgroup 〈g〉 ⊂ G is quasiconvex and ‖g‖ > 0 for every g of in�nite order, see
Chapter III.Γ, Propositions 3.10, 3.15 of [BH99].

8.12. Ideal boundaries of hyperbolic groups

We de�ne the ideal boundary ∂∞G of a hyperbolic group G as the ideal bound-
ary of some (every) Cayley graph of G: It follows from Theorem 8.83, that bound-
aries of di�erent Cayley graphs are equivariantly homeomorphic. Here are two
simple examples of computation of the ideal boundary.

Since ∂∞Hn = Sn−1, we conclude that for the fundamental group G of a closed
hyperbolic n-manifold, ∂∞G ∼= Sn−1. Similarly, if G = Fn is the free group of
rank n, then free generating set S of G yields Cayley graph X = ΓG,S which is a
simplicial tree of constant valence. Therefore, as we saw in Section 8.9, ∂∞X is
homeomorphic to the Cantor set. Thus, ∂∞Fn is the Cantor set.

Lemma 8.102. Let G be a hyperbolic group and Z = ∂∞G. Then Z consists of
0, 2 or continuum of points, in which case it is perfect. In the �rst two cases G is
elementary, otherwise G is non-elementary.

Proof. Let X be a Cayley graph of G. If G is �nite, then X is bounded and,
hence Z =. Thus, we assume that G is in�nite. By Exercise 4.74, X contains a
complete geodesic γ, thus, Z has at least two distinct points, the limit points of
γ. If distHaus(γ,X) < ∞, X is quasi-isometric to R and, hence, G is 2-ended.
Therefore, G is virtually cyclic by Part 3 of Theorem 6.8.

We assume, therefore, that distHaus(γ,X) =∞. Then there exists a sequence
of vertices xn ∈ X so that lim dist(xn, γ) = ∞. Let yn ∈ γ be a nearest vertex to
xn. Let gn ∈ G be such that gn(yn) = e ∈ G. Then applying gn to the union of
geodesics [xn, yn] ∪ γ and taking limit as n → ∞, we obtain a complete geodesic
β ⊂ X (the limit of a subsequence gn(γ)) and a geodesic ray ρ meeting β at e, so
that for every x ∈ ρ, e is a nearest point on γ to x. Therefore, ρ(∞) is a point
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di�erent from γ(±∞), so Z contains at least 3 distinct points. Let p be a centroid
of a corresponding ideal triangle. Then G · o is a 1-net in X and, we are, therefore,
in the situation described in Lemma 8.86. Let K denote the kernel of the action
G y Z. Then every k ∈ K moves every point in X by 6 D(1, 0, 1, δ), where D is
the function de�ned in Lemma 8.86. It follows that K is a �nite group. Since G is
in�nite, Z is also in�nite.

Let ξ ∈ Z and let ρ be a ray asymptotic to ξ. Then, there exists a sequence
gn ∈ G so that gn(e) = xn ∈ ρ. Let γ ⊂ X be a complete geodesic asymptotic to
points η, ζ di�erent from ξ. We leave it to the reader to verify that either

lim
n
gn(η) = ξ,

or
lim
n
gn(ζ) = ξ,

Since Z is in�nite, we can choose ξ, η so that their images under the given sequence
gn are not all equal to ξ. Thus, ξ is an accumulation point of Z and Z is perfect.
Since Z is in�nite, it follows that it has cardinality continuum. �

Definition 8.103. Let Z be a compact and G ⊂ Homeo(Z) be a subgroup.
The group G is said to be a convergence group if G acts properly discontinuously on
Trip(Z), where Trip(Z) is the set of triples of distinct elements of Z. A convergence
group G is said to be a uniform if Trip(Z)/G is compact.

Theorem 8.104 (P. Tukia, [?]). Suppose that X is a proper δ-hyperbolic ge-
odesic metric space with the ideal boundary Z = ∂∞X which consists of at least
3 points. Let G y X be an isometric action and G y Z be the corresponding
topological action. Then the action Gy X is geometric if and only if Gy Z is a
uniform convergence action.

Proof. Recall that we have a correspondence center : Trip(Z) → X sending
each triple of distinct points in Z to the set of centroids of the corresponding ideal
triangles. Furthermore, by Corollary 8.73, for every ξ ∈ Trip(Z),

diam(center(ξ)) 6 60δ.

Clearly, the correspondence center is G-equivariant. Moreover, the image of every
compact K in Trip(Z) under center is bounded (see Exercise 8.75).

Assume now that the action G y X is geometric. Given a compact subset
K ⊂ Trip(Z), suppose that the set

GK := {g ∈ G|gK ∩K 6= ∅}

is in�nite. Then there exists a sequence ξn ∈ K and an in�nite sequence gn ∈ G so
that gn(ξn) ∈ K. Then the diameter of the set

E =

(⋃
n

center(ξn) ∪ center(gn(ξn))

)
⊂ X

is bounded and each gn sends some pn ∈ E to an element of E. This, however,
contradicts proper discontinuity of the action of G on X. Thus, the action G y
Trip(Z) is properly discontinuous.

Similarly, since G y X is cobounded, the G-orbit of some metric ball B(p,R)
covers the entire X. Thus, using equivariance of center, for every ξ ∈ Trip(Z),
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there exists g ∈ G so that

center(gξ) ⊂ B = B(x,R+ 60δ).

Since center−1(B) is relatively compact in Trip(Z) (see Exercise 8.76), we con-
clude that G acts cocompactly on Trip(Z). Thus, G ⊂ Homeo(Z) is a uniform
convergence group.

The proof of the converse is essentially the same argument run in the reverse.
Let K ⊂ Trip(Z) be a compact, so that G-orbit of K is the entire Trip(Z). Then
the set center(K), which is the union of sets of centroids of points ξ′ ∈ K, is a
bounded subset B ⊂ X. Now, by equivariance of the correspondence center, it
follows that G-orbit of B is the entire X. Hence, G y X is cobounded. The
argument for proper discontinuity of the action G y Trip(Z) is similar, we just
use the fact that the preimage of a su�ciently large metric ball B ⊂ X under
the correspondence center is nonempty and relatively compact in Trip(Z). Then
proper discontinuity of the action G y X follows from proper discontinuity of
Gy Trip(Z). �

Corollary 8.105. Every hyperbolic group G acts by homeomorphisms on ∂∞G
as a uniform convergence group.

The converse to Theorem 8.104 is a deep theorem of B. Bowditch [?]:

Theorem 8.106. Let Z be a perfect compact Hausdor� space consisting of more
than one point. Suppose that G ⊂ Homeo(Z) is a uniform convergence group.
Then G is hyperbolic and, moreover, there exists an equivariant homeomorphism
Z → ∂∞G.

Note that in the proof of Part 1 of Theorem 8.104 we did not really need the
property that the action of G on itself was isometric, a geometric quasi-action (see
De�nition 5.59) su�ces:

Theorem 8.107. Suppose that X is a δ-hyperbolic proper geodesic metric space.
Assume that there exists R so that every point in X is within distance 6 R from
a centroid of an ideal triangle in X. Let φ : G y X be a geometric quasi-action.
Then the extension φ∞ : G → Homeo(Z), Z = ∂∞X, of the quasi-action φ to a
topological action of G on Z is a uniform convergence action.

Proof. The proof of this result closely follows the proof of Theorem 8.104; the
only di�erence is that ideal triangles T ⊂ X are not mapped to ideal triangles by
quasi-isometries φ(g), g ∈ G. However, ideal quasi-geodesic triangles φ(g)(T ) are
uniformly close to ideal triangles which su�ces for the proof. �

8.13. Linear isoperimetric inequality and Dehn algorithm for
hyperbolic groups

Let G be a hyperbolic group, we suppose that Γ is a δ-hyperbolic Cayley graph
of G. We will assume that δ > 2 is a natural number. Recall that a loop in Γ is
required to be a closed edge-path. Since the group G acts transitively on the vertices
of X, the number of G-orbits of loops of length 6 10δ in Γ is bounded. We attach
a 2-cell along every such loop. Let X denote the resulting cell complex. Recall that
for a loop γ in X, `(γ) is the length of γ and A(γ) is the least combinatorial area
of a disk in X bounding γ, see Section 4.9.
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Our goal is to show that X is simply-connected and satis�es a linear isoperi-
metric inequality. We will prove a somewhat stronger statement. Namely, suppose
that X is a connected 2-dimensional cell complex whose 1-skeleton X1 (metrized
to have unit edges) is δ-hyperbolic (with δ > 2 an integer) and so that for every
loop γ of length 6 10δ in X, A(γ) 6 K <∞. Then:

The following theorem was �rst proven by Gromov in Section 2.3 of [?]:

Theorem 8.108 (Hyperbolicity implies linear isoperimetric inequality). Under
the above assumptions, for every loop γ ⊂ X,

(8.8) A(γ) 6 K`(γ).

Since the argument in the proof of the theorem is by induction on the length
of γ, the following result is the main tool.

Proposition 8.109. Every loop γ in X(1) of length larger than 10δ is a product
of two loops, one of length 6 10δ and another one of length < `(γ).

Proof. We assume that γ is parameterized by its arc-length, and that it has
length n.

Without loss of generality we may also assume that δ > 2.

Case 1. Assume that there exists a vertex u = γ(t) such that the vertex
v = γ(t + 5δ) satis�es d(u, v) < 5δ. By a circular change of the parameterizations
of γ we may assume that t = 0. Let p denote the geodesic [v, u] in X(1). We then
obtain two new loops

γ1 = γ([0, 5δ]) ∪ p
and

γ2 = (−p) ∪ γ([5δ, n]).

Here −p is the geodesic p with the reversed orientation. Since `(p) < `(γ([0, 5δ])),
we have `(γ1) 6 10δ and `(γ2) < `(γ1) .

Figure 8.5. Case 1.

Case 2. Assume now that for every t, d(γ(t), γ(t+ 5δ)) = 5δ, where t+ 5δ is
considered modulo n. In other words, every sub-arc of γ of length 5δ is a geodesic
segment.
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Let v0 = γ(0). Assume that v = γ(t) is a vertex on γ whose distance to v0 is
the largest possible, in particular it is at least 5δ.

Consider the triangles ∆± with the vertices v0, v = γ(t), v± = γ(t± 5δ). Each
triangle in X(1) is δ-thin, therefore, u± = γ(t ± (δ + 1)) is within distance 6 δ
of a vertex on one of the sides [v0, v], [v0, v±]. If, say, u+ is within 6 δ of some
w ∈ [v0, v+], then

d(v0, v) 6 r + δ + (δ + 1) = r + 2δ + 1,

d(v0, v+) = r + s > r + 3δ − 1 > r + 2δ + 1

where r = d(v0, w), s = d(w, v+). Hence, d(v0, v+) > d(v0, v) which contradicts our
choice of v as being farthest away from v0. Therefore both u± are within distance
≤ δ from the same point on the geodesic [v0, v] and, hence, d(u+, u−) 6 2δ. On the
other hand, the distance between these vertices along the path γ is 2δ + 2. This
contradicts our working hypothesis that every sub-arc of γ of length at most 5δ is
a geodesic segment.

We have thus obtained that Case 2 is impossible. �

Proof of Theorem 8.108.
The proof of the inequality (8.8) is by induction on the length of γ.

1. If `(γ) 6 10δ then A(γ) 6 K 6 K`(γ).
2. Suppose the inequality holds for `(γ) 6 n, n > 10δ. If `(γ) = n + 1, then

γ is the product of loops γ′, γ′′ as in Proposition 8.109: `(γ′) < `(γ), `(γ′′) 6 10δ.
Then, inductively,

A(γ′) 6 K`(γ′), A(γ′′) 6 K,

and, thus,
A(γ) 6 A(γ′) +A(γ′′) 6 K`(γ′) +K 6 K`(γ). �

Figure 8.6. Case 2.
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Below are two corollaries of Proposition 8.109, which was the key to the proof
of the linear isoperimetric inequality.

Corollary 8.110 (M. Gromov, [?]). Every hyperbolic group is �nitely-presented.

Proof. Proposition 8.109 means that every loop in the Cayley graph of Γ is
a product of loops of length 6 10δ. Attaching 2-cells to Γ along the G-images of
these loops we obtain a simply-connected complex Y on which G acts geometrically.
Thus, G is �nitely-presented. �

Corollary 8.111 (M. Gromov, [?], section 6.8N). Let Y be a coarsely con-
nected Rips�hyperbolic metric space. Then X satis�es linear isoperimetric inequal-
ity:

Arµ(c) 6 K`(c)

for all su�ciently large µ and for appropriate K = K(µ).

Proof. Quasi-isometry invariance of isoperimetric functions implies that it
su�ces to prove the assertion for Γ, the 1-skeleton of a connected R-Rips complex
RipsR(X) of X. By Proposition 8.109, every loop γ in Γ is a product of 6 `(γ)
loops of length 6 10δ, where Γ is δ-hyperbolic in the sense of Rips. Therefore, for
any µ > 10δ, we get

Arµ(γ) 6 `(γ). �

Dehn algorithm. A (�nite) presentation 〈X|R〉 is called Dehn if for every
nontrivial word w representing 1 ∈ G, the word w contains more than half of a
relator. A word w is called Dehn-reduced if it does not contain more than half
of any relator. Given a word w, we can inductively reduce the length of w by
replacing subwords u in w with u′ so that u′u−1 is a relator so that |u′| < |u|.
This, of course, does not change the element g of G represented by w. Since the
length of w is decreasing on each step, eventually, we get a Dehn-reduced word v
representing g ∈ G. Since 〈X|R〉 is Dehn, either v = 1 (in which case g = 1) or
v 6= 1 in which case g 6= 1. This algorithm is, probably, the simplest way to solve
word problems in groups. It is also, historically, the oldest: Max Dehn introduced
it in order to solve the word problem for hyperbolic surface groups.

Geometrically, Dehn reduction represents a based homotopy of the path in X
represented by the word w (the base-point is 1 ∈ G). Similarly, one de�nes cyclic
Dehn reduction, where the reduction is applied to the (unbased) loop represented
by w and the cyclically Dehn presentation: If w is a null-homotopic loop in X then
this loop contains a subarc which is more than half of a relator. Again, if G admits
a cyclically Dehn presentation then the word problem in G is solvable.

Lemma 8.112. If G is δ-hyperbolic �nitely-presented group then it admits a
�nite (cyclically) Dehn presentation.

Proof. Start with an arbitrary �nite presentation of G. Then add to the list
of relators all the words of length 6 10δ representing the identity in G. Since the
set of such words is �nite, we obtain a new �nite presentation of the group G. The
fact that the new presentation is (cyclically) Dehn is just the induction step of the
proof of Proposition 8.108. �

Note, however, that the construction of a (cyclically) Dehn presentation re-
quires solvability of the word problem for G (or, rather, for the words of the length
6 10δ) and, hence, is not a priori algorithmic. Nevertheless, the word problem in
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δ-hyperbolic groups (with known δ) is solvable as we will see below, and, hence, a
Dehn presentation is algorithmically computable.

The converse of Proposition 8.108 is true as well, i.e. if a �nitely-presented
group satis�es a linear isoperimetric inequality then it is hyperbolic. We shall
discuss this in Section 8.17.

8.14. Central co-extensions of hyperbolic groups and quasi-isometries

We now consider a central co-extension

(8.9) 1→ A→ G̃
r−→ G→ 1

with A a �nitely-generated abelian group and G hyperbolic.

Theorem 8.113. G̃ is QI to A×G.

Proof. In the case when A ∼= Z, the �rst published proof belongs to S. Gersten
[?], although, it appears that D.B.A. Epstein and G. Mess also knew this result.
Our proof follows the one in [?]. First of all, since an epimorphism with �nite kernel
is a quasi-isometry, it su�ces to consider the case when A is free abelian of �nite
rank.

Our main goal is to construct a Lipschitz section (which is not a homomor-
phism!) s : G → G̃ of the sequence (8.9). We �rst consider the case when A ∼= Z.
Each �ber r−1(g), g ∈ G, is a copy of Z and, therefore, has a natural order denoted
≤. We let ι denote the embedding Z ∼= A → G̃. We let X denote a symmetric
generating set of G̃ and use the same name for its image under s. We let 〈X |R〉
be a �nite presentation of G. Let |w| denote the word length with respect to this
generating set, for w ∈ X ∗, where X ∗ is the set of all words in X , as in Section 4.2.
Lastly, let w̃ and w̄ denote the elements of G̃ and G represented by w ∈ X ∗.

Lemma 8.114. There exists C ∈ N so that for every g ∈ G there exists

r(g) := max{w̃ι(−C|w|) : w ∈ X∗, w̄ = g}.
Here the maximum is taken with respect to the natural order on s−1(g).

Proof. We will use the fact that G satis�es the linear isoperimetric inequality

Area(α) 6 K|α|
for every α ∈ X ∗ representing the identity in G. We will assume that K ∈ N. For
each R ∈ X ∗ so that R±1 is a de�ning relator for G, the word R represents some
R̃ ∈ A. Therefore, since G is �nitely-presented, we de�ne a natural number T so
that

ι(T ) = max{R̃ : R±1 is a de�ning relator of G}.
We then claim that for each u ∈ X ∗ representing the identity in G,

(8.10) ι(TArea(u)) > ũ ∈ A.
Since general relators u of G are products of words of the form hRh−1, R ∈ R,
(where Area(u) is at most the number of these terms in the product) it su�ces to
verify that for w = h−1Rh,

w̃ 6 ι(T )

where R is a de�ning relator of G and h ∈ X ∗. The latter inequality follows from
the fact that the multiplications by h̄ and h̄−1 determine an order isomorphism and
its inverse between r−1(1) and r−1(h̄).
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Set C := TK. We are now ready to prove lemma. Let w, v be in X ∗ representing
the same element g ∈ G. Set u := v−1. Then q = wu represents the identity and,
hence, by (8.10),

q̃ = w̃ũ 6 ι(C|q|) = ι(C|w|) + ι(C|u|).
We now switch to the addition notation for A ∼= Z. Then,

w − v 6 ι(C|w|) + ι(C|v|),
and

w − ι(C|w|) 6 v + ι(C|v|).
Therefore, taking v to be a �xed word representing g, we conclude that all the
di�erences w− ι(C|w|) are bounded from above. Hence their maximum exists. �

Consider the section s (given by Lemma 8.114) of the exact sequence (8.9). A
word w = wg realizing the maximum in the de�nition of s is called maximizing. The
section s, of course, need not be a group homomorphism. We will see nevertheless
that it is not far from being one. De�ne the cocycle

σ(g1, g2) := s(g1)s(g2)− s(g1g2)

where the di�erence is taking place in r−1(g1g2). The next lemma does not use
hyperbolicity of G, only the de�nition of s.

Lemma 8.115. The set σ(G,X) is �nite.

Proof. Let x ∈ X , g ∈ G. We have to estimate the di�erence

s(g)x− s(gx).

Let w1 and w2 denote maximizing words for g and gx respectively. Note that the
word w1x also represents gx. Therefore, by the de�nition of s,

w̃1xι(−C(|w1|+ 1)) 6 w̃2ι(−C|w2|).
Hence, there exists a ∈ A, a > 0, so that

w̃1ι(−C(|w1|)x̃ι(−C)a = w̃2ι(−C|w2|)
and, thus

(8.11) s(g)x̃ι(−C)a = s(gx).

Since w2x
−1 represents g, we similarly obtain

(8.12) s(gx)x̃−1ι(−C)b = s(g), b > 0, b ∈ A.
By combining equations (8.11) and (8.12) and switching to the additive notation
for the group operation in A we get

a+ b = ι(2C).

Since a > 0, b > 0, we conclude that −ι(C) 6 a − ι(C) ≤ ι(C). Therefore, (8.11)
implies that

|s(g)x− s(gx)| 6 C.
Since the �nite interval [−ι(C), ι(C)] in A is a �nite set, lemma follows. �

Remark 8.116. Actually, more is true: There exists a section s′ : G → G̃
so that σ′(G,G) is a �nite set. This follows from the fact that all (degree > 2)
cohomology classes of hyperbolic groups are bounded (see [?]). However, the proof
is more di�cult and we will not need this fact.
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Letting L denote the maximum of the word lengths (with respect to the gen-
erating set X ) of the elements in the sets σ(G,X ), σ(X , G), we conclude that the
map s : G → G̃ is (L + 1)�Lipschitz. Given the section s : G → G̃, we de�ne the
projection φ = φs : G̃→ A by

(8.13) φ(g̃) = g̃ − s ◦ r(g̃).

It is immediate that φ is Lipschitz since s is Lipschitz.

We now extend the above construction to the case of central co-extensions with
free abelian kernel of �nite rank. Let A =

∏n
i=1Ai, Ai

∼= Z. Consider a central
co-extension (8.9). The homomorphisms A→ Ai induce quotient maps ηi : G̃→ G̃i
with the kernels

∏
j 6=iAj . Each G̃i, in turn, is a central co-extension

(8.14) 1→ Ai → G̃i
ri−→ G→ 1.

Assuming that each central co-extension (8.14) has a Lipschitz section si, we obtain
the corresponding Lipschitz projection φi : G̃i → Ai given by (8.13). This yields a
Lipschitz projection

Φ : G̃→ A,Φ = (φ1 ◦ η1, ...., φn ◦ ηn).

We now set
s(r(g̃)) := g̃ − Φ(g̃).

It is straightforward to verify that s is well-de�ned and that it is Lipschitz provided
that each si is. We thus obtain

Corollary 8.117. Given a �nitely-generated free abelian group A and a hyper-
bolic group G, each central co-extension (8.9) admits a Lipschitz section s : G→ G̃

and a Lipschitz projection Φ : G̃→ A given by

Φ(g̃) = g̃ − s(r(g̃)).

We then de�ne the map

h : G×A→ G̃, h(g, a) = s(g) + ι(a)

and its inverse
h−1 : G̃→ G×A, ĥ(g̃) = (r(g̃),Φ(g̃)).

Since homomorphisms are 1-Lipschitz while the maps r and Φ are Lipschitz, we
conclude that h is a bi-Lipschitz quasi-isometry. �

Remark 8.118. The above proof easily generalizes to the case of an arbitrary
�nitely-generated group G and a central co-extension (8.9) given by a bounded 2-nd
cohomology class (see e.g. [?, ?, EF97a] for the de�nition): One has to observe
only that each cyclic central co-extension

1→ Ai → G̃i → G→ 1

is still given by a bounded cohomology class. We refer the reader to [?] for the
details.

Example 8.119. Let G = Z2, A = Z. Since H2(G,Z) = H2(T 2,Z) ∼= Z, the
group G admits nontrivial central co-extensions with the kernel A, for instance, the
integer Heisenberg group H3. The group G̃ for such an co-extension is nilpotent
but not virtually abelian. Hence, by Pansu's theorem (Theorem ??), it is not
quasi-isometric to G×A = Z3.
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One can ask if Theorem 8.113 generalizes to other normal co-extensions of
hyperbolic groups G. We note that Theorem 8.113 does not extend, say, to the
case where A is a non-elementary hyperbolic group and the action Gy A is trivial.
The reason is the quasi-isometric rigidity for products of certain types of groups
proven in [KKL98]. A special case of this theorem says that if G1, ..., Gn are non-
elementary hyperbolic groups, then quasi-isometries of the productG = G1×...×Gn
quasi-preserve the product structure:

Theorem 8.120. Let πj : G → Gj , j = 1, ..., n be natural projections. Then
for each (L,A)�quasi-isometry f : G → G, there is C = C(G,L,A) < ∞, so that,
up to a composition with a permutation of quasi-isometric factors Gk, the map f
is within distance 6 C from a product map f1 × ... × fn, where each fi : Gi → Gi
is a quasi-isometry.

8.15. Characterization of hyperbolicity using asymptotic cones

The goal of this section is to strengthen the relation between hyperbolicity of
geodesic metric spaces and 0-hyperbolicity of their asymptotic cones.

Proposition 8.121 (§2.A, [Gro93]). Let (X,dist) be a geodesic metric space.
Assume that either of the following two conditions holds:

(a) There exists a non-principal ultra�lter ω such that for all sequences e =
(en)n∈N of base-points en ∈ X and λ = (λn)n∈N of scaling constants with
ω-limλn = 0, the asymptotic cone Coneω(X, e,λ) is a real tree.

(b) For every non-principal ultra�lter ω and every sequence e = (en)n∈N of
base-points, the asymptotic cone Coneω(X, e, (n)) is a real tree.

Then (X,dist) is hyperbolic.

The proof of Proposition 8.121 relies on the following lemma.

Lemma 8.122. Assume that a geodesic metric space (X,dist) satis�es either
property (a) or property (b) in Proposition 8.121. Then there exists M > 0 such
that for every geodesic triangle ∆(x, y, z) with dist(y, z) > 1 ,the two edges with
endpoint x are at Hausdor� distance at most Mdist(y, z).

Proof. Suppose to the contrary that there exist sequences of triples of points
xn, yn, zn, such that dist(yn, zn) > 1 and

distHaus([xn, yn], [xn, zn]) = Mndist(yn, zn),

such that Mn →∞. Let an be a point on [xn, yn] such that

δn := dist(an, [xn, zn]) = distHaus([xn, yn], [xn, zn]).

Since δn >Mn, it follows that δn →∞.

Suppose condition (a) holds. Consider the sequence of base-points a = (an)n∈N
and the sequence of scaling constants δ′ = (1/δn)n∈N. In the asymptotic cone
Coneω(X,a, δ′), the limits of [xn, yn] and [xn, zn] are at Hausdor� distance 1.

The triangle inequalities imply that the limits

ω-lim
dist(yn, an)

δn
and ω-lim

dist(zn, an)

δn

are either both �nite or both in�nite. It follows that the limits of [xn, yn] and
[xn, zn] are either two distinct geodesics joining the points xω = (xn) and the point

235



yω = (yn) = zω(zn), or two distinct asymptotic rays with common origin, or two
distinct geodesics asymptotic on both sides. All these cases are impossible in a real
tree.

Suppose condition (b) holds. Let S = {bδnc ; n ∈ N}, where bδnc is the
integer part of δn. By Exercise ??, there exists ω such that ω(S) = 1. Consider
(x′m), (y′m), (z′m) and (a′m) de�ned as follows. For every m in the set S choose an
n ∈ N with bδnc = m and set (x′m, y

′
m, z

′
m, a

′
m) = (xn, yn, zn, an). For m not in S

make an arbitrary choice for the entries of all four sequences.
In Coneω(X,a′, (m)) the limits ω-lim[x′m, y

′
m] and ω-lim[x′m, z

′
m] are as in one

of the three cases discussed in the previous case, all cases being forbidden in a real
tree. �

Proof of Proposition 8.121. Suppose that the geodesic space X is not hyper-
bolic. For every triangle ∆ in X and a point a ∈ ∆ we de�ne the quantity d∆(a),
which is the distance from a to union of the two sides of ∆ which do not contain a
(if a lies on all three sides then we set ε(a) = 0). Then for every n ∈ N there exists
a geodesic triangle ∆n = ∆(xn, yn, zn), and a point an on the edge [xn, yn] such
that

dn = d∆n
(an) > n.

For each ∆n we then will choose the point an in ∆n which maximizes the function
d∆n

. After relabelling the vertices, we may assume that an ∈ [xn, zn] and that
dn = dist(an, [yn, zn]) = dist(an, bn), where bn ∈ [yn, zn]. Let δn be equal to
dist(an, [xn, zn]) = dist(an, cn), for some cn ∈ [xn, zn]. By hypothesis δn > dn .

Suppose condition (a) is satis�ed. In the asymptotic cone K = Coneω(X,a,λ) ,
where a = (an) and λ = (1/dn) we look at the limit of ∆n. There are two cases:

A) ω-lim δn
dn

< +∞.

By Lemma 8.122, we have that distHaus([an, xn], [cn, xn]) 6M · δn. Therefore
the limits of [an, xn] and [cn, xn] are either two geodesic segments with a common
endpoint or two asymptotic rays. The same is true of the pairs of segments [an, yn],
[bn, yn] and [bn, zn], [cn, zn], respectively. It follows that the limit ω-lim∆n is a
geodesic triangle ∆ with vertices x, y, z ∈ K∪∂∞K. The point a = ω-lim an ∈ [x, y]
is such that dist(a, [x, z] ∪ [y, z]) > 1, which implies that ∆ is not a tripod. This
contradicts the fact that K is a real tree.

B) ω-lim δn
dn

= +∞.

This also implies that

ω-lim
dist(an, xn)

dn
= +∞ and ω-lim

dist(an, zn)

dn
= +∞.

By Lemma 8.122, we have distHaus([an, yn], [bn, yn]) 6 M · dn. Thus, the
respective limits of the sequences of segments [xn, yn] and [yn, zn] are either two
rays of origin y = ω-lim yn or two complete geodesics asymptotic on one side. We
denote them xy and yz, respectively, with y ∈ K∪ ∂∞K, x, z ∈ ∂∞K. The limit of
[xn, zn] is empty (it is �out of sight�).

The choice of an implies that any point of [bn, zn] must be at a distance at most
dn from [xn, yn]∪ [xn, zn]. This implies that all points on the ray bz are at distance
at most 1 from xy. It follows that xy and yz are either asymptotic rays emanating
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from y or complete geodesics asymptotic on both sides, and they are at Hausdor�
distance 1. We again obtain a contradiction with the fact that K is a real tree.

We conclude that the condition in (a) implies that X is δ-hyperbolic, for some
δ > 0.

Suppose the condition (b) holds. Let S = {bdnc ; n ∈ N}, and let ω be a non-
principal ultra�lter such that ω(S) = 1 (see Exercise ??). We consider a sequence
(∆′m) of geodesic triangles and a sequence (a′m) of points on these triangles with
the property that whenever m ∈ S, ∆′m = ∆n and a′m = an, for some n such that
bdnc = m.

In the asymptotic cone Coneω(X,a′, (m)), with a′ = (a′m) we may consider the
limit of the triangles (∆′m), argue as previously, and obtain a contradiction to the
fact that the cone is a real tree. It follows that the condition (b) also implies the
hyperbolicity of X. �

Remark 8.123. An immediate consequence of Proposition 8.121 is an alterna-
tive proof of the quasi-isometric invariance of Rips-hyperbolicity among geodesic
metric spaces: A quasi-isometry between two spaces induces a bi-Lipschitz map
between asymptotic cones, and a topological space bi-Lipschitz equivalent to a real
tree is a real tree.

As a special case, consider Proposition 8.121 in the context of hyperbolic groups:
A �nitely-generated group is hyperbolic if and only if every asymptotic cone of
G is a real tree. A �nitely-generated group G is called lacunary-hyperbolic if at
least one asymptotic cone of G is a tree. Theory of such groups is developed in
[?], where many examples of non-hyperbolic lacunary hyperbolic groups are con-
structed. Thus, having one tree as an asymptotic cone is not enough to guarantee
hyperbolicity of a �nitely-generated group. On the other hand:

Theorem 8.124 (M.Kapovich, B.Kleiner [?]). Let G be a �nitely�presented
group. Then G is hyperbolic if and only if one asymptotic cone of G is a tree.

Proof. Below we present a of this theorem which we owe to Thomas Delzant.
We will need the following

Theorem 8.125 (B. Bowditch, [?], Theorem 8.1.2). For every δ there exists
δ′ so that for every m there exists R for which the following holds. If Y be an
m-locally simply-connected R-locally δ-hyperbolic geodesic metric space, then Y is
δ′-hyperbolic.

Here, a space Y is R-locally δ-hyperbolic if every R-ball with the path-metric
induced from Y is δ-hyperbolic. Instead of de�ning m-locally simply-connected
spaces, we note that every simply-connected simplicial complex where each cell is
isometric to a Euclidean simplex, satis�es this condition for every m > 0. We refer
to [?, Section 8.1] for the precise de�nition. We will be applying this theorem in
the case when δ = 1, m = 1 and let δ′ and R denote the resulting constants.

We now proceed with the proof suggested to us by Thomas Delzant. Suppose
that G is a �nitely-presented group, so that one of its asymptotic cones is a tree.
Let X be a simply-connected simplicial complex on which G acts freely, simplicially
and cocompactly. We equip X with the standard path-metric dist. Then (X,dist)
is quasi-isometric to G. Suppose that ω is an ultra�lter, (λn) is a scaling sequence
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converging to zero, and Xω is the asymptotic cone of X with respect to this se-
quence, so that Xω is isometric to a tree. Consider the sequence of metric spaces
Xn = (X,λndist). Then, since Xω is a tree, by taking a diagonal sequence, there
exists a pair of sequences rn, δn with

ω-lim rn =∞, ω-lim δn = 0

so that for ω-all n, the every rn-ball in Xn is δn-hyperbolic. In particular, for for
ω-all n, every R-ball in Xn is 1-hyperbolic. Therefore, by Theorem 8.125, the space
Xn is δ′-hyperbolic for ω-all n. Since Xn is a rescaled copy of X, it follows that X
(and, hence, G) is Gromov-hyperbolic as well. �

We now continue discussion of properties of trees which appear as asymptotic
cones of hyperbolic spaces.

Proposition 8.126. Let X be a geodesic hyperbolic space which admits a geo-
metric action of a group G. Then all the asymptotic cones of X are real trees where
every point is a branch-points with valence continuum.

Proof. Step 1. By Theorem 5.29, the group G is �nitely generated and
hyperbolic and every Cayley graph Γ of G is quasi-isometric to X. It follows that
there exists a bi-Lipschitz bijection between asymptotic cones

Φ : Coneω(G,1,λ)→ Coneω(X,x,λ),

where x is an arbitrary base-point in X, and 1,x denote the constant sequences
equal to 1 ∈ G, respectively to x ∈ X. Moreover, Φ(1ω) = xω . The map Φ thus
determines a bijection between the space of directions Σ1ω in the cone of Γ and the
space of directions Σxω in the cone of X. It su�ces therefore to prove that the set
Σ1ω has the cardinality of continuum. For simplicity, in what follows we denote
the asymptotic cone Coneω(G,1,λ) by Gω.

Step 2. We show that the geodesic rays joining 1 to distinct points of ∂∞Γ
give distinct directions in 1ω in the asymptotic cone.

Let ρi : [0,∞) → Γ, i = 1, 2 be geodesic rays, ρi(0) = 1, i ∈ {1, 2}, ρ1(∞) =
α, ρ2(∞) = β, where α 6= β. For every t and s in [0,∞), we consider

at = ω-lim ρ1(t/λn) and bs = ω-lim ρ2(s/λn), at, bs ∈ Γω .

