Amenable groups, Jacques Tits' Alternative Theorem

Cornelia Druțu

Oxford

TCC Course 2014, Lecture 4

Cornelia Druțu (Oxford)

Amenable groups, Alternative Theorem TCC Course 2014, Lecture 4 1 / 15

Last lecture

- For a group, the von Neumann definition (with a mean) is equivalent to the geometric amenability for any Cayley graph;
- a group is either amenable or paradoxical (Taski alternative);
- an extension of the functional lim to sequences in compact spaces, using non-principal ultrafilters.
- group operations preserving amenability \Rightarrow solvable groups are amenable.
- definition of the strictly smaller class of elementary amenable groups: minimal class containing all finite and abelian groups, stable by the same list of group operations.

Quantitative non-amenability

One can measure "how paradoxical" a group G is via the Tarski number. In this discussion, groups are not required to be finitely generated. Recall that a paradoxical decomposition of a group G is a partition

$$G = X_1 \sqcup \ldots \sqcup X_k \sqcup Y_1 \sqcup \ldots \sqcup Y_m$$

for which $\exists g_1, ..., g_k, h_1, ..., h_m$ in *G*, so that

$$g_1 X_1 \sqcup \ldots \sqcup g_k X_k = G$$

and

$$h_1 Y_1 \sqcup \ldots \sqcup h_m Y_m = G.$$

The Tarski number of the decomposition is k + m.

The Tarski number Tar(G) of the group = minimum of the Tarski numbers of paradoxical decompositions.

If G is amenable then set $Tar(G) = \infty$.

Cornelia Druțu (Oxford)

Tarski numbers and group operations

Proposition

- $Tar(G) \ge 4$ for every group G.
- **2** If $H \leq G$ then $\operatorname{Tar}(G) \leq \operatorname{Tar}(H)$.
- **3** Tar(G) = 4 if and only if G contains a free non-abelian sub-group.
- Every paradoxical group G contains a finitely generated subgroup H with Tar(G) generators, such that Tar(G) = Tar(H).
- **5** If N is a normal subgroup of G then $Tar(G) \leq Tar(G/N)$.

Two groups G_1 and G_2 are co-embeddable if there exist injective group homomorphisms $G_1 \rightarrow G_2$ and $G_2 \rightarrow G_1$.

- All countable free groups are co-embeddable.
- Sirvanjan-Adyan: for every odd m ≥ 665, two free Burnside groups B(n; m) and B(k; m) of exponent m, with n ≥ 2 and k ≥ 2, are co-embeddable.

 G_1 (non-)amenable iff G_2 (non-)amenable. Moreover $Tar(G_1) = Tar(G_2)$. Consequence: For every odd $m \ge 665$, and $n \ge 2$, the Tarski number of B(n; m) is independent of the number of generators.

Paradoxical decomposition and torsion

Proposition

• If G admits a paradoxical decomposition

 $G = X_1 \sqcup X_2 \sqcup Y_1 \sqcup \ldots \sqcup Y_m,$

then G contains an element of infinite order.

2 If G is a torsion group then $Tar(G) \ge 6$.

The Tarski numbers help to classify the groups non-amenable and without an F_2 subgroup ("infinite monsters").

Ceccherini, Grigorchuk, de la Harpe: The Tarski number of a free Burnside group B(n; m) with $n \ge 2$ and $m \ge 665$, m odd, is at most 14.

Tarski numbers, final

- We proved that a paradoxical group G contains a finitely generated subgroup H with Tar(G) generators, such that Tar(G) = Tar(H).
- Consequence: if G is such that all m generated subgroups are amenable then $Tar(G) \ge m + 1$.
- M. Ershov: certain Golod-Shafarevich groups G
 - have an infinite quotient with property (T);
 - for every m large enough, G contains finite index subgroups H_m with the property that all their m-generated subgroups are finite.

Consequences:

- the set of Tarski numbers is unbounded;
- Tarski numbers, when large, are not quasi-isometry invariants. Not even commensurability invariants.

Ershov-Golan-Sapir: D. Osin's torsion groups have Tarski number 6.

Cornelia Druțu (Oxford)

Amenable groups, Alternative Theorem

Questions

Question

How does the Tarski number of a free Burnside group B(n; m) depend on the exponent m? What are its possible values?

Question

Is the Tarski number of groups a quasi-isometry invariant, when it takes small values?

For Tar(G) = 4 this question is equivalent to a well-known open problem.

