Amenable Groups; Alternative Theorem

C. Druțu

Oxford

TCC 2015, Lecture 1
The course is centred around two conjectures that attempt to draw a demarcation line between

- “abelian-like” groups and
- “free-like” groups.

These are

- the Von Neumann-Day conjecture;
- the Milnor conjecture.
In the beginning of the XX-th century measure theory emerged (Lebesgue 1901, 1902). Among the questions asked in those days was the following.

Question

Does there exist a measure on \mathbb{R}^n that is

- finitely additive;
- invariant by isometries;
- defined on every subset?

The Banach–Tarski Paradox answered this question.
Banach-Tarski Paradox

First some terminology:

- **Congruent subsets** in a metric space = subsets A, B such that $\Phi(A) = B$ for some isometry Φ.

- **Piecewise congruent subsets** in a metric space = subsets A, B such that
 \[
 A = A_1 \sqcup A_2 \sqcup \cdots \sqcup A_n, \quad B = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_n
 \]
 and A_i, B_i congruent for every i.

Theorem (Banach-Tarski)

Every two subsets A, B in \mathbb{R}^n, $n \geq 3$, A, B with non-empty interiors are piecewise congruent.

Proof uses the Axiom of Choice.

Examples:

- A and λA, for $\lambda > 0$;
- $B(0, 1)$ and $B(0, 1) \sqcup B(c, 1)$.

C. Druțu (Oxford)
In view of the Banach-Tarski Paradox, several conclusions are possible:

Conclusion 1: The answer to the question on measures on \mathbb{R}^n is negative. In particular there exist subsets in \mathbb{R}^n “without volume”.

Conclusion 2 (the opposite): Hard to believe that sets “without volume” exist, therefore the Axiom of Choice should not be admitted.

Note that

- Banach-Tarski is not provable nor disprovable only with Zermelo-Frankel;
- The Axiom of Choice can be replaced with the Hahn-Banach Extension Theorem (a weaker hypothesis).
Amenable groups

Conclusion 3: Why the hypothesis “dimension at least 3” in Banach-Tarski?

John von Neumann (1929) defined amenable groups to explain this.

Let G be locally compact, second countable.

G amenable = there exists a functional $m : \ell^\infty(G) \to \mathbb{R}$ (mean) such that

- m has norm 1;
- if $f \geq 0$ then $m(f) \geq 0$ (m positive definite);
- m invariant by G-left translations.
Amenable groups II

Equivalently, for every compact $K \subset G$ and every $\epsilon > 0$ there exists $\Omega \subseteq G$ Haar measurable, of positive measure $\nu(\Omega) > 0$ such that

$$\nu(K\Omega \triangle \Omega) \leq \epsilon \nu(\Omega).$$

Remark

In all the above, left multiplication can be replaced by right multiplication.

Examples

- G finite.
- $G = \mathbb{R}^n$ or \mathbb{Z}^n.
 For $G = \mathbb{Z}$, for every K finite and $\epsilon > 0$, $\Omega = [-n, n] \cap \mathbb{Z}$ with n large enough works.
Proposition (immediate properties)

- A subgroup of an amenable group is amenable.
- Given a short exact sequence
 \[1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1 \]

 \(G \) amenable iff \(N \) and \(Q \) amenable.
- A direct limit of amenable groups is amenable.

Exercise: Prove the above.
“Abelian-like” groups

Construction by induction: \(C^1(G) := G \), \(C^2(G) = [G, C^1(G)] \), \ldots, \(C^{i+1}(G) = [G, C^i(G)] \).

Thus, a decreasing series of characteristic subgroups

\[
C^1(G) \supseteq C^2(G) \supseteq \cdots \supseteq C^i(G) \supseteq \cdots
\]

called lower central series.

\(G \) nilpotent if \(\exists k \) s.t. \(C^k(G) = \{1\} \).

\(G' = [G, G] \) = the derived group, \(G^{(i+1)} = (G^{(i)})' \).

Another decreasing series of characteristic subgroups

\[
G \supseteq G' \supseteq \cdots \supseteq G^{(i)} \supseteq \cdots
\]

called derived series.

\(G \) solvable if \(\exists k \) s.t. \(G^{(k)} = \{1\} \).
Solvable, paradoxical

Corollary

Every solvable group is amenable.

Prove the Corollary using Proposition 4.