We have

dist(at, bs) = ω-limλndist(ρ1(t/λn), ρ2(s/λn)) =

ω-lim [t+ s− 2λn(ρ1(t/λn), ρ2(s/λn))1] = t+ s,

because the sequence of Gromov products

(ρ1(t/λn), ρ2(s/λn))1

ω-converges to a constant. The two limit rays, ρω1 and ρω2 , of the rays ρ1 and
ρ2, de�ned by ρω1 (t) = at, ρ

ω
2 (s) = bs, have only the origin in common and give

therefore distinct directions in 1ω.
We thus have found an injective map from ∂∞Γ to 1ω

Step 3. We argue that every direction of Γω in 1ω is determined by a sequence
of geodesic rays emanating from 1 in Γ. This argument was suggested to us by P.
Papasoglu.
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An arbitrary direction of Γω in 1ω is the germ of a geodesic segment with one
endpoint in 1ω, and this segment is the limit set of a sequence of geodesic segments
of Γ with one endpoint in 1, with lengths growing linearly in 1

λn
.

Lemma 8.127. Every su�ciently long geodesic segment in a Cayley graph of
a hyperbolic group is contained in the M -neighborhood of a geodesic ray, where M
depends only on the Cayley graph.

Proof. According to [?] and to [ECH+92, Chapter 3, §2], given a Cayley
graph Γ of a hyperbolic group G, there exists a �nite directed graph G with edges
labeled by the generators of G such that every geodesic segment in Γ corresponds to
a path in G. If a geodesic segment is long enough, the corresponding path contains
at least one loop in G. The distance from the endpoint of the path to the last loop
is bounded by a constant M which depends only on the graph G. Let ρ be the
geodesic ray obtained by going around this loop in�nitely many times. The initial
segment is contained in NM (ρ). �

We conclude that every direction of Γω in 1ω is the germ of a limit ray. We
then have a surjective map from the set of sequences in ∂∞G to Σ[1ω]:

{(αn)n∈N ; αn ∈ ∂∞Γ} = (∂∞Γ)N → Σ[1ω].

Steps 2 and 3 imply that for a non-elementary hyperbolic group, the cardinality
of Σ[1ω] is continuum, . �

A. Dyubina�Erschler and I. Polterovich ([?], [?]) have shown a stronger result
than Proposition 8.126:

Theorem 8.128 ([?], [?]). Let A be the 2ℵ0�universal tree, as de�ned in The-
orem 8.20.

(a) Every asymptotic cone of a non-elementary hyperbolic group is isometric
to A.

(b) Every asymptotic cone of a complete, simply connected Riemannian man-
ifold with sectional curvature at most −k, k > 0 a �xed constant, is iso-
metric to A.

A consequence of Theorem 8.128 is that asymptotic cones of non-elementary
hyperbolic groups and of complete, simply connected Riemannian manifold with
strictly negative sectional curvature cannot be distinguished from one another.

8.16. Size of loops

The characterization of hyperbolicity with asymptotic cones allows one to de�ne
hyperbolicity in terms of size of its closed loops, in particular of the size of its
geodesic triangles. Throughout this section X denotes a geodesic metric space.
One parameter that measures the size of geodesic triangles is the minimal size
introduced in De�nition 5.49 for topological triangles. Only now, the three arcs
that we consider are the three geodesic edges of the triangles. With this we can
de�ne the minsize function of a geodesic metric space X:

Definition 8.129. The minimal size function,

minsize = minsizeX : R∗+ → R∗+,
minsize(`) = sup{minsize(∆) ; ∆ a geodesic triangle of perimeter 6 `} .
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Note that according to (8.1), if X is δ�hyperbolic in the sense of Rips, the
function minsize is bounded by 2δ. We will see below that the �converse� is also true,
i.e. when the function minsize is bounded, the space X is hyperbolic. Moreover, M.
Gromov proved [?, §6] that a sublinear growth of minsize is enough to conclude that
a space is hyperbolic. With the characterization of hyperbolicity using asymptotic
cones, the proof of this statement is straightforward:

Proposition 8.130. A geodesic metric space X is hyperbolic if and only if
minsize(`) = o(`).

Proof. As noted above, the direct part follows from Lemma 8.51. Conversely,
assume that minsize(`) = o(`). We begin by proving that in an arbitrary asymptotic
cone of X every �nite geodesic is a limit geodesic, in the sense of De�nition ??.
More precisely:

Lemma 8.131. Let g = [a±, bω] be a �nite geodesic in Coneω(X, e,λ) and
assume that aω = (ai), bω = (bi). Then for every geodesic [ai, bi] ⊂ X connecting
ai to bi, ω-lim[ai, bi] = g.

Proof. Let cω = (ci) be an arbitrary point on g. Consider an arbitrary triangle
∆i ⊂ X with vertices ai, bc, ci. Let `i be the perimeter of ∆i. Since ω-limλi`i <∞
and minsize(∆i) = o(`i), we get

ω-limλiminsize(∆i) = 0.

Taking the points xi, yi, zi on the sides of ∆i realizing the minsize of ∆i, we con-
clude:

ω-limλi diam(xi, yi, zi) = 0.

Let {xω} = ω-lim{xi, yi, zi} . Then

dist(aω, bω) 6 dist(aω, xω) + dist(xω, bω) 6

dist(aω, xω) + dist(xω, bω) + 2dist(xω, cω) = dist(aω, cω) + dist(cω, bω) .

The �rst and the last term in the above sequence of inequalities are equal, hence
all inequalities become equalities, in particular cω = xω . Thus cω ∈ ω-lim[ai, bi]
and lemma follows. �

If one asymptotic cone Coneω(X, e,λ) is not a real tree then it contains a
geodesic triangle ∆ which is not a tripod. Without loss of generality we may
assume that the geodesic triangle is a simple loop. By the above lemma, the
geodesic triangle is an ultralimit of a family of geodesic triangles (∆i)i∈I with

perimeters of the order O
(

1
λi

)
. The fact that minsize(∆i) = o

(
1
λi

)
implies that

the three edges of ∆ have a common point, a contradiction. �

M. Gromov in [?, Proposition 6.6.F] proved the following version of Proposition
8.130:

Theorem 8.132. There exists a universal constant ε0 > 0 such that if in a
geodesic metric space X all geodesic triangles with length > L0, for some L0, have

minsize(∆) 6 ε0 · perimeter(∆) ,

then X is hyperbolic.
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Another way of measuring the size of loops in a space X is through their
constriction function. We de�ne the constriction function only for simple loops in
X primarily for the notational convenience, the de�nition and the results generalize
without di�culty if one considers non-simple loops.

Let λ ∈
(
0, 1

2

)
. For a simple Lipschitz loop c : S1 → X of length `, we de�ne

the λ�constriction of the loop c as constrλ(c), which is the in�mum of d(x, y), where
the in�mum is taken over all all points x, y separating c(S1) into two arcs of length
at least λ`.

The λ�constriction function, constrλ : R+ → R+, of a metric space X is de�ned
as

constrλ(`) = sup{constrλ(c) ; c is a Lipschitz simple loop in X of length 6 `} .
Note that when λ 6 µ , constrλ 6 constrµ and constrλ(`) 6 `.

Proposition 8.133 ([?], Proposition 3.5). For geodesic metric spaces X the
following are equivalent:

(1) X is δ�hyperbolic in the sense of Rips, for some δ > 0;

(2) there exists λ ∈
(
0, 1

4

]
such that constrλ(`) = o(`) ;

(3) for all λ ∈
(
0, 1

4

]
and ` > 1,

constrλ(`) 6 2δ [log2(`+ 28δ) + 6] + 2 .

Remark 8.134. One cannot obtain a better order than O(log `) for the general
constriction function. This can be seen by considering, in the half-space model of
H3, the horizontal circle of length `.

Proof. We begin by arguing that (2) implies (1). In what follows we de�ne
limit triangles in an asymptotic cone Cone(X) = Coneω(X, e,λ), to be the triangles
in Cone(X) whose edges are limit geodesics. Note that such triangles a priori need
not be themselves limits of sequences of geodesic triangles in X.

First note that (2) implies that every limit triangle in every asymptotic cone
Coneω(X, e,λ) is a tripod. Indeed, if one assumes that one limit triangle is not a
tripod, without loss of generality one can assume that it is a simple triangle. This
triangle is the limit of a family of geodesic hexagons (Hi)i∈I , with three edges of

lengths of order O
(

1
λi

)
alternating with three edges of lengths of order o

(
1
λi

)
.

(We leave it to the reader to verify that such hexagons may be chosen to be simple.)

Since constrλ(Hi) = o
(

1
λi

)
we obtain that ω-limHi is not simple, a contradiction.

It remains to prove that every �nite geodesic in every asymptotic cone is a limit
geodesic. Let g([aω, bω]) be a geodesic in a cone Coneω(X, e,λ), where aω = (ai)
and bω = (bi); let cω = (ci) be an arbitrary point on g. By the previous argument
every limit geodesic triangle with vertices aω, bω, cω is a tripod. If cω does not
coincide with the center of this tripod then this implies that

dist(aω, cω) + dist(cω, bω) > dist(aω, bω),

a contradiction. Thus, cω ∈ ω-lim[ai, bi] and, hence, g = ω-lim[ai, bi].
We thus proved that every geodesic triangle in every asymptotic cone of X is

a tripod, hence every asymptotic cone is a real tree. Hence, X is hyperbolic.
Clearly, (3) implies (2). We will prove that (1) implies (3). By monotonicity

of the constriction function (as a function of λ), it su�ces to prove (3) for λ = 1
4 .
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Consider an arbitrary simple closed Lipschitz curve c : S1 → X of length ` . We
orient the circle and will use the notation αpq to denote the oriented arc of the
image of c connecting p to q. We denote constr 1

4
(c) simply by constr. Let x, y, z be

three points on c(S1) which are endpoints of arcs αxy, αyz, αzx in c(S1) so that the
�rst two arcs have lenth `

4 . Let t ∈ αzx be the point minimizing the distance to y
in X. Clearly,

R := dist(y, t) > constr, R 6 d(x, y), R 6 d(z, y) .

The point t splits the arc αz,x into two sub-arcs αz,t, αt,x. Without loss of generality,
we can assume that length of αt,x is > `

4 . In partcicular, d(x′, t) = 2r > constr.
Let αxx′ be the maximal subarc of αxy disjoint from the interior of B(y, r) (we
allow x = x′). As d(x′, t) > constr, lemma 8.59 implies that

` > `(αtx′) > 2
r−1
2δ −3 − 12δ,

and, thus,
constr 6 4δ (log2(`+ 12δ) + 3) + 2

The inequality in (3) follows. �

8.17. Filling invariants

Recall that for every µ-simply connected geodesic metric space X we de�ned
(in Section 5.4) the �lling area function (or, isoperimetric function) A(`) = AX(`)
(this function, technically speaking, depends on the choice of µ), which computes
upper bound on the areas of disks bounding loops of lengths 6 ` in X. We also
de�ned the �lling radius function r(`) which computes upper bounds on radii of
such disks. The goal of this section is to relate both invariants to hyperbolicity of
the sapce X. Recall also that hyperbolicity implies linearity of AX(`), see Corollary
8.111.

There is a stronger version of this (converse) statement. This version states
that there is a gap between the quadratic �lling order and the linear isoperimetric
order: As soon as the isoperimetric inequality is less than quadratic, it has to be
linear and the space has to be hyperbolic:

Theorem 8.135 (Subquadratic �lling, §2.3, §6.8, [?]). If a coarsely simply-
connected geodesic metric space X the isoperimetric function AX(`) = o(`2), then
the space is hyperbolic.

Note that there is a second gap for the possible �lling orders of groups.

Remark 8.136 ([?], [?]). If a �nitely presented group G has Dehn function
D(`) = o(`), then G is either free or �nite.

Proofs of Theorem 8.135 can be found in [?], [?], [?] and [?]. B. Bowditch
makes use of only two properties of the area function in his proof: The quadrangle
(or Besikovitch) inequality (see Proposition 5.48) and a certain theta�property. In
fact, as we will see below, only the quadrangle inequality or its triangle counterpart,
the minsize inequality (see Proposition5.50) are needed. Also, we will see it su�ces
to have subquadratic isoperimetric function for geodesic triangles.

Proof of Theorem 8.135. Let X be a µ-simply-connected geodesic metric space and
AX be its isoperimetric function and minsizeX : R+ → R+ be the minsize function,
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see De�nition 8.129. According to Proposition 5.50, for every δ > µ,

[minsizeX(`)]2 6
δ2

2π
AX(`) ,

whence AX(`) = o(`) implies minsizeX(`) = o(`). Proposition 8.130 then implies
that X is hyperbolic. �

The strongest known version of the converse to Corollary 8.111 is:

Theorem 8.137 (Strong subquadratic �lling theorem,see �2.3, �6.8 of [?], and
also [?], [?]). Let X be a δ-simply connected geodesic metric space. If there exist
su�ciently large N and L ε > 0 su�ciently small, such that every loop c in X with
N 6 Arδ(c) 6 LN satis�es

Arδ(c) 6 ε[length(c)]2 ,

then the space X is hyperbolic.

It seems impossible to prove this theorem using asymptotic cones.
In Theorem 8.137 it su�ces to consider only geodesic triangles ∆ instead of all

closed curves, and to replace the condition N 6 Arδ(∆) 6 LN by length (∆) >
N . This follows immediately from Theorem 8.132 and the minsize inequality in
Proposition 5.50.

M. Coornaert, T. Delzant and A. Papadopoulos have shown that if X is a com-
plete simply connected Riemannian manifold which is reasonable (see [?, Chapter
6, §1] for a de�nition of this notion; for instance if X admits a geometric group
action, then X is reasonable) then the constant ε in the previous theorem only has
to be smaller than 1

16π , see [?, Chapter 6, Theorem 2.1].

In terms of the multiplicative constant, a sharp inequality was proved by S.
Wenger.

Theorem 8.138 (S. Wenger [?]). Let X be a geodesic metric space. Assume
that there exists ε > 0 and `0 > 0 such that every Lipschitz loop c of length length(c)
at least `0 in X bounds a Lipschitz disk d : D2 → X with

Area(d) 6
1− ε
4π

length(c)2 .

Then X is Gromov hyperbolic.

In the Euclidean space one has the classical isoperimetric inequality

Area(d) 6
1

4π
length(c)2 ,

with equality if and only if c is a circle and d a planar disk.
Note that the quantity Area(d) appearing in Theorem 8.138 is a generalization

of the notion of the geometric area used in this book. If the Lipschitz map φ :
D2 → X is injective almost everywhere then Area(φ) is the 2-dimensional Hausdor�
measure of its image. In the case of a Lipschitz map to a Riemannian manifold,
Area(φ) is the area of a map de�ned in Section 2.1.4. When the target is a general
geodesic metric space, Area(φ) is obtained by suitably interpreting the Jacobian
Jx(φ) in the integral formula

Area(φ) =

ˆ
D2

|Jxφ(x)|.

243



Another application of the results of Section 8.16 is a description of asymptotic
behavior of the �lling radius in hyperbolic spaces.

Proposition 8.139 ([?], §6, [?], §3). In a geodesic µ-simply connected metric
space X the following statements are equivalent:

(1) X is hyperbolic;

(2) the �lling radius r(`) = o(`);

(3) the �lling radius r(`) = O(log `).

Furthermore, in (3) one can say that given a loop c : S1 → X of length `, a
�lling disk d minimizing the area has the �lling radius r(d) = O(log `).

Remark 8.140. The logarithmic order in (3) cannot be improved, as shown by
the example of the horizontal circle in the half-space model of H3. We note that the
previous result shows that, as in the case of the �lling area, there is a gap between
the linear order of the �lling radius and the logarithmical one.

Proof. In what follows, we let Ar = Arµ denote the µ-�lling area function in
the sense of Section 5.4, de�ned for loops in the space X.

We �rst prove that (1) ⇒ (3). According to the linear isoperimetric inequality
for hyperbolic spaces (see Corollary 8.111), there exists a constant K depending
only on X such that

(8.15) Ar(c) 6 K`X(c)

Here Ar(c) is the µ-area of a least-area µ-disk d : D(0) → X bounding c. Recall
also that the combinatorial length and area of a simplicial complex is the number
of 1-simplices and 2-simpleces respectively in this complex. Thus, for a loop c as
above, we have

`X(c) 6 µ length(C),
where C is the triangulation of the circle S1 so that vertices of any edge are mapped
by c to points within distance 6 µ in X.

Consider now a loop c : S1 → X of metric length ` and a least area µ-disk
d : D(0) → X �lling c; thus, Ar(c) 6 K`.

Let v ∈ D(0) be a vertex such that its image a = d(v) is at maximal distance r
from c(S1). For every 1 6 j 6 k, with

k = b r
µ
c

we den�ne a subcomplex Dj of D: Dj is the maximal connected subcomplex in D
containing v, so that every vertex in Dj could be connected to v by a gallery (in
the sense of Section 3.2.1) of 2-dimensional simplices σ in D so that

d
(
σ(0)

)
⊂ B(a, jµ).

For instance D1 contains the star of v in D. Let Arj be the number of 2-simplices
in Dj .

For each j 6 k − 1 the geometric realization Dj of the subcomplex Dj is
homeomorphic to a 2-dimensional disk with several disks removed from the interior.
(As usual, we will con�ate a simplicial complex and its geometric realization.)
Therefore the boundary ∂Dj of Dj in D2 is a union of several disjont topological
circles, while all the edges of Dj are interior edges for D. We denote by sj the
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outermost circle in ∂Dj , i.e., sj bounds a triangulated disk D′j ⊂ D, so that Dj ⊂
D′j . Let length(∂Dj) and length(sj) denote the number of edges of ∂Dj and of sj
respectively.

By de�nition, every edge of Dj is an interior edge of Dj+1 and belongs to a
2-simplex of Dj+1. Note also that if σ is a 2-simplex in D and two edges of σ belong
to Dj , then σ belongs to Dj as well. Therefore,

Arj+1 > Arj +
1

3
length(∂Dj) > Arj +

1

3
length(sj).

Since d is a least area �lling disk for c it follows that each disk d|D′j is a least area
disk bounding the loop d|∫j . In particular, by the isoperimetric inequality in X,

Arj = Area(Dj) 6 Area(D′j) 6 K`X(d(sj)) 6 Kµlength(sj)

We have thus obtained that

Arj+1 >

(
1 +

1

3µK

)
Arj .

It follows that

K` > Ar(d) >

(
1 +

1

3µK

)k
whence,

r 6 µ(k + 1) 6 µ

 ln `+ lnK

ln
(

1 + 1
3µK

) + 1

 .

Clearly (3) ⇒ (2). It remains to prove that (2) ⇒ (1).
We �rst show that (2) implies that in an every asymptotic cone Coneω(X, e,λ)

all geodesic triangles that are limits of geodesic triangles in X (i.e. ∆ = ω-lim∆i)
are tripods. We assume that ∆ is not a point. Every geodesic triangle ∆i can be
seen as a loop ci : S1 → ∆i, and can be �lled with a µ-disk di : D(1) → X of �lling
radius ri = r(di) = o (length (∆i)) . In particular, ω-limi λiri = 0.

Let [xi, yi], [yi, zi] and [zi, xi] be the three geodesic edges of ∆i , and let xi, yi, zi
be the three points on S1 corresponding to the three vertices xi, yi, zi. Consider a
path pi in the 1-skeleton of D with endpoints yi and zi such that pi together with
the arc of S1 with endpoints yi, zi encloses a maximal number of triangles with
di�images in the ri�neighborhood of [yi, zi] . Every edge of pi that is not in S1 is
contained in a 2-simplex whose third vertex has di�image in the ri�neighborhood of
[yi, xi]∪ [xi, zi] . The edges in pi that are in S1 are either between xi, yi or between
xi, zi .

Thus pi has di�image pi in the (ri + µ)�neighborhood of [yi, xi] ∪ [xi, zi] . See
Figure 8.7.

Consider an arbitrary vertex u on S1 between yi, zi and its image u ∈ [yi, zi].
We have that pi ⊂ N ri+µ([yi, u]) ∪ N ri+µ([u, zi]), where [yi, u] and [u, zi] are sub-
geodesics of [yi, zi] .

By connectedness, there exists a point u′ ∈ pi at distance at most ri + µ from
a point u1 ∈ [yi, u], and from a point u2 ∈ [u, zi]. As the three points u1, u, u2 are
aligned on a geodesic and dist(u1, u2) 6 2(ri + µ) it follow that, say, dist(u1, u) 6
ri+µ , whence dist(u, u′) 6 3(ri+µ). Since the point u was arbitrary, we have thus
proved that [yi, zi] is in N 3ri+3µ(pi), therefore it is in N 4ri+4µ ([yi, xi] ∪ [xi, zi]) .
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Figure 8.7. The path pi and its image pi.

This implies that in ∆ one edge is contained in the union of the other two. The
same argument done for each edge implies that ∆ is a tripod.

From this, one can deduce that every triangle in the cone is a tripod. In order
to do this it su�ces to show that every geodesic in the cone is a limit geodesic.
Consider a geodesic in Coneω(X, e,λ) with the endpoints xω = (xi) and yω = (yi)
and an arbitrary point zω = (zi) on this geodesic. Geodesic triangles ∆i with
vertices xi, yi, zi yield a tripod ∆ω = ∆(xω, yω, zω) in the asymptotic cone, but
since,

dist(xω, zω) + dist(zω, yω) = dist(xω, yω),

it follows that the tripod must be degenerate. Thus zω ∈ ω-lim[xi, yi] . �

Like for the area, for the radius too there is a stronger version of the implication
sublinear radius =⇒ hyperbolicity, similar to Theorem 8.137.

Proposition 8.141 (M. Gromov; P. Papasoglou [?]). Let Γ be a �nitely pre-
sented group. If there exists `0 > 0 such that

r(`) 6
`

73
, ∀` > `0 ,

then the group Γ is hyperbolic.

According to [?], the best possible constant expected is not 1
73 , but

1
8 . Note that

the proof of Proposition 8.141 cannot be extended from groups to metric spaces,
because it relies on the bigon criterion for hyperbolicity [?], which only works for
groups. There is probably a similar statement for general metric spaces, with a
constant that can be made e�ective for complete simply connected Riemannian
manifolds.
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8.18. Rips construction

The goal of this section is to describe Rips construction which associates a
hyperbolic group with to an arbitrary �nite presentation.

Theorem 8.142 (Rips Construction, I. Rips [?]). Let Q be a group with a �nite
presentation 〈A|R〉. Then, with such presentation of Q one can associate a short
exact sequence

1→ K → G→ Q→ 1

where G is hyperbolic and K is �nitely generated. Furthermore, the group K in this
construction is �nitely-presentable if and only if Q is �nite.

Proof. We will give here only a sketch of the argument. Let A = {a1, ..., am},
R = {R1, ..., Rn}. For i = 1, ...,m, j = 1, 2, pick even natural numbers ri < si,
pij < qij , uij < vij , so that all the intervals

[ri, si], [pij , qij ]. [uij , vij ], i = 1, ...,m, j = 1, 2

are pairwise disjoint and all the numbers ri, si, pij , qij , uij , vij are at least 10 times
larger than the lengths of the words Rk. De�ne the group G by the presentation P
where generators are a1, ..., am, b1, b2, and relators are:

(8.16) Rib1b
r2
2 b1b

ri+1
2 · · · b1bsi2 , i = 1, ..., n

(8.17) a−1
i bjaib1b

uij
2 b1b

uij+1
2 · · · b1b

vij
2 , i = 1, ...,m, j = 1, 2,

(8.18) aibja
−1
i b1b

pij
2 b1b

pij+1
2 · · · b1b

qij
2 , i = 1, ...,m, j = 1, 2.

Now, de�ne the map φ : G → Q, φ(ai) = ai, φ(bj) = 1, j = 1, 2. Clearly, φ
respects all the relators and, hence, it determines an epimomorphism φ : G → Q.
We claim that the kernel K of φ is generated by b1, b2. First, the kernel, of course,
contains b1, b2. The subgroup generated by b1, b2 is clearly normal in G because of
the relators (8.17) and (8.18). Thus, indeed, b1, b2 generate K.

The reason that the group G is hyperbolic is that the presentation written
above is Dehn: because of the choices of the numbers ri etc., when we multiply
conjugates of the relators of G, we cannot cancel more than half of one of the
relators (8.16) � (8.18), namely, the product of generators b1, b2 appearing in the
end of each relator. This argument is a typical example of application of the small
cancelation theory, see [LS77]. Rips in his paper [?], did not use the language of
hyperbolic groups, but the language of the small cancelation theory.

One then veri�es that G has cohomological dimension 2 by showing that the
presentation complex Z of the presentation P of the group G is aspherical, for this
one can use, for instance, [?].

Now, R. Bieri proved in [Bie76b, Theorem B] that if G is a group of cohomo-
logical dimension 2 and H C G is a normal subgroup of in�nite index, then H is
free.

Suppose that the subgroup K is free. Then rank of K is at most 2 since K
is 2-generated. The elements a1, a2 ∈ G act on K as automorphisms (by conju-
gation). However, considering action of a1, a2 on the abelianization, we see that
because pij , qij are even, the images of the generators b1, b2 cannot generate the
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abelianization of K. Similar argument shows that K cannot be cyclic, so K is
trivial and, hence, b1 = b2 = 1 in G. However, this clearly contradicts the fact
that the presentation (8.16) � (8.18) is a Dehn presentation (since the words b1, b2
obviously do not contain more than half of the length of any relator). �

In particular, there are hyperbolic groups which contain non-hyperbolic �nitely-
generated subgroups. Furthermore,

Corollary 8.143. Hyperbolic groups could have unsolvable membership prob-
lem.

Proof. Indeed, start with a �nitely-presented group Q with unsolvable word
problem and apply the Rips construction to Q. Then g ∈ G belongs to N if and
only if g maps trivially to Q. Since Q has unsolvable word problem, the problem
of membership of g in N is unsolvable as well. �

On the other hand, the membership problem is solvable for quasiconvex sub-
groups, see Theorem 8.163.

8.19. Asymptotic cones, actions on trees and isometric actions on
hyperbolic spaces

Let G be a �nitely-generated group with the generating set g1, .., gm; let X be
a metric space. Given a homomorphism ρ : G→ Isom(X), we de�ne the following
function:

(8.19) dρ(x) := max
k

d(ρ(gk)(x), x)

and set
dρ := inf

x∈X
dρ(x).

This function does not necessarily have minimum, so we choose xρ ∈ X to be a
point so that

dρ(x)− dρ 6 1.

Such points xρ are called min-max points of ρ for obvious reason. The set of min-
max points could be unbounded, but, as we will see, this does not matter. Thus,
high value of dρ means that all points of X move a lot by at least one of the
generators of ρ(G).

Example 8.144. 1. Let X = Hn, G = 〈g〉 be in�nite cyclic group, ρ(g) ∈
Isom(X) is a hyperbolic translation along a geodesic L ⊂ X by some amount t > 1,
e.g. ρ(g)(x) = etx in the upper half-space model. Then dρ = t and we can take
xρ ∈ L, since the set of points of minima of dρ(x) is L.

2. Suppose that X = Hn = Un and G are the same but ρ(g) is a parabolic
translation, e.g. ρ(g)(x) = x+u, where u ∈ Rn−1 is a unit vector. Then dρ does not
attain minimum, dρ = 0 and we can take as xρ any point x ∈ Un so that xn > 1.

3. Suppose that X is the same, but G is no longer required to be cyclic. Assume
that ρ(G) �xes a unique point xo ∈ X. Then dρ = 0 and the set of min-max points is
contained in a metric ball centered at xo. The radius of this ball could be estimated
from above independently of G and ρ. (The latter is nontrivial.)

Suppose σ ∈ Isom(X) and we replace the original representation ρ with the
conjugate representation ρ′ = ρσ : g 7→ σρ(g)σ−1, g ∈ G.

Exercise 8.145. Verify that dρ = dρ′ and that as xρ′ one can take σ(xρ).
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Thus, conjugating ρ by an isometry, does not change the geometry of the action,
but moves min-max points in a predictable manner.

The set Hom(G, Isom(X)) embeds in (Isom(X))m since every ρ is determined
by the m-tuple

(ρ(g1), ..., ρ(gm)).

As usual, we equip the group Isom(X) with the topology of uniform convergence
on compacts and the set Hom(G, Isom(X)) with the subset topology.

Exercise 8.146. Show that topology on Hom(G, Isom(X)) is independent of
the �nite generating set. Hint: Embed Hom(G, Isom(X)) in the product of count-
ably many copies of Isom(X) (indexed by the elements of G) and relate topology
on Hom(G, Isom(X)) to the Tychono� topology on the in�nite product.

Suppose now that the metric space X is proper. Pick a base-point o ∈ X. Then
Arzela-Ascoli theorem implies that for every D the subset

Hom(G, Isom(X))o,D = {ρ : G→ Isom(X)|dρ(o) 6 D}

is compact. We next consider the quotient

Rep(G, Isom(X)) = Hom(G, Isom(X))/ Isom(X)

where Isom(X) acts on Hom(G, Isom(X)) by conjugation ρ 7→ ρσ. We equip
Rep(G, Isom(X)) with the quotient topology. In general, this topology is not Haus-
dor�.

Example 8.147. Let G = 〈g〉 is in�nite cyclic, X = Hn. Show that trivial
representation ρ0 : G → 1 ∈ Isom(X) and representation ρ1 where ρ1(g) acts as
a parabolic translation, project to points [ρi] in Rep(G, Isom(X)), so that every
neighborhood of [ρ0] contains [ρ1].

Exercise 8.148. Let X be a graph (not necessarily locally-�nite) with the
standard metric and consider the subset Homf (G, Isom(X)) consisting of repre-
sentations ρ which give rise to the free actions G/Ker(ρ) y X. Then

Repf (G, Isom(X)) = Homf (G, Isom(X))/ Isom(X)

is Hausdor�.

We will be primarily interested in compactness rather than Hausdor� properties
of Rep(G, Isom(X)). De�ne

HomD(G, Isom(X)) = {ρ : G→ Isom(X)|dρ 6 D}.

Similarly, for a subgroup H ⊂ Isom(X), one de�nes

HomD(G,H) = HomD(G, Isom(X)) ∩Hom(G,H).

Lemma 8.149. Suppose that H ⊂ Isom(X) is a closed subgroup whose action
on X is cobounded. Then for every D ∈ R+, RepD(G,H) = HomD(G,H)/H is
compact.

Proof. Let o ∈ X,R < ∞ be such that the orbit of B̄(o,R) under the H-
action is the entire space X. For every ρ ∈ Hom(G,H) we pick σ ∈ H so that
some min-max point xρ of ρ satis�es:

σ(xρ) ∈ B̄(o,R).
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Then, using conjugation by such σ's, for each equivalence class [ρ] ∈ RepD(G,H)
we choose a representative ρ so that xρ ∈ B̄(o,R). It follows that for every such ρ

ρ ∈ Hom(G,H) ∩Hom(G, Isom(X))o,D′ , D′ = D + 2R.

This set is compact and, hence, its projection RepD(G,H) is also compact. �

In view of this lemma, even if X is not proper, we say that a sequence ρi : G→
Isom(X) diverges if

lim
i→∞

dρi =∞.

Definition 8.150. We say that an isometric action of a group on a real tree
T is nontrivial if the group does not �x a point in T .

Proposition 8.151 (M.Bestvina; F. Paulin). Suppose that (ρi) is a diverging
sequence of representations ρi : G → H ⊂ Isom(X), where X is a Rips�hyperbolic
metric space. Then G admits a nontrivial isometric action on a real tree.

Proof. Let pi = xρi be min-max points of ρi's. Take λi := (dρi)
−1 and

consider the corresponding asymptotic cone Coneω(X,P, λ) of the space X; here
p = (pi). According to Lemma 8.35, the metric space X in this asymptotic cone
is a real tree T . Furthermore, the sequence of group actions ρi converges to an
isometric action ρω : Gy T :

ρω(g)(xω) = (ρi(xi)),

the key here is that all generators ρi(gk) of ρi(G) move the base-point pi ∈ λiX by
6 λi(dρi + 1). The ultralimit of the latter quantity is equal to 1. Furthermore, for
ω-all i one of the generators, say g = gk, satis�es

|dρi − d(ρi(g)(pi)| 6 1

in X. Thus, the element ρω(g) will move the point p ∈ T exactly by 1. Because pi
was a min-max point of ρi, it follows that

dρω = 1.

In particular, the action ρω : Gy T has no �xed point, i.e., is nontrivial. �

One of the important applications of this proposition is

Theorem 8.152 (F. Paulin, [?]). Suppose that G is a �nitely-generated group
with property FA and H is a hyperbolic group. Then, up to conjugation in H, there
are only �nitely many homomorphisms G→ H.

Proof. Let X be a Cayley graph of H, then H ⊂ Isom(X), X is proper and
Rips�hyperbolic. Then, by the above proposition, if Hom(G,H)/H is noncompact,
then G has a nontrivial action on a real tree. This contradicts the assumption that
G has the property FA. Suppose, therefore, that Hom(G,H)/H is compact. If
this quotient is in�nite, pick a sequence ρi ∈ Hom(G,H) of pairwise non-conjugate
representations. Without loss of generality, by replacing ρi's by their conjugates, we
can assume that min-max points pi of ρi's are in B(e, 1). Therefore, after passing to
a subsequence if necessary, the sequence of representations ρi converges. However,
the action of H on itself is free, so for every generator g of G, the sequence ρi(g)
is eventually constant. Therefore, the entire sequence (ρi) consists of only �nitely
many representations. Contradiction. Thus, Hom(G,H)/H is �nite. �
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This theorem is one of many results of this type: Bounding number of homo-
morphisms from a group to a hyperbolic group. Having Property FA is a very
strong restriction on the group, so, typically one improves Proposition 8.151 by
making stronger assumptions on representations G→ H and, accordingly, stronger
conclusions about the action of G on the tree, for instance:

Theorem 8.153. Suppose that H is a hyperbolic group, X is its Cayley graph
and all the representations ρi : G → H are faithful. Then the resulting nontrivial
action of G on a real tree is small, i.e., stabilizer of every nontrivial geodesic segment
is virtually cyclic.

