Amenable groups, Jacques Tits' Alternative Theorem

Cornelia Druţu

Oxford

TCC Course 2014, Lecture 6

Last lecture

Quantitative amenability: Følner functions.

- quasi-isometry ⇒ asymptotic equality;
- the Varopoulos inequality: growth determines an isoperimetric inequality;
- the sequence $B_G(1,n), n \in \mathbb{N}$, quasi-realizes the Følner function iff G virtually nilpotent;
- no universal upper bound for Følner functions: $\forall f : \mathbb{N} \to \mathbb{N}$, $\exists G$ such that $\mathsf{F}_0^G \geq f$.

Alternative Theorem

Theorem (Jacques Tits 1972)

A subgroup G of GL(n, F), where F is a field of zero characteristic, is either virtually solvable or it contains a free nonabelian subgroup.

Remark

Without loss of generality we may assume that G is finitely generated.

Noetherian rings

References: Onishchik & Vinberg and J.E. Humphreys, *Linear Algebraic Groups*.

Let A be a commutative ring. TFAE

- every ideal in A is finitely generated;
- the set of ideals satisfies the ascending chain condition (ACC): every ascending chain of ideals

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$$

stabilizes, i.e., for some integer $N \geqslant 1$, $I_k = I_N$ for every $k \geqslant N$.

A commutative ring A as above is called noetherian.

Examples:

- Every field is noetherian.
- Hilbert's ideal basis theorem: If A is noetherian then $A[X_1, ..., X_n]$ is noetherian.

We fix a field \mathbb{K} .

Affine algebraic set= subset Z in \mathbb{K}^n defined as

$$Z = \{(x_1,..,x_n) \in \mathbb{K}^n ; p_j(x_1,..,x_n) = 0, j \in J\},\$$

for a collection of polynomials $p_j \in \mathbb{K}[X_1,...,X_n]$, $j \in J$.

There is a one-to-one map associating to an algebraic subset in \mathbb{K}^n an ideal in $\mathbb{K}[X_1,...,X_n]$:

$$Z \mapsto I_Z = \{ p \in K[X_1, ..., X_n] ; p|_Z \equiv 0 \}.$$

- I_Z is the kernel of the homomorphism $p \mapsto p|_Z$ from $K[X_1, ..., X_n]$ to the ring of functions on Z.
- $\mathbb{K}[X_1,...,X_n]/I_Z$ may be seen as a ring of functions on Z: the ring of polynomials on Z, denoted $\mathbb{K}[Z]$.

- Every algebraic set is defined by finitely many equations.
- ② The set of algebraic subsets of \mathbb{K}^n satisfies the descending chain condition (DCC): every descending chain of algebraic subsets

$$Z_1 \supseteq Z_2 \supseteq \cdots \supseteq Z_i \supseteq \cdots$$

stabilizes.

A morphism between affine varieties Y in \mathbb{K}^n and Z in $\mathbb{K}^m = \mathsf{a}$ map $\varphi: Y \to Z$, $\varphi = (\varphi_1, ..., \varphi_m)$, such that φ_i is in $\mathbb{K}[Y]$ for every $i \in \{1, 2, ..., m\}$.

A morphism is induced by a morphism $\tilde{\varphi}: \mathbb{K}^n \to \mathbb{K}^m$, $\tilde{\varphi} = (\tilde{\varphi}_1, ..., \tilde{\varphi}_m)$, with $\tilde{\varphi}_i: \mathbb{K}^n \to \mathbb{K}$ a polynomial function $\forall i$.

An isomorphism = an invertible map $\varphi:Y\to Z$ such that both φ and φ^{-1} are morphisms.

The Zariski topology on \mathbb{K}^n is the topology having as closed sets all the algebraic subsets.

The Zariski closure of a subset $E \subset \mathbb{K}^n$ is

$$\{x \in \mathbb{K}^n \mid p(x) = 0, \forall p \text{ vanishing on } E\}.$$

A topological space such that the closed sets satisfy the DCC (or, equivalently, the open sets satisfy the ACC) is called noetherian.

Example: \mathbb{K}^n with the Zariski topology is noetherian.