G is paradoxical if

- ∃ a decomposition $G = X_1 \sqcup \cdots \sqcup X_k \sqcup Y_1 \sqcup \cdots \sqcup Y_m$;
- ∃ g_1, \ldots, g_k and h_1, \ldots, h_m in G s.t.
 $$G = g_1X_1 \sqcup \cdots \sqcup g_kX_k = h_1Y_1 \sqcup \cdots \sqcup h_mY_m.$$

Theorem

G is non-amenable if and only if G is paradoxical.

Exercise: Prove that G paradoxical \Rightarrow G non-amenable.
The free group

Free group of rank 2, \(F_2 = \langle a, b \rangle \) = set of words in the alphabet \(\{ a, b, a^{-1}, b^{-1} \} \), reduced (i.e. no \(xx^{-1} \)). Binary operation is concatenation and reduction.

For \(x \in \{ a, b, a^{-1}, b^{-1} \} \), \(W_x \) = set of words beginning in \(x \).

Define \(W'_b = W_b \setminus \{ b^n \mid n \geq 1 \} \), \(W'_{b^{-1}} = W_{b^{-1}} \cup \{ b^n \mid n \geq 0 \} \).

\[
F_2 = W_a \sqcup W_{a^{-1}} \sqcup W_b \sqcup W'_{b^{-1}} = W_a \sqcup aW_{a^{-1}} = W'_b \sqcup bW'_{b^{-1}}.
\]

Corollary

If \(F_2 \leq G \) then \(G \) is non-amenable.
Back to the question on dimension for Banach–Tarski:

- The group of isometries of \mathbb{R}^n is $O(n) \rtimes \mathbb{R}^n$.
- For $n = 2$, $O(2)$ is virtually abelian.
- For $n \geq 3$, $O(n)$ contains F_2.

G is virtually $(*) = \exists H \leq G$ of finite index, H with property $(*)$.

Question

Can one find an algebraic definition for amenability/non-amenability?

Conjecture of von Neumann-Day: Every finitely generated group is either amenable or it contains (a copy of) F_2.
Theorem (Jacques Tits 1972)

Let L be a Lie group with finitely many connected components. If $G \leq L$, G finitely generated then either $F_2 \leq G$ or G is virtually solvable.

Remark

“Virtually solvable” cannot be replaced with “solvable”: take $G = F \times S$, where F is finite in $\text{GL}(n, \mathbb{R})$, S solvable in $\text{GL}(m, \mathbb{R})$, embed G in $\text{GL}(n + m, \mathbb{R})$ using diagonal blocks.

Exercise: Prove that virtually solvable groups are also amenable.
von Neumann-Day

Counter-examples to general von Neumann-Day:

- Olshanskii (1980), using small cancellation, a technique to construct “infinite monsters”.
- Adyan: Burnside groups are counter-examples:

 \[B(n, m) = \langle x_1, \ldots, x_n \mid w^m = 1 \rangle \text{ for } n \geq 2, m \geq 665, m \text{ odd}. \]

- Olshanskii, Sapir 2003: finitely presented counter-examples.
- Monod 2012: The group of piecewise projective homeomorphisms of \(\mathbb{R} \) is non-amenable, does not contain \(F_2 \).
Milnor's Conjecture

Let M be a Riemannian manifold. Fix $p \in M$. Consider the function $r \mapsto \text{Vol}(B(p, r))$.

Questions:

- Dependence on p?
- If N is a compact manifold and $M = \tilde{N}$, can part of the behaviour of the function be detected by looking at $\pi_1(N)$?

Let $f, g : A \to \mathbb{R}, A \subseteq \mathbb{R}$.

- $f \precsim g \iff \exists a, b, c, d, e$ positive s.t. $f(x) \leq ag(bx + c) + dx + e$.
- $f \asymp g \iff f \precsim g, g \precsim f$.

f, g as above are called **asymptotically equal**.
Milnor’s Conjecture II

- Dependence on p is up to \approx.

- For G finitely generated define $r \mapsto \#B(1, r)$, with $B(1, r)$ ball centred in 1 for some metric on G:

 fix S finite set generating G, $1 \notin S, S^{-1} = S$.

 word metric: $\text{dist}_S(g, h) =$ shortest word in S representing $h^{-1}g$.