The key ingredient then is Rips Theory which converts small actions (satisfying
some mild restrictions which will hold in the case of groups G which embed in
hyperbolic groups) G y T , to decompositions of G as an amalgam G1 ?G3

G2 or
HNN-extension G = G1?G3

, where the subgroup G3 is again virtually cyclic. Thus,
one obtains:

Theorem 8.154 (I. Rips, Z. Sela, [?]). Suppose that G does not split over a
virtually cyclic subgroup. Then for every hyperbolic group H, Hominj(G,H)/H is
�nite, where Hominj consists of injective homomorphisms. In particular, if G is
itself hyperbolic, then Out(G) = Aut(G)/G is �nite.

Some interesting and important groups G, like surface groups, do split over vir-
tually cyclic subgroups. In this case, one cannot in general expectHominj(G,H)/H
to be �nite. However, it turns out that the only reason for lack of �niteness is the
fact that one can precompose homomorphisms G → H with automorphisms of G
itself:

Theorem 8.155 (I. Rips, Z. Sela, [?]). Suppose that G is a 1-ended �nitely-
generated group. Then for every hyperbolic group H, the set

Aut(G)\Hominj(G,H)/H

is �nite. Here Aut(G) acts on Hom(G,H) by precomposition.

8.20. Further properties of hyperbolic groups

1. Hyperbolic groups are ubiquitous:

Theorem 8.156 (See e.g. [?]). Let G be a non-elementary δ-hyperbolic group.
Then there exists N , so that for every collection g1, .., gk ∈ G of elements of norm
≥ 1000δ, the following holds:

i. The subgroup generated by the elements gNi and all their conjugates is free.
ii. Then the quotient group G/ 〈〈gn1 , ...gnk 〉〉 is again non-elementary hyperbolic

for all su�ciently large n. In particular, in�nite hyperbolic groups are never simple.

Thus, by starting with, say, a nonabelian free group Fn = G, and adding to its
presentation one relator of the form wn at a time (where n's are large), one obtains
non-elementary hyperbolic groups. Furthermore,

Theorem 8.157 (A. Ol'shanskii, [?]). Every non-elementary torsion-free hy-
perbolic group admits a quotient which is an in�nite torsion group, where every
nontrivial element has the same order.

251



Theorem 8.158 (A. Ol'shanskii, [?], T. Delzant [?]). Every non-elementary
hyperbolic group G is SQ-universal, i.e., every countable group embeds in a quotient
of G.

�Most� groups are hyperbolic:

Theorem 8.159 (A. Ol'shanskii [?]). Fix k ∈ N, k ≥ 2 and let A = {a±1, a±2, ..., a±1
k }

be an alphabet. Fix i ∈ N and let (n1, ..., ni) be a sequence of natural numbers. Let
N = N(k, i, n1, ..., ni) be the number of group presentations

G = 〈a1, ..., ak|r1, ..., ri〉

such that r1, ..., ri are reduced words in the alphabet A such that the length of rj is
nj, j = 1, 2, , i. If Nh is the number of hyperbolic groups in this collection and if
n = min{n1, .., ni}, then

lim
n→∞

Nh
N

= 1

and convergence is exponentially fast.

The model of randomness which appears in this theorem is by no means unique,
we refer the reader to [?], [?], [?], [?] for further discussion of random groups.

Theorems 8.160, 8.161, 8.162 below �rst appeared in Gromov's paper [?]; other
proofs could be found for instance in [?], [BH99], [ECH+92], [ECH+92], [?].

2. Hyperbolic groups have �nite type:

Theorem 8.160. Let G be δ-hyperbolic. Then there exists D0 = D0(δ) so that
for all D ≥ D0 the Rips complex RipsD(G) is contractible. In particular, G has
type F∞.

3. Hyperbolic groups have controlled torsion:

Theorem 8.161. Let G be hyperbolic. Then G contains only �nitely many
conjugacy classes of �nite subgroups.

4. Hyperbolic groups have solvable algorithmic problems:

Theorem 8.162. Every δ-hyperbolic group has solvable word and conjugacy
problems.

Furthermore:

Theorem 8.163 (I. Kapovich, [?]). Membership problem is solvable for qua-
siconvex subgroups of hyperbolic groups: Let G be hyperbolic and H < G be a
quasiconvex subgroup of a δ-hyperbolic group. Then the problem of membership in
H is solvable.

Isomorphism problem is solvable:

Theorem 8.164 (Z. Sela, [?]; F. Dahmani and V. Guirardel [?]). Given two
δ-hyperbolic groups G1, G2, there is an algorithm to determine if G1, G2 are iso-
morphic.

Note that Sela proved this theorem only for torsion-free 1-ended hyperbolic
groups. This result was extended to all hyperbolic groups by Dahmani and Guirardel.

5. Hyperbolic groups are hop�an:
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Theorem 8.165 (Z. Sela, [?]). For every hyperbolic group G and every epimor-
phism φ : G→ G, Ker(φ) = 1.

Note that every residually �nite group is hop�an, but the converse, in general,
is false. An outstanding open problem is to determine if all hyperbolic groups are
residually �nite (it is widely expected that the answer is negative). Every linear
group is residually �nite, but there are nonlinear hyperbolic groups, see [?]. It is
very likely that some (or even all) of the nonlinear hyperbolic groups described in
[?] are not residually �nite.

6. Hyperbolic groups tend to be co-Hop�an:

Theorem 8.166 (Z. Sela, [?]). For every 1-ended hyperbolic group G, every
monomorphism φ : G→ G is surjective, i.e., such G is co-Hopf.

7. All hyperbolic groups admit QI embeddings in the real-hyperbolic space Hn:

Theorem 8.167 (M. Bonk, O. Schramm [?]). For every hyperbolic group G
there exists n, such that G admits a quasi-isometric embedding in Hn.
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CHAPTER 9

Tits' Alternative

In this chapter we will prove

Theorem 9.1 (Tits' Alternative, [?]). Let L be a Lie group with �nitely many
connected components and Γ ⊂ L be a �nitely generated subgroup. Then either Γ
is virtually solvable or Γ contains a free nonabelian subgroup.

Remark 9.2. In the above one cannot replace `virtually solvable' by `solvable'.
Indeed consider the Heisenberg group H3 6 GL(3,R) and A5 6 GL(5,R). The
group Γ = H3×A5 6 GL(8,R) is not solvable (because A5 is simple) and does not
contain a free nonabelian subgroup (because it has polynomial growth).

Corollary 9.3. Suppose that Γ is a �nitely generated subgroup of GL(n,R).
Then Γ has either polynomial or exponential growth.

Proof. By Tits' Alternative, either Γ contains a nonabelian free subgroup
(and hence Γ has exponential growth) or Γ is virtually solvable. For virtually
solvable groups the assertion follows from Theorem ??. �

9.1. Zariski topology and algebraic groups

The proof of Tits' theorem relies in part on some basic results from theory
of a�ne algebraic groups. We recall some terminology and results needed in the
argument. For a more thorough presentation see [?] and [OV90].

The proof of the following general lemma is straightforward, and left as an
exercise to the reader.

Lemma 9.4. For every commutative ring A the following two statements are
equivalent:

(1) every ideal in A is �nitely generated;

(2) the set of ideals satis�es the ascending chain condition (ACC), that is,
every ascending chain of ideals

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·
stabilizes, i.e. there exists an integer N such that In = IN for every
n > N .

Definition 9.5. A commutative ring is called noetherian if it satis�es one
(hence both) statements in Lemma 9.4.

Note that a �eld seen as a ring is always noetherian. Other examples of noe-
therian rings come from the following

Theorem 9.6 (Hilbert's ideal basis theorem, see [?]). If A is a noetherian ring
then the ring of multivariable polynomials A[X1, ..., Xn] is also noetherian.
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From now on, we �x a �eld K.

Definition 9.7. An a�ne algebraic set in Kn is a subset Z in Kn that is the
solution set of a system of multivariable polynomial equations pj = 0 , ∀j ∈ J , with
coe�cients in K:

Z = {(x1, .., xn) ∈ Kn ; pj(x1, .., xn) = 0, j ∈ J}.
We will frequently say �algebraic subset� when referring to a�ne algebraic set.

For instance, the algebraic subsets in the a�ne line (1-dimensional vector space
V ) are �nite subsets and the entire of V , since every nonzero polynomial in one
variable has at most �nitely many zeroes.

There is a one-to-one map associating to every algebraic subset in Kn an ideal
in K[X1, ..., Xn]:

Z 7→ IZ = {p ∈ K[X1, ..., Xn] ; p|Z ≡ 0} .
Note that IZ is the kernel of the homomorphism p 7→ p|Z from K[X1, ..., Xn]

to the ring of functions on Z. Thus, the ring K[X1, ..., Xn]/IZ may be seen as a
ring of functions on Z; this quotient ring is called the coordinate ring of Z or the
ring of polynomials on Z, and denoted K[Z].

Theorem 9.6 and Lemma 9.4 imply the following.

Lemma 9.8. (1) Every algebraic set is de�ned by �nitely many equations.

(2) The set of algebraic subsets of Kn satis�es the descending chain condition
(DCC): every descending chain of algebraic subsets

Z1 ⊇ Z2 ⊇ · · · ⊇ Zi ⊇ · · ·
stabilizes, i.e., for some integer N > 1, Zi = ZN for every i > N .

The pair (Z,K[Z]) (a ringed space) is an a�ne algebraic variety or simply an
a�ne variety, or, by abusing the terminology, just a (sub)variety. We will frequently
con�ate a�ne varieties and the corresponding algebraic subsets.

Definition 9.9. A morphism between two a�ne varieties Y in Kn and Z in
Km is a map of the form ϕ : Y → Z, ϕ = (ϕ1, ..., ϕm) , such that ϕi is in K[Y ] for
every i ∈ {1, 2, ...,m} .

Note that every morphism is induced by a morphism ϕ̃ : Kn → Km , ϕ̃ =
(ϕ̃1, ..., ϕ̃m) , with ϕ̃i : Kn → K a polynomial function for every i ∈ {1, 2, ...,m} .

An isomorphism between two a�ne varieties Y and Z is an invertible map
ϕ : Y → Z such that both ϕ and ϕ−1 are morphisms. When Y = Z, an isomorphism
is called an automorphism.

Exercise 9.10. 1. If f : Y → Z is a morphism of a�ne varieties and W ⊂ Z
is a subvariety, then f−1(W ) is a subvariety in Y . In particular, every linear
automorphism of V = Kn sends subvarieties to subvarieties and, hence, the notion
of a subvariety is independent of the choice of a basis in V .

2. Show that the projection map f : C2 → C, f(x, y) = x, does not map
subvarieties to subvarieties.

Let V be an n-dimensional vector space over a �eld K. The Zariski topology
on V is the topology having as closed sets all the algebraic subsets in V . It is
clear that the intersection of algebraic subsets is again an algebraic subset. Let
Z = Z1 ∪ ... ∪ Z` be a �nite union of algebraic subsets, Zi de�ned by a set of
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polynomials Pi , i ∈ {1, ..., `}. According to Lemma 9.8, (1), we may take each Pi
to be �nite. De�ne the new set of polynomials

P :=

{
p =

∏̀
i=1

pi; pi ∈ Pi for every i ∈ {1, ..., `}

}
.

The solution set of the system of equations p = 0 , p ∈ P , is Z.
The induced topology on a subvariety Z ⊆ V is also called the Zariski topology.

Note that this topology can also be de�ned directly using polynomial functions in
K[Z]. According to Exercise 9.10, morphisms between a�ne varieties are continuous
with respect to the Zariski topologies.

The Zariski closure of a subset E ⊂ V can also be de�ned by means of the set
PE of all polynomials which vanish on E, i.e. it coincides with

{x ∈ V | p(x) = 0, ∀p ∈ PE} .
A subset Y ⊂ Z in an a�ne variety is called Zariski-dense if its Zariski closure

is the entire of Z.
Lemma 9.8, Part (2), implies that the closed sets in Zariski topology satisfy the

descending chain condition (DCC).

Definition 9.11. A topological space such that the closed sets satisfy the DCC
(or, equivalently, with the property that the open sets satisfy the ACC) is called
noetherian.

Lemma 9.12. Every subspace of a noetherian topological space (with the sub-
space topology) is noetherian.

Proof. Let X be a space with topology T such that (X, T ) is noetherian, and
let Y be an arbitrary subset in X. Consider a descending chain of closed subsets
in Y :

Z1 ⊇ Z2 ⊇ · · · ⊇ Zn ⊇ . . .
Every Zi is equal to Y ∩ Ci for some closed set Ci in X. We leave it to the reader
to check that Ci can be taken equal to the closure Zi of Zi in X.

The descending chain of closed subsets in X,

Z1 ⊇ Z2 ⊇ · · · ⊇ Zn ⊇ . . .
stabilizes, hence, so does the chain of the subsets Zi. �

Proposition 9.13. Every noetherian topological space X is compact.

Proof. Compactness of X is equivalent to the condition that for every family
{Zi : i ∈ I} of closed subsets in X, if

⋂
i∈I Zi = ∅ then there exists a �nite subset J

of I such that
⋂
j∈J Zj = ∅ . Assume that all �nite intersections of a family as above

are non-empty. Then we construct inductively a descending sequence of closed sets
that never stabilizes. The initial step consists of picking an arbitrary set Zi1 , with
i1 ∈ I. At the nth step we have a non-empty intersection Zi1 ∩ Zi2 ∩ ... ∩ Zin ;
hence, there exists Zin+1

with in+1 ∈ I such that Zi1 ∩ Zi2 ∩ ... ∩ Zin ∩ Zin+1
is a

non-empty proper closed subset of Zi1 ∩ Zi2 ∩ ... ∩ Zin . �

We now discuss a strong version of connectedness, relevant in the setting of
noetherian spaces.

Lemma 9.14. For a topological space X the following properties are equivalent:
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(1) every open non-empty subset of X is dense in X;

(2) two open non-empty subsets have non-empty intersection;

(3) X cannot be written as a �nite union of proper closed subsets.

We leave the proof of this lemma as an exercise to the reader.

Definition 9.15. A topological space is called irreducible if it is non-empty
and one of (hence all) the properties in Lemma 9.14 is (are) satis�ed. A subset of
a topological space is irreducible if, when endowed with the subset topology, it is
an irreducible space.

Exercise 9.16. (1) Prove that Kn with Zariski topology is irreducible.

(2) Prove that an algebraic variety Z is irreducible if and only if K[Z] does
not contain zero divisors.

The following properties are straightforward and their proof is left as an exercise
to the reader.

Lemma 9.17. (1) The image of an irreducible space under a continuous
map is irreducible.

(2) The cartesian product of two irreducible spaces is an irreducible space,
when endowed with the product topology.

Note that the Zariski topology onKn+m = Kn×Km is not the product topology.
Nevertheless, one has:

Lemma 9.18. Let V1, V2 be �nite-dimensional vector spaces over K and Zi ⊂
Vi, i = 1, 2, be irreducible subvarieties. Then the product Z := Z1×Z2 ⊂ V = V1×V2

is an irreducible subvariety in the vector space V .

Proof. Let Z = W1 ∪W2 be a union of two proper subvarieties. For every
z ∈ Z1 the product {z} × Z2 is isomorphic to Z2 (via projection to the second
factor) and, hence, irreducible. On the other hand,

{z} × Z2 = (({z} × Z2) ∩W1) ∪ (({z} × Z2) ∩W2)

is a union of two subvarieties. Thus, for every z ∈ Z1, one of these subvarieties has
to be the entire {z}×Z2. In other words, either {z}×Z2 ⊂W1 or {z}×Z2 ⊂W2.
We then partition Z1 in two subsets A1, A2:

Ai = {z ∈ Z1 : {z} × Z2 ⊂Wi}, i = 1, 2.

Since each W1,W2 is a proper subvariety, both A1, A2 are proper subsets of Z1.
We will now prove that both A1, A2 are subvarieties in Z1. We will consider the
case of A1 since the other case is obtained by relabeling. Let f1, . . . , fk denote
generators of the ideal ofW1. We will think of each fi as a function of two variables
f = f(X1, X2), where Xk stands for the tuple of coordinates in Vk, k = 1, 2. Then

A1 = {z ∈ Z2 : fi(z, z2) = 0,∀z ∈ Z1, i = 1, . . . , k}.
However, for every �xed z ∈ Z1, the function fi(z, ·) is a polynomial function fi,z
on Z2. Therefore, A1 is the solution set of the system of polynomial equations on
Z1:

{fi,z = 0 : i = 1, . . . , k, z ∈ Z1}.
Therefore, A1 is a subvariety. This contradicts irreducibility of Z2. �
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Lemma 9.19. Let (X, T ) be a topological space.

(1) A subset Y of X is irreducible if and only if its closure Y in X is irre-
ducible.

(2) If Y is irreducible and Y ⊆ A ⊆ Y then A is irreducible.

(3) Every irreducible subset Y of X is contained in a maximal irreducible
subset.

(4) The maximal irreducible subsets of X are closed and they cover X.

Proof. (1) For every open subset U ⊂ X, U ∩Y 6= ∅ if and only if U ∩Y 6= ∅.
This and Lemma 9.14, (2), imply the equivalence.

(2) Now let U, V be two open sets in A. Then U = A ∩ U1 and V = A ∩ V1,
where U1, V1 are open in X. Since U1 ∩ Y 6= ∅ and V1 ∩ Y 6= ∅ it follows that both
U1 and V1 have non-empty intersections with Y . Then irreducibility of Y implies
that U1 ∩ V1 ∩ Y is non-empty, whence U ∩ V 6= ∅ .

(3) The family IY of irreducible subsets containing Y has the property that
every ascending chain has a maximal element, which is the union. It can be easily
veri�ed that the union is again irreducible, using Lemma 9.14, (2).

It follows by Zorn's Lemma that IY has a maximal element.

(4) follows from (1) and (3). �

Theorem 9.20. A noetherian topological space X is a union of �nitely many
distinct maximal irreducible subsets X1, X2, ..., Xn such that for every i, Xi is not
contained in

⋃
j 6=iXj. Moreover, every maximal irreducible subset in X coincides

with one of the subsets X1, X2, ..., Xn . This decomposition of X is unique up to a
renumbering of the Xi's.

Proof. Let F be the collection of closed subsets of X that cannot be written
as a �nite union of maximal irreducible subsets. Assume that F is non-empty.
Since X is noetherian, F satis�es the DCC, hence by Zorn's Lemma it contains a
minimal element Y . As Y is not irreducible, it can be decomposed as Y = Y1 ∪ Y2,
where Yi are closed and, by the minimality of Y , both Yi decompose as �nite unions
of irreducible subsets (maximal in Yi). According to Lemma 9.19, (3), Y itself can
be written as union of �nitely many maximal irreducible subsets, a contradiction.
It follows that F is empty.

If Xi ⊆
⋃
j 6=iXj then Xi =

⋃
j 6=i (Xj ∩Xi) . As Xi is irreducible it follows

that Xi ⊆ Xj for some j 6= i , hence by maximality Xi = Xj , contradicting the fact
that we took only distinct maximal irreducible subsets. A similar argument is used
to prove that every maximal irreducible subset of X must coincide with one of the
sets Xi.

Now assume that X can be also written as a union of distinct maximal irre-
ducible subsets Y1, Y2, ..., Ym such that for every i, Yi is not contained in

⋃
j 6=i Yj .

For every i ∈ {1, 2, ...,m} there exists a unique ji ∈ {1, 2, ..., n} such that Yi = Xji .
The map i 7→ ji is injective, and if some k ∈ {1, 2, ..., n} is not in the image of this
map then it follows that Xk ⊆

⋃m
i=1 Yi ⊆

⋃
j 6=kXj , a contradiction. �

Definition 9.21. The subsets Xi de�ned in Theorem 9.20 are called the irre-
ducible components of X.
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Note that we can equip every Zariski-open subset U of a (�nite-dimensional)
vector space V with the Zariski topology, which is the subset topology with respect
to the Zariski topology on V . Then U is also Noetherian. We will be using the
Zariski topology primarily in the context of the group GL(V ), which we identify
with the Zariski open subset of V ⊗ V ∗, the space of n× n matrices with nonzero
determinant.

Definition 9.22. An algebraic subgroup of GL(V ) is a Zariski-closed subgroup
of GL(V ).

Given an algebraic subgroup G of GL(V ), the binary operation G × G →
G, (g, h) 7→ gh is a morphism. The inversion map g 7→ g−1, as well as the left-
multiplication and right-multiplication maps g 7→ ag and g 7→ ga, by a �xed element
a ∈ G, are automorphisms of G.

Example 9.23. (1) The subgroup SL(V ) of GL(V ) is algebraic, de�ned
by the equation det(g) = 1.

(2) The group GL(n,K) can be identi�ed to an algebraic subgroup of SL(n+
1,K) by mapping every matrix A ∈ GL(n,K) to the matrix(

A 0
0 1

det(A)

)
.

Therefore, in what follows, it will not matter if we consider algebraic
subgroups of GL(n,K) or of SL(n,K).

(3) The group O(V ) is an algebraic subgroup, as it is given by the system of
equations MTM = IdV .

(4) More generally, given an arbitrary quadratic form q on V , its stabilizer
O(q) is obviously algebraic. A special instance of this is the symplectic
group Sp(2k,K), preserving the form with the following matrix (given
with respect to the standard basis in V = K2n)

J =

(
0 K
−K 0

)
, where K =

 0 . . . 1

0 . .
.

0
1 . . . 0

 .

Lemma 9.24. If Γ is a subgroup of SL(V ) then its Zariski closure Γ̄ in SL(V )
is also a subgroup.

Proof. Consider the map f : SL(V )→ SL(V ) given by f(γ) = γ−1. Then f
is a polynomial isomorphism and, hence, f(Γ̄) is Zariski closed in SL(V ). Since Γ
is a subgroup, f(Γ̄) contains Γ. Thus, Γ̄∩ f(Γ̄) is a Zariski closed set containing Γ.
It follows that Γ̄ = f(Γ̄) and hence Γ̄ is stable under the inversion. The argument
for the multiplication is similar. �

If K is R or C, then V = Kn also has the standard or classical topology, given
by the Euclidean metric on V . We use the terminology classical topology for the
induced topology on subsets of V . Classical topology, of course, is stronger than
Zariski topology.
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Theorem 9.25 (See for instance Chapter 3, §2, in [OV90]). (1) An alge-
braic subgroup of GL(n,C) is irreducible in the Zariski topology if and only
if it is connected in the classical topology.

(2) A connected (in classical topology) algebraic subgroup of GL(n,R) is irre-
ducible in the Zariski topology.

Proposition 9.26. Let G be an algebraic subgroup in GL(V ).

(1) Only one irreducible component of G contains the identity element. This
component is called the identity component and is denoted by G0.

(2) The subset G0 is a normal subgroup of �nite index in G whose cosets are
the irreducible components of G.

Remark 9.27. Proposition 9.26, (2), implies that for algebraic groups the irre-
ducible components are disjoint. This is not true in general for algebraic varieties,
consider, for instance, the subvariety {xy = 0} ⊂ K2.

Proof. (1) Let X1, ..., Xk be irreducible components of G containing the iden-
tity. According to Lemma 9.18, the product set X1 × . . .×Xk is irreducible. Since
the product map is a morphism, the subset X1 · · ·Xk ⊂ G is irreducible as well;
hence by Lemma 9.19, (3), and by Theorem 9.20 this subset is contained in some
Xj . The fact that every Xi with i ∈ {1, ..., k} is contained in X1 · · ·Xk, hence in
Xj , implies that k = 1.

(2) Since the inversion map g 7→ g−1 is an algebraic automorphism of G (but
not a group automorphism, of course) it follows that G0 is stable with respect to
the inversion. Hence for every g ∈ G0, gG0 contains the identity element, and is an
irreducible component. Therefore, gG0 = G0. Likewise, for every x ∈ G, xG0x

−1

is an irreducible component containing the identity element, hence it equals G0.
The cosets of G0 (left or right) are images of G0 under automorphisms, therefore
also irreducible components. Thus there can only be �nitely many of them. �

In what follows we list some useful properties of algebraic groups. We refer the
reader to [OV90] for the details:

1. A complex or real algebraic group is a complex, respectively real, Lie group.
2. Every Lie group G (resp. algebraic group over a �eld K), contains a radical

RadG, which is the largest connected (resp. irreducible) solvable normal Lie (resp.
algebraic) subgroup of G. The radical is the same if the group is considered with its
real or its complex Lie structure. A group with trivial radical is called semisimple.

3. The quotient of an algebraic group by its radical is an algebraic semisimple
group.

4. The commutator subgroup of an irreducible algebraic group is an irreducible
algebraic subgroup. An irreducible algebraic semisimple group coincides with its
commutator subgroup.

5. One of the most remarkable properties of algebraic semisimple groups is
the following: given such a group G and its representation as a linear group G ↪→
GL(V ), the space V decomposes into a direct sum of G-invariant subspaces so that
the restriction of the action of G to any of these subspaces is irreducible, i.e. there
are no proper G-invariant subspaces.

6. From the classi�cation of normal subgroups in a semisimple connected Lie
group (see for instance [OV90, Theorem 4, Chapter 4, §3]) it follows that the image
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of an algebraic irreducible semisimple group under an algebraic homomorphism is
an algebraic irreducible semisimple group.

As an application of the formalism of algebraic groups, we will now give a
�cheap� proof of the fact that the group SU(2) contains a subgroup isomorphic to
F2, the free group on two generators:

Lemma 9.28. The subset of monomorphisms F2 → SU(2) is dense in the va-
riety Hom(F2, SU(2)).

Proof. Consider the space V = Hom(F2, SL(2,C)) = SL(2,C) × SL(2,C);
every element w ∈ F2 de�nes a polynomial function

fw : V → SL(2,C), fw(ρ) = ρ(w).

Since SL(2,R) 6 SL(2,C) contains a subgroup isomorphic to F2 (see Example
4.38), it follows that for every w 6= 1, the function fw takes values di�erent from 1.
In particular, the subset Ew := f−1

w (1) is a proper (complex) subvariety in V . Since
SL(2,C) is a connected complex manifold, the variety SL(2,C) is irreducible; hence,
V is irreducible as well. It follows that for every w 6= 1, Ew has empty interior (in
the classical topology) in V . Suppose that for some w 6= 1, the intersection

E′w := Ew ∩ SU(2)× SU(2)

contains a nonempty open subset U . In view of Exercise 3.8, SU(2) is Zariski dense
(over C) in SL(2,C); hence, U (and, thus, Ew) is Zariski dense in V . It then follows
that Ew = V , which is false. Therefore, for every w 6= 1, the closed (in the classical
topology) subset E′w ⊂ Hom(F2, SU(2)) has empty interior. Since F2 is countable,
by Baire category theorem, the union

E :=
⋃
w 6=1

E′w

has empty interior in Hom(F2, SU(2)). Since every ρ /∈ E is injective, lemma
follows. �

Since SU(2)/± I is isomorphic to SO(3), we obtain

Lemma 9.29. The subset of monomorphisms F2 → SO(3) is dense in the va-
riety Hom(F2, SO(3)).

9.2. Virtually solvable subgroups of GL(n,C)

This and the following section deal with virtually solvable subgroups of the
general linear group and limits of sequences of such groups. This material (namely,
Theorem 9.45 or the weaker Proposition 9.44 that will also su�ce) will be needed
in the proof of the Tits' Alternative.

Let G be a subgroup of GL(V ), where V ∼= Cn. We will think of V as a G-
module. In particular we will talk about G-submodules and quotient modules: The
former are G-invariant subspacesW of V , the latter are quotients V/W , whereW is
a G-submodule. The G-module V is reducible if there exists a proper G-submodule
W ⊂ V . We say that G is upper-triangular (or the G-module V is upper-triangular)
if it is conjugate to a subgroup of the group B of upper-triangular matrices in
GL(V ). In other words, there exists a complete �ag 0 ⊂ V1 ⊂ ... ⊂ Vn = V of
G-submodules in V , where dim(Vi) = i for each i. Of course, reducibility makes
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sense only for modules of dimension > 1; however, by abusing the terminology, we
will regard modules of dimension 6 1 as reducible by default.

The group B (and its conjugates in GL(V )) is called the Borel subgroup of
GL(V ).

Lemma 9.30. Suppose that G is an abstract group so that every G-module
V ∼= Ck with 2 6 k 6 n is reducible. Then every n-dimensional G-module V is
upper-triangular.

Proof. Since G y V is reducible, there exists a proper submodule W ⊂ V .
Thus dim(W ) < n and dim(V/W ) < n. Now, the assertion follows by induction on
the dimension. �

For a vector space V over K we let P (V ) denote the corresponding projective
space:

P (V ) = (V \ {0})/K∗.

Lemma 9.31. Let G < GL(V ) be upper-triangular. Then the �xed-point set
Fix(G) of the action of G on the projective space P (V ) is nonempty and consists
of a disjoint union of projective subspaces P (V`), ` = 1, ..., k, so that the subspaces
Vi ⊂ V are linearly independent, i.e.:

Span({V1, ..., Vk}) =

k⊕
`=1

V`.

In particular, k 6 dim(V ).

Proof. For g ∈ GL(V ) we let aij(g) denote the i, j matrix coe�cient of g.
Then, since G is upper-triangular, the maps χi : g → aii(g) are homomorphisms
χ : G → C∗, called characters of G. The (multiplicative) group of characters of G
is denoted X(G). We let J ⊂ {1, ..., n} be the set of all indices j such that

aij(g) = aji(g) = 0,∀g ∈ G,∀i 6= j.

We then break the set J into disjoint subsets J1, ..., Jm which are preimages of
points χ ∈ X(G) under the map

j ∈ J 7→ χj ∈ X(G).

Set V` := Span({ei, i ∈ J`}), where e1, ..., en form the standard basis in V . It is
clear that G �xes each P (V`) pointwise since each g ∈ G acts on V` via the scalar
multiplication by χ`(g). We leave it to the reader to check that

m⋃
`=1

P (V`)

is the entire �xed-point set Fix(G). �
In what follows, the topology on subgroups of GL(V ) is always the Zariski

topology, in particular, connectedness always means Zariski�connectedness.

Theorem 9.32 (A. Borel). Let G be a connected solvable Lie group. Then
every G-module V (where V is a �nite-dimensional complex vector space) is upper-
triangular.
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Proof. In view of Lemma 9.30, it su�ces to prove that every such module V
is reducible. The proof is an induction on the derived length d of G.

We �rst recall a few facts about eigenvalues of the elements of GL(V ). Let
ZGL(V ) denote the center of GL(V ), i.e. the group of matrices of the form µ · I, µ ∈
C∗, where I is the unit matrix.

Let g ∈ GL(V )\ZGL(V ). Then g has linearly independent eigenspaces Eλj (g), j =
1, ..., k, labeled by the corresponding eigenvalues λj , 1 6 j 6 k, where 2 6 k 6 n.
We let E(g) denote the set of (unlabeled) eigenspaces

{Eλj (g), j = 1, ..., k}.
LetBg denote the abelian subgroup ofGL(V ) generated by g and the center ZGL(V ).
Then for every g′ ∈ Bg, E(g′) = E(g) (with the new eigenvalues, of course). There-
fore, if N(Bg) denotes the normalizer of Bg in G, then N(Bg) preserves the set
E(g), however, elements of N(Bg) can permute the elements of E(g). (Note that
N(Bg) is, in general, larger than N(〈g〉), the normalizer of 〈g〉 in G.) Since E(g)
has cardinality 6 n, there is a subgroup No = No(Bg) < N(Bg) of index 6= n! that
�xes the set E(g) element-wise, i.e., every h ∈ No will preserve each Eλ(g), where
λ ∈ Sp(g), the spectrum of g. Of course, h need not act trivially on Eλ(g). Since
g /∈ ZG, this means that there exists a proper No-invariant subspace Eλ(g) ⊂ V .

We next prove several needed for the proof of Borel's theorem.

Lemma 9.33. Let A be an abelian subgroup of GL(V ). Then the A-module V
is reducible.

Proof. If A 6 ZGL(V ), there is nothing to prove. Assume, therefore, that A
contains an element g /∈ ZGL(V ). Since A 6 N(Bg), it follows that A preserves the
collection of subspaces E(g). Since A is abelian, it cannot permute these subspaces.
Therefore, A preserves the proper subspace Eλ1

(g) ⊂ V and hence A y V is
reducible. �

Lemma 9.34. Suppose that G < GL(V ) is a connected metabelian group, so
that G′ = [G,G] 6 ZGL(V ). Then the G-module V is reducible.

Proof. The proof is analogous to the proof of the previous lemma. If G <
ZGL(V ) there is nothing to prove. Pick, therefore some g ∈ G \ ZGL(V ). Since
the image of G in PGL(V ) is abelian, the group G is contained in N(Bg). Since
G is connected, it cannot permute the elements of E(g). Hence G preserves each
Eλi(g). Since every subspace Eλi(g) is proper, it follows that the G-module V is
reducible. �

Similarly, we have:

Lemma 9.35. Let G < GL(V ) be a metabelian group whose projection to
PGL(V ) is abelian. Then G contains a reducible subgroup of index 6 n!.

Proof. We argue as in the proof of the previous lemma, exceptGmay permute
the elements of E(g). However, it will contain an index 6 n! subgroup which
preserves each Eλj (g) and the assertion follows. �

We can now prove Theorem 9.32. Lemma 9.33 proves the theorem for abelian
groups, i.e., solvable groups of derived length 1. Suppose the assertion holds for all
connected groups of derived length < d and let G < GL(V ) be a connected solvable
group of derived length d. Then G′ = [G,G] has derived length < d. Thus by the
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induction hypothesis, G′ is upper-triangular. By Lemma 9.31, Fix(G′) ⊂ P (V ) is
a nonempty disjoint union of independent projective subspaces P (Vi), i = 1, ..., `.
Since G′ is normal in G, Fix(G′) is invariant under G. Since G is connected, it
cannot interchange the components P (Vi) of Fix(G). Therefore, it has to preserve
each P (Vi). If one of the P (Vi)'s is a proper projective subspace in P (V ), then Vi
is G-invariant and hence the G-module V is reducible. Therefore, we assume that
` = 1 and V1 = V , i.e., G′ acts trivially on P (V ). This means that G′ < ZGL(V )

is abelian and hence G is 2-step nilpotent. Now, the assertion follows from Lemma
9.34. This concludes the proof of Theorem 9.32. �

The following is a converse to Theorem 9.32:

Proposition 9.36. For V = Cn the Borel subgroup B < GL(V ) is solvable of
derived length n. Thus, a connected subgroup of GL(V ) is solvable if and only if
it is conjugate to a subgroup of B, i.e., Borel subgroups are the maximal solvable
connected subgroups of GL(V ). In particular, the derived length of every connected
subgroup of GLn(C) is at most n.

