AMENABLE GROUPS; ALTERNATIVE THEOREM EX. SHEET 1 HT 2015

Answers should be sent by email to drutu@maths.ox.ac.uk, in any legible format, by 18 February at the latest

Exercise 1. Recall the concept of an *invariant mean*, which is responsible for the terminology 'amenable':

- (1) A mean on a group G is a linear functional $m : \ell^{\infty}(G) \to \mathbb{C}$ defined on the set $\ell^{\infty}(G)$ of bounded functions on G, with the following properties:
 - (M1) if f takes values in $[0, \infty)$ then $m(f) \ge 0$;
 - (M2) $m(\mathbf{1}_G) = 1$, where $\mathbf{1}_G$ is the function on G that is constant equal to 1.

The action of G on $\ell^{\infty}(G)$ is defined by $g \cdot f(x) = f(g^{-1} \cdot x)$. A mean is called *left-invariant* if $m(g \cdot f) = m(f)$ for every $f \in \ell^{\infty}(G)$ and $g \in G$.

Use the definition of amenability involving the existence of a mean to prove that

- (1) a subgroup of an amenable group is amenable;
- (2) a paradoxical group is non-amenable.

Exercise 2. Let G be a finitely generated group and S a fixed finite set generating G. The goal of the exercise is to show that the Følner definition of amenability implies the existence of a mean.

Recall that the Følner definition of amenability requires that for every finite subset F of G and every $\epsilon > 0$ there exists Ω finite subset in G such that $\Omega \bigtriangleup F\Omega$ has cardinality at most ϵ card Ω .

- (1) Prove that it suffices that the Følner condition is satisfied for the finite set S and arbitrary $\epsilon > 0$.
- (2) Let ω be an ultrafilter on \mathbb{N} . For every integer $n \geq 1$, let Ω_n be a set such that $\Omega_n \bigtriangleup S\Omega_n$ has cardinality at most $\frac{1}{n} \operatorname{card} \Omega_n$. Prove that the map $m : \ell^{\infty} \to \mathbb{R}$ defined by

$$m(f) = \lim_{\omega} \frac{1}{\operatorname{card} \Omega_n} \sum_{g \in \Omega_n} f(g)$$

is a G-left-invariant mean. Above \lim_{ω} signifies the ω -limit of the sequence.

Exercise 3. Consider \mathbb{Z}^2 endowed with the word metric d defined by $\pm(1,0), \pm(0,1)$. Prove that, for every non-principal ultrafilter ω , the asymptotic cone of (\mathbb{Z}^2, d) with respect to the centre of observation (0,0), the scaling sequence $\lambda_n = n$, and ω is isometric to \mathbb{R}^2 endowed with the metric defined by the norm $\| \|_1$.

Exercise 4. Let F_2 be the free group with two generators and d the word metric defined by these generators. Prove that, for every non-principal ultrafilter ω and every scaling sequence (λ_n) diverging to ∞ , the asymptotic cone $C_{\omega,\lambda}$ of (F_2, d) , with respect to the scaling sequence (λ_n) , ω and the sequence of centres of observation constant equal to the identity, is a real tree. Prove that moreover for every point x in the cone $C_{\omega,\lambda}$, $C_{\omega,\lambda} \setminus \{x\}$ has continuously many connected components.