A group G is small if it contains no free nonabelian subgroups. Thus, G is small iff Tar(G) > 4.

Question

Is smallness invariant under quasi-isometries of finitely generated groups?

Uniform amenability

- Let G be a discrete group. TFAE:
 - G is amenable;
 - (the Følner Property) for every finite subset K of G and every *ϵ* ∈ (0, 1) there exists a finite non-empty subset F ⊂ G satisfying:

 $|KF \bigtriangleup F| < \epsilon |F|.$

uniform Følner Property: |F| has a bound depending only on ϵ and |K|: $\exists \phi : (0,1) \times \mathbb{N} \to \mathbb{N}$ such that

 $|F| \leqslant \phi(\epsilon, |K|).$

Theorem (G. Keller)

A group G has the uniform Følner Property if and only if for some (for every) non-principal ultrafilter ω , the ultrapower G^{ω} has the Følner Property.

Consider

- $\omega : \mathcal{P}(I) \rightarrow \{0,1\}$ non-principal ultrafilter.
- a collection of sets $X_i, i \in I$.

The ultraproduct $\prod_{i \in I} X_i / \omega$ = set of equivalence classes of maps $f : I \to \bigcup_{i \in I} X_i$, $f(i) \in X_i$ for every $i \in I$,

with respect to the equivalence relation $f \sim g$ iff f(i) = g(i) for ω -all *i*. The equivalence class of a map *f* denoted by f^{ω} . For a map given by indexed values $(x_i)_{i \in I}$, we use the notation $(x_i)^{\omega}$. When $X_i = X$ for all $i \in I \Rightarrow$ the ultrapower of X, denoted X^{ω} .

Any structure on X (group, ring, order, total order) defines the same structure on X^{ω} .

When $X = \mathbb{K}$ is either \mathbb{N}, \mathbb{Z} or \mathbb{R} , the ultrapower \mathbb{K}^{ω} is called nonstandard extension of \mathbb{K} ;

the elements in $\mathbb{K}^{\omega} \setminus \mathbb{K}$ are called nonstandard elements.

X can be embedded into X^{ω} by $x \mapsto (x)^{\omega}$.

We denote the image of each element $x \in X$ by \hat{x} .

We denote the image of $A \subseteq X$ by \widehat{A} .

Internal subsets

Internal subset of an ultrapower $X^{\omega} = W^{\omega} \subset X^{\omega}$ s.t. $\forall i \in I$ there is a subset $W_i \subset X$ such that

$$f^{\omega} \in W^{\omega} \iff f(i) \in W_i \omega - -a.s.$$

Proposition

- If an internal subset A^{ω} is defined by a family of subsets of bounded cardinality $A_i = \{a_i^1, \ldots, a_i^k\}$ then $A^{\omega} = \{a_{\omega}^1, \ldots, a_{\omega}^k\}$, where $a_{\omega}^j = (a_i^j)^{\omega}$.
- **2** In particular, if an internal subset A^{ω} is defined by a constant family of finite subsets $A_i = A \subseteq X$ then $A^{\omega} = \widehat{A}$.
- Solution \mathbb{S} Every finite subset in X^{ω} is internal.

We now prove

Theorem (G. Keller)

A group G has the uniform Følner Property if and only if for some (for every) non-principal ultrafilter ω , the ultrapower G^{ω} has the Følner Property.

Uniform Følner property and laws

G. Keller: A group with the uniform Følner property satisfies a law.

An identity (or law) is a non-trivial reduced word $w = w(x_1, ..., x_n)$ in n letters $x_1, ..., x_n$ and their inverses.

G satisfies the identity (law) $w(x_1, ..., x_n) = 1$ if the equality is satisfied in *G* whenever $x_1, ..., x_n$ are replaced by arbitrary elements in *G*.

Abelian groups. Here the law is

$$w(x_1, x_2) = x_1 x_2 x_1^{-1} x_2^{-1}.$$

Solvable groups.

Free Burnside groups.

Laws in groups

Proposition

A group G satisfies a law if and only if for some (every) non-principal ultrafilter ω on \mathbb{N} , the ultrapower G^{ω} does not contain a free non-abelian subgroup.

Consequence[G. Keller] Every group with the uniform Følner property satisfies a law.

Question

Is every amenable group satisfying a law uniformly amenable ?

The above is equivalent to von Neumann-Day for ultrapowers of amenable groups.