Proof. The proof is induction on n. The assertion is clear for n = 1 as
GL1(C) ∼= C∗ is abelian. Suppose it holds for n′ = n − 1, we will prove it for n.
Let B(i) := [B(i−1), B(i−1)], B(0) = B be the derived series of B.

Let 0 = V0 ⊂ V1 ⊂ ... ⊂ Vn be the complete �ag invariant under B. Set W :=
V/V1, let BW be the image of B in GL(W ). The kernel K of the homomorphism
B → BW is isomorphic to C∗. The group BW preserves the complete �ag

0 = W0 := V1/V1 ⊂W1 := V2/V1 ⊂ ... ⊂W = V/V1.

Therefore, by the induction assumption it has derived length n− 1. Thus B(n) :=
[B(n−1), B(n−1)] ⊂ K ∼= C∗. Since C∗ is abelian [B(n), B(n)] = 0, i.e., B has derived
length n. �

Remark 9.37. Theorem 9.32 is false for non-connected solvable subgroups of
GL(V ). Take n = 2, let A be the group of diagonal matrices in SL(2,C) and let

s =

[
0 1
−1 0

]
.

Then s normalizes A and s2 ∈ A. We let G be the group generated by A and s
which is isomorphic to the semidirect product of A and Z2. In particular, G is
solvable of derived length 2. On the other hand, it is clear that the G-module C2

is irreducible.

Theorem 9.38. There exist functions ν(n), δ(n) so that every virtually solvable
subgroup Γ 6 GL(V ) contains a solvable subgroup Λ of index 6 ν(n) and derived
length 6 δ(n).

Proof. Let d denote the derived length of a �nite index solvable subgroup of
Γ. Let Γ denote the Zariski closure of Γ in GL(V ). Then Γ has only �nitely many
(Zariski) connected components (see Theorem 9.20).

Lemma 9.39. The group Γ is contains a �nite index subgroup which is a solvable
group of derived length d.

Proof. We will use k-fold iterated commutators

Jg1, . . . , g2kK
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de�ned in the equation (??). Let Γo < Γ denote a solvable subgroup of derived
length d and �nite index m in Γ; thus

Γ = γ1Γo ∪ ... ∪ γmΓo.

The group Γo satis�es polynomial equations of the form (g1, ..., g2d) = 1. Therefore,
Γ satis�es the polynomial equations in the variables gj :

γiJg1, . . . , g2dK = 1, i = 1, ...,m.

Hence, the Zariski closure Γ of Γ satis�es the same set of polynomial equations. It
follows that Γ contains a subgroup of index m which is solvable of derived length
d. �

Let G be the (Zariski) connected component of the identity of Γ, which implies
that G C Γ.

Lemma 9.40. The group G is solvable of derived length 6 n.

Proof. Let H C G be the maximal solvable subgroup of derived length d of
�nite index. Thus as above, H is given by imposing polynomial equations of the
form Jg1, . . . , g2dK = 1 on tuples of the elements of G, i.e., H is Zariski closed. Since
H has �nite index in G, it is also open. Since G is connected, it follows that G = H,
i.e., G is solvable and has derived length 6 n by Proposition 9.36. �

It is clear that Γ ∩ G is a �nite index subgroup of Γ whose index is at most
|Γ : G|. Unfortunately, the index |Γ : G| could be arbitrarily large. We will see,
however, that we can enlarge G to a (possibly disconnected) subgroup Ĝ 6 Γ which
is still solvable but has a uniform upper bound on |Γ : Ĝ| and a uniform bound on
the derived length.

We will get a bound on the index and the derived length by the dimension
induction. The base case where n = 1 is clear, so we assume that for each n′ < n

and each virtually solvable subgroup Γ′ 6 GLn′(C) there exists a solvable group Ĝ′

G′ 6 Ĝ′ 6 Γ
′

as required, with a uniform bound ν(n′) on the index |Γ′ : Ĝ′| and so that the
derived length of Ĝ′ is at most δ(n′) 6 δ(n− 1).

Let V := {V1, . . . , V`} denote the maximal collection of (independent) subspaces
in V so that G �xes each P (Vi) pointwise (see Theorem 9.32 and Lemma 9.31). In
particular, ` 6 n. Since G is normal in Γ, the collection V is invariant under Γ.
Let K 6 Γ denote the kernel of the action of Γ on the set V. Clearly, G 6 K and
|Γ : K| 6 `! 6 n!. We will, therefore, study the pair G 6 K.

Remark 9.41. Note that we just proved that every virtually solvable subgroup
Γ 6 GL(n,C) contains a reducible subgroup of index 6 n!c(n), where c(n) :=
q(PGL(n,C)) is the function from Jordan's Theorem ??. Indeed, if ` > 1, the
subgroup K ∩ Γ (of index 6= n!) preserves a proper subspace V1. If ` = 1, then G
is contained in ZGL(V ) and hence Γ projects to a �nite subgroup Φ < PGL(V ).
After replacing Φ with an abelian subgroup A of index 6= q(PGL(V )) (see Jordan's
Theorem ??), we obtain a metabelian group Ã < Γ whose center is contained in
ZGL(V ). Now the assertion follows from Lemma 9.35.
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The group K preserves each Vi and, by construction, the group G acts trivially
on each P (Vi). Therefore, the image Qi of K/G in PGL(Vi) is �nite. (The �nite
group K/G need not act faithfully on P (Vi).) By Jordan's Theorem ??, the group
Qi contains an abelian subgroup of index 6 c(dim(Vi)) 6 c(n). Hence, K contains
a subgroup N C K of index at most∏̀

i=1

c(dim(Vi)) 6 c(n)n

which acts as an abelian group on ∏̀
i=1

P (Vi).

We again note that G 6 N . The image of the restriction homomorphism φ : N →
GL(U),

U := V1 ⊕ . . .⊕ V`
is therefore a metabelian group M .

We also have the homomorphism ψ : N → GL(W ), W = V/U with the image
NW . This group contains the connected solvable subgroup GW := ψ(G) of �nite
index. To identify the intersection Ker(φ) ∩ Ker(ψ) we observe that V = U ⊕W
and the group N acts by matrices of the block-triangular form:[

x y
0 z

]
where x ∈M , z ∈ NW . Then the kernel of the homomorphism φ×ψ : N →M×NW
consists of matrices of the upper-triangular form[

1 y
0 1

]
.

Thus by Proposition 9.36, L = Ker(φ× ψ) is solvable of derived length 6 n.
By the induction hypothesis, there exists a solvable group ĜW of derived length

6 δ(n− 1), so that

GW 6 ĜW 6 NW

and |NW : ĜW | 6 ν(n− 1). Therefore, for Ĝ := (φ× ψ)−1(M × ĜW ), we obtain a
commutative diagram

1→ L −→ N
φ×ψ−→ M ×NW −→

|| ↑ ι′ ↑ ι
1→ L −→ Ĝ

φ×ψ−→ M × ĜW −→

where ι is the inclusion of index i 6 ν(n − 1) subgroup and, hence, ι′ is also the
inclusion of index i subgroup. Furthermore, L is solvable of derived length 6 n,
M × ĜW is solvable of derived length6 max(2, δ(n − 1)). Putting it all together,
we get

|Γ : Ĝ| 6 ν(n) := ν(n− 1)n!(c(n))n,

where Ĝ is solvable of derived length 6 δ(n) := max(2, δ(n−1))+n. Intersecting Ĝ
with Γ we obtain Λ < Γ of index at most ν(n) and derived length 6 δ(n). Theorem
9.38 follows. �
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9.3. Limits of sequences of virtually solvable subgroups of GL(n,C)

Throughout this section, all vector spaces under consideration will be complex
and �nite-dimensional.

We say that a subgroup G < GL(V ), V ∼= Cn, is virtually reducible if G contains
a �nite index subgroupH which has reducible action on V . A subgroup which is not
virtually reducible is called virtually irreducible. Recall that modules of dimension
1 are regarded as reducible by default.

Remark 9.42. In order to distinguish this notion of irreducibility from the
irreducibility in the context of algebraic groups, we will refer to the later as Zariski�
irreducibility.

Lemma 9.43. Let G 6 GL(V ) be a subgroup which is not virtually solvable.
Then G contains a �nite index subgroup H which admits an H-module W , which
is either a submodule or quotient module of H y V , such that H yW is virtually
irreducible.

Proof. The proof is by induction on the dimension of V . The statement is
clear if V is 1-dimensional. Suppose it holds in all dimensions < n. If G itself
is virtually irreducible, we are done. Otherwise, we take a �nite index subgroup
G1 < G so that the G1 y V is reducible. Let W ⊂ V be a G1-invariant subspace.
If the images of G1 in GL(W ) and GL(V/W ) are both virtually solvable, then
G is itself virtually solvable. If one of these images is not virtually solvable, the
statement follows from the induction hypothesis. �

Proposition 9.44. Let Γ 6 GL(n,C) be a �nitely-generated virtually irre-
ducible subgroup. Then there exists a neighborhood Ξ of id in Hom(Γ, GL(n,C)) so
that every ρ ∈ Ξ has image which is not virtually solvable.

Proof. Suppose to the contrary that there exists a sequence

ρj ∈ Hom(Γ, GL(n,C))

converging to id, so that each Γj := ρj(Γ) is virtually solvable. Since each Γj
is virtually solvable, by Remark 9.41 it contains a reducible subgroup of index 6
n!c(n). Let Φ < Γ denote the intersection of the preimages of these subgroups under
ρj 's. Clearly, |Γ : Φ| < ∞. After passing to a subsequence, we may assume that
each Γj preserves a proper projective subspace Pj ⊂ CPn−1 of a �xed dimension
k. By passing to a further subsequence, we may assume that the subspaces Pj
converge to a proper projective subspace P ⊂ CPn−1. Since each Γj preserves Pj ,
the group Φ also preserves P . Hence, Γ y V is virtually reducible, contradicting
our assumptions. �

Although the above proposition will su�ce for the proof of the Tits' Alternative,
we will prove a slightly stronger assertion:

Theorem 9.45. Let Γ ⊂ GL(n,C) be a �nitely-generated subgroup which is not
virtually solvable. Then there exists a neighborhood Σ of id in Hom(Γ, GL(n,C))
so that every ρ ∈ Σ has image which is not virtually solvable.

Proof. We argue analogously to the proof of Proposition 9.44. Suppose to
the contrary that there exists a sequence ρj ∈ Hom(Γ, G) converging to id, so that
each Γj := ρj(Γ) is virtually solvable. By Theorem 9.38, for each j there exists a
subgroup Λj 6 Γj of index 6 ν(n) which is solvable of derived length 6 d = δ(n).
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Let Λ 6 Γ denote the intersection of ρ−1
j (Λj). Again, |Γ : Λ| <∞. Each group Γj

satis�es the law:
Jg1, ..., g2dK = 1

where Jg1, ..., g2dK is the d-fold iterated commutator as in (??). Therefore, for every
2d-tuple of elements γi of Λ we have

Jγ1, ..., γ2dK = lim
j→∞

Jρj(γ1), ..., ρj(γ2d)K = 1.

Hence, Λ is solvable of derived length 6 d. �

9.4. Reduction to the case of linear subgroups

Proposition 9.46. It su�ces to prove Theorem 9.1 for subgroups Γ 6 GL(V ),
where V is a �nite-dimensional real vector space, and the Zariski closure of Γ in
GL(V ) is a Zariski�irreducible semisimple algebraic group, acting irreducibly on V .

Proof. The �rst step is to reduce the problem from subgroups in Lie groups
with �nitely many connected components to subgroups of some GL(V ).

Let L be a Lie group with �nitely many components. The connected component
of the identity L0 ⊂ L is then a �nite index normal subgroup. Thus Γ ∩ L0 has
�nite index in Γ. Therefore, we can assume that L is connected.

Lemma 9.47. There exists a homomorphism φ : Γ → GLn(R), n = dim(G),
whose kernel is contained in the center of Γ.

Proof. Since L is connected, kernel of the adjoint representation Ad : L →
GL(TeL) is contained in the center of L, see Lemma 3.10. Now, take φ := Ad|Γ. �

Observe that
1. Γ is virtually solvable if and only if φ(Γ) is virtually solvable.
2. Γ contains a free subgroup if and only if φ(Γ) contains a free subgroup.

Therefore, we can assume that Γ is a linear group, Γ ⊂ GL(n,R).

Let G be the Zariski-closure of Γ in GL(V ). Although G need not be Zariski�
irreducible, by Proposition 9.26 it has only �nitely many irreducible components.
Thus, after passing to a �nite index subgroup in Γ, we may assume that G is
Zariski�irreducible.

According to the results mentioned in the end of Section 9.1, G contains a
normal algebraic Zariski�irreducible subgroup which is solvable, Rad(G), and the
quotient G/Rad(G) is a semisimple algebraic Zariski�irreducible subgroup. Clearly
the image of Γ by the algebraic projection π : G → G/Rad(G) is Zariski dense in
G/Rad(G), and it su�ces to prove the alternative for π(Γ). Thus we may assume
that the Zariski closure G of Γ is Zariski�irreducible and semisimple.

If the action Gy V is reducible then we take the direct sum decomposition

V =

s⊕
i=1

Vi

in G-invariant subspaces, so that the action of G on each Vi is irreducible. If we
denote by ρi the homomorphism G → GL(Vi) then it su�ces to prove the Tits'
Theorem for each ρi(Γ). Indeed, if it is proved, then either all ρi(Γ) are solvable,
in which case Γ itself is solvable (see Exercise ??), or some ρi(Γ) contains a free
non-abelian subgroup, in which case Γ itself does, as ρi(Γ) is a quotient of Γ.
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Note that when we replace in our problem Γ by ρi(Γ), we have to replace G by
the Zariski closure Gi of ρi(Γ) in GL(Vi). Note also that

ρi(Γ) 6 ρi(Γ) = ρi(G) 6 ρi(Γ) = Gi 6 ρi(G) .

According to the considerations in the end of Section 9.1, ρi(G) is an algebraic
Zariski-irreducible semisimple group. In particular it coincides with its closure,
hence Gi = ρi(G) . Thus Gi acts irreducibly on Vi because G does, and Gi is
Zariski�irreducible and semisimple because ρi(G) is. This concludes the proof of
Proposition 9.46. �

9.5. Tits' Alternative for unbounded subgroups of SL(n)

In this section we prove Tits' Alternative for subgroups Γ of SL(n,K) that
are unbounded with respect to the standard norm, where K is either R or C. For
technical reasons, one should also consider the case of other local �elds K. Recall
that a local �eld is a �eld with a norm | · | which determines a locally compact
topology on K. The most relevant examples for us are when K = R,K = C,
K = Qp and, more generally, K is the completion of a �nite extension of Q.

In what follows, V is an n-dimensional vector space over a local �eld K, n =
dim(V ) > 1. We �x a basis e1, . . . , en in V . Then the norm | · | on K determines
the Euclidean norms ‖ · ‖ on V and on its exterior powers.

Notation 9.48. We will use the notation Ec to denote the complement X \E
of a subset E ⊂ X.

We shall prove the following.

Theorem 9.49. Let Γ 6 GL(V ) be a �nitely-generated group which is not
relatively compact, and such that the Zariski closure of Γ in GL(V ) is a Zariski-
irreducible semisimple algebraic group acting irreducibly on V . Then Γ contains a
free non-abelian subgroup.

Proof. In the argument, the free subgroups will be constructed using the
Ping-pong Lemma 4.37. The role of the space X in that lemma will be played by
the projective space.

Notation 9.50. We let P (V ) denote the projective space of V . When there is
no possibility of confusion we do not mention the vector space anymore, and simply
denote the projective space by P .

The ideal situation would be to �nd a pair of elements g, h in Γ with properties
as in Chapter 4, Section 4.5. Since such elements may not exist in Γ in general, we
try to `approximate' the situation in Lemma 4.42.

Recall that, according to the Cartan decomposition (see Section 4.5), every
element g ∈ GL(V ) can be written as g = kdh, where k and h are in the compact
subgroup K of GL(V ) and d is a diagonal matrix with entries on the diagonal such
that |a1| > |a2| > . . . > |an| > 0.

Definition 9.51. We call a sequence of elements (gi) in GL(V ) a diverging
sequence if their matrix norms diverge to in�nity.

It is immediate from the compactness of K that the elements gi of a diverging
sequence have Cartan decomposition gi = kidihi such that |a1(gi)| → ∞ as i→∞ .
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For every diverging sequence, there exists a maximal m ∈ {1, . . . , n − 1} with
the property that

lim sup
i→∞

|am(gi)|
|a1(gi)|

> 0 .

By passing to a subsequence we may assume that

lim
i→∞

|am(gi)|
|a1(gi)|

= 2` > 0

and also that ki and hi converge to some k ∈ K and h ∈ K respectively. We
formalize these observations as follows:

Definition 9.52. We call a sequence (gi) m-contracting, for m < dimV ,
if its elements have Cartan decompositions gi = kidihi satisfying the following
convergence properties:

(1) ki and hi converge to some k and h in K;

(2) di are diagonal matrices with diagonal entries a1(gi), . . . , an(gi) such that

|a1(gi)| > |a2(gi)| > . . . > |an(gi)|, |a1(gi)| → ∞

and

lim
i→∞

|am(gi)|
|a1(gi)|

> 0 .

(3) The number m is maximal with the above properties.

Observe now that since Γ is unbounded, it contains an m-contracting sequence
(gi), for some 1 6 m < dimV .

In what follows we analyze the dynamics of anm-contracting sequence σ = (gi) .
We use the following notation and terminology, consistent to that in De�nition 9.52
and the notation used in �4.5:

Notation 9.53.

A(gi) = ki [Span(e1, . . . , em)] and A(σ) = k [Span(e1, . . . , em)] .

E(gi) = h−1
i [Span(em+1, . . . , en)] and E(σ) = h−1 [Span(em+1, . . . , en)] .

Here the bracket stands for the projection to P (V ). We call A(σ) the attracting
subspace of the sequence σ and E(σ) the repelling subspace of the sequence σ.

When m = 1 we call A(σ) the attracting point and E(σ) (sometimes also
denoted H(σ)) the repelling hyperplane of the sequence σ.

Note that since ki → k and hi → h, they converge in the compact-open topology
as transformations of P (V ); hence A(gi) converge to A(σ), and E(gi) converge to
E(σ) with respect to the Hausdor� metric.

Example 9.54. To make things more concrete, consider the case dimV = 2
and K = R. Then P (V ) = P1 is the circle on which the group PSL(2,R) acts
by linear-fractional transformations. Since 0 < m < 2, it follows that m = 1 and,
hence, every diverging sequence contains a 1-contracting subsequence. It is easy
to see that, for a 1-contracting sequence, the sequence of inverses has to be 1-
contracting as well. Moreover, the repelling hyperplanes in P (V ) are again points.
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Thus, each diverging sequence gi ∈ PSL(2,R) contains a subsequence gin for which
there exists a pair of points A and H in P (V ) such that

lim
n→∞

gin |P (V )\{H} = A and lim
n→∞

g−1
in
|P (V )\{A} = H ,

uniformly on compact sets. For instance, if gin = gn, and g is parabolic, then
A = H is the �xed point of g. If g is hyperbolic then A is the attractive and H is
the repelling �xed point of g. Thus, in general (unlike in the diagonal case), A(gi)
may belong to E(gi).

The following is a uniform version of Lemma 4.41 for m-contracting sequences:

Lemma 9.55. Let σ = (gi) be an m-contracting sequence. For each compact
K ⊂ E(σ)c there exist L and i0 so that gi is L�Lipschitz on K, for every i > i0.

Proof. Assume that gi's satisfy (for all su�ciently large i) the following:

|a1(gi)| > |a2(gi)| > . . . > |am(gi)| > `|a1(gi)| ,
where ` > 0 is a constant independent of i.

By the assumption, hK is disjoint of [Span(em+1, . . . , en)], so the Hausdor�
distance between these two compact sets is 2ε > 0. Since the sets hiK converge
to hK in the Hausdor� metric, as i→∞, we may assume that for large i, the set
hiK is contained in Kε, where

Kε = N ε(hK) = {p ∈ P (V ) | dist(p, hK) 6 ε} .
Since ki act as isometries on P (V ), it su�ces to prove that di's are L-Lipschitz

maps, for some uniform L and i large enough. In what follows, we consider an
arbitrary diagonal matrix d = di with eigenvalues a1, . . . , an.

Then every point [u] of Kε is at distance� ε from [Span(em+1, . . . , en)]. With-
out loss of generality, we may assume that u = (u1, . . . , un) is a unit vector. Set

u′ = (u1, . . . , um, 0, . . . , 0), u′′ = (0, . . . , 0, um+1, . . . , un)

Suppose that 0 < δ 6 1
2
√
n
and the vector u (as above) is such that

|ui| 6 δ, ∀i = 1, . . . ,m.

Then,
|u− u′′|max = |u′|max 6 δ.

Lemma 1.74 then implies that

|u ∧ u′′| 6 2nδ,

while
|u′′| � 1−

√
nδ >

1

2
.

Combining these inequalities,we obtain

d([u], [u′′]) 6 4nδ.

Since, by assumption, ε 6 d([u], [u′′]), we see that

δ >
ε

4n
.

Therefore, for every unit vector u so that [u] ∈ Kε,

(9.1) max
k=1,...,m

|uk| > δ = δ(ε) = min

(
ε

4n
,

1

2
√
n

)
.
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In particular, for such u, there exists k ∈ {1, . . . ,m}, so that

|d(u)|2 > |ak|2|uk|2 > `2|a1|2δ2 .

Let [v] and [w] be two points in Kε. Then, in the archimedean case,

|d(v) ∧ d(w)|2 =
∑
p<q

|apvpaqwq − aqvqapwp|2 =
∑
p<q

|apaq|2|vpwq − vqwp|2 6

|a1|4
∑
p<q

|vpwq − vqwp|2 = |a1|4|v ∧ w|2,

while in the nonarchimedean case we also get:

|d(v) ∧ d(w)| = max
p,q
|apvpaqwq − aqvqapwp| 6 |a1|2|v ∧ w|.

By combining these inequalities, for unit vectors u, v satisfying [u], [v] ∈ Kε, we
obtain

d(g(v), g(w)) =
|g(v) ∧ g(w)|
|g(v)| · |g(w)|

6
|v ∧ w|
`2δ

=
d(v, w)

`2δ
. �

Lemma 9.56. Let g be an element in GL(V ) with Cartan decomposition g =
kdh, where d is a diagonal matrix with entries a1, . . . , an on the diagonal such that

|a1| > |a2| > . . . > |an| > 0. If |a2||a1| < ε2/
√
n, then g maps the complement of

the ε�neighborhood of the hyperplane H = h−1 [Span(e2, . . . , en)] into the ball with
center k[e1] and radius ε .

Proof. Since k and h are isometries of P (V ), it clearly su�ces to prove
the statement for g = d, k = h = 1. Let [v] be a point in P (V ) such that
dist ([v], [Span(e2, ..., en)]) > ε. Then, as in the proof of Lemma 4.42,

d([dv], [e1]) =
|dv ∧ e1|
|dv|

6
√
n
|a2|
ε|a1|

< ε .

�

Lemma 9.57. If σ = (gi) is a 1-contracting sequence with attracting point
p = A(σ) and repelling hyperplane H(σ), then for every closed ball B ⊆ H(σ)c, the
maps gi|B converge uniformly to the constant function on B which maps everything
to the point p.

Proof. Consider an arbitrary closed ball B in H(σ)c. Then hB is a closed
ball in the complement of [Span(em+1, ..., en)]. By compactness on P (V ), there
exists ε > 0 so that the minimal distance from hB to [Span(em+1, ..., en)] is > 2ε.
Consider

Bε = {x ∈ P (V ) | dist(x,B) 6 ε} ,
which is also a closed ball, at minimal distance > ε from [Span(em+1, ..., en)]. For
all su�ciently large i, the ball hiB is contained in Bε. Therefore, it su�ces to
prove that the maps kidi|Bε converge uniformly to the constant function on Bε
which maps everything to the point p

Consider δ = ε/2. For all su�ciently large i, according to Lemma 9.56, di(Bδ)
is contained in B([e1], δ). On the other hand, for all large i, the point ki[e1] belongs
to the ball B(p, δ). Whence,

kidi(Bε) ⊂ B(p, ε).

�
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Lemma 9.58. Let (gi) be a diverging sequence of elements in GL(V ).

(1) If there exists a closed ball B with non-empty interior and a point p such
that gi|B converge uniformly to the constant function on B which maps
everything to the point p, then (gi) contains a 1-contracting subsequence
with attracting point p.

(2) If, moreover, there exists a hyperplane H such that for every closed ball
B ⊆ Hc, gi|B converge uniformly to the constant function on B which
maps everything to the point p, then (gi) contains a 1-contracting subse-
quence with the attracting point p and the repelling hyperplane H.

Proof. (1) Since (gi) is diverging, it contains a subsequence σ (whose ele-
ments we again denote gi) which is m-contracting for some m. By replacing B with
a smaller ball, we may assume that B is in E(σ)c.

Let gi = kidihi denote the Cartan decomposition of gi. By the above observa-
tions, for all su�ciently large i, the balls hiB are disjoint from [Span(em+1, ..., en)].
The sequence of closed metric balls hiB Hausdor��converges to the closed metric
ball hB. Therefore, there exists i0 and a closed ball B′ contained in the intersection⋂

i>i0

hiB.

By the hypothesis, the closed sets kidi(B′) Hausdor��converge to the point p.
For every point [v] ∈ B′ represented by a vector v, we have:

[div] =

[
v1e1 +

a2(gi)

a1(gi)
v2e2 + . . .+

an(gi)

a1(gi)
vnen

]
.

After passing to a subsequence, we may assume that

lim
i→∞

ak(gi)

a1(gi)
= λk, k = 1, . . . ,m.

Since our sequence is m-contracting,

|λ1| > |λ2| > . . . > |λm| > 0.

If m > 2 then we may �nd two distinct points [v], [v′] in B′ represented by two unit
vectors v = (v1, . . . , vn), v′ = (v′1, . . . , v

′) so that

lim
i→∞

[div] = [w], lim
i→∞

[div
′] = [w′],

[w] 6= [w′], w = v1e1 +λ2v2e2 + . . .+λmvmem, w
′ = v′1e1 +λ2v

′
2e2 + . . .+λmv

′
mem.

Assume that d([w], [w′]) = ε > 0. As

[u] = lim
i→∞

[kidiv] = lim
i→∞

[kiwi], [u′] = lim
i→∞

[kidiv
′] = lim

i→∞
[kiw

′
i],

it follows that the d([u], [u′]) = ε > 0. This contradicts the assumption that the
sequence of sets kidi(B′) Hausdor��converges to a point. It follows that m = 1,
i.e., σ = (gi) is 1-contracting. If A(σ) 6= p then a contradiction easily follows from
Lemma 9.57.

(2) According to (1), the sequence (gi) contains a subsequence σ which is
1-contracting, with A(σ) = p. We continue with the notation introduced in the
proof of (1). If H(σ) 6= H then at least one of the points h−1[e2], . . . , h−1[en] is
not in H. Assume that it is h−1[e2], and that its distance to H is 2ε > 0. For
su�ciently large all i's, the points h−1

i [e2] belong to the ball B(h−1[e2], ε), disjoint
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from H. It follows that the sequence kidi[e2] = ki[e2] must converge to p = k[e1]
by the assumption, and also to k[e2], since limi→∞ ki = k. Contradiction. �

The following lemma is an easy consequence of Lemma 9.58, and it is left as
an exercise to the reader.

Lemma 9.59. Let (gi) be a 1-contracting sequence in PGL(V ), and f, h ∈
PGL(V ). Then the sequence (fgih) contains a 1-contracting subsequence σ = (g′i)
such that

A(σ) = f(A(σ)), E(σ) = h−1E(σ).

Lemma 9.60. Let (gi) be a diverging sequence in PGL(V ). Then there exists a
vector space W and an embedding ρ : PGL(V ) ↪→ PGL(W ) so that a subsequence
in (ρ(gi)) is 1-contracting in PGL(W ).

Proof. After passing to a subsequence, we may assume that the sequence
σ = (gi) is m-contracting for some m, 0 < m < n. We consider the m-th exterior
power of V ,

W := ΛmV.

The action of GL(V ) on V extends naturally to its action on W we obtain the
embedding ρ : GL(V ) ↪→ GL(W ). Clearly, for a matrix g ∈ GL(V ), the norms of
the singular values of ρ(g) ∈ GL(W ) are the products∏

j1<...<jm

|aj1 · · · ajm(g)|.

where aj(g) is the j-th singular value of g. Then, |a1(ρ(gi))| = |a1 · · · am(gi)| and
it is immediate that

lim
i→∞

al(ρ(gi))

a1(ρ(gi))
= 0,∀l > 1. �

We now return to the proof of the Tits alternative for the subgroup Γ < GL(V ).
Recall that we are working under the assumption that the Zariski closure G = Γ of
Γ in GL(V ) satis�es certain conditions, namely G is Zariski�irreducible, semisimple
and it acts irreducibly on V .

After replacing V with W as above, since

ρ(Γ) 6 ρ(G) = ρ(Γ) 6 ρ(Γ) 6 ρ(G)

and ρ(G) is still an algebraic Zariski�irreducible semisimple subgroup (see the end
of Section 9.1), it follows that ρ(Γ) = ρ(G). In what follows, we let Γ and G denote
ρ(Γ) and ρ(G), and we denote the sequence (ρ(gi)) by (gi).

If the action GyW is reducible, we take a direct sum decomposition

W =

s⊕
i=1

Wi

into G-invariant subspaces, so that the restriction of the G-action to each is irre-
ducible. This de�nes homomorphisms ρi : G → GL(Wi), and all Gi = ρi(G) are
algebraic Zariski�irreducible semisimple subgroups. In particular, Gi = [Gi, Gi],
hence every Gi is, in fact, contained in SL(Wi). In particular for the 1-dimensional
spaces Wi, the group Gi is trivial. Without loss of generality, we can, therefore,
assume that each subspace Wi has dimension > 1.

Lemma 9.61. For some s, the sequence σ = (gi) restricted toWs is 1-contracting.
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Proof. Let p = A(σ) ∈ P (W ) and H = H(σ) ⊂ P (W ) be the attracting
point and, respectively, the repelling hyperplane of the sequence σ = (gi). Since
the subspacesWt are G-invariant, for each t either p ∈ P (Wt) or P (Wt) ⊂ H. Since
H is a hyperplane in P (W ), it follows that p ∈ P (Ws) for some s. The restriction
of (gi) to P (Ws) converges to p away from H ∩P (Ws). Since dim(Ws) > 1, we are
done. �

Let ρs be the representation G → SL(Ws). Our goal will be to prove that
ρs(Γ) contains a free non-abelian group, whence it will follow that Γ contains such
a group, which will conclude the proof. For simplicity of notation, in what follows,
we denote ρs(Γ) by Γ, its Zariski closure by G and the vector space Ws by V . As
before, the Zariski closure of ρs(Γ) is Zariski�irreducible and semisimple.

Theorem 9.62. Let Γ be a subgroup in SL(V ) containing a 1-contracting se-
quence of elements, and such that the Zariski closure Γ of Γ is Zariski�irreducible
and that Γ acts irreducibly on V . Then Γ contains a free non-abelian subgroup.

Before beginning the proof, we note that the 1-contracting sequence that we
now have at our disposal in the group Γ does not su�ce yet, not even to construct
one of the two elements in a ping-pong pair �modeled� after the one in Lemma 4.42.
Indeed, for every i ∈ N the action of the element gi ∈ Γ on the projective space
P = P (V ) is, as represented in Figure 9.1 (where we picture projective space as a
sphere). According to Lemma 9.56, for every ε > 0 and all su�ciently large i, the
transformation gi (with the Cartan decomposition kidihi) maps the complement
of the ε-neighborhood of H(σ) = h−1

i [Span(e2, . . . , en)] into the ε-neighborhood of
the point A(σ) = ki [e1], with the notation of 9.53.

�
 �	
�
�

�
�

�
�

�
�

�� �

�� �
�� �
 [e1]

[Span(e2, ..., en)]

H(gi) = h−1
i [Span(e2, ..., en)]

h−1
i [e1]

h−1
i B

h−1
i B

~ R

hi ki

di

ki [Span(e2, ..., en)]

A(gi) = ki [e1]A(gi) = ki [e1]

K

Figure 9.1. The action of gi.

The �rst problem occurs when one iterates gi, i.e. one considers g2
i , g

3
i , etc.

Nothing guarantees that g2
i would also map the complement of the ε-neighborhood

of H(gi) into the ε-neighborhood of A(gi), for large i. This only happens when
the ε-neighborhood of A(gi) is disjoint from the ε-neighborhood of H(gi). Our
hypothesis does not ensure this, since no conditions can be imposed on hi, ki and
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their limits (see comments in Example 9.54). We will use Lemma 9.59 and the
notion of a separating set developed in the sequel to circumvent this di�culty.

Separating sets.

Definition 9.63. A subset F ⊂ PGL(V ) is called m-separating if for every
choice of points p1, . . . , pm ∈ P = P (V ) and hyperplanes H1, . . . ,Hm ⊂ P , there
exists f ∈ F so that

f±1(pi) /∈ Hj ,∀i, j = 1, . . . ,m.

It will now become apparent why we endeavored to ensure the two irreducibility
properties (for the Zariski topology, and for the action) for the Zariski closure of Γ.

Proposition 9.64. Let Γ ⊂ SL(V ) be a subgroup with the property that its
Zariski closure is Zariski�irreducible and it acts irreducibly on V . For every m, Γ
contains a �nite m-separating subset F .

Proof. Let G be the Zariski closure of Γ. Let P∨ denote the space of hy-
perplanes in P (i.e. the projective space of the dual of V ). For each g ∈ G let
Mg ⊂ Pm × (P∨)m denote the collection of 2m-tuples

(p1, . . . , pm, H1, . . . ,Hm)

so that
g(pi) ∈ Hj or g−1(pi) ∈ Hj

for some i, j = 1, . . . ,m.