 Growth function on $\tilde{N} \approx$ growth function of $G = \pi_1(N)$ (Milnor; Efremovich- Schwartz).
Examples of growth functions

Examples:

- \mathbb{Z}^d has growth function $\approx x^d$;

- G nilpotent,

$$C^1(G) \supset C^2(G) \supset \cdots \supset C^k(G) = \{1\}.$$

Then $C^i(G)/C^{i+1}(G) \cong \mathbb{Z}^{m_i} \times \text{Finite group}$.

Growth of $G \approx x^{\sum_i m_i}$ (Bass-Guivarch).

- the free group F_2 has growth $\approx e^x$.

C. Druțu (Oxford) Amenable Groups; Alternative Theorem TCC 2015, Lecture 1 18 / 25
Theorem (Milnor-Wolf)

If G is finitely generated and solvable then G is either virtually nilpotent or of exponential growth.

Exercise: Prove that for $\mathbb{Z}^2 \rtimes_M \mathbb{Z}$, where M 2 × 2 matrix with integer entries

- either M has an eigenvalue of absolute value $\neq 1$, and growth $\approx e^x$;
- or both eigenvalues have absolute value 1 and $\mathbb{Z}^2 \rtimes_M \mathbb{Z}$ virtually nilpotent.

Milnor’s Conjecture: Every f.g. group has either polynomial or exponential growth.
Proposition

If G has sub-exponential growth then G amenable.

Sub-exponential growth $= \lim_{n \to \infty} n \sqrt[1]{\#B(1, n)} = 1$.

Exercise: prove Proposition.

Hint: try second definition of amenability, with $\Omega = B(1, n)$.

Milnor’s conjecture

Theorem (M. Gromov’s Polynomial Growth Theorem)

If a f.g. group has polynomial growth then it is virtually nilpotent.

Milnor’s conjecture false in general; counter-examples of Grigorchuk, of
groups with growth function sub-exponential and $\gtrsim e^{\sqrt{n}}$.
Gromov’s theorem

Strategy of proof for Gromov’s theorem:
Let G f.g., growth $\lesssim x^d$.

- Embed G in a Lie group with finitely many connected components.
- Use Alternative Theorem: G either solvable or $F_2 \leq G$. The latter impossible, as growth $\lesssim x^d$.
- Apply Milnor-Wolf Theorem.
Main Tool for Gromov’s Thm.

Tool used to embed G in a Lie Groups:

Theorem (Montgomery-Zippin)

Input: X metric space that is
- complete;
- connected and locally connected;
- proper (i.e. compact balls);
- of finite Hausdorff dimension.

Output: If $H = $ the group of isometries of X acts transitively then
- H has finitely many conn. comp.;
- there exists a homomorphism $\varphi : H_e \to GL(n, \mathbb{C})$ with kernel in the centre $Z(H_e)$.
First part of the course

Goal: Make G act on a space X.

G already acts on

- $(G$, word metric $)$; but this space is not connected;
- every Cayley graph $\text{Cay}(G, S)$ with the simplicial metric; but for these the group of isometries does not act trasitively.

Example: for $G = \mathbb{Z}^2$ and $S = \{ \pm(1, 0), \pm(0, 1) \}$, the Cayley graph $\text{Cay}(G, S)$ is the planar grid with mesh 1.

If we rescale its metric by $\frac{1}{\lambda} \Rightarrow$ planar grid with mesh $\frac{1}{\lambda}$.

The limit of the rescaled grids as $\lambda \to \infty$ is \mathbb{R}^2, has all the properties required by Montgomery-Zippin Theorem.

Gromov’s theorem and its proof will occupy the first part of the course.
Second part of the course: Look at actions of G on Hilbert spaces, by affine isometries, i.e. preserving the metric, not necessarily linear.

Masur-Ulam: Every affine isometry of a Hilbert space H is of the form $\nu \mapsto Av + b$, where A unitary transformation, $b \in H$.

Assume G locally compact, second countable.

Kazhdan’s Property (T): Every continuous action by affine isometries on a Hilbert space has a global fixed point.

a-T-menable (Haagerup property): There exists a continuous action by affine isometries on a Hilbert space that is proper: when g leaves every compact, $\|gv\| \to \infty$, for v arbitrary fixed.

Amenable groups are a-T-menable. Groups with Kazhdan’s Property (T) are paradoxical.