Amenable groups, Jacques Tits' Alternative Theorem

Cornelia Druţu

Oxford

TCC Course 2014, Lecture 5

Last lecture

- Quantitative non-amenability: Tarski numbers.
 - $\operatorname{Tar}(G) = 4 \Leftrightarrow F_2 \leqslant G$;
 - $Tar(G) \ge 6$ if G is a torsion group;
 - $Tar(B(n, m)) \le 14$ and independent of number of generators n;
 - Tar(G) = 6 for Osin's torsion group G;
 - \exists *G* Golod-Shafarevich paradoxical group such that for every *m*, $\exists H_m \leqslant G$ finite index, $\operatorname{Tar}(H_m) \geq m$ (M. Ershov).
- Uniform amenability (with Følner condition) implies that G satisfies a law because:

 - G satisfies a law \Leftrightarrow one (every) ultrapower does not contain F_2 .

Quantitative amenability

Let ${\cal G}$ be an amenable graph of bounded geometry.

The Følner function of \mathcal{G} : $\mathsf{F}_o^{\mathcal{G}}:(0,\infty)\to\mathbb{N}$, $\mathsf{F}_o^{\mathcal{G}}(x):=$ minimal cardinality of $F\subseteq V$ finite non-empty s.t.

$$|\partial_V F| \le \frac{1}{x} |F|.$$

Proposition

If two graphs of bounded geometry are quasi-isometric then they are either both non-amenable or both amenable, and their Følner functions are asymptotically equal.

f and g are asymptotically equal ($f \approx g$) if $f \leq g$ and $g \leq f$.

 $f \leq g$ if $f(x) \leq ag(bx)$ for every $x \geq x_0$ for some fixed x_0 and a, b > 0.

Følner functions II

Proposition

Let H be a finitely generated subgroup of a finitely generated amenable group G. Then $\mathsf{F}^H_o \preceq \mathsf{F}^G_o$.

How does the Følner function relate to the growth function?

The main ingredient: isoperimetric inequalities.

Isoperimetric inequality in a manifold M = an inequality of the form

$$Vol(\Omega) \leq f(\Omega)g(Area\partial\Omega)$$
,

where f and g are real-valued functions, g defined on \mathbb{R}_+ and Ω arbitrary open submanifold with compact closure and smooth boundary.

Isoperimetric inequality in a graph $\mathcal{G}=\operatorname{replace}\Omega$ by $F\subseteq V$ finite, volume and area by cardinality.

Varopoulos inequality

Theorem (Varopoulos inequality)

Let Cayley(G, S) be a Cayley graph of G with respect to S, and d = |S|.

For every finite $F\subseteq V$, let k be the unique integer such that $\mathfrak{G}_S(k-1)\leqslant 2|F|<\mathfrak{G}_S(k)$. Then

$$|F| \leqslant 2d \ k \ |\partial_V F| \ , \tag{1}$$

Consequences:

$$|F| \leqslant K |\partial_V F|^{\frac{n}{n-1}}$$
.

② If $\mathfrak{G}_G \simeq \exp(x)$ then

$$\frac{|F|}{\ln|F|} \leqslant K |\partial_V F| .$$

Følner function and growth

 (A_n) sequence of finite subsets quasi-realizes the Følner function if

- $|A_n| \simeq \mathsf{F}_o^G(n)$
- $|\partial_V(A_n)| \leq \frac{a}{n} |A_n|$, for some a > 0 and finite generating set S.

Theorem

Let G be an infinite finitely generated group.

- $F_o^G(n) \succeq \mathfrak{G}_G(n)$.
- **②** The sequence of balls B(1, n) quasi-realizes the Følner function of G if and only if G is virtually nilpotent.

Relevant construction: wreath product

- How much can the Følner function and the growth function of a group differ?
- Is there a general upper bound for the Følner functions of a group (like the exponential function for growth)?

$$\bigoplus_{x \in X} G := \{ f : X \to G \mid f(x) \neq 1_G \text{ for finitely many } x \in X \} \ .$$

Define

$$\varphi: H \to \left(\bigoplus_{h \in H} G\right), \ \varphi(h)f(x) = f(h^{-1}x), \ \forall x \in H.$$

The wreath product of G with H, denoted by $G \wr H :=$ the semi-direct product

$$\left(\bigoplus_{h\in H}G\right)\rtimes_{\varphi}H.$$

Følner functions

The wreath product $G = \mathbb{Z}_2 \wr \mathbb{Z}$ is called the lamplighter group.

Theorem (A. Erschler)

Let G and H be two amenable groups and assume that some representative F of F_o^H has the property that for every a>0 there exists b>0 so that aF(x)< F(bx) for every x>0.

Then the Følner function of $G \wr H$ is asymptotically equal to $[F_o^H(x)]^{F_o^G(x)}$.

A. Erschler: for every function $f: \mathbb{N} \to \mathbb{N}$, $\exists G$ finitely generated, subgroup of a group of intermediate growth (hence G amenable) s.t. $F_o^G(n) \ge f(n)$ for n large enough.

Alternative Theorem

Theorem (Jacques Tits 1972)

A subgroup G of GL(n, F), where F is a field of zero characteristic, is either virtually solvable or it contains a free nonabelian subgroup.

Remark

One cannot replace 'virtually solvable' by 'solvable'. Consider the Heisenberg group $H_3 \leqslant GL(3,\mathbb{R})$ and $A_5 \leqslant GL(5,\mathbb{R})$. The group $G = H_3 \times A_5 \leqslant GL(8,\mathbb{R})$

- is not solvable; A₅ is simple;
- does not contain a free nonabelian subgroup: it has polynomial growth.

Reduction to G finitely generated

Without loss of generality we may assume G finitely generated in the Alternative Theorem.

Two ingredients are needed:

Proposition

Every countable field F of zero characteristic embeds in \mathbb{C} .

Theorem

Let V be a \mathbb{C} -vector space of dimension n.

There exist $\nu(n)$, $\delta(n)$ so that every virtually solvable subgroup $G \leqslant GL(V)$ contains a solvable subgroup Λ of index $\leqslant \nu(n)$ and derived length $\leqslant \delta(n)$.