Lemma 9.65. If Γ is as in Proposition 9.64 then⋂
g∈Γ

Mg = ∅ .

Proof. Suppose to the contrary that the intersection is nonempty. Then there
exists a 2m-tuple (p1, . . . , pm, H1, . . . ,Hm) so that for every g ∈ Γ,

(9.2) ∃ i, j so that g(pi) ∈ Hj or g−1(pi) ∈ Hj .

The set of elements g ∈ SL(V ) such that (9.2) holds for the given 2m-tuple is
Zariski�closed, and G is the Zariski closure of Γ, hence all g ∈ G also satisfy (9.2).

Let G±pi,Hj denote the set of g ∈ G so that

g±1(pi) ∈ Hj .

Clearly, these subsets are Zariski�closed and cover the group G. Since G Zariski�
irreducible, it follows that one of these sets, say G+

pi,Hj
, is the entire of G. Therefore,

for every g ∈ G, g(pi) ∈ Hj . Thus, projectivization of the vector subspace L
spanned by the G�orbit (of lines) G · pi is contained in Hj . The subspace L is
proper and G-invariant. This contradicts the hypothesis that G acts irreducibly on
V . �

We now �nish the proof of Proposition 9.64. LetM c
g denote the complement of

Mg in Pm× (P∨)m. This set is Zariski open. By Lemma 9.65, the sets M c
g (g ∈ Γ)

cover the space Pm × (P∨)m. Since K is a local �eld, the product Pm × (P∨)m is
compact and, thus, the above open cover contains a �nite subcover. Hence, there
exists a �nite set F ⊂ Γ so that⋃

f∈F

M c
f = Pm × (P∨)m.
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This set satis�es the assertion of Proposition 9.64. �

Remark 9.66. The above proposition holds even if the �eld K is not local.
Then the point is that by Hilbert's Nullstellensatz, there exists a �nite subset
F ⊂ Γ so that ⋂

f∈F

Mf =
⋂
g∈Γ

Mg = ∅.

With this modi�cation, the above proof goes through.

Ping-pong sequences. We now begin the proof of Theorem 9.62, which will
be split in several lemmas.

In what follows we �x a 4-separating �nite subset F ⊂ Γ ⊂ PGL(V ). We will
use the notation f for the elements of F .

Lemma 9.67. There exists f ∈ F so that (after passing to a subsequence in
(gi)) both sequences hi := gifg

−1
i and gif

−1g−1
i are 1-contracting.

Proof. After passing to a subsequence σ = (gi), we can assume that the se-
quence σ− = (g−1

i ) is m-contracting, with attracting subspace A (σ−) and repelling
subspace E (σ−). Pick a point q in the complement of the subspace E (σ−). Af-
ter passing to a subsequence in (gi) again, we can assume that limi g

−1
i (q) = u ∈

A (σ−). Let A(σ) and H(σ) be the attracting point and the repelling hyperplane
of the sequence σ .

Since F is a separating subset, there exists f ∈ F so that f±1(u) /∈ H(σ).
Take a small closed ball B(q, ε) ⊂ P centered at q and disjoint from E (σ−).

According to Lemma 9.55, g−1
i (B(q, ε)) ⊂ B

(
g−1
i (q) , Lε

)
for al large i and L

independent of i. It follows that for all large i

g−1
i (B(q, ε)) ⊂ B (u , 2Lε) .

By Lemma 4.41, fg−1
i (B(q, ε)) ⊂ B (f(u) , L′ε) for all large i and L′ indepen-

dent of i. Note that if we reduce ε, the constants L and L′ will not change. We
take ε small enough so that the sets B (f(u) , L′ε) and Nε (H(σ)) are disjoint. Since
the sequence (gi) restricted to the complement of Nε (H(σ)) converges uniformly
to the point A(σ) it follows that the sequence gifg−1

i |B(q,ε) converges uniformly to
the point A(σ). Lemma 9.58, (1), now implies that (gi) contains a 1-contracting
subsequence.

The same argument for f−1 concludes the proof. �

Thus, we have found a 1-contracting sequence τ = (hi) in Γ such that the
sequence τ− = (h−1

i ) is also 1-contracting.

Lemma 9.68. There exists f ∈ F such that, for a subsequence η = (yi) of the
sequence (fhi), both η and η− =

(
y−1
i

)
are 1-contracting. Moreover,

(9.3) A(η) 6∈ H(η) and A(η−) 6∈ H(η−) .

Proof. By Lemma 9.59, for any choice f ∈ F , the sequence (fhi) contains a
1-contracting subsequence η = (yi), with η− =

(
y−1
i

)
likewise 1-contracting, and

A(η) = f(A(τ)) , H(η) = H(τ),

A
(
η−
)

= A
(
τ−
)
, H

(
η−
)

= fH
(
τ−
)
.

Now, the assertion follows from the fact that F is a 4-separating set. �
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Definition 9.69. [Ping-pong pair] A pair of sequences η = (yi) and ζ = (zi) is
called a ping-pong pair if both sequences are as in Lemma 9.68 and, furthermore,
A (η±) 6∈ H(ζ±) and A (ζ±) 6∈ H(η±) .

Let η = (yi) be the sequence from Lemma 9.68.

Lemma 9.70. There exists f ∈ F so that the sequences (yi), (zi) = (fyif
−1)

contain subsequences that form a ping-pong pair.

Proof. By Lemma 9.59, after replacing η = (yi) with a subsequence, we may
assume that ζ = (zi) and ζ− =

(
z−1
i

)
are 1-contracting and A

(
ζ±1

)
= fA

(
η±1

)
,

while H
(
ζ±1

)
= fH

(
η±1

)
. Now, the assertion follows from the fact that F is

4-separating. �

End of proof of Theorem 9.62. Lemma 9.70 implies that Γ contains a ping-pong
pair of sequences η = (yi) , ζ = (zi). For every small ε and all large i, we have:

Nε (H(η))
c yi−→ B (A(η) , ε)

Nε
(
H
(
η−
))c y−1

i−→ B
(
A
(
η−
)
, ε
)

Nε (H(ζ))
c zi−→ B (A(ζ) , ε)

Nε
(
H
(
ζ−
))c z−1

i−→ B
(
A
(
ζ−
)
, ε
)

Moreover, for ε su�ciently small, the balls on the right-hand side are contained
in the complements of tubular neighborhoods on the left-hand side. Therefore, the
above statements also hold with transformations yi, y−1

i , zi, z
−1
i replaced by their

k-th iterations for all k > 0.
We choose ε small enough so that

B (A(η) , ε) ∩Nε
(
H(η) ∪H(ζ) ∪H

(
ζ−
))

= ∅ ,

B
(
A
(
η−
)
, ε
)
∩Nε

(
H
(
η−
)
∪H(ζ) ∪H

(
ζ−
))

= ∅ ,

B (A(ζ) , ε) ∩Nε
(
H(ζ) ∪H(η) ∪H

(
η−
))

= ∅ ,

B
(
A
(
ζ−
)
, ε
)
∩Nε

(
H
(
ζ−
)
∪H(η) ∪H

(
η−
))

= ∅ .
For ε small as above, we consider the sets

Ã = B (A(η) , ε) ∪B
(
A
(
η−
)
, ε
)

and
B̃ = B (A(ζ) , ε) ∪B

(
A
(
ζ−
)
, ε
)
.

Since A(η) ∈ H (η−), A (η−) ∈ H (η) and A(ζ) ∈ H (ζ−), A (ζ−) ∈ H (ζ), our
hypotheses imply that Ã ∩ B̃ = ∅ . Moreover for all large i, for every k ∈ Z \ {0},

yki

(
B̃
)
⊆ Ã and zki

(
Ã
)
⊆ B̃ .

Lemma 4.37 now implies that for all large i, the group 〈yi, zi〉 is a free group of
rank 2. �
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9.6. Free subgroups in compact Lie groups

The compact case is more complicated. Let Γ be a relatively compact �nitely-
generated subgroup of G = SL(n,C). According to Proposition 9.46, we may
assume that the Zariski closure of Γ in SL(n,C) is Zariski�irreducible, semisimple,
and that it acts irreducibly, i.e., it does not preserve a proper subspace of Cn. Note
that in this section, unlike in the previous one, G denotes SL(n,C), not the Zariski
closure of Γ.

Let γ1, . . . , γm denote generators of Γ and consider the sub�eld F in C generated
by the matrix entries of these matrices.

Reduction to a number �eld case. Consider the representation variety
R(Γ, G) = Hom(Γ, G). This space can be described as follows. Let

〈γ1, . . . , γm|r1, . . .〉
be a presentation of Γ (the number of relators could be in�nite). Each homomor-
phism ρ : Γ→ G is determined by the images of the generators of Γ. Hence R(Γ, G)
is a subset of Gm. A map ρ : γi 7→ G, i = 1, . . . ,m extends to a homomorphism of
Γ if and only if

(9.4) ∀j, ρ(rj) = 1.

Since the relators rj are words in γ±1
1 , . . . , γ±1

m , the equations (9.4) amount to
polynomial equations on Gm. Hence, R(Γ, G) is given by a system of polynomial
equations and has a natural structure of an a�ne algebraic variety. Since the for-
mula for the inverse in SL(n) involves only integer linear combinations of products
of matrix entries, it follows that the above equations have integer (in particular,
rational) coe�cients. In other words, the representation variety R(Γ, G) is de�ned
over Q.

Proposition 9.71. Let Z be an a�ne variety in CN de�ned by polynomial
equations with rational coe�cients and let Q be the �eld of algebraic numbers, the

algebraic closure of Q. Then the set Z ∩ QN is dense in Z with respect to the
classical topology on CN .

Proof. The proof is by induction on N . The assertion is clear for N = 1.
Indeed, in this case either Z = C or Z is a �nite set of roots of a polynomial with
rational coe�cients: These roots are algebraic numbers. Suppose the assertion
holds for subvarieties in CN−1. Pick a point x = (x1, . . . , xN ) ∈ Z and let qi be
a sequence of rational numbers converging to the �rst coordinate x1. For each
rational number qi, the intersection Z ∩ {x1 = qi} is again an a�ne variety de�ned
over Q which sits inside CN−1. Now the claim follows from the induction hypothesis
by taking a diagonal sequence. �

Corollary 9.72. Algebraic points are dense in R = R(Γ, G) with respect to
the classical topology. In other words, for every homomorphism ρ : Γ → G, there
exists a sequence of homomorphisms ρj : Γ→ G converging to ρ so that the matrix

entries of the images of generators ρj(γi) are in Q.

We now let ρi ∈ R(Γ, G) be a sequence which converges to the identity rep-
resentation ρ : Γ → Γ ⊂ G. Recall that in section 9.3, we proved that for every
�nitely-generated subgroup Γ ⊂ GL(n,C) which is not virtually solvable, there
exists a neighborhood Σ of ρ = id in Hom(Γ, GL(n,C)) so that every ρ′ ∈ Ξ has

280



image which is not virtually solvable. Therefore, without loss of generality, we may
assume that each ρj(Γ) constructed above is not virtually solvable.

Lemma 9.73. If Γj := ρj(Γ) contains a free subgroup Λj of rank 2 then so does
Γ.

Proof. Let g1, g2 ∈ Γ be the elements which map to the free generators h1, h2

of Λj under ρj . Let Λ be the subgroup of Γ generated by g1, g2. We claim that Λ
is free of rank 2. Indeed, since Λj is free of rank 2, there exists a homomorphism
φj : Λj → Λ sending hk to gk, k = 1, 2. The composition φj ◦ ρj is the identity
since it sends each hk to itself. Hence, φj : Λj → Λ is an isomorphism. �

Thus, it su�ces to consider the case when the �eld F (generated by matrix
entries of generators of Γ) is a number �eld, i.e., is contained in Q. The absolute
Galois group Gal(Q/Q) acts on F and hence on SL(n, F ):

∀σ ∈ Gal(Q/Q), A = (aij) ∈ SL(n, F ), σ(A) := (aσij).

Every σ ∈ Gal(Q/Q) extends (by identity) to the set of transcendental numbers
and, hence, extends to an automorphism σ of C. Therefore, σ determines an
automorphism σ of SL(n,C) (which, typically, it discontinuous in the classical
topology). Therefore, σ will send the subgroup Γ ⊂ SL(n, F ) to σ(Γ) ⊂ G(σ(F )) ⊂
SL(n,C). The homomorphism σ : Γ → Γ′ := σ(Γ) is 1 − 1 and, therefore, if for
some σ the group SL(n, σ(F )) happens to be a non-relatively compact subgroup of
SL(n,C) we are done by Theorem 9.49.

However, it could happen that for each σ the group G(σ(F )) is relatively com-
pact and, thus, we seemingly gained nothing. Nevertheless, there is a remarkable
construction which saves the proof.

Adeles. (See [?, Chapter 6].) The ring of adeles was introduced by A. Weil in
1936. For a number �eld F consider various norms | · | : F → R+, see �1.7.

Suppose that F is a �nitely�generated number �eld. Then F is a �nite extension
of Q. Let Nor(F ) denote the set of all norms on F which restrict to either the
absolute value or to one of the p-adic norms on Q ⊂ F . We will use the notation
Fν , Qν to denote the completion of F with respect to the norm ν, we let Oν ⊂ Fν
denote the ring of integers:

Oν = {x ∈ Fν : ν(x) 6 1}.

Note that for each x ∈ Q, x ∈ Op for all but �nitely many p's, since x has only
�nitely many primes in its denominator. The same is true for elements of F : For
all but �nitely many ν ∈ Nor(F ), ν(x) 6 1. We will use the notation νp for the
p-adic norm on Q.

Product formula: For each x ∈ Q \ {0}∏
ν∈Nor(Q)

ν(x) = 1.

Indeed, if x = p is prime, then |p| = p for the archimedean norm, ν(p) = 1 if ν 6= νp
is a nonarchimedean norm and νp(p) = 1/p. Thus, the product formula holds for
prime numbers x. Since norms are multiplicative functions from Q× to R+, the
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product formula holds for arbitrary x 6= 0. A similar product formula is true for an
arbitrary algebraic number �eld F :∏

ν∈Nor(F )

(ν(x))Nν = 1,

where Nν = [Fν : Qν ], see [?, Chapter 6].

Definition 9.74. The ring of adeles is the restricted product

A(F ) :=

′∏
ν∈Nor(F )

Fν ,

i.e. the subset of the direct product

(9.5)
∏

ν∈Nor(F )

Fν

which consists of sequences whose projection to Fν belongs to Oν for all but �nitely
many ν's.

We topologize A(F ) via the subset topology induced from the product (9.5),
which, in turn, is equipped with the product topology. Note that the ring operations
are continuous with respect to this topology.

For instance, if F = Q then A(Q) is the restricted product

R×
′∏

p is prime
Qp.

Remark 9.75. Actually, it su�ces to use the ring of adeles A(Q). This is
done via the following procedure called the restriction of scalars: The �eld F is an
m-dimensional vector space over Q. This determines an embedding

Γ ⊂ GL(n, F ) ↪→
m∏
i=1

GL(n,Q) ⊂ GL(n+m,Q)

and reduces our discussion to the case Γ ⊂ GL(n+m,Q).

Now, a miracle happens:

Theorem 9.76 (See e.g. Chapter 6, Theorem 1 of [?]). The image of the
diagonal embedding F ↪→ A(F ) is a discrete subset in A(F ).

Proof. It su�ces to verify that 0 is an isolated point. Take the archimedean
norms ν1, . . . , νm ∈ Nor(F ) (there are only �nitely many of them since the Galois
group Gal(F/Q) is �nite) and consider the open subset

U =

m∏
i=1

{x ∈ Fνi : νi(x) < 1/2} ×
∏

µ∈Nor(F )\{ν1,...,νm}

Oµ

of A(F ). Then for each (xν) ∈ U ,∏
ν∈Nor(F )

ν(xν) < 1/2 < 1.

Hence, by the product formula, the intersection of U with the image of F in A(F )
consists only of {0}. �
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In order to appreciate this theorem, the reader should consider the case F = Q
which is dense in the completion of Q with respect to every norm.

Recall that Γ is a subgroup in SL(n, F ). The diagonal embedding above de�nes
an embedding

Γ ⊂ SL(n, F ) ↪→ SL(n,A(F )) ⊂
∏

ν∈Nor(F )

SL(n, Fν)

with discrete image.
For each norm ν ∈ Nor(F ) we have the projection pν : Γ → SL(n, Fν). If

the image pν(Γ) is relatively compact for each ν then Γ is relatively compact in∏
ν∈Nor(F ) SL(n, Fν), by Tychono�'s Theorem. As Γ is also discrete, this implies

that Γ is �nite, a contradiction.
Thus, there exists a norm ν ∈ Nor(F ) such that the image of Γ in SL(n, Fν)

is not relatively compact. If ν happens to be archimedean we are done as before.
The more interesting case occurs if ν is nonarchimedean. Then the �eld Fν = k is
a local �eld (just like the p-adic completion of the rational numbers) and we appeal
to Theorem 9.49 to conclude that Γ contains a free subgroup in this case as well.
This concludes the proof of the Tits' Alternative (Theorem 9.1). �

Remark 9.77. 1. The above proof works only if Γ is �nitely generated. The
general case will be treated below.

2. Tits' proof also works for algebraic groups over �elds of positive character-
istic, see [?]. However, in the case of in�nitely-generated groups one has to modify
the assertion, since GL(n, F ), where F is an in�nite algebraic extension of a �nite
�eld, provides a counter-example otherwise.

3. The arguments in the above proof mostly follow the ones of Breuillard and
Gelander in [?].

Note that a consequence of the previous arguments is the following.

Theorem 9.78. Let Γ be a �nitely generated group that does not contain a free
non-abelian subgroup. Then:

(1) If Γ is a subgroup of an algebraic group L then its Zariski closure G is
virtually solvable.

(2) If Γ is a subgroup of a Lie group L with �nitely many connected compo-
nents, then the closure G of Γ in the Lie group L is virtually solvable.

Furthermore, in both cases above, the solvable subgroup S of G has derived length
at most δ = δ(L) and the index |G : S| is at most ν = ν(L).

Proof. The arguments in the proof of Theorem 9.1 imply the statement (1).
The statement (2) follows in a similar manner. Indeed, as in Section 9.4, using the
adjoint representation one can reduce the problem to the setting of linear subgroups,
and there the closure in the standard topology is contained in the Zariski closure.

�

Tits Alternative without �nite generation assumption.

We will need

Lemma 9.79. Every countable �eld F of zero characteristic embeds in C.

283



Proof. Since F has characteristic zero, its prime sub�eld P is isomorphic to
Q. Then F is an extension of the form

P ⊂ E ⊂ F,
where P ⊂ E is an algebraic extension and E ⊂ F is a purely transcendental
extension (see [Chapter VI.1][?]). The algebraic number �eld E embeds in Q̄ ⊂ C.
Since F is countable, F/E has countable dimension and, therefore,

F = E(u1, . . . , um)

or
F = E(u1, . . . , um, . . .).

Sending variables uj to independent transcendental numbers zj ∈ C, we then obtain
an embedding F ↪→ C. �

Theorem 9.80 (Tits Alternative). Let F be a �eld of zero characteristic and
Γ be a subgroup of GL(n, F ). Then either Γ is virtually solvable or Γ contains a
free nonabelian subgroup.

Proof. The group Γ is the direct limit of the direct system of its �nitely-
generated subgroups Γi. Let Fi ⊂ F denote the sub�eld generated by the matrix
entries of the generators of Γi. Then Γi 6 GL(n, Fi). Since F (and, hence, every
Fi) has zero characteristic, the �eld Fi embeds in C (see Lemma 9.79).

If one of the groups Γi contains a free nonabelian subgroup, then so does
Γ. Assume, therefore, that this does not happen. Then, in view of the Tits Al-
ternative (for �nitely generated linear groups), each Γi is virtually solvable. For
ν = ν(GL(n,C)) and δ = δ(GL(n,C)), every i there exists a subgroup Λi 6 Γi
of index 6 δ, so that Λi has derived length 6 δ (see Theorem 9.38). In view of
Exercise ??, the group Γ is also virtually solvable. �
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CHAPTER 10

The Banach-Tarski paradox

10.1. Paradoxical decompositions

Definition 10.1. Two subsets A,B in a metric space (X,dist) are congruent
if there exists an isometry φ : X → X such that φ(A) = B.

Definition 10.2. Two sets A,B in a metric space X are piecewise congruent
(or equidecomposable) if, for some k ∈ N, they admit partitions A = A1 t ... t Ak,
B = B1t ...tBk such that for each i ∈ {1, ..., k}, the sets Ai and Bi are congruent.

Two subsets A,B in a metric space X are countably piecewise congruent (or
countably equidecomposable) if they admit partitions A =

⊔
n∈NAn, B =

⊔
n∈NBn

such that for every n ∈ N, the sets An and Bn are congruent.

Remark 10.3. Thus, by using empty sets for some An, Bn, we see that piece-
wise congruence as a stronger form of countably piecewise congruence.

Exercise 10.4. Prove that (countably) piecewise congruence is an equivalence
relation.

Definition 10.5. A set E in a metric space X is paradoxical if there exists a
partition

E = X1 t ... tXk t Y1 t ... t Ym
and isometries ϕ1, ..., ϕk, ψ1, ..., ψm of X, so that

ϕ1(X1) t ... t ϕk(Xk) = E

and
ψ1(Y1) t ... t ψm(Ym) = E .

A set E in a metric space X is countably paradoxical if there exists a partition

E =
⊔
n∈N

Xn t
⊔
m∈N

Ym

and two sequences of isometries (ϕn)n∈N, (ψm)m∈N of X, so that⊔
n∈N

ϕn(Xn) = E, and
⊔
m∈N

ψm(Ym) = E.

Exercise 10.6. 1. If E,E′ ⊂ X are piecewise-congruent and E is paradoxical,
then so is E′.

2. If E,E′ ⊂ X are countably piecewise-congruent and E is countably para-
doxical, then so is E′.

Using earlier work of Vitali and Hausdor�, Banach and Tarski proved the fol-
lowing:
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Theorem 10.7 (Banach-Tarski paradox [?]). (1) Any two bounded sub-
sets with non-empty interior in Rn (for n� 3) are piecewise congruent.

(2) Any two bounded subsets with non-empty interior in Rn (for n ∈ {1, 2})
are countably piecewise congruent.

Corollary 10.8. (1) Every Euclidean ball is paradoxical in Rn, n > 3,
and countably paradoxical in Rn, n ∈ {1, 2}.

(2) For every n > 3 and every m ∈ N, every ball in Rn is piecewise congruent
to m copies of this ball (one can �double� the ball).

(3) A pea and the sun are piecewise congruent (any two Euclidean n-balls are
piecewise-congruent for n > 3).

Remark 10.9. The Banach-Tarski paradox emphasizes that it is impossible
to �nd a �nitely-additive measure de�ned on all subsets of the Euclidean space of
dimension at least 3 that is invariant with respect to isometries and takes the value
one on a unit cube. The main point in their theorem is that the congruent pieces
Ai, Bi are not Lebesgue measurable.

Remark 10.10 (Banach-Tarski paradox and axiom of choice). The Banach-
Tarski paradox is neither provable nor disprovable with Zermelo-Fraenkel axioms
(ZF) only: It is impossible to prove that a unit ball in R3 is paradoxical in ZF, it
is also impossible to prove it is not paradoxical. An extra axiom is needed, e.g.,
the axiom of choice (AC). In fact, work of M. Foreman & F. Wehrung [?] and J.
Pawlikowski [?] shows that the Banach�Tarski paradox can be proved assuming ZF
and the Hahn�Banach theorem (which is a weaker axiom than AC, see Section ??).

10.2. Step 1 of the proof of the Banach�Tarski theorem

We will prove only Corollary 10.8, Parts 1 and 2 and only in the case n 6 3.
The general statement of Theorem 10.7 for two bounded subset with non-empty
interiors is derived from the doubling of a ball by using the Banach�Bernstein-
Schroeder theorem (see [?]). The general statement in Rn, n > 3, can be easily
either derived from the statement for n = 3, or proved directly by adapting the
proof in dimension 3.

The �rst step in the proof is common to all dimensions.

Step 1: The unit sphere Sn is piecewise congruent to Sn \ C, where C is
any countable set, and n ≥ 2.

We �rst prove that there exists a rotation ρ around the origin such that for any
integer n > 1, ρn(C)∩C = ∅. This is obvious in the plane (only a countable set of
rotations do not satisfy this).

In the space we �rst select a line ` through the origin such that its intersection
with S2 is not in C. Such a line exists because the set of lines through the origin
containing points in C is countable. Then we look for a rotation ρθ of angle θ
around ` such that for any integer n > 1, ρnθ (C) ∩ C = ∅. Indeed take A the set of
angles α such that the rotation of angle α around ` sends a point in C to another
point in C. There are countably many such angles, therefore the set A′ =

⋃
n>1

1
nA

is also countable. Thus, we may choose an angle θ 6∈ A′.
Take O =

⋃
n>0 ρ

n
θ (C) and decompose S2 as S2 = Ot (S2 \O). Then (O\C)t

(S2 \ O) = S2 \ C. We, thus, have a piecewise congruence of S2 to S2 \ C which
sends O to O \ C by ρθ and is the identity on S2 \ O.
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10.3. Proof of the Banach�Tarski theorem in the plane

Step 2 (using the axiom of choice): The unit circle S1 is countably para-
doxical.

Let α be an irrational number and let R ∈ SO(2) be the counter-clockwise
rotation of angle 2πα. Then the map m 7→ Rm is an injective homomorphism
Z → SO(2). Via this homomorphism, Z acts on the unit circle S1. According to
the axiom of choice there exists a subset D ⊂ S1 which intersects every Z-orbit in
exactly one point.

Since Z decomposes as 2Z t (2Z + 1), the unit circle decomposes as

2Z ·D t (2Z + 1) ·D.

Now, for each Xn = R2n ·D consider the isometry ϕn = R−n, and for each Yn =
R2n+1 · D consider the isometry ψn = R−n−1. Clearly S1 =

⊔
n∈Z ϕn(Xn) and

S1 =
⊔
n∈Z ψn(Yn).

Step 3: The unit disk D2 is countably paradoxical.

Let D2 be the closed unit disk in R2 centered at a point O. Step 1 and the fact
that D2 \ {O} can be written as the set

{λx ; λ ∈ (0, 1] , x ∈ S1},

imply that D2\{O} is countably paradoxical. Thus, it su�ces to prove that D2\{O}
is piecewise congruent to D2. Take S1

((
1
2 , 0
)
, 1

2

)
, the unit circle with center

(
1
2 , 0
)

and radius 1
2 . For simplicity, we denote this circle S1/2. Then

D2 \ {O} = D2 \ S1/2 t S1/2 \ {O}.

According to Step 1, S1/2 \ {O} is piecewise congruent to S1/2, hence D2 \ {O} is
piecewise congruent to

D2 \ S1/2 t S1/2 = D2. �

Remark 10.11 (Stronger result). Instead of the splitting Z = 2Z t (2Z + 1)
of Z into two `copies' of itself, we might consider a splitting of Z into in�nitely
countably many `copies' of itself. Indeed the subsets Z(k) = 2kZ + 2k−1 , k ∈ N ,
form a partition of Z. This allows to prove, following the same proof as above, that
a unit disk is countably piecewise congruent to countably many copies of itself.

Proof. As in Step 2, we write S1 = ZD =
⊔
k∈N Z(k)D. The idea is to move

by isometries the copies of D in Z(k)D so as to form the k-th copy of the unit circle.
Indeed, if for the set Xk,m = R2km+2k−1

D we consider the isometry

φk,m = T(2k,0) ◦R−2km−2k−1+m,

then ⊔
m∈Z

φk,m(Xk,m)

is equal to S1((2k, 0), 1).
Thus, S1 is countably piecewise congruent to⊔

k∈N
S1((2k, 0), 1).
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This extends to the corresponding disks with their centers removed. In Step 3 we
proved that a punctured disk is piecewise congruent to the full disk. This allows to
�nish the argument. �

10.4. Proof of the Banach�Tarski theorem in the space

We now explain prove Banach�Tarski theorem for A, the unit ball in R3 and
B, the disjoint union of two unit balls in R3.

Step 2: a paradoxical decomposition for the free group of rank 2.

Let F2 be the free group of rank 2 with generators a, b. Given u, a reduced
word in a, b, a−1, b−1, we denote by Wu the set of reduced words in a, b, a−1, b−1

with the pre�x u. Every x ∈ F2 de�nes a map Lx : F2 → F2, Lx(y) = xy (left
translation by x).

Then

(10.1) F2 = {1} tWa tWa−1 tWb tWb−1

but also F2 = LaWa−1 tWa , and F2 = LbWb−1 tWb. We slightly modify the above
partition in order to include {1} into one of the other four subsets. Consider the
following modi�cations of Wa and Wa−1 :

W ′a =Wa \ {an ; n > 1} and W ′a−1 =Wa−1 t {an ; n > 0} .

Then

(10.2) F2 =W ′a tW ′a−1 tWb tWb−1

and
F2 = LaW ′a−1 ∪W ′a .

Step 3: A paradoxical decomposition for the unit sphere (using the axiom
of choice).

According to the Tits Alternative (see also Example 9.29), the free group F2

embeds as a subgroup in the orthogonal group SO(3). For every w ∈ F2 we denote
by Rw the rotation of R3 given by this embedding.

Let C be the (countable) set of intersections of S2 with the union of axes of
the rotations Rw, w ∈ F2 \ {1}. Since C is countable, by Step 1, S2 is piecewise
congruent to S2 \C. The set S2 \C is a disjoint union of orbits of F2. According to
the axiom of choice there exists a subset D ⊂ S2 \C which intersects every F2-orbit
in S2 \ C exactly once. (The removal of the set C ensures that the action of F2 is
free, i.e., no nontrivial element of F2 �xes a point, that is all orbits are copies of
F2.)

By Step 2,
F2 =W ′a tW ′a−1 tWb tWb−1 .

This de�nes a decomposition

(10.3) S2 \ C = F2 ·D =W ′a ·D tW ′a−1 ·D tWb ·D tWb−1 ·D .

The fact that the subsets in the union (10.3) are pairwise disjoint re�ects the
fact that the action of F2 on S2 \C is free. Since F2 admits a paradoxical decompo-
sition, so does S2 \ C. Since the latter is piecewise-congruent to S2, it follows that
S2 also admits a paradoxical decomposition.
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We will now show that S2 is piecewise congruent to a disjoint union of two
copies of S2. Let v denote the vector (3, 0, 0) in R3 and let Tv denote the isometry
of R3 which is the translation by v.

In view of the decomposition (10.3), the set S2 \ C is piecewise congruent to

W ′a ·D tRaW ′a−1 ·D t Tv (WbD) t Tv ◦Rb (Wb−1D) = S2 \ C t Tv
(
S2 \ C

)
.

This and Step 1 imply that S2 is piecewise congruent to S2tTvS2, i.e., one can
�double� the ball. Part 2 of Corollary 10.8 now follows by induction.

Step 4: A paradoxical decomposition for the unit ball.

The argument is very similar to the last step in the 2-dimensional case. Let B3

denote the closed unit ball in R3 centered at O. Step 3 and the fact that the unit
ball B3 \ {O} can be written as the set

{λx ; λ ∈ (0, 1] , x ∈ S2},
imply that B3 \ {O} is piecewise congruent to

B3 \ {O} t Tv
(
B3 \ {O}

)
.

Thus, it remains to prove that B3 \ {O} is piecewise congruent to B3. We denote
by S1/2 the sphere with the center

(
1
2 , 0, 0

)
and radius 1

2 . Then

B3 \ {O} = B3 \ S1/2 t S1/2 \ {O}.
According to Step 1, S1/2 \ {O} is piecewise congruent to S1/2; hence, B3 \ {O} is
piecewise congruent to B3 \ S1/2 t S1/2 = B3.

This concludes the proof of Corollary 10.8, Parts 1 and 2, for n 6 3. �

Remark 10.12. Banach and Tarski's proof relies on the Hausdor�'s paradox,
discovered several years prior to their proof. Inspired by the Hausdor�'s argument,
R. M. Robinson, answering a question of von Neumann, proved in [?] that �ve is the
minimal number of pieces in a paradoxical decomposition of the unit 3-dimensional
ball. See Proposition 11.90 for a proof of this statement, and Section 11.7 for a
discussion on the minimal number of pieces in a paradoxical decomposition.

Remark 10.13. (1) The free group F2 of rank 2 contains a free subgroup
of countably in�nite rank, see Proposition 4.47. This and a proof similar
to the one of Theorem 10.7 yields that the unit sphere Sn−1 is countably
piecewise congruent to countably many copies of Sn−1.

(2) It can be proved that the unit sphere Sn−1 can be partitioned into 2ℵ0

pieces, so that each piece is piecewise congruent to Sn−1 (see [?]).
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CHAPTER 11

Amenability and paradoxical decomposition.

In this chapter we discuss in detail two important concepts behind the Banach-
Tarski paradox: Amenability and paradoxical decompositions. Although both prop-
erties were �rst introduced for groups (of isometries), it turns out that amenability
can be de�ned in purely metric terms, in the context of graphs of bounded geom-
etry. We shall begin by discussing the graph version of amenability, then we will
turn to the case of groups, and then to the opposite property of being paradoxical.

11.1. Amenable graphs

Definition 11.1. A graph G is called amenable if its Cheeger constant, as
described in De�nition ??, is zero. Equivalently, there exists a sequence Fn of �nite
subsets of V such that

lim
n→∞

|E(Fn, F
c
n)|

|Fn|
= 0 .

Such sequence Fn is called a Følner sequence for the graph G .
A graph G is non-amenable if its Cheeger constant is strictly positive.

It is immediate from the de�nition that every �nite graph is amenable (take
Fn = V ).

We describe in what follows various metric properties equivalent to non-ame-
nability. Our arguments are adapted from [?]. The only tool that will be needed is
Hall�Rado Marriage Theorem from graph theory, stated below.

Let Bip(Y,Z;E) denote the bipartite graph with vertex set V split as V =
Y t Z, and the edge-set E. Given two integers k, l > 1, a perfect (k, l)�matching
of Bip(Y, Z;E) is a subset M ⊂ E such that each vertex in Y is the endpoint of
exactly k edges in M , while each vertex in Z is the endpoint of exactly l edges in
M .