Properties:

- Every subspace of a noetherian topological space (with the subspace topology) is noetherian.
- Every noetherian topological space X is compact.

We define a strong version of connectedness, relevant in noetherian spaces.

For a topological space X TFAE

- lacksquare every open non-empty subset of X is dense in X;
- 2 two open non-empty subsets have non-empty intersection;
- 3 X cannot be written as a finite union of proper closed subsets.

A non-empty topological space as above is called irreducible.

Examples:

- \mathbb{K}^n with the Zariski topology is irreducible.
- An algebraic variety Z is irreducible if and only if $\mathbb{K}[Z]$ does not contain zero divisors.

General properties:

- The image of an irreducible space under a continuous map is irreducible.
- The cartesian product of two irreducible spaces is irreducible.
- A subset is irreducible if and only if its closure is irreducible.
- If Y is irreducible and $Y \subseteq A \subseteq \overline{Y}$ then A is irreducible.
- Every irreducible subset is contained in a maximal irreducible subset.
- ullet The maximal irreducible subsets of X are closed and they cover X.

Theorem

A noetherian topological space X is a union of finitely many distinct maximal irreducible subsets $X_1, X_2, ..., X_n$ such that for every i, X_i is not contained in $\bigcup_{j \neq i} X_j$.

Moreover, every maximal irreducible subset in X coincides with one of the subsets $X_1, X_2, ..., X_n$. This decomposition of X is unique up to a renumbering of the X_i 's.

The subsets X_i defined in the Theorem above are called the irreducible components of X.

An algebraic subgroup of GL(V) is a Zariski-closed subgroup of GL(V).

- The binary operation $G \times G \to G$, $(g, h) \mapsto gh$ is a morphism.
- The inversion map $g \mapsto g^{-1}$ is an automorphism.
- The left-multiplication and right-multiplication maps $g \mapsto ag$ and $g \mapsto ga$, by a fixed element $a \in G$, are automorphisms.

Examples:

- **1** The subgroup SL(V) of GL(V) is algebraic, defined by det(g) = 1.
- ② The group $GL(n, \mathbb{K})$ can be identified to an algebraic subgroup of $SL(n+1, \mathbb{K})$ by mapping every matrix $A \in GL(n, \mathbb{K})$ to the matrix

$$\left(\begin{array}{cc} A & 0 \\ 0 & \frac{1}{\det(A)} \end{array}\right) .$$

Consequence: it will not matter if we consider algebraic subgroups of $GL(n, \mathbb{K})$ or of $SL(n, \mathbb{K})$.

- **1** The group O(V) is an algebraic subgroup, as it is given by the system of equations $M^TM = \operatorname{Id}_V$.
- The stabilizer O(q) of a quadratic form q on V is algebraic (e.g. O(n) for $q = x^1 + \cdots + x_n^2$; the symplectic group $Sp(2k, \mathbb{K})$)

Proposition

If Γ is a subgroup of SL(V) then its Zariski closure $\bar{\Gamma}$ in SL(V) is also a subgroup.

Irreducibility for algebraic groups:

- **1** An algebraic subgroup of $GL(n, \mathbb{C})$ is irreducible in the Zariski topology if and only if it is connected in the classical topology.
- ② A connected (in classical topology) algebraic subgroup of $GL(n,\mathbb{R})$ is irreducible in the Zariski topology.
- **3** Only one irreducible component of G contains the identity element. This is called the identity component and is denoted by G_0 .
- **1** The subset G_0 is a normal subgroup of finite index in G whose cosets are the irreducible components of G.

- **1** An algebraic group G over a field \mathbb{K} , contains a radical $\operatorname{Rad} G$, which is the largest irreducible solvable normal algebraic subgroup of G.
 - A group with trivial radical is called semisimple.
- The radical is the same if the group is considered with its real or its complex structure.
- The commutator subgroup of an irreducible algebraic group is irreducible.
 - An irreducible algebraic semisimple group coincides with its commutator subgroup.
- The image of an algebraic irreducible semisimple group under an algebraic homomorphism is an algebraic irreducible semisimple group.
- **3** Given an algebraic semisimple group G and a representation $G \hookrightarrow GL(V)$, the space V decomposes into a direct sum of G-invariant subspaces so that the action of G on each of these subspaces is irreducible (i.e. no proper G-invariant subspaces).