Theorem 11.2 (Hall-Rado [?], §III.2). Let Bip(Y,Z;E) be a locally �nite
bipartite graph and let k > 1 be an integer such that:

• For every �nite subset A ⊂ Y , its edge-boundary E(A,Ac) contains at
least k|A| elements.

• For every �nite subset B in Z, its edge-boundary E(B,Bc) contains at
least |B| elements.

Then Bip(Y,Z;E) has a perfect (k, 1)�matching.

Given a discrete metric space (X,dist), two (not necessarily disjoint) subsets
Y,Z in X, and a real number C > 0, one de�nes a bipartite graph BipC(Y, Z),
with the vertex set Y t Z, where two vertices y ∈ Y and z ∈ Z are connected by
an edge in BipC(Y, Z) if and only if dist(y, z) 6 C. (The reader will recognize here
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a version of the Rips complex of a metric space.) We will use this construction in
the case when Y = Z = X, then the vertex set of Bip(X,X) will consist of two
copies of the set X.

In what follows, given a graph with the vertex-set V we will use the notation
NC(F ) and NC(F ) to denote the �closed� and �open� C-neighborhood of F in V :

NC(F ) = {v ∈ V : dist(v, F ) 6 C}, NC(F ) = {v ∈ V : dist(v, F ) < C}.

Theorem 11.3. Let G be a connected graph of bounded geometry, with vertex
set V and edge set E, endowed, as usual, with the standard metric. The following
conditions are equivalent:

(a) G is non-amenable.

(b) G satis�es the following expansion condition: There exists a constant C >
0 such that for every �nite non-empty subset F ⊂ V , the set NC(F ) ⊂ V
contains at least twice as many vertices as F .

(c) There exists a constant C > 0 such that the graph BipC(V, V ) has a perfect
(2, 1)�matching.

(d) There exists a map f ∈ B(V ) (see De�nition 5.10) such that for every
v ∈ V the preimage f−1(v) contains exactly two elements.

(e) (Gromov's condition) there exists a map f ∈ B(V ) such that for every
v ∈ V the pre-image f−1(v) contains at least two elements.

Remark 11.4. Property (b) can be replaced by the property (b') that for some
(equivalently, every) β > 1 there exists C > 0 such that NC(F )∩V has cardinality
at least β times the cardinality of F . Indeed, it su�ces to observe that for every
α > 1, C > 0,

∀F, |NC(F )| > α|F | ⇒ ∀k ∈ N, |N kC(F )| > αk|F |.

Proof. We will now prove Theorem 11.3. Let m ≥ 1 denote the valence of G.
(a) ⇒ (b). The graph G is non-amenable if and only if its Cheeger constant is
positive. In other words, there exists η > 0 such that for every �nite set of vertices
F , |E(F, F c)| > η|F |. This implies that N 1(F ) contains at least (1+ η

m )|F | vertices,
which, according to Remark 11.4, implies property (b).

(b) ⇒ (c). Let C be the constant as in the expansion property. We form
the bipartite graph BipC(Y,Z), where Y,Z are two copies of V . Clearly, the graph
BipC(Y,Z) is locally �nite. For any �nite subset A in V , since |NC(A)∩V | > 2|A|,
it follows that the edge�boundary of A in BipC(Y,Z) has at least 2|A| elements,
where we embed A in either one of the copies of V in BipC(Y, Z). It follows by
Theorem 11.2 that BipC(Y,Z) has a perfect (2, 1)�matching.

(c) ⇒ (d). The matching in (c) de�nes a map f : Z = V → Y = V , so that
distG(z, f(z)) 6 C. Hence, f ∈ B(V ) and |f−1(y)| = 2 for every y ∈ V .

The implication (d) ⇒ (e) is obvious. We show that (e) ⇒ (b). According
to (e), there exists a constant M > 0 and a map f : V → V such that for every
x ∈ V , dist(x, f(x)) 6 M , and |f−1(y)| ≥ 2 for every y ∈ V . For every �nite
nonempty set F ⊂ V , f−1(F ) is contained in NM (F ) and it has at least twice as
many elements. Thus, (b) is satis�ed.

Thus, we proved that the properties (b) through (e) are equivalent.
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It remains to be shown that (b)⇒ (a). By hypothesis, there exists a constant C
such that for every �nite non-empty subset F ⊂ V , |NC(F ) ∩ V | > 2|F |. Without
loss of generality, we may assume that C is a positive integer. Recall that ∂V F
is the vertex�boundary of the subset F ⊂ V . Since NC(F ) = F ∪ NC(∂V F ), it
follows that |NC(∂V F ) \ F | > |F |.

Recall that the graph G has �nite valence m > 1. Therefore,

|NC(∂V F )| 6 mC |∂V F | .

We have, thus, obtained that for every �nite nonempty set F ⊂ V ,

|E(F, F c)| > |∂V F | >
1

mC
|NC(∂V F )| > 1

mC
|F |.

Therefore, the Cheeger constant of G is at least 1
mC

> 0 , and the graph is non-
amenable. �

Exercise 11.5. Show that a sequence Fn ⊂ V is Følner if and only if for every
C ∈ R+

lim
n→∞

|NC(Fn)|
|Fn|

= 1.

Some graphs with bounded geometry admit Følner sequences which consist of
metric balls. A proof of the following property (in the context of Cayley graphs)
�rst appeared in [?].

Proposition 11.6. A graph G of bounded geometry and sub-exponential growth
(in the sense of De�nition ??) is amenable and has the property that for every
basepoint v0 ∈ V (where V is the vertex set of G) there exists a Følner sequence
consisting of metric balls with center v0.

Proof. Let v0 be an arbitrary vertex in G. We equip the vertex set V of G
with the restriction of the standard metric on G and set

Gv0,V (n) = |B̄(v0, n)|,

here and in what follows B̄(x, n) is the ball of center x and radius x in V . Our goal
is to show that for every ε > 0 there exists a radius Rε such that ∂V B̄(v0, Rε) has
cardinality at most ε |B̄(v0, Rε)| .

We argue by contradiction and assume that there exists ε > 0 such that for
every integer R > 0,

|∂V B̄(v0, R)| > ε |B̄(v0, R)| .
(Since G has bounded geometry, considering vertex�boundary is equivalent to con-
sidering the edge-boundary.) This inequality implies that

|B̄(v0, R+ 1)| > (1 + ε)|B̄(v0, R)| .

Applying the latter inequality inductively we obtain

∀n ∈ N, |B̄(v0, n)| > (1 + ε)n ,

whence

lim sup
n→∞

lnGv0,V
n

> ln(1 + ε) > 0 .

This contradicts the assumption that G has sub-exponential growth. �
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For the sake of completeness we mention without proof two more properties
equivalent to those in Theorem 11.3.

The �rst will turn out to be relevant to a discussion later on between non-
amenability and existence of free sub-groups (the von Neumann-Day Question
11.77).

Theorem 11.7 (Theorem 1.3 in [?]). Let G be an in�nite connected graph of
bounded geometry. The graph G is non-amenable if and only if there exists a free
action of a free group of rank two on G by bi-Lipschitz maps which are at �nite
distance from the identity.

The second property is related to probability on graphs.

An amenability criterion with random walks. Let G be an in�nite locally
�nite connected graph with set of vertices V and set of edges E. For every vertex
x of G we denote by val(x) the valency at the vertex X. We refer the reader to
[?, ?, ?] for the de�nition of Markov chains and detailed treatment of random walks
on graphs and groups.

A simple random walk on G is a Markov chain with random variables

X1, X2, . . . , Xn, . . .

on V , with the transition probability p(x, y) = 1
val(x) if x and y are two vertices

joined by an edge, and p(x, y) = 0 if x and y are not joined by an edge.
We denote by pn(x, y) the probability that a random walk starting in x will be

at y after n steps. The spectral radius of the graph G is de�ned by

ρ(G) = lim sup
n→∞

[pn(x, y)]
1
n .

It can be easily checked that the spectral radius does not depend on x and y.

Theorem 11.8 (J. Dodziuk, [?]). A graph of bounded geometry is non-amenable
if and only if ρ(G) < 1 .

Note that in the case of countable groups the corresponding theorem was proved
by H. Kesten [?].

Corollary 11.9. In a non-amenable graph of bounded geometry, the simple
random walk is transient, that is, for every x, y ∈ V ,

∞∑
n=1

pn(x, y) <∞ .

11.2. Amenability and quasi-isometry

Theorem 11.10 (Graph amenability is QI invariant). Suppose that G and G′
are quasi-isometric graphs of bounded geometry. Then G is amenable if and only if
G′ is.

Proof. We will show that non-amenability is a quasi-isometry invariant. We
will assume that both G and G′ are in�nite, otherwise the assertion is clear. Note
that according to Theorem 11.3, Part (b), nonamenability is equivalent to existence
of a constant C > 0 such that for every �nite non-empty set F of vertices, its closed
neighborhood N̄C(F ) contains at least 2|F | vertices.
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Let V and V ′ be the vertex sets of graphs G and G′ respectively. We assume
that V, V ′ are endowed with the metrics obtained by restriction of the standard
metrics on the respective graphs. Let m < ∞ be an upper bound on the valence
of graphs G,G′. Let f : V → V ′ and g : V ′ → V be L�Lipschitz maps that are
quasi-inverse to each other:

dist(f ◦ g, Id) 6 A, dist(g ◦ f, Id) 6 A.

Assume that G′ is amenable. Given a �nite set F in V , consider

F
f−→ F ′ = f(F )

g−→ F ′′ = g(F ′).

Since F ′′ is at Hausdor� distance 6 A from F , it follows that |F | 6 b|F ′′|, where
b = mL. In particular,

|f(F )| > b−1|F |.
Likewise, for every �nite set F ′ in V ′ we obtain

|g(F ′)| > b−1|F ′| .

Remark 11.4 implies that for every number α > b2, there exists C > 1 such
that for an arbitrary �nite set F ′ ⊂ V ′, its neighborhood N̄C(F ′) contains at least
α|F ′| vertices. Therefore, the set g

(
N̄C(F ′)

)
contains at least

1

b
|NC(F ′)| > α

b
|F ′|

elements.
Pick a �nite nonempty subset F ⊂ V and set F ′ := f(F ), F ′′ = gf(F ). Then

|F ′| ≥ b−1|F | and, therefore,

|g
(
N̄C(F ′)

)
| > α

b2
|F |.

Since g is L�Lipschitz,

g
(
N̄C(F ′)

)
⊂ N̄LC(F ′′) ⊂ N̄LC+A(F ).

We conclude that
|N̄LC+A(F )| > α

b2
|F |.

Setting C ′ := LC +A, and β := α
b2 > 1, we conclude that G satis�es the expansion

property (b') in Theorem 11.3. Hence, G is also non-amenable. �

We will see below that this theorem generalizes in the context connected Rie-
mannian manifolds M of bounded geometry and graphs G obtained by discretiza-
tion of M , and, thus, quasi-isometric to M . More precisely, we will see that non-
amenability of the graph is equivalent to positivity of the Cheeger constant of the
manifold (see De�nition 2.20). This may be seen as a version within the setting
of amenability/isoperimetric problem of the Milnor�Efremovich�Schwartz Theorem
?? stating that the growth functions of M and G are equivalent.

In what follows we use the terminology in De�nitions 2.56 and 2.60 for the
bounded geometry of a Riemannian manifold, respectively of a simplicial graph.

Theorem 11.11. Let M be a complete connected n-dimensional Riemannian
manifold and G a simplicial graph, both of bounded geometry. Assume that M is
quasi-isometric to G. Then the Cheeger constant of M is strictly positive if and
only if the graph G is non-amenable.
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Remarks 11.12. (1) Theorem 11.11 was proved by R. Brooks [Bro82a],
[Bro81] in the special case when M is the universal cover of a compact
Riemannian manifold and G is the a Cayley graph of the fundamental
group of this compact manifold .

(2) A more general version of Theorem 11.11 requires a weaker condition of
bounded geometry for the manifold than the one used in this book. See
for instance [Gro93], Proposition 0.5.A5. A proof of that result can be
obtained by combining the main theorem in [?] and Proposition 11 in [?].

Proof. Since M has bounded geometry it follows that its sectional curvature
is at least a and at most b, for some b > a. It also follows that the injectivity radius
at every point of M is at least ρ , for some ρ > 0.

As in Theorem 2.24, we let Vκ(r) denote the volume of ball of radius r in the
n-dimensional space of constant curvature κ.

Choose ε so that 0 < ε < 2ρ. Let N be a maximal ε-separated set in M .
It follows that U = {B(x, ε) | x ∈ N} is a covering of M , and by Lemma 2.58,

(2), its multiplicity is at most

m =
Va
(

3ε
2

)
Vb
(
ε
2

) .
We now consider the restriction of the Riemannian distance function on M to

the subset N . De�ne the Rips complex Rips8ε(N) (with respect to this metric on
N), and the 1-dimensional skeleton of the Rips complex, the graph Gε. According
to Theorem 5.41, the manifold M is quasi-isometric to Gε. Furthermore, Gε has
bounded geometry as well. This and Theorem 11.10 imply that Gε has strictly posi-
tive Cheeger constant if and only if G has. Thus, it su�ces to prove the equivalence
in Theorem 11.11 for the graph G = Gε.

Assume that M has positive Cheeger constant. This means that there exists
h > 0 such that for every open submanifold Ω ⊂ M with compact closure and
smooth boundary,

Area(∂Ω) > hV ol(Ω) .

Our goal is to show that there exist uniform positive constants B and C such
that for every �nite subset F ⊂ N there exists an open submanifold with compact
closure and smooth boundary Ω, such that (with the notation in De�nition 1.11),

(11.1) cardE(F, F c) > BArea(∂Ω) and CV ol(Ω) > cardF .

Then, it would follow that

|E(F, F c)| > Bh

C
|F |,

i.e., G would be non-amenable. Here, as usual, F c = N \ F .
Since M has bounded geometry, the open cover U admits a smooth partition

of unity {ϕx ; x ∈ N} in the sense of De�nition 2.8, such that all the functions
ϕx are L�Lipschitz for some constant L > 0 independent of x , see Lemma 2.23.
Let F ⊂ N be a �nite subset. Consider the smooth function Φ =

∑
x∈F ϕx . By

hypothesis and since U has multiplicity at most m, the function Φ is Lm�Lipschitz.
Furthermore, since the map Φ has compact support, the set Θ of singular values of
Φ is compact and has Lebesgue measure zero.
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For every t ∈ (0, 1), the preimage

Ωt = Φ−1((t,∞)) ⊂M

is an open submanifold in M with compact closure. If we choose t to be a regular
value of Φ, that is t 6∈ Θ, then the hypersurface Φ−1(t) , which is the boundary of
Ωt, is smooth (Theorem 2.4).

Since N is ε-separated, the balls B
(
x, ε2

)
, x ∈ N , are pairwise disjoint. There-

fore, for every x ∈ N the function ϕx restricted to B
(
x, ε2

)
is identically equal to

1. Hence, the union ⊔
x∈F

B
(
x,
ε

2

)
is contained in Ωt for every t ∈ (0, 1), and in view of Part 2 of Theorem 2.24 we get

V ol(Ωt) >
∑
x∈F

V ol
(
x,
ε

2

)
> cardF · Vb (ε/2) .

Therefore, for every t /∈ Θ, the domain Ωt satis�es the second inequality in (11.1)
with C−1 = Vb (ε/2). Our next goal is to �nd values of t /∈ Θ so that the �rst
inequality in (11.1) holds.

Fix a constant η in the open interval (0, 1), and consider the open set U =
Φ−1((0, η)).

Let F ′ be the set of points x in F such that U ∩ B(x, ε) 6= ∅. Since for every
y ∈ U there exists x ∈ F such that ϕx(y) > 0, it follows that the set of closed balls
centered in points of F ′ and of radius ε cover U .

Since {ϕx : x ∈ N} is a partition of unity for the cover U of M , it follows that
for every y ∈ U there exists z ∈ N \ F such that ϕz(y) > 0, whence y ∈ B(z, ε).
Thus,

(11.2) U ⊂

( ⋃
x∈F ′

B(x, ε)

)
∩

 ⋃
z∈N\F

B(z, ε)

 .

In particular, for every x ∈ F ′ there exists z ∈ N \F such that B(x, ε)∩B(z, ε) 6= ∅,
whence x and z are connected by an edge in the graph G.

Thus, every point x ∈ F ′ belongs to the vertex-boundary ∂V F of the subset F
of the vertex set of the graph G. We conclude that cardF ′ 6 cardE(F, F c) .

Since |∇Φ| 6 mL, by the Coarea Theorem 2.16, with g ≡ 1, f = Φ and
U = Φ−1(0, η), we obtain:ˆ η

0

Area(∂Ωt)dt =

ˆ
U

|∇Φ|dV 6 mLV ol(U) 6 mL
∑
x∈F ′

V ol(B(x, ε)).

The last inequality follows from the inclusion (11.2). At the same time, by applying
Theorem 2.24, we obtain that for every x ∈M

Va(ε) > V ol(B(x, ε)).

By combining these inequalities, we obtainˆ η

0

Area(∂Ωt)dt 6 mLVa(ε) |F ′| 6 mLVa(ε) |E (F, F c) |.
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Since Θ has measure zero, it follows that for some t ∈ (0, η) \Θ,

Area(∂Ωt) 6 2
m

η
LVa(ε) |E (F, F c) | = B|E (F, F c) |.

This establishes the �rst inequality in (11.1) and, hence, shows that nonamenability
of M implies nonamenability of the graph G.

We now prove the converse implication. To that end, we assume that for some
δ satisfying 2ρ > δ > 0, some maximal δ-separated set N and the corresponding
graph (of bounded geometry) G = Gδ are constructed as above, so that G has a
positive Cheeger constant. Thus, there exists h > 0 such that for every �nite subset
F in N

cardE(F, F c) > h cardF .

Let Ω be an arbitrary open bounded subset of M with smooth boundary. Our
goal is to �nd a �nite subset Fk in N such that for two constants P and Q inde-
pendent of Ω, we have

(11.3) Area(∂Ω) > P |E(Fk, F
c
k )| and |Fk| > QV ol(Ω) .

This would imply positivity of Cheeger constant ofM . Note that, since the graph G
has �nite valence, in the �rst inequality of (11.3) we may replace the edge boundary
E(Fk, F

c
k ) by the vertex boundary ∂V Fk (see De�nition 1.11).

Consider the �nite subset F of points x ∈ N such that Ω ∩ B(x, δ) 6= ∅. It
follows that Ω ⊆

⋃
x∈F B(x, δ) . We split the set F into two parts:

(11.4) F1 =

{
x ∈ F : V ol[Ω ∩B(x, δ)] >

1

2
V ol[B(x, δ)]

}
and

F2 =

{
x ∈ F : V ol[Ω ∩B(x, δ)] 6

1

2
V ol[B(x, δ)]

}
.

Set

vk := V ol

(
Ω ∩

⋃
x∈Fk

B(x, δ)

)
, k = 1, 2.

Thus,

max (v1, v2) >
1

2
V ol(Ω).

Case 1: v1 > 1
2V ol(Ω). In view of Theorem 2.24, this inequality implies that

(11.5)
1

2
V ol(Ω) 6

∑
x∈F1

V ol (B(x, δ)) 6 |F1|Va(δ) .

This gives the second inequality in (11.3). A point x in ∂V F1 is then a point
in N satisfying (11.4), such that within distance 8δ of x there exists a point y ∈ N
satisfying the inequality opposite to (11.4). The (unique) shortest geodesic [x, y] ⊂
M will, therefore, intersect the set of points

Half =

{
x ∈M ; V ol [B(x, δ) ∩ Ω] =

1

2
V ol[B(x, δ)]

}
.
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This implies that ∂V F1 is contained in the 8δ-neighborhood of the set Half ⊂
M . Given a maximal δ�separated subset Hδ of Half (with respect to the restric-
tion of the Riemannian distance on M), ∂V F1 will then be contained in the 9δ-
neighborhood of Hδ. In particular,⊔

x∈∂V F1

B

(
x,
δ

2

)
⊆
⋃
y∈Hδ

B(y, 10δ) ,

whence

Vb (δ/2) |∂V F1| 6 V ol

[ ⊔
x∈∂V F1

B

(
x,
δ

2

)]
6

(11.6)
∑
y∈Hδ

V ol [B(y, 10δ)] 6 Vb(10δ) |Hδ|.

Since Hδ extends to a maximal δ�separated subset H ′ of M , Lemma 2.58, (2),

implies that the multiplicity of the covering {B(x, δ) | x ∈ H ′} is at most
Va( 3δ

2 )
Vb( δ2 )

.

It follows that

m ·Area(∂Ω) >
∑
y∈Hδ

Area(∂Ω ∩B(y, δ)) .

We now apply Buser's Theorem 2.25 and deduce that there exists a constant
λ = λ(n, a, δ) such that for all y ∈ Hδ, we have,

λArea(∂Ω ∩B(y, δ)) > V ol [Ω ∩B(y, δ)] =
1

2
V ol[B(y, δ)] .

It follows that

Area(∂Ω) >
1

2λm

∑
y∈Hδ

V ol[B(y, δ)] >
1

2λm
Vb(ρ) |Hδ| .

Combining this estimate with the inequality (11.6), we conclude that

Area(∂Ω) > P |∂V F1| ,
for some constant P independent of Ω.

This establishes the �rst inequality in (11.3) and, hence, proves positivity of
the Cheeger constant of M in the Case 1.

Case 2. Assume now that v2 is at least 1
2V ol(Ω).

We obtain, using Buser's Theorem 2.25 for the second inequality below, that

mArea(∂Ω) >
∑
y∈F2

Area (∂Ω ∩B(y, δ)) >
1

λ

∑
y∈F2

V ol [Ω ∩B(y, δ)] >
1

2λ
V ol(Ω) .

Thus, in the Case 2 we obtain the required lower bound on Area(∂Ω) directly. �

Corollary 11.13. Let M and M ′ be two complete connected Riemann man-
ifolds of bounded geometry which are quasi-isometric to each other. Then M has
positive Cheeger constant if and only if M ′ has positive Cheeger constant.

Proof. Consider graphs of bounded geometry G and G′ that are quasi-isometric
to M and M ′ respectively. Then G,G′ are also quasi-isometric to each other. The
result now follows by combining Theorem 11.11 with Theorem 11.10. �
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An interesting consequence of Corollary 11.13 is quasi-isometric invariance of
a certain property of the Laplace-Beltrami operator for Riemannian manifolds of
bounded geometry. Cheeger constant for Riemannian manifold M is closely con-
nected to the bottom of the spectrum of the Laplace-Beltrami operator ∆M on
L2(M) ∩ C∞(M). Let M be a complete connected Riemannian manifold of in�-
nite volume, let λ0(M) denote the lowest eigenvalue of ∆M . Then λ0(M) can be
computed as

inf

{´
M
|∇f |2´
M
f2

| f : M → R smooth with compact support
}

(see [?] or [SY94], Chapter I). J. Cheeger proved in [Che70] that

λ0(M) >
1

4
h2(M) ,

where h(M) is the Cheeger constant of M . Even though Cheeger's original result
was formulated for compact manifolds, his argument works for all complete mani-
folds, see [SY94]. Cheeger's inequality is complemented by the following inequality
due to P. Buser (see [Bus82], or [SY94]) which holds for all complete Riemannian
manifolds whose Ricci curvature is bounded below by some a ∈ R:

λ1(M) 6 αh(M) + βh2(M),

for some α = α(a), β = β(a). Combined, Cheeger and Buser inequalities imply
that h(M) = 0 ⇐⇒ λ0(M) = 0.

Corollary 11.14. Let M and M ′ be two complete connected Riemann mani-
folds of bounded geometry which are quasi-isometric to each other. Then λ0(M) =
0 ⇐⇒ λ0(M ′) = 0.

We �nish the section by noting a remarkable property of quasi-isometries be-
tween non-amenable graphs.

Theorem 11.15 (K. Whyte [?]). Let Gi, i = 1, 2, be two non-amenable graphs
of bounded geometry. Then every quasi-isometry G1 → G2 is at bounded distance
from a bi-Lipschitz map.

Note that this theorem was also implicit in [?].

11.3. Amenability for groups

We now discuss the concept of amenability for groups. We introduce various
versions of amenability and non-amenability, formulated in terms of actions and
inspired by the Banach-Tarski paradox. We then show that in the case of �nitely
generated groups one of the notions of amenability is equivalent to the metric
amenability for (arbitrarily chosen) Cayley graphs, as formulated in De�nition 11.1.

Let G be a group acting on a set X. We assume that the action is on the left
(for an action on the right a similar discussion can be carried out). We denote the
action by µ(g, x) = g(x) = g · x .

We say that two subsets A,B ⊂ X are G�congruent if there exists g ∈ G such
that g ·A = B.
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We say subsets A,B ⊂ X are G�piecewise congruent (or A and B are G�
equidecomposable) if, for some k ∈ N, there exist partitions A = A1 t . . . t Ak,
B = B1 t . . . tBk such that Ai and Bi are G�congruent for every i ∈ {1, . . . , k}.

The subsets A,B are G�countably piecewise congruent (or G�countably equide-
composable) if they admit countable partitions A =

⊔
n∈NAn, B =

⊔
n∈NBn such

that An and Bn are G�congruent for every n ∈ N.

Exercise 11.16. Verify that piecewise congruence and countably piecewise
congruence are equivalence relations.

Definitions 11.17. (1) A G�paradoxical subset of X is a subset E that
admits a G-paradoxical decomposition, i.e., a �nite partition

E = X1 t . . . tXk t Y1 t . . . t Ym
such that for some elements g1, . . . , gk, h1, . . . , hm of G,

g1(X1) t ... t gk(Xk) = E and h1(Y1) t ... t hm(Ym) = E .

(2) A G�countably paradoxical subset of X is a subset F admitting a countable
partition

F =
⊔
n∈N

Xn t
⊔
m∈N

Ym

such that for two sequences (gn)n∈N and (hm)m∈N in G,⊔
n∈N

gn(Xn) = F and
⊔
m∈N

ψm(Ym) = F .

John von Neumann [?] studied properties of group actions that make para-
doxical decompositions possible (like for the action of the group of isometries of
Rn for n > 3) or, on the contrary forbid them (like for the action of the group
of isometries of R2). He de�ned the notion of amenable group, based on the exis-
tence of a mean/�nitely additive measure invariant under the action of the group,
and equivalent to the nonexistence of paradoxical decompositions for any space on
which the group acts. One can ask furthermore that no subset has a paradoxical
decomposition, for any space endowed with an action of the group. This de�nes a
strictly smaller class, that of super-amenable groups. In what follows we discuss all
these variants of amenability and paradoxical behavior.

To clarify the setting, we recall the de�nition of a �nitely additive (probability)
measure.

Definition 11.18. An algebra of subsets of a set X is a non-empty collection
A of subsets of X such that:

(1) ∅ and X are in A;
(2) A,B ∈ A ⇒ A ∪B ∈ A , A ∩B ∈ A;
(3) A ∈ A ⇒ Ac = X \A ∈ A.

Definition 11.19. (1) A �nitely additive (f.a.) measure µ on an algebra
A of subsets of X is a function µ : A → [0,∞] such that µ(A t B) =
µ(A) + µ(B) for all A,B ∈ A.

(2) If moreover µ(X) = 1 then µ is called a �nitely additive probability (f.a.p.)
measure.
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(3) Let G be a group acting on X preserving A, i.e., gA ∈ A for every A ∈ A
and g ∈ G. If µ is a �nitely additive measure on A, so that µ(gA) = µ(A)
for all g ∈ G and A ∈ R, then µ is called G�invariant.

An immediate consequence of the f.a. property is that for any two sets A,B ∈
A,
µ(A∪B) = µ((A\B)t(A∩B)t(B\A)) = µ(A\B)+µ(A∩B)+µ(B\A) 6 µ(A)+µ(B).

Remark 11.20. In some texts the f.a. measures are called simply `measures'.
We prefer the terminology above, since in other texts a `measure' is meant to be
countably additive.

We recall without proof a strong result relating the existence of a �nitely addi-
tive measure to the non-existence of paradoxical decompositions. It is due to Tarski
([?], [?, pp. 599�643]), see also [?, Corollary 9.2].

Theorem 11.21 (Tarski's alternative). Let G be a group acting on a space X
and let E be a subset in X. Then E is not G�paradoxical if and only if there exists
a G�invariant �nitely additive measure µ : P(X)→ [0,∞] such that µ(E) = 1.

11.4. Super-amenability, weakly paradoxical actions, elementary
amenability

Definition 11.22. (1) A group action G y X is weakly paradoxical if
there exists a G-paradoxical subset in X. An action G y X is super-
amenable if it is not weakly paradoxical.

(2) An action Gy X is paradoxical if the entire set X is G-paradoxical.

(3) A group G is (weakly) paradoxical if the action Gy G by left multiplica-
tions is (weakly) paradoxical.

(4) Likewise, a group G is called super-amenable if the action Gy G by left
multiplications is super-amenable.

Note that, by using the inversion map x 7→ x−1, one easily sees that in De�ni-
tion 11.22, (3) and (4), it does not matter if one considers left or right multiplication.

Proposition 11.23. (1) A group is super-amenable if and only if every
action of it is super-amenable.

(2) A group is weakly paradoxical if and only if it has at least one weakly
paradoxical action.

Proof. (1) and (2) are equivalent, therefore it su�ces to prove (1). The `if'
part of the statement is obvious. We prove the `only if' part.

Consider an arbitrary action G y X and an arbitrary non-empty subset E of
X. Without loss of generality we may assume that the action is G y X is to the
left.

Let x be a point in E and let GE be the set of g ∈ G such that gx ∈ E. By
hypothesis, G is super-amenable, therefore GE is not paradoxical with respect to
the left-action G y G. Theorem 11.21 implies that there exists a G�left-invariant
�nitely additive measure µG : P(G)→ [0,∞] such that µ(GE) = 1.
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We de�ne a G�invariant �nitely additive measure µ : P(X)→ [0,∞] by

µ(A) = µG({g ∈ G | gx ∈ A}) .

This measure satis�es µ(E) = 1, hence, E cannot be G�paradoxical. �

Proposition 11.24. A weakly paradoxical group has exponential growth.

Proof. Let G be weakly paradoxical and let E be a G-paradoxical subset of
G. Then

E = X1 t . . . tXk t Y1 t . . . t Ym
and there exist elements g1, . . . , gk, h1, . . . , hm in G such that

g1X1 t ... t gkXk = E and h1Y1 t ... t hmYm = E .

We de�ne two piecewise left translations ḡ : E → E and h̄ : E → E as follows:
The restriction of ḡ to giXi coincides with the left translation by g−1

i , for every
i ∈ {1, . . . , k}; the restriction of h̄ to hjYj coincides with the left translation by
h−1
j , for every j ∈ {1, . . . ,m}. Both maps are injective. Indeed if a, b are two

distinct elements of E, either they are in the same subset giXi in which case the
injectivity follows from the injectivity of left translations, or a ∈ giXi and b ∈ gjXj ,
for some i 6= j. In the latter case, ḡ(a) ∈ Xi and ḡ(b) ∈ Xj ad since Xi ∩Xj = ∅,
the two images are distinct. A similar argument shows the injectivity of h̄.

Given an alphabet of two letters {x, y} we denote by Wn the set of words of
length n. For w ∈Wn we denote by w(ḡ, h̄) the map E → E obtained by replacing
x with ḡ, y with h̄ and considering the composition of the �nite sequence of maps
thus obtained.

We prove by induction on n > 1 that the subsets w(ḡ, h̄)(E), w ∈ Wn, are
pairwise disjoint. For n = 1 this means that ḡ(E) and h̄(E) are disjoint, which is
obvious.

Assume that the statement is true for n. Let u and v be two distinct words of
length n+ 1. Assume that they both begin with the same letter, say u = xu′ and
v = xv′, where u′ and v′ are distinct words of length n (the case when the letter is
y is similar).

Then u(ḡ, h̄)(E) = ḡu′(ḡ, h̄)(E) and v(ḡ, h̄)(E) = ḡv′(ḡ, h̄)(E) . The induction
hypothesis implies that the sets u′(ḡ, h̄)(E) and v′(ḡ, h̄)(E) are disjoint, and since
ḡ is injective, the same is true for the two initial sets.

If u = xu′ and v = yv′ then

u(ḡ, h̄)(E) ⊂ ḡ(E) ⊂ X1 t . . . tXk

while
v(ḡ, h̄)(E) ⊂ h̄(E) ⊂ Y1 t . . . t Ym .

Thus, u(ḡ, h̄)(E) and v(ḡ, h̄)(E) are disjoint in this case too, which concludes the
induction step, and the proof.

It follows from the statement just proved, that for every n > 1, given an
arbitrary a ∈ E, the set w(ḡ, h̄)(a), w ∈ Wn , contains as many elements as Wn,
that is 2n. By the de�nition of ḡ and h̄, for every w ∈ Wn, w(ḡ, h̄)(a) = gwa,
where gw is an element in G obtained by replacing in w every occurrence of the
letter x by one of the elements g1, . . . , gk, every occurrence of the letter y by one
of the elements h1, . . . , hm, and taking the product in G. Since gwa, w ∈ Wn , are
pairwise distinct, the elements gw, w ∈ Wn , are pairwise distinct. With respect
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to a generating set S containing g1, . . . , gk, h1, . . . , hm we have |gw|S 6 n, whence,
GS(n) > 2n . �

Corollary 11.25. Every group with sub-exponential growth is super-amenable.

Corollary 11.25 is a strengthening of Proposition 11.6 in the group-theoretic
setting, in view of the discussion in Section 11.3.

Corollary 11.26. Virtually nilpotent groups and �nite extensions of Grig-
orchuk groups are super-amenable.

Exercise 11.27. Given a �nite group G and a non-empty subset E ⊂ G,
construct a G�left-invariant �nitely additive measure µ : P(G)→ [0,∞] such that
µ(E) = 1.

It is not known if the converse of Proposition 11.24 is true or if on the contrary
there exist super-amenable groups with exponential growth.

A weaker version of the converse of Proposition 11.24 is known though, and it
runs as follows.

Proposition 11.28. A free two-generated sub-semigroup S of a group G is
always G�paradoxical, where the action G y G is either by left of by right multi-
plication.

Proof. Let a, b be the two elements in G generating the free sub-semigroup
S, let Sa and Sb be the subsets of elements in S represented by words beginning in
a, respectively by words beginning in b. Then S = Sa t Sb, with a−1Sa = S and
b−1Sb = S. �

Remark 11.29. The converse of Proposition 11.28, on the other hand is not
true: a weakly paradoxical group does not necessarily contain a nonabelian free
subsemigroup. There exist torsion groups that are paradoxical (see the discussion
following Remark 11.81).

Proposition 11.30. (1) A subgroup of a super-amenable group is super-
amenable.

(2) A �nite extension of a super-amenable group is super-amenable.

(3) A quotient of a super-amenable group is super-amenable.

(4) A direct limit of a directed system of super-amenable groups is super-
amenable.

Remarks 11.31. The list of group constructions under which super-amenability
is stable cannot be completed with:

• if a normal subgroup N in a group G is super-amenable and G/N is
super-amenable then G is super-amenable;

• a direct product of super-amenable groups is super-amenable.

It is simply not known if the second property is true, while the �rst property is
known to be false. Otherwise, this property and Corollary 11.25 would imply that
all solvable groups are super-amenable. On the other hand, solvable groups that
are not virtually nilpotent contain a nonabelian free subsemigroup [?].
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Proof. (1) Let H 6 G with G super-amenable and let E be a non-empty
subset of H. By Theorem 11.21, there exists a G�left-invariant �nitely additive
measure µ : P(G) → [0,∞] such that µ(E) = 1. Theorem 11.21 applied to µ
restricted to P(H) imply that E cannot be H-paradoxical either.

(2) Let H 6 G with H super-amenable and G =
⊔m
i=1Hxi. Let E be a non-

empty subset of G.
The group H acts on G, whence by Proposition 11.23, (1), and Theorem 11.21,

there exists an H�left-invariant �nitely additive measure µ : P(G) → [0,∞] such
that µ (∪mi=1xiE) = 1.

De�ne the measure ν : P(G)→ [0,∞] by

ν(A) =

∑m
i=1 µ(xiA)∑m
i=1 µ(xiE)

.

It is clearly �nitely additive and satis�es ν(E) = 1.
Let A be an arbitrary non-empty subset of G and g an arbitrary element in

G. We have that G =
⊔m
i=1Hxi =

⊔m
i=1Hxig, whence there exists a bijection

ϕ : {1, . . . ,m} → {1, . . . ,m} dependent on g such that Hxig = Hxϕ(i).
We may then rewrite the denominator in the expression of ν(gA) as

m∑
i=1

µ(xigA) =

m∑
i=1

µ(hixϕ(i)A) =

m∑
i=1

µ(xϕ(i)A) =

m∑
j=1

µ(xjA) .

For the second equality above we have used the H�invariance of µ. We conclude
that ν is G�left-invariant.

(3) Let E be a non-empty subset of G/N . Theorem 11.21 applied to the action
of G on G/N gives a G�left-invariant �nitely additive measure µ : P(G/N)→ [0,∞]
such that µ (E) = 1. The same measure is also G/N�left-invariant.

(4) Let hij : Hi → Hj , i 6 j, be the homomorphisms de�ning the direct system
of groups (Hi) and letG be the direct limit. Let hi : Hi → G be the homomorphisms
to the direct limit, as de�ned in Section 1.1.

Consider a non-empty subset E of G. Without loss of generality we may assume
that all hi(Hi) intersect E: there exists i0 such that for every i > i0, hi(Hi)
intersects E, and we can restrict to the set of indices i > i0.

The set of functions

{f : P(G)→ [0,∞]} =
∏
P(G)

[0,∞]

is compact according to Tychono�'s theorem (see Remark ??, ??).
Note that each group Hi acts naturally on G by left multiplication via the ho-

momorphism hi : Hi → G. For each i ∈ I letMi be the set of Hi�left-invariant f.a.
measures µ on P(G) such that µ(E) = 1. Since Hi is super-amenable, Proposition
11.23, (1), and Theorem 11.21 imply that the setMi is non-empty.

Let us prove that Mi is closed in
∏
P(G)[0,∞]. Let f : P(G) → [0,∞] be

an element of
∏
P(G)[0,∞] in the closure of Mi. Then, for every �nite collection

A1, . . . , An of subsets of X and every ε > 0 there exists µ inMi such that |f(Aj)−
µ(Aj)| 6 ε for every j ∈ {1, 2, ..., n}. This implies that for every ε > 0, |f(E)−1| 6
ε,

|f(A tB)− f(A)− f(B)| 6 3ε
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and
|f(gA)− f(A)| 6 2ε,

∀A,B ∈ P(X) and g ∈ Hi. By letting ε → 0 we obtain that f ∈ Mi. Thus, the
subsetMi is indeed closed.

By the de�nition of compactness, if {Vi : i ∈ I} is a family of closed subsets of a
compact space X such that

⋂
j∈J

Vj 6= ∅ for every �nite subset J ⊆ I, then
⋂
i∈I

Vi 6= ∅.

Consider a �nite subset J of I. Since I is a directed set, there exists k ∈ I such
that j 6 k, ∀j ∈ J . Hence, we have homomorphisms hjk : Hj → Hk,∀j ∈ J , and
all homomorphisms hj : Hj → G factor through hk : Hk → G. Thus,

⋂
j∈JMj

containsMk, in particular, this intersection is non-empty. It follows from the above
that

⋂
i∈IMi is non-empty. Every element µ of this intersection is clearly a f.a.

measure such that µ(E) = 1, and µ is also G�left-invariant because

G =
⋃
i∈I

hi(Hi).

�

In view of Corollary 11.26, Proposition 11.30 and Remarks 11.31 it is natural
to consider the class of groups that contains all �nite and abelian groups, that is
stable with respect to the operations described in Proposition 11.30, plus the one
of extension:

Definition 11.32. The class of elementary amenable groups EA is the smallest
class of groups containing all �nite groups, all abelian groups and closed under direct
sums, �nite-index extensions, direct limits, subgroups, quotients and extensions

1→ G1 → G2 → G3 → 1,

where both G1, G3 are elementary amenable.

Neither of the two classes of super-amenable and of elementary amenable groups
contains the other:

• solvable groups are all elementary amenable, while they are super-amenable
only if they are virtually nilpotent;

• there exist Grigorchuk groups of intermediate growth that are not elemen-
tary amenable

The following result due to C. Chou (and proved previously for the smaller
class of solvable groups by Rosenblatt [?]) describes, within the setting of �nitely
generated groups, the intersection between the two classes, and brings information
on the set of elementary amenable groups that are not super-amenable.

Theorem 11.33 ([?]). A �nitely generated elementary amenable group either
is virtually nilpotent or it contains a free non-abelian subsemigroup.

11.5. Amenability and paradoxical actions

In this section we de�ne amenable actions and amenable groups, and prove
that paradoxical behavior is equivalent to non-amenability.
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Definition 11.34. (1) A group action Gy X is amenable if there exists
a G�invariant f.a.p. measure µ on P(X), the set of all subsets of X.

(2) A group is amenable if the action of G on itself via left multiplication is
amenable.

Lemma 11.35. A paradoxical action Gy X cannot be amenable.

Proof. Suppose to the contrary that X admits a G-invariant f.a.p. measure
µ and

X = X1 t . . . tXk t Y1 t . . . t Ym
is a G-paradoxical decomposition, i.e., for some g1, . . . , gk, h1, . . . , hm ∈ G,

g1(X1) t . . . t gk(Xk) = X and h1(Y1) t . . . t hm(Ym) = X .

Then

µ(X1 t . . . tXk) = µ(Y1 t . . . t Yk) = µ(X),

which implies that 2µ(X) = µ(X), contradicting the assumption that µ(X) =
1. �

Remark 11.36. We will prove in Corollary 11.63 that a �nitely-generated group
is amenable if and only if it is non-paradoxical.

Example 11.37. If X is a �nite set, then every group action G y X is
amenable. In particular, every �nite group is amenable. Indeed, for a �nite set
G de�ne µ : P(X) → [0, 1] by µ(A) = |A|

|X| , where | · | denotes cardinality of a
subset.

Example 11.38. The free group of rank two F2 is non-amenable since F2 is
paradoxical, as explained in Chapter 10, Section 10.4.

Yet another equivalent de�nition for amenability can be formulated using the
concept of an invariant mean, which is responsible for the terminology `amenable':

Definition 11.39. (1) A mean on a set X is a linear functional m :
`∞(X) → C de�ned on the set `∞(X) of bounded functions on X, with
the following properties:

(M1) if f takes values in [0,∞) then m(f) > 0;
(M2) m(1X) = 1.

Assume, moreover, that X is endowed with the action of a group G,
G×X → X, (g, x) 7→ g ·x. This induces an action of G on the set `∞(X) of
bounded complex-valued functions on X de�ned by g · f(x) = f(g−1 · x).

A mean is called left-invariant if m(g ·f) = m(f) for every f ∈ `∞(X)
and g ∈ G.

A special case of the above is when G = X and G acts on itself by left trans-
lations.

Proposition 11.40. A group action G y X is amenable (in the sense of
De�nition 11.34) if and only if it admits a left-invariant mean.
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Proof. Given a f.a.p. measure µ on X one can apply the standard construc-
tion of integrals (see [?, Chapter 1] or [?, Chapter 11]) and de�ne, for any function
f : X → C, m(f) =

´
f dµ. Since µ(X) = 1, for every bounded function f ,

m(f) ∈ C. Thus, we obtain a linear functional m : `∞(X) → C. If the measure µ
is G-invariant then m is also G-invariant.

Conversely, given a G-invariant mean m on X, one de�nes an invariant f.a.p.
measure µ on X by µ(A) = m(1A).

Exercise 11.41. Prove that µ thus de�ned is a f.a.p. measure and that G-
invariance of m implies G-invariance of µ.

�

Remark 11.42. Suppose that in Proposition 11.40, X = G and Gy X is the
action by left multiplication. Then:

(a) In the above proposition, left-invariance can be replaced by right-invariance.

(b) Moreover, both can be replaced by bi-invariance.

Proof. (a) It su�ces to de�ne µr(A) = µ(A−1) and mr(f) = m(f1), where
f1(x) = f(x−1).

(b) Let µ be a left-invariant f.a.p. measure and µr the right-invariant measure
in (a). Then for every A ⊆ X de�ne

ν(A) =

ˆ
µ(Ag−1)dµr(g) .

�

Question 11.43. Suppose thatG is a group which admits a meanm : `∞(G)→
R that is quasi-invariant, i.e., there exists a constant κ such that

|m(f ◦ g)−m(f)| 6 κ
for all functions f ∈ `∞(G) and all group elements g. Is it true that G is amenable?

Lemma 11.44. Every action Gy X of an amenable group G is also amenable.

Proof. Choose a point x ∈ X and de�ne ν : P(X)→ [0, 1] by

ν(A) = µ({g ∈ G ; gx ∈ A}).
We leave it to the reader to verify that ν is again a G-invariant f.a.p. measure. �

Corollary 11.45. If G is a group which admits a paradoxical action, then G
is non-amenable. In other words, if an amenable group G acts on a space X, then
X cannot be G�paradoxical.

This corollary and the fact that the sphere S2 is O(3)�paradoxical imply that
the group O(3) is not amenable (as an abstract group). More generally, in view of
Tits' Alternative, if G is a connected Lie group then either G is solvable or non-
amenable (since every non-solvable connected Lie group contains a free nonabelian
subgroup).

The converse to Lemma 11.44 is false: The action of any group on a one-
point set is clearly amenable, see, however, Proposition 11.58. On the other hand,
Glasner and Monod [?] proved that every countable group admits an amenable
faithful action on a set X.
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A natural question to ask is whether on an amenable group there exists only
one invariant �nitely additive probability measure. It turns out that this is far from
being true:

Theorem 11.46 (J. Rosenblatt [?]). Let G be a non-discrete σ-compact locally
compact metric group. If G is amenable as a discrete group, then there are 2ℵ0

mutually singular G-invariant means on L∞(G).

Remark 11.47. Theorem 11.21 and the Banach-Tarski paradox prove that
there exists no Isom(R3)�left-invariant �nitely additive measure µ : P(R3)→ [0,∞]
such that the unit ball has positive measure.

Proposition 11.48. (1) A subgroup of an amenable group is amenable.

(2) Let N be a normal subgroup of a group G. The group G is amenable if
and only if both N and G/N are amenable.

(3) The direct limit G (see Section 1.1) of a directed system (Hi)i∈I of amenable
groups Hi, is amenable.

Proof. (1) Let µ be a f.a.p. measure on an amenable group G, and let H be
a subgroup. By Axiom of Choice, there exists a subset D of G intersecting each
right coset Hg in exactly one point. Then ν(A) = µ(AD) de�nes a left-invariant
f.a.p. measure on H.

(2) �⇒� Assume that G is amenable and let µ be a f.a.p. measure on G. The
subgroup N is amenable according to (1). Amenability of G/N follows from Lemma
11.44, since G acts on G/N by left multiplication.

(2) �⇐� Let ν be a left-invariant f.a.p. measure on G/N , and λ a left-invariant
f.a.p. measure on N . On every left coset gN one de�nes a f.a.p. measure by
λg(A) = λ(g−1A). The H�left-invariance of λ implies that λg is independent of the
representative g, i.e. gN = g′N ⇒ λg = λg′ .

For every subset B in G de�ne

µ(B) =

ˆ
G/N

λg(B ∩ gN)dν(gN) .

Then µ is a G�left-invariant probability measure.
(3) The proof is along the same lines as that of Proposition 11.30, (4). The

only di�erence is that the compact
∏
P(G)[0,∞] is replaced in this argument by

{f : P(G)→ [0, 1]} =
∏
P(G)

[0, 1] .

�

Corollary 11.49. Let G1 and G2 be two groups that are co-embeddable in the
sense of De�nition 3.40. Then G1 is amenable if and only if G2 is amenable.

Corollary 11.50. Any group containing a free nonabelian subgroup is non-
amenable.

Proof. Note that every non-abelian free group contains a subgroup isomorphic
to F2, free group of rank 2. Now, the statement follows from Proposition 11.48,
Part (1), and Example 11.38. �
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Corollary 11.51. A semidirect product NoH is amenable if and only if both
N and H are amenable.

Proof. The statement follows immediately from Part (2) of the above propo-
sition. �

Corollary 11.52. 1. If Gi, i = 1, . . . , n, are amenable groups, then the
Cartesian product G = G1 × . . .×Gn is also amenable.

2. Direct sum G = ⊕i∈IGi of amenable groups is again amenable.

Proof. 1. The statement follows from inductive application of Corollary 11.51.
2. This is a combination of Part 1 and the fact that G is a direct limit of �nite
direct products of the groups Gi. �

Corollary 11.53. A group G is amenable if and only if all �nitely generated
subgroups of G are amenable.

Proof. The direct part follows from (1). The converse part follows from (3),
where, given the group G, we let I be the set of all �nite subsets in G, and for
any i ∈ I, Hi is the subgroup of G generated by the elements in i. We de�ne the
directed system of groups (Hi) by letting hij : Hi → Hj be the natural inclusion
map whenever i ⊂ j. Then G is the direct limit of the system (Hi) and the assertion
follows from Proposition 11.48. �

Corollary 11.54. Every abelian group G is amenable.

Proof. Since every abelian group is a direct limit of �nitely-generated abelian
subgroups, by Part (3) of the above proposition, it su�ces to prove the corollary
for �nitely-generated abelian groups. Amenability of such groups will be proven in
Proposition 11.69 as an application of the Følner criterion for amenability. �

Remark 11.55. Even for the in�nite cyclic group Z, amenability is nontrivial,
it depends on a form of Axiom of Choice, e.g., ultra�lter lemma: One can show
that Zermelo�Fraenkel axioms are insu�cient for proving amenability of Z.

Corollary 11.56. Every solvable group is amenable.

Proof. We argue by induction on the derived length. If k = 1 then G is
abelian and, hence, are amenable by Corollary 11.54.

Assume that the assertion holds for k and take a group G such that G(k+1) =
{1} and G(i) 6= {1} for any i 6 k. Then G(k) is abelian and Ḡ = G/G(k) is
solvable with derived length equal to k. Whence, by the induction hypothesis, Ḡ is
amenable. This and Proposition 11.48, (2), imply that G is amenable. �

In view of the above results, every elementary amenable group is amenable. On
the other hand, all �nitely generated groups of intermediate growth are amenable
but not elementary amenable.

Example 11.57 (In�nite direct products of amenable groups need not be
amenable). Let F = F2 be free group of rank 2. Recall, Corollary 3.86, that
F is residually �nite, hence, for every g ∈ F \ {1} there exists a homomorphism
ϕg : F → Φg so that ϕg(g) 6= 1 and Φg is a �nite group. Each Φg is, of course,
amenable. Consider the direct product of these �nite groups:

G =
∏
g∈F

Φg.
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Then the product of homomorphisms ϕg : F → Φg, de�nes a homomorphism
ϕ : F → G. This homomorphism is injective since for every g 6= 1, ϕg(g) 6= 1.
Thus, G cannot be amenable.

The following is a generalization of Proposition 11.48, (2); this proposition also
completes the result in Lemma 11.44.

Proposition 11.58. Let G be a group acting on a set X. The group G is
amenable if and only if G y X is amenable and for every p ∈ X the stabilizer
Stab(p) of the point p is amenable.

Proof. The direct implication follows from Lemma 11.44 and from Proposi-
tion 11.48, (1).

Assume now that for every p ∈ X its G-stabilizer Sp is amenable and that
mX : `∞(X) → C is a G-invariant mean. By proposition 11.40, for every p ∈ X
there exists a left-invariant mean mp : `∞(Sp)→ C.

We de�ne a left-invariant mean on `∞(G) using a construction in the spirit of
Fubini's Theorem.

Let F ∈ `∞(G) . We split X into G�orbits X =
⊔
p∈<Gp .

For every p ∈ < we de�ne a function Fp on the orbitGp by Fp(gp) = mp

(
F |gSp

)
.

Then we de�ne a function FX on X which coincides with Fp on each orbit Gp.
The fact that F is bounded implies that FX is bounded. We de�ne

m(F ) = mX (FX) .

The linearity of m follows from the linearity of every mp and of mX . The two
properties (M1) and (M2) in De�nition 11.39 are easily checked for the mean m.
We now check that m is left-invariant. Let h be an arbitrary element of G, and let
h · F be de�ned by h · F (x) = F (h−1 · x) , for every x ∈ G.

Then

(h · F )p(gp) = mp

(
(h · F )|gSp

)
= mp

(
F |h−1gSp

)
= Fp(h

−1gp) .

We deduce from this that (h · F )X = FX ◦ h−1 = h · FX , whence
m(h · F ) = mX ((h · F )X) = mX (h · FX) = mX (FX) = m(F ) .

�

Corollary 11.59. Amenability is preserved by virtual isomorphisms of groups.

Proof. The only nontrivial part of this statement is: If H is an amenable
subgroup of �nite index in a group G, then G is also amenable. Consider the action
of G on X = G/H by left multiplications. Stabilizers of points under this action
are conjugates of the group H in G, hence, they are amenable. The set X is �nite
and, hence, the action G y X is amenable. Thus, G is amenable by Proposition
11.58. �

For topological groups and topological group actions one can re�ne the notion
of amenability as follows:

Definition 11.60 (Amenability for topological group actions). 1. Let G×X →
X be a topological action of a topological group G. Then this action is topologically
amenable if there exists a continuous G-invariant linear functional m de�ned on the
space of all Borel measurable bounded functions X → C, such that:

• m(f) > 0 when f > 0;
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• m(1X) = 1;
Such a linear functional is called an invariant mean.

2. A topological group G is said to be amenable if the action of G on itself via
left multiplication is amenable. The corresponding linear functional m is called a
left-invariant mean.

Remark 11.61. With this notion, for instance, every compact group is topo-
logically amenable (we can take m to be the integral with respect to a left Haar
measure). In particular, the group SO(3) is topologically amenable. On the other
hand, as we saw, SO(3) is not amenable as an abstract group. More generally, if
H is a separable Hilbert space and G = U(H) is the group of unitary operators on
H endowed with the weak operator topology, then G is topologically amenable, see
[?]. We refer to [?] for further details on topological amenability.

11.6. Equivalent de�nitions of amenability for �nitely generated groups

In view of Corollary 11.53, amenability in the case of �nitely generated groups
is particularly signi�cant. In this case, one can relate the group amenability to the
metric amenability for Cayley graphs.

Theorem 11.62. Let G be a �nitely-generated group. The following are equiv-
alent:

(1) G is amenable in the sense of De�nition 11.34;

(2) one (every) Cayley graph of G is amenable in the sense of De�nition 11.1.

Proof. According to Theorem 11.10, if one Cayley graph of G is amenable
then all the other Cayley graphs are. Thus, in what follows we �x a �nite generating
set S of G, the corresponding Cayley graph G = Cayley(G,S), and word metric,
and we assume that the statement (2) refers to G.

(2)⇒ (1). We �rst illustrate the proof in the case G = Z and the Følner
sequence

Ωn = [−n, n] ⊂ Z,
since the proof is more transparent in this case and illustrates the general argument.
Puck a non-principal ultra�lter ω on N. For a subset A ⊂ Z we de�ne a f.a.p.
measure µ by

µ(A) := ω-lim
|A ∩ Ωn|
2n+ 1

.

Let us show that µ is invariant under the unit translation g : z 7→ z + 1. Note that

||A ∩ Ωn| − |gA ∩ Ωn|| 6 1.

Thus,

|µ(A)− µ(gA)| 6 ω-lim 1

2n+ 1
= 0.

This implies that µ is Z-invariant.
We now consider the general case. Since G is amenable, there exists a Følner

sequence of subsets (Ωn) ⊂ G (since G is the vertex set of G). We use the sets Ωi
to construct a G-invariant f.a.p. measure on P(G). Following Remark 11.42, we
can and will use the action to the right of G on itself in this discussion.
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Let ω be a non-principal ultra�lter on N. For every A ⊂ G de�ne

µ(A) = ω-lim
|A ∩ Ωn|
|Ωn|

.

We leave it to the reader to check that µ is a f.a.p. measure on G. Now consider
an arbitrary generator g ∈ S . We have

|µ(Ag)− µ(A)| = ω-lim
||Ag ∩ Ωn| − |A ∩ Ωn||

|Ωn|
= ω-lim

∣∣|A ∩ Ωng
−1| − |A ∩ Ωn|

∣∣
|Ωn|

.

Now A ∩ Ωng
−1 =

(
A ∩ Ωng

−1 ∩ Ωn
)
t
(
A ∩ Ωng

−1 \ Ωn
)
. Likewise,

A ∩ Ωn =
(
A ∩ Ωn ∩ Ωng

−1
)
t
(
A ∩ Ωn \ Ωng

−1
)
.

Therefore, the ultralimit above can be rewritten as

ω-lim

∣∣|A ∩ (Ωng
−1 \ Ωn)| − |A ∩ (Ωn \ Ωng

−1)|
∣∣

|Ωn|
6

ω-lim
|A ∩ (Ωng

−1 \ Ωn)|+ |A ∩ (Ωn \ Ωng
−1)|

|Ωn|

= ω-lim
|A ∩ (Ωng

−1 \ Ωn)|+ |Ag ∩ (Ωng \ Ωn)|
|Ωn|

6 ω-lim
2|E(Ωn,Ω

c
n)|

|Ωn|
= 0 .

The last equality follows from amenability of the graph G. Therefore, µ(Ag) =
µ(A) for every g ∈ S. Since S is a generating set of G, we obtain the equality
µ(Ag) = µ(A) for every g ∈ G .

(1)⇒ (2). We prove this implication by proving the contrapositive, that is
¬(2)⇒ ¬(1). We shall, in fact, prove that ¬(2) implies that G is paradoxical.

Assume that G is non-amenable. According to Theorem 11.3, this implies that
there exists a map f : G → G which is at �nite distance from the identity map,
such that |f−1(y)| = 2 for every y ∈ G. Lemma 5.27 implies that there exists a
�nite set {h1, ..., hn} and a decomposition G = T1 t ... t Tn such that f restricted
to Ti coincides with the multiplication on the right Rhi .

For every y ∈ G we have that f−1(y) consists of two elements, which we label
as {y1, y2}. This gives a decomposition of G into Y1 t Y2. Now we decompose
Y1 = A1 t ... t An, where Ai = Y1 ∩ Ti, and likewise Y2 = B1 t ... t Bn, where
Bi = Y2 ∩ Ti. Clearly A1h1 t ...tAnhn = G and B1h1 t ...tBnhn = G. We have,
thus, proved that G is paradoxical. �

The equivalence in Theorem 11.62 allows to give another proof that the free
group on two generators F2 is paradoxical: Consider the map f : F2 → F2 which
consists in deleting the last letter in every reduced word. This map satis�es Gro-
mov's condition in Theorem 11.3. Hence, the Cayley graph of F2 is non-amenable;
thus, F2 is non-amenable as well.

Another consequence of the proof of Theorem 11.62 is the following weaker
version of the Tarski's Alternative Theorem 11.21:

Corollary 11.63. A �nitely generated group is either paradoxical or amenable.

Proof. Indeed, in the proof of Theorem 11.62, we proved that Cayley graph
G of G is amenable if and only if the group G is, and that if G is non-amenable then
G is paradoxical. Thus, we have that group amenability is equivalent not only to
the Cayley graph amenability but also to non-paradoxical behavior. �

313



Note that the above proof uses existence of ultra�lters on N. One can show
that ZF axioms of the set theory are insu�cient to conclude that Z has an invariant
mean. In particular, for any group G containing an element of in�nite order, ZF
are not enough to conclude that G admits an invariant mean.

Question 11.64. Is there a �nitely-generated in�nite group which admits an
invariant mean under the ZF axioms in set theory?

Corollary 11.65. Every super-amenable group is amenable.

Lemma 11.66. Let (Ωn) be a sequence of subsets of a �nitely-generated group
G. The following are equivalent:

(1) (Ωn) is a Følner sequence for one of the Cayley graphs of G.

(2) For every g ∈ G

(11.7) lim
n→∞

|Ωng
a

Ωn|
|Ωn|

= 0 .

(3) For every element g of a generating set S of G,

(11.8) lim
n→∞

|Ωng
a

Ωn|
|Ωn|

= 0 .

Proof. Let S be a �nite generating set that determines a Cayley graph G of
G, we will assume that 1 /∈ S. Let Ω ⊂ G, i.e., Ω is a subset of the vertex set of G.
Then the vertex boundary of Ω in G is

∂V Ω =
⋃
s∈S

Ω \ Ωs−1 .

Thus, for a sequence (Ωn) the equality

lim
n→∞

|E(Ωn,Ω
c
n)|

|Ωn|
= 0 .

is equivalent to the set of equalities

lim
n→∞

|Ωn \ Ωns
−1|

|Ωn|
= 0 for every s ∈ S ,

which in its turn is equivalent to (11.8) for every g ∈ S−1. Thus, (1) is equivalent
to (3).

It remains to show that (1) implies that (11.7) holds for an arbitrary g ∈ G.
In view of Exercise 11.5, if Ωn is a Følner sequence for one �nite generating set of
G, the sequence Ωn is also Følner for every �nite generating set of G. By taking
a �nite generating set of G which contains given g ∈ G, we obtain the desired
conclusion. �

Definition 11.67. IfG is a group, then a sequence of subsets Ωn ⊂ G satisfying
property (11.7) in Lemma 11.66, is called a Følner sequence for the group G. Note
that the form of this de�nition makes sense even if G is not �nitely-generated.

Exercise 11.68. Prove that the subsets Ωn = Zk ∩ [−n, n]k form a Følner
sequence for Zk.
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Proposition 11.69. (1) If (Ωn) is a Følner sequence in a countable group
G and ω is a non-principal ultra�lter on N then a left-invariant mean
m : `∞(G)→ C may be de�ned by

m(f) = ω-lim
1

|Ωn|
∑
x∈Ωn

f(x)

.

(2) For any k ∈ N the group Zk has an invariant mean m : `∞
(
Zk
)
→ C is

de�ned by

m(f) = ω-lim
1

(2n+ 1)k

∑
x∈Zk∩[−n,n]k

f(x) .

Proof. (1) It su�ces to note that µ(A) = m(1A) is the left invariant f.a.p.
measure de�ned in the proof of (2)⇒ (1) above.

(2) is a consequence of (1) and Exercise 11.68. �

We are now able to relate amenable groups to the Banach�Tarski paradox.

Proposition 11.70. (1) The group of isometries Isom(Rn) with n = 1, 2
is amenable.

(2) The group of isometries Isom(Rn) with n > 3 is non-amenable.

Proof. (1) The group Isom(Rn) is the semidirect product of O(n) and Rn.
The group Rn is abelian and, hence, amenable, by Corollary 11.54. Furthermore,
O(1) ∼= Z2 is �nite and, hence, amenable. The group O(2) contains the abelian
subgroup SO(2) of index 2. Hence, O(2) is also amenable. Thus, Isom(Rn) (n 6 2)
is amenable as a semidirect product of two amenable groups, see Corollary 11.51.

(2) This follows from Corollary 11.45 and Banach-Tarski paradox. �

In many textbooks one �nds the following property (�rst introduced by Følner
in [?]) as an alternative characterization of amenability. Though it is close to the one
provided by Lemma 11.66, we brie�y discuss it here, for the sake of completeness.

Definition 11.71. A group G is said to have the Følner Property if for every
�nite subset K of G and every ε > 0 there exists a �nite non-empty subset F such
that for all g ∈ K

(11.9)
|Fg

a
F |

|F |
6 ε .

Remark 11.72. The relation (11.9) can be rewritten as

(11.10)
|FK

a
F |

|F |
6 ε ,

where FK = {fk : f ∈ F , k ∈ K}.

Exercise 11.73. Verify that a group has Følner property if and only if it
contains a Følner sequence in the sense of De�nition 11.67.

Lemma 11.74. (1) In both De�nition 11.71 and in the characterization
of the Følner Property provided by Lemma 11.66, one can take the action

of G on the left, i.e. |gF
a
F |

|F | 6 ε in (11.9) etc.
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(2) When G is �nitely generated, it su�ces to check De�nition 11.71 for a
�nite generating set.

Proof. (1) One formulation is equivalent to the other via the anti-automorphism
G→ G given by the inversion g 7→ g−1.

In De�nition 11.71, for every �nite subset K and every ε > 0 it su�ces to
apply the property with multiplication on the left to the set K−1 = {g−1 ; g ∈ K},
obtain the set F , then take F ′ = F−1. This set will verify |F

′K
a
F ′|

|F ′| 6 ε . The
proof for Lemma 11.66 is similar.

(2) Let S be an arbitrary �nite generating set of G. The general statement
implies the one for K = S. Conversely, assume that the condition holds for K = S.
In other words, there exists a sequence Fn of �nite subsets of G, so that for every
s ∈ S,

lim
n

|Fns
a
Fn|

|F |
= 0.

In view of Lemma 11.66, for every g ∈ G

lim
n

|Fng
a
Fn|

|F |
= 0.

Thus, there exists a sequence of �nite subsets Fn so that for every g ∈ G there
exists N = Ng so that

∀n ≥ N, |Fng
a
Fn|

|F |
< ε.

Taking N = max{Ng : g ∈ K}, we obtain the required statement with F = FN . �

Corollary 11.75. A �nitely-generated group is amenable if and only if it has
Følner property.

We already know that subgroups of amenable groups are again amenable, below
we show how to construct Følner sequences for subgroups directly.

Proposition 11.76. Let H be a subgroup of an amenable group G, and let
(Ωn)n∈N be a Følner sequence for G. For every n ∈ N there exists gn ∈ G such that
the intersection g−1

n Ωn ∩H = Fn form a Følner sequence for H.

Proof. Consider a �nite subset K ⊂ H, let s denote the cardinality of K.
Since (Ωn)n∈N is a Følner sequence for G, the ratios

(11.11) αn =
|ΩnK

a
Ωn|

|Ωn|
converge to 0. We partition each subset Ωn into intersections with left cosets of H:

Ωn = Ω(1)
n t . . . t Ω(kn)

n ,

where
Ω(i)
n = Ωn ∩ giH, i = 1, . . . , kn, giH 6= gjH,∀i 6= j.

Then ΩnK ∩ giH = Ω
(i)
n K. We have that

ΩnK
i

Ωn =
(

Ω(1)
n K

i
Ω(1)
n

)
t · · · t

(
Ω(km)
n K

i
Ω(kn)
n

)
.

The inequality
|ΩnK

a
Ωn|

|Ωn|
6 αn
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implies that there exists i ∈ {1, 2, . . . , kn} such that

|Ω(i)
n K

a
Ω

(i)
n |

|Ω(i)
n |

6 αn.

In particular, g−1
i Ω

(i)
n = Fn, with Fn ⊆ H, and we obtain that

|FnK
a
Fn|

|Fn|
6 αn.

�

Since many examples and counterexamples display a connection between ame-
nability and the algebraic structure of a group, it is natural to ask whether there
exists a purely algebraic criterion of amenability. J. von Neumann made the obser-
vation that the existence of a free subgroup excludes amenability in the very paper
where he introduced the notion of amenable groups, under the name of measurable
groups [?]. It is this observation that has led to the following question:

Question 11.77 (the von Neumann-Day problem). Does every non-amenable
group contain a free non-abelian subgroup?

The question is implicit in [?], and it was formulated explicitly by Day [?, §4].
When restricted to the class of subgroup of Lie groups with �nitely many com-

ponents (in particular, subgroups of GL(n,R)), Question 11.77 has an a�rmative
answer, since, in view of the Tits' alternative (see Chapter 9, Theorem 9.1), ev-
ery such group without either contains a free non-abelian subgroup or is virtually
solvable. Since all virtually solvable groups are amenable, the claim follows.

Note that more can be said about �nitely generated amenable subgroups Γ of
a Lie group L with �nitely many connected components than just the fact that Γ is
virtually solvable. To begin with, according to Theorem 9.78, Γ contains a solvable
subgroup Σ of derived length 6 δ(L) so that |Γ : Σ| 6 ν(L).

Theorem 11.78 (Mostow�Tits). A discrete amenable subgroup Γ of a Lie group
L with �nitely many components, contains a polycyclic group of index at most η(L).