At the core of J. Tits' Alternative Theorem is an example of ping-pong on a projective space that we now explain.

In what follows $\mathbb{K}=\mathbb{R}$ or \mathbb{C} , \mathbb{K}^n is equipped with the standard inner/hermitian product.

Theorem

Every matrix $M \in GL(n, \mathbb{K})$ admits a Cartan decomposition

$$M = UDV$$

where U, V are in O(n) (respectively in U(n)) and D is a diagonal matrix with positive entries arranged in descending order.

Follows from: given any inner/hermitian product q on \mathbb{K}^n , there exists a basis

- orthogonal with respect to q;
- orthonormal with respect to the standard inner product

$$x_1\overline{y}_1 + \ldots + x_n\overline{y}_n$$
.
Amenable groups, Alternative Theorem

Notation

For $v \in V \setminus \{0\}$, [v] is its projection to $\mathbb{P}(V)$.

For $W \subset V$, [W] is the image of $W \setminus \{0\}$ under the projection $V \to \mathbb{P}(V)$.

For a linear map $g:V\to V$, we retain the notation g for the induced projective map $\mathbb{P}(V)\to\mathbb{P}(V)$.

We define an inner/hermitian product on $\mathbb{K}^n \wedge \mathbb{K}^n$ by declaring the basis

$$e_i \wedge e_j, 1 \leqslant i < j \leqslant n+1$$

to be orthonormal. Then

$$||v \wedge w||^2 = ||v||^2 ||w||^2 - \langle v, w \rangle \langle w, v \rangle.$$

The chordal metric on $\mathbb{P}\mathbb{K}^n$ is defined by

$$\operatorname{dist}([v],[w]) = \frac{\|v \wedge w\|}{\|v\| \cdot \|w\|}.$$

- The group O(n) (respectively U(n)) preserves the chordal metric.
- The topology induced by the chordal metric is the quotient topology induced from $V \setminus \{0\}$.
- $\mathbb{P}\mathbb{K}^n$ with the chordal metric is compact.
- If H is a hyperplane in \mathbb{K}^n , given as $\ker f$, where $f:V\to\mathbb{K}$ is a linear functional, then

$$dist([v], [H]) = \frac{|f(v)|}{\|v\| \|f\|}.$$

Proposition

Consider $M \in GL(n, \mathbb{K})$ and M = UDV its Cartan decomposition, where D is a diagonal matrix with diagonal entries a_1, \ldots, a_n such that

$$a_1 \geqslant \ldots \geqslant a_n$$
.

Then M induces a bi-Lipschitz transformation of \mathbb{PK}^n with Lipschitz constant $\leqslant \frac{a_1^2}{a^2}$,

Let $g \in GL(n, \mathbb{K})$ be an ordered basis $\{u_1, \ldots, u_n\}$ of eigenvectors, $gu_i = \lambda_i u_i$, such that

$$\lambda_1 > \lambda_2 \geqslant \lambda_3 \geqslant \ldots \geqslant \lambda_{n-1} > \lambda_n > 0$$
.

Denote $A(g) = [u_1]$ and $H(g) = [\operatorname{Span} \{u_2, \dots, u_n\}].$

Then $A(g^{-1}) = [u_n]$ and $H(g^{-1}) = [\operatorname{Span}\{u_1, \dots, u_{n-1}\}].$

Obviously, $A(g) \in H(g^{-1})$ and $A(g^{-1}) \in H(g)$.

Proposition (projective ping-pong)

Assume that g and h are two elements in $GL(n, \mathbb{K})$ diagonal with respect to bases $\{u_1, \ldots, u_n\}$, $\{v_1, \ldots, v_n\}$ respectively.

Assume that $A(g^{\pm 1})$ is not in $H(h) \cup H(h^{-1})$, and $A(h^{\pm 1})$ is not in $H(g) \cup H(g^{-1})$.

There exists N such that g^N and h^N generate a free non-abelian subgroup of $GL(n, \mathbb{K})$.