Proof. We will prove this theorem for subgroups of GL(n,C) as the general
case is obtained via the adjoint representation of L. Let G denote the Zariski
closure of Γ in GL(n,C). Then, by Part 1 of Theorem 9.78, G contains a connected
solvable subgroup S of derived length at most δ = δ(n) and |G : S| 6 ν = ν(n).
Note that, up to conjugation, S is a subgroup of the group B of upper-triangular
matrices in GL(n,C), see Proposition 9.36. The intersection Λ := Γ∩B is a discrete
subgroup of a connected solvable Lie group. Mostow proved in [?] that such a group
is necessarily polycyclic. Furthermore, he established an upper bound on ranks of
quotients Λ(k)/Λ(k+1). �

When the subgroup Γ < GL(n,C) is not discrete, not much is known. We
provide below a few examples to illustrate that when one removes the hypothesis
of discreteness, the variety of subgroups that may occur is much larger. Since this
already occurs in SL(2,R), it is natural to ask the following.
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Question 11.79. 1. What are the possible solvable subgroups of SL(2,R)?
Equivalently, what are the possible subgroups of the group of a�ne transformations
of the real line?

2. What are the possible solvable subgroups of SL(2,C) ?

Examples 11.80. 1. We �rst note that for all integers m,n > 1, the wreath
product Zm o Zn is a subgroup of SL(2,R). Indeed, consider OK , the ring of
integers of a totally-real algebraic extension K of Q of degree m. This ring is
a free Z-module with a basis ω1, ..., ωm. Let t1, ..., tn be transcendental numbers
that are independent over Q, i.e. for every i ∈ {1, ..., n}, ti is transcendental over
Q(t1, . . . , ti−1, ti+1, . . . , tn).

Then the subgroup G of SL(2,R) generated by the following matrices

s1 =

(
t1 0
0 1

)
, . . . , sn =

(
tn 0
0 1

)
,

u1 =

(
1 ω1

0 1

)
, . . . , um =

(
1 ωm
0 1

)
is isomorphic to Zm o Zn.

Indeed, G is a semidirect product of its unipotent subgroup consisting of ma-
trices (

1 x
0 1

)
with x ∈ OK(t1, ..., tn) ,

isomorphic to the direct sum
⊕

z∈Zn OK , and of its abelian subgroup consisting of
matrices (

tk11 · · · tknn 0
0 1

)
with (k1, ..., kn) ∈ Zn .

2. Every free metabelian group (see De�nition ??) is a subgroup of SL(2,R).
This follows from the fact that a free metabelian group with m generators appears
as a subgroup of Zm o Zm, using the Magnus embedding (Theorem ??).

3. All the examples above can be covered by the following general statements.
Given an arbitrary free solvable group S with derived length k > 1, we have:

• S is a subgroup of SL
(
2k−1,R

)
;

• for every m ∈ N the wreath product Zm o S is a subgroup of SL
(
2k,R

)
.

Indeed, one can construct by induction on k the necessary injective homomor-
phisms. The initial step for both statements above is represented by the examples
1 and 2. We assume that the second statement is true for k and we deduce that
the �rst statement is true for k + 1. This implication and the Magnus embedding
described in Theorem ?? su�ce to �nish the inductive argument.

Consider the free solvable group Sn,k of derived length k with n generators
s1, ..., sn. According to the hypothesis, Sn,k embeds as a subgroup of SL

(
2k−1,R

)
;

thus, we will regard s1, ..., sn as 2k−1 × 2k−1 real matrices. Let OK be the ring of
integers of a totally-real algebraic extension of degree m, and let {ω1, ..., ωm} be a
basis of OK as a free Z-module.
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We consider the subgroup G of SL
(
2k,R

)
generated by the following matrices

(described by square 2k−1 × 2k−1 blocks; in particular the notations I and 0 below
signify the identity respectively the zero square 2k−1 × 2k−1 matrices):

σ1 =

(
s1 0
0 I

)
, . . . , σn =

(
sn 0
0 I

)
,

u1 =

(
I ω1I
0 I

)
, . . . , um =

(
I ωmI
0 I

)
.

The group G is isomorphic to Zm oSn,k: It is a semidirect product of the unipotent
subgroup consisting of matrices(

I x
0 I

)
, with x in the group ring OKSn,k '

⊕
Sn,k

Zm ,

and the subgroup isomorphic to Sn,k consisting of matrices(
g 0
0 I

)
with g ∈ Sn,k .

Remark 11.81. Other classes of groups satisfying the Tits' alternative are:

(1) �nitely generated subgroups of GL(n,K) for some integer n > 1 and some
�eld K of �nite characteristic [?];

(2) subgroups of Gromov hyperbolic groups ([?, §8.2.F ], [?, Chapter 8]);

(3) subgroups of the mapping class group, see [?];

(4) subgroups of Out(Fn), see [?, ?, ?];

(5) fundamental groups of compact manifolds of nonpositive curvature, see
[Bal95].

Hence, for all such groups Question 11.77 has positive answer.

The �rst examples of �nitely-generated non-amenable groups with no (non-
abelian) free subgroups were given in [?]. In [?] it was shown that the free Burnside
groups B(n,m) with n > 2 and m > 665, m odd, are also non-amenable. The
�rst �nitely presented examples of non-amenable groups with no (non-abelian) free
subgroups were given in [?].

Still, metric versions of the von Neumann-Day Question 11.77 have positive
answers. One of these versions is Whyte's Theorem 11.7 (a graph of bounded
geometry is non-amenable if and only if it admits a free action of a free non-Abelian
group by bi-Lipschitz maps at �nite distance from the identity).

Another metric version of the von Neumann-Day Question was established by
Benjamini and Schramm in [?]. They proved that:

• An in�nite locally �nite simplicial graph G with positive Cheeger constant
contains a tree with positive Cheeger constant.

Note that in the result above uniform bound on the valency is not
assumed. The de�nition of the Cheeger constant is considered with the
edge boundary.
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• If, moreover, the Cheeger constant of G is at least an integer n > 0, then G
contains a spanning subgraph, where each connected component is a rooted
tree with all vertices of valency n, except the root, which is of valency n+1.

• If X is either a graph or a Riemannian manifold with in�nite diameter,
bounded geometry and positive Cheeger constant (in particular, if X is
the Cayley graph of a paradoxical group) then X contains a bi-Lipschitz
embedding of the binary rooted tree.

Related to the above, the following is asked in [?]:

Open question 11.82. Is it true every Cayley graph of every �nitely generated
group with exponential growth contains a tree with positive Cheeger constant?

Note that the open case is that of amenable non-linear groups with exponential
growth.

11.7. Quantitative approaches to non-amenability

One can measure �how paradoxical� a group or a group action is via the Tarski
numbers. In what follows, groups are not required to be �nitely generated.

Definition 11.83. (1) Given an action of a group G on a set X, and a
subset E ⊂ X, which admits a G�paradoxical decomposition in the sense
of De�nition 11.17, the Tarski number of the paradoxical decomposition is
the number k +m of elements of that decomposition.

(2) The Tarski number TarG(X,E) is the in�mum of the Tarski numbers
taken over all G-paradoxical decompositions of E. We set TarG(X,E) =
∞ in the case when there exists no G-paradoxical decomposition of the
subset E ⊂ X.

We use the notation TarG(X) for TarG(X,X).

(3) We de�ne the lower Tarski number tar(G) of a group G to be the in�mum
of the numbers TarG(X,E) for all the actions G y X and all the non-
empty subsets E of X.

(4) When X = G and the action is by left multiplication, we denote TarG(X)
simply by Tar(G) and we call it the Tarski number of G.

Note that G�invariance of the subset E is not required in De�nition 11.83.
It is easily seen that tar(G) 6 Tar(G) for every group G.
Of course, in view of the notion of countably paradoxical sets, one could re�ne

the discussion further and use other cardinal numbers besides the �nite ones. We
do not follow this direction here.

Proposition 11.84. Let G be a group, G y X be an action and E ⊂ X be a
nonempty subset.

(1) If H is a subgroup of G then TarG(X,E) 6 TarH(X,E).

(2) The lower Tarski number tar(G) of a group is at least two.
Moreover, tar(G) = 2 if and only if G contains a free two-generated

sub-semigroup S.
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Proof. (1) If the subset E does not admit a paradoxical decomposition with
respect to the action of H on X then there is nothing to prove. Consider an
H-paradoxical decomposition

E = X1 t ... tXk t Y1 t ... t Ym
such that

E = h1X1 t ... t hkXk = h′1Y1 t ... t h′mYm,
and k + m = TarH(X,E) . The above decomposition is paradoxical for the action
of G on X as well, hence TarG(X,E) 6 TarH(X,E) .

(2) The fact that every TarG(X,E) is at least two is immediate.
We prove the direct part of the equivalence.
Assume that tar(G) = 2. Then there exists an action G y X, a subset E of

X with a decomposition E = A t B and two elements g, h ∈ G such that gA = E
and hB = E. Set g′ := g−1, h′ := h−1. We claim that g′ and h′ generate a free
subsemigroup in G. Indeed every non-trivial word w in g′, h′ cannot equal the
identity because, depending on whether its �rst letter is g′ or h′, it will have the
property that wE ⊆ A or wE ⊆ B.

Two non-trivial words w and u in g′, h′ cannot be equal either. Indeed, without
loss of generality we may assume that the �rst letter in w is g′, while the �rst letter
in u is h′. Then wE ⊆ A and uE ⊆ B, whence w 6= u.

We now prove the converse part of the equivalence. Let x, y be two elements
in G generating the free sub-semigroup S, let Sx be the set of words beginning in
x and Sy be the set of words beginning in y. Then S = Sx t Sy, with x−1Sx = S
and y−1Sy = S. �

R. Grigorchuk constructed in [?] examples of �nitely-generated amenable tor-
sion groups G which are weakly paradoxical, thus answering Rosenblatt's conjecture
[?, Question 12.9.b]. Thus, every such amenable group G satis�es

3 6 tar(G) <∞.

Question 11.85. What are the possible values of tar(G) for an amenable group
G? How di�erent can it be from Tar(G) ?

We now move on to study values of Tarski numbers TarG(X) and Tar(G), that
is for G�paradoxical sets that are moreover G�invariant.

Proposition 11.86. Let G be a group, and let Gy X be an action.

(1) TarG(X) ≥ 4.

(2) If G acts freely on X and G contains a free subgroup of rank two, then
TarG(X) = 4.

Proof. (1) Since in every paradoxical decomposition of X one must have
k > 2 and m > 2, the Tarski number is always at least 4.

(2) The proof of this statement is identical to the one appearing in Chapter
10, Section 10.4, Step 3, for E = S2 \ C. �

Proposition 11.86, (2), has a strong converse, appearing as a �rst statement in
the following proposition.
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Proposition 11.87. 1. If TarG(X) = 4, then G contains a non-abelian free
subgroup.

2. If X admits a G-paradoxical decomposition

X = X1 tX2 t Y1 t . . . t Ym,
then G contains an element of in�nite order. In particular, if G is a torsion group
then for every G-action on a set X, TarG(X) ≥ 6.

Proof. 1. By hypothesis, there exists a decomposition

X = X1 tX2 t Y1 t Y2

and elements g1, g2, h1, h2 ∈ G, such that

g1X1 t g2X2 = h1Y1 t h2Y2 = X .

Set g := g−1
1 g2 and h := h−1

1 h2; then

(11.12) X1 t gX2 = X,Y1 t hY2 = X.

This implies that

gX1 t gY1 t gY2 = X \ g(X2) = X1

and, similarly,
hX1 t hX2 t hY1 = Y1.

In particular, gX1 ⊂ X1, hY1 ⊂ Y1. It follows that for every n ∈ N,

gnX1 ⊆ X1, and hnY1 ⊆ Y1.

It also follows that for every n ∈ N,

gn(Y1 t Y2) ⊆ gn−1(X1) ⊆ X1

and that
hn(X1 tX2) ⊆ hn−1(Y1) ⊆ Y1.

Equations (11.12) also imply that

X = g−1X1 tX2 = h−1Y1 t Y2.

Furthermore, for every n ∈ N,

g−n(X2) ⊆ X2 and h−n(Y2) ⊆ Y2

and
g−n(Y1 t Y2) ⊆ X2 and h−n(X1 tX2) ⊆ Y2.

Now we can apply Lemma 4.37 with A := Y1 t Y2 and B := X1 t X2; it follows
that bijections g and h of X generate a free subgroup F2.

2. Let g1, g2 ∈ G be such that

g1X1 t g2X2 = X .

Again, set g := g−1
1 g2. The same arguments as in the proof of Part 1 show that for

every n > 0,
gn(Y1 t . . . t Ym) ⊆ X1.

Therefore, gn 6= 1 for all n > 0. �

S. Wagon (Theorems 4.5 and 4.8 in [?]) proved a stronger form of Proposition
11.87 and Proposition 11.86, part (2):

322



Theorem 11.88 (S. Wagon). Let G be a group acting on a set X. The Tarski
number TarG(X) is four if and only if G contains a free non-abelian subgroup F
such that the stabilizer in F of each point in X is abelian.

As an immediate consequence of Proposition 11.86 is the following

Corollary 11.89. The Tarski number for the action of SO(n) on the (n−1)�
dimensional sphere Sn−1 is 4, for every n > 3.

The result on the paradoxical decomposition of Euclidean balls can also be
re�ned, and the Tarski number computed. We begin by noting that the Euclidean
unit ball B in Rn centered in the origin 0 is never paradoxical with respect to the
action of the orthogonal group O(n). Indeed, assume that there exists a decompo-
sition

B = X1 t · · · tXn t Y1 t · · · t Ym
such that

B = g1X1 t · · · t gnXn = h1Y1 t · · · t hmYm
with

g1, . . . , gn, h1, . . . , hm ∈ O(n).

Then the origin 0 is contained in only one of the sets of the initial partition, say, in
X1. It follows that none of the sets Yj contains 0; hence, neither does the union

h1Y1 t · · · t hmYm
which contradicts the fact that this union equals B.

The following result was �rst proved by R. M. Robinson in [?].

Proposition 11.90. The Tarski number for the unit ball B in Rn with respect
to the action of the group of isometries G of Rn is 5.

Proof. We �rst prove that the Tarski number cannot be 4. Assume to the
contrary that there exists a decomposition

B = X1 tX2 t Y1 t Y2

and g1, g2, h1, h2 ∈ G = Isom(Rn), such that

B = g1X1 t g2X2 = h1Y1 t h2Y2.

By Proposition 3.56, the elements gi and hj are compositions of linear isometries
and translations. Since, as we observed above, elements gi, hj cannot all belong to
O(n), it follows that, say, g1 has a non-trivial translation component:

g1(x) = U1x+ T1, U1 ∈ O(n), T1 6= 0.

We claim that g2 ∈ O(n) and that X2 contains a closed hemisphere of the unit
sphere S = ∂B.

Indeed, g1X1 ⊂ T1B. As T1 is non-trivial, T1B 6= B; hence, T1S contains no
subsets of the form {x,−x}, where x is a unit vector. Therefore, T1B∩S is contained
in an open hemisphere of the unit sphere S. Since the union g1(X1)∪g2(X2) contains
the sphere S, it follows that g2X2 contains a closed hemisphere in S, and, hence, so
does g2B. Since g2B ⊂ B, it follows that g2B = B, hence, g2(0) = 0 and, thus, X2

contains a closed hemisphere of S.
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This claim implies that (Y1 t Y2) ∩ S is contained in an open hemisphere of S.
By applying the above arguments to the isometries h1, h2, we see that both h1, h2

belong to O(n). We then have that

S = h1(Y1 ∩ S) t h2(Y2 ∩ S).

On the other hand, both Y1, Y2 and, hence, h1(Y1), h2(Y2) are contained in open
hemispheres of S. Union of two open hemispheres in S cannot be the entire S.
Contradiction. Thus, TarG(B) ≥ 5.

We now show that there exists a paradoxical decomposition of B with �ve
elements. Corollary 11.89 implies that there exist g1, g2, h1, h2 in SO(n) such that

S = X1 tX2 t Y1 t Y2 = g1X1 t g2X2 = h1Y1 t h2Y2

As in the proof of Proposition 11.87, we take g := g−1
1 g2, h := h−1

1 h2 and obtain

S = X1 tX2 t Y1 t Y2 = X1 t gX2 = Y1 t hY2.

It follows that for every λ > 0 the sphere λS (of radius λ) has the paradoxical
decomposition

λS = λX1 t λX2 t λY1 t λY2 = λX1 t g λX2 = λY1 t hλY2

The group Γ := 〈g, h〉 generated by g and h contains countably many nontrivial
orthogonal transformations; the �xed-point set of every such transformation is a
proper linear subspace in Rn. Therefore, there exists a point P ∈ S not �xed by
any nontrivial element of Γ. Let Ω denote the Γ-orbit of P . Since the action of Γ
on Ω is free, the map

γ 7→ γP

is a bijection Γ→ Ω. The group Γ is a free group of rank two with free generators
g, h, hence as in equation (10.1) of Section 10.4, we have the following paradoxical
decomposition of the group Γ:

〈g, h〉 = {1} tWg tWg−1 tWh tWh−1 ,

where
Γ =Wg t gWg−1 , Γ =Wh t hWh−1 .

We now replace the original paradoxical decomposition of S by

S = X ′1 tX ′2 t Y ′1 t Y ′2 t {P}
where

X ′1 = (X1 \ Ω) tWgP,

X ′2 = (X2 \ Ω) tWg−1P,

Y ′1 = (X1 \ Ω) tWhP,

Y ′2 = (Y2 \ Ω) tWh−1P .

Clearly, X ′1 t gX ′2 = Y ′1 t hY ′2 = S.
We now consider the decomposition

B = U1 t U2 t V1 t V2 t {P} ,
where

U1 = {O} t
⊔

0<λ<1

λX1 tX ′1,

U2 =
⊔

0<λ<1

λX2 tX ′2,
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V1 =
⊔

0<λ<1

λY1 t Y ′1 ,

and
V2 =

⊔
0<λ<1

λY2 t Y ′2 .

Then U1 t gU2 = B, while V1 t hV2 t {T (P )} = B, where T is the translation
sending the point P to the origin O. �

Below we describe the behavior of the Tarski number of groups with respect to
certain group operations.

Proposition 11.91. (1) If H is a subgroup of G then Tar(G) 6 Tar(H).

(2) Every paradoxical group G contains a �nitely generated subgroup H such
that Tar(G) = Tar(H).

(3) If N is a normal subgroup of G then Tar(G) 6 Tar(G/N).

Proof. (1) If H is amenable then there is nothing to prove. Consider a
decomposition

H = X1 t ... tXk t Y1 t ... t Ym
such that

H = h1X1 t ... t hkXk = h′1Y1 t ... t h′mYm
and k +m = Tar(H) .

Let R be the set of representatives of right H�cosets inside G. Then X̃i =

XiR, i ∈ {1, 2, ..., k} and Ỹj = YjR, j ∈ {1, 2, ...,m} form a paradoxical decompo-
sition for G.

(2) Given a decomposition

G = X1 t ... tXk t Y1 t ... t Ym
such that

G = g1X1 t ... t gkXk = h1Y1 t ... t hmYm
and k + m = Tar(G) , consider the subgroup H generated by g1, ..., gk, h1, ..., hm.
Thus Tar(H) 6 Tar(G); since the converse inequality is also true, the equality
holds.

(3) Set Q := G/N . As before, we may assume, without loss of generality, that
Q is paradoxical. Let

Q = X1 t ... tXk t Y 1 t ... t Y m
be a decomposition such that

Q = g1X1 t ... t gkXk = h1Y 1 t ... t hmY m
and k +m = Tar

(
Q
)
.

Consider an (injective) section σ : Q → G, for the projection G → Q; set
Q := s(Q). Then G = QN and the sets Xi = σ

(
Xi

)
N, i ∈ {1, 2, ..., k} and

Yj = σ
(
Y j
)
N, j ∈ {1, 2, ...,m} form a paradoxical decomposition for G. �

Proposition 11.91, (1), allows to formulate the following quantitative version of
Corollary 11.49.
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Corollary 11.92. If two groups are co-embeddable then they have the same
Tarski number.

It is proven in [?], [Ady79, Theorem VI.3.7] that, for every odd m > 665,
two free Burnside groups B(n;m) and B(k;m) of exponent m and with n > 2 and
k > 2, are co-embeddable. Thus:

Corollary 11.93. For every odd m > 665, and n > 2, the Tarski number
of a free Burnside groups B(n;m) of exponent m is independent of the number of
generators n.

Corollary 11.94. A group has the Tarski number 4 if and only if it contains
a non-abelian free subgroup.

Proof. If a group G contains a non-abelian free subgroup then the result
follows by Proposition 11.86, (1), (2), and Proposition 11.91, (1). If a group G has
Tar(G) = 4 then the claim follows from Proposition 11.87. �

Thus, the Tarski number helps to classify the groups that are non-amenable
and do not contain a copy of F2. This class of groups is not very well understood
and, as noted in the end of Section 11.6, its only known members are �in�nite
monsters�. For torsion groups G as we proved above Tar(G) > 6. On the other
hand, Ceccherini, Grigorchuk and de la Harpe proved:

Theorem 11.95 (Theorem 2, [?]). The Tarski number of every free Burnside
group B(n;m) with n > 2 and m > 665, m odd, is at most 14.

Natural questions, in view of Corollary 11.93, are the following:

Question 11.96. How does the Tarski number of a free Burnside groupB(n;m)
depend on the exponent m? What are its possible values?

Question 11.97 (Question 22 [?], [?]). What are the possible values for the
Tarski numbers of groups? Do they include 5 or 6? Are there groups which have
arbitrarily large Tarski numbers?

It would also be interesting to understand how much of the Tarski number is
encoded in the large scale geometry of a group. In particular:

Question 11.98. 1. Is the Tarski number of a group G equal to that of its
direct product G× F with an arbitrary �nite group F?

2. Is the same true when F is an arbitrary amenable group?
3. Is the Tarski number invariant under virtual isomorphisms?

Note that the answers to Questions 11.98 are positive for the Tarski number
equal to ∞ or 4.

Question 11.99. 1. Is the Tarski number of groups a quasi-isometry invariant?
2. Is it at least true that the existence of an (L,C)-quasi-isometry between

groups implies that their Tarski number di�er at most by a constant K = K(L,A)?

The answer to Question 11.98 (Part 1) is, of course, positive for Tar(G) =∞,
but, already, for Tar(G) = 4 this question is equivalent to a well-known open prob-
lem below. A group G is called small if it contains no free nonabelian subgroups.
Thus, G is small i� Tar(G) > 4.
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Question 11.100. Is smallness invariant under quasi-isometries of �nitely gen-
erated groups?

11.8. Uniform amenability and ultrapowers

In this section we discuss a uniform version of amenability and its relation to
ultrapowers of groups.

Recall (De�nition 11.71) that a (discrete) group G is amenable (has the Følner
Property) i� for every �nite subset K of G and every ε ∈ (0, 1) there exists a �nite
non-empty subset F ⊂ G satisfying:

|KF
i
F | < ε|F |.

Definition 11.101. A group G has the uniform Følner Property if, in addition,
one can bound the size of F in terms of ε and |K|, i.e. there exists a function
φ : (0, 1)× N→ N such that

|F | 6 φ(ε, |K|) .

Examples 11.102. (1) Nilpotent groups have the uniform Følner prop-
erty, [?].

(2) A subgroup of a group with the uniform Følner Property also has this
property, [?].

(3) Let N be a normal subgroup of G. The group G has the uniform Følner
Property if and only if N and G/N have this property, [?].

(4) There is an example of a countable (but in�nitely generated) group that is
amenable but does not satisfy the uniform Følner Property, see [?, §IV ].

Theorem 11.103 (G. Keller [?], [?]). (1) If for some non-principal ultra-
�lter ω the ultrapower Gω has the Følner Property, then G also has the
uniform Følner Property.

(2) If G has the uniform Følner property, then for every non-principal ultra-
�lter ω, the ultrapower Gω also has the uniform Følner property.

Proof. (1) The group G can be identi�ed with the �diagonal� subgroup Ĝ of
Gω, represented by constant sequences in G. It follows by Proposition 11.76 that G
has the Følner property. Assume that it does not have the uniform Følner property.
Then there exists ε > 0 and a sequence of subsets Kn in G of �xed cardinality k
such that for every sequence of subsets Ωn ⊂ G

|KnΩn
i

Ωn| < ε|Ωn| ⇒ lim
n→∞

|Ωn| =∞.

Let Kω = (Kn)ω. According to Lemma ??, K has cardinality k. Since Gω is
amenable it follows that there exists a �nite subset U ∈ Gω such that |KU

a
U | <

ε|U |. Let c be the cardinality of U . According to Lemma ??, (??), U = (Un)ω, where
each Un ⊂ G has cardinality c. Moreover, ω-almost surely |KUn

a
Un| < ε|Un|.

Contradiction. We, therefore, conclude that G has the uniform Følner Property.

(2) Let k ∈ N and ε > 0; de�ne m := φ(ε, k) where φ is the function in the
uniform Følner property of G. Let K be a subset of cardinality k in Gω. Lemma
?? implies that K = (Kn)ω, for some sequence of subsets Kn ⊂ G of cardinality
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k. The uniform Følner Property of G implies that there exists Ωn of cardinality at
most m such that

|KnΩn
i

Ωn| < ε|Ωn|.
Let F := (Ωn)ω. The description of K and F given by Lemma ??, (??), implies
that

KF
i
F = (KnΩn

i
Ωn)ω,

whence |KF
a
F | < ε|F |. Since |F | 6 m according to Lemma ??, (??), the claim

follows. �

Proposition 11.104 (G. Keller, [?], Corollary 5.9). Every group with the uni-
form Følner property satis�es a law.

Proof. Indeed, by Theorem 11.103, (2), if G has the uniform Følner Property
then any ultrapower Gω has the uniform Følner Property. Assume that G does
not satisfy any law, i.e., in view of Lemma ??, the group Gω contains a subgroup
isomorphic to the free group F2. By Proposition 11.76 it would then follow that F2

has the Følner Property, a contradiction. �

11.9. Quantitative approaches to amenability

One quantitative approach to amenability is due to A.M. Vershik, who intro-
duced in [?] the Følner function. Given an amenable graph G of bounded geometry,
its Følner function FGo : (0,∞) → N is de�ned by the condition that FGo (x) is the
minimal cardinality of a �nite non-empty set F of vertices satisfying the inequality

|E(F, F c)| 6 1

x
|F | .

According to the inequality (1.1) relating the cardinalities of the vertex and
edge boundary, if one replaces in the above E(F, F c) by the vertex boundary ∂V F
of F , one obtains a Følner function asymptotically equal to the �rst, in the sense
of De�nition 1.7.

The following is a quantitative version of Theorem 11.10.

Proposition 11.105. If two graphs of bounded geometry are quasi-isometric
then they are either both non-amenable or both amenable and their Følner functions
are asymptotically equal.

Proof. Let G and G′ be two graphs of bounded geometry, and let f : G → G′
and g : G′ → G be two (L,C)�quasi-isometries such that f ◦ g and g ◦ f are at
distance at most C from the respective identity maps (in the sense of the inequalities
(5.3)). Without loss of generality we may assume that both f and g send vertices
to vertices. Let m be the maximal valency of a vertex in either G or G′.

We begin by some general considerations. We denote by α the maximal cardi-
nality of B(x,C)∩ V , where B(x,C) is an arbitrary ball of radius C in either G or
G′. Since both graphs have bounded geometry, it follows that α is �nite.

Let A be a �nite subset in V (G), let A′ = f(A) and A′′ = g(A′). It is obvious
that |A′′| 6 |A′| 6 |A| . By hypothesis, the Hausdor� distance between A′′ and A
is C, therefore |A| 6 α|A′′| . Thus we have the inequalities

(11.13)
1

α
|A| 6 |f(A)| 6 |A| ,
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and similar inequalities for �nite subsets in V (G′) and their images by g .

The �rst part of the statement follows from Theorem 11.10.
Assume now that both G and G′ are amenable, and let FGo and FG

′

o be their
respective Følner functions. Without loss of generality we assume that both Følner
functions are de�ned using the vertex boundary.

Fix x ∈ (0,∞), and let A be a �nite subset in V (G) such that |A| = FGo (x) and

|∂V (A)| 6 1

x
|A| .

Let A′ = f(A) and A′′ = g(A′). We �x the constant R = L(2C + 1), and
consider the set B = NR(A′). The vertex-boundary ∂V (B) is composed of vertices
u such that R 6 dist(u,A′) < R+ 1 .

It follows that

dist(g(u), A) > dist(g(u), A′′)− C > 1

L
R− 2C = 1

and that
dist(g(u), A) 6 L(R+ 1) + C .

In particular every vertex g(u) is at distance at most L(R + 1) + C − 1 from
∂V (A) and it is not contained in A. We have thus proved that

g (∂V (B)) ⊆ NL(R+1)+C−1 (∂V (A)) \A .

It follows that if we denotemL(R+1)+C−1 by λ, then we can write, using (11.13),

|∂V (B)| 6 α |g (∂V (B))| 6 αλ |∂V (A)| 6 αλ 1

x
|A| 6

α2λ
1

x
|A′| 6 α2λ

1

x
|B| .

We have thus obtained that, for κ = α2λ and every x > 0, the value FG
′

o

(
x
κ

)
is

at most |B| 6 mR|A′| 6 mR|A| = mR FGo (x) . We conclude that FG
′

o � FGo .
The opposite inequality FGo � FG

′

o is obtained similarly. �

Proposition 11.105 implies that, given a �nitely generated amenable group G,
any two of its Cayley graphs have asymptotically equal Følner functions. We will,
therefore, write FGo , for the equivalence class of all these functions.

Definitions 11.106. (1) We say that a sequence (Fn) of �nite subsets in
a group realizes the Følner function of that group if for some generating
set S, cardFn = FGo (n), where G is the Cayley graph of G with respect to
S, and

|E(Fn, F
c
n)| 6 1

n
|Fn| .

(2) We say that a sequence (An) of �nite subsets in a group quasi-realizes

the Følner function of that group if cardAn � FGo (n) and there exists a
constant a > 0 and a �nite generating set S such that for every n,

|E(An, A
c
n)| 6 a

n
|An| ,

where |E(An, A
c
n)| is the edge boundary of An in the Cayley graph of G

with respect to S .
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Lemma 11.107. Let H be a �nitely generated subgroup of a �nitely generated
amenable group G. Then FHo � FGo .

Proof. Consider a generating set S of G containing a generating set X of H.
We shall prove that for the Følner functions de�ned with respect to these generating
sets, we can write FHo (x) 6 FGo (x) for every x > 0. Let F be a �nite subset in G
such that |F | = FGo (x) and |∂V F | 6 1

x |F | .
The set F intersects �nitely many cosets of H, g1H, . . . , gkH . In particular

F =
⊔k
i=1 Fi , where Fi = F ∩ giH . We denote by ∂iV Fi the set of vertices in ∂V Fi

joined to vertices in Fi by edges with labels in X. The sets ∂iV Fi are contained in
giH for every i ∈ {1, 2, . . . , k}, hence they are pairwise disjoint subsets of ∂V F . We
can thus write

k∑
i=1

∣∣∂iV Fi∣∣ 6 |∂V F | 6 1

x
|F | = 1

x

k∑
i=1

|Fi| .

It follows that there exists i ∈ {1, 2, . . . , k} such that
∣∣∂iV Fi∣∣ 6 1

x |Fi| . By
construction, Fi = giKi with Ki a subset of H, and the previous inequality is
equivalent to |∂VKi| 6 1

x |Ki|, where the vertex-boundary ∂VKi is considered in
the Cayley graph of H with respect to the generating set X. We then have that
FHo (x) 6 |Ki| 6 |F | = FGo (x) . �

One may ask how do the Følner functions relate to the growth functions, and
when do the sequences of balls of �xed centre quasi-realize the Følner function,
especially under the extra hypothesis of subexponential growth, see Proposition
11.6.

Theorem 11.108. Let G be an in�nite �nitely generated group.

(1) FGo (n) � GG(n).

(2) If the sequence of balls B(1, n) quasi-realizes the Følner function of G
then G is virtually nilpotent.

Proof. (1) Consider a sequence (Fn) of �nite subsets in G that realizes the
Følner function of that group, for some generating set S. In particular

|E(Fn, F
c
n)| 6 1

n
|Fn| .

We let G denote the growth function of G with respect to the generating set S.
Inequality (??) in Proposition ?? implies that

|Fn|
2dkn

6
1

n
|Fn| ,

where d = |S| and kn is such that G(kn − 1) 6 2|Fn| < G(kn − 1) .
This implies that

kn − 1 >
n

2d
− 1 >

n

4d
,

whence,

2 FGo (n) > G (kn − 1) > G
( n

4d

)
.

(2) The inequality in (2) implies that for some a > 0,

|S(1, n+ 1)| 6 a

n
|B(1, n)| .
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In terms of the growth function, this inequality can be re-written as

(11.14)
G(n+ 1)−G(n)

G(n)
6
a

n
.

Let f(x) be the piecewise-linear function on R+ whose restriction to N equals G
and which is linear on every interval [n, n+ 1], n ∈ N. Then the inequality (11.14)
means that for all x /∈ N,

f ′(x)

f(x)
6
a

x
.

which, by integration, implies that ln |f(x)| 6 a ln |x|+ b . In particular, it follows
that G(n) is bounded by a polynomial in n, whence, G is virtually nilpotent. �

In view of Theorem 11.108, (1), one may ask if there is a general upper bound
for the Følner functions of a group, same as the exponential function is a general
upper bound for the growth functions; related to this, one may ask how much can
the Følner function and the growth function of a group di�er. The particular case
of the wreath products already shows that there is no upper bound for the Følner
functions, and that consequently they can di�er a lot from the growth function.

Theorem 11.109 (A. Erschler, [?]). Let G and H be two amenable groups and

assume that some representative F of FHo has the property that for every a > 0
there exists b > 0 so that aF (x) < F (bx) for every x > 0.

Then the Følner function of the wreath product A oB is asymptotically equal to

[FBo (x)]F
A
o (x).

A. Erschler proved in [?] that for every function f : N → N, there exists a
�nitely generated group G, which is a subgroup of a group of intermediate growth
(in particular, G is amenable) whose Følner function satis�es FGo (n) > f(n) for all
su�ciently large n.
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11.10. Amenable hierarchy

We conclude this chapter with the following diagram illustrating hierarchy of
amenable groups:

small groups

f.g. abelian groups 

f.g. nilpotent groups

polycyclic groups

solvable groups

elementary amenable groups

amenable groups

Figure 11.1. Hierarchy of amenable groups
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