BANACH-TARSKI PARADOX, VON NEUMANN-DAY CONJECTURE EX. SHEET 1 TT 2019

Answers should be sent by email to drutu@maths.ox.ac.uk, in any legible format, by 12 June at the latest.

Exercise 1. Consider an isometric copy of the unit 2-dimensional sphere \mathbb{S}^2 inside the unit 4dimensional sphere \mathbb{S}^4 (defined for instance by identifying a point $(x, y, z) \in \mathbb{S}^2$ to the point (x, y, z, 0, 0)

Prove that $\mathbb{S}^4 \setminus \mathbb{S}^2$ is SO(5)-congruent to \mathbb{S}^4 .

Exercise 2. Let $(X, \operatorname{dist}_X)$ and $(Y, \operatorname{dist}_Y)$ be metric spaces. Prove the equivalence of the following three statements (all defining what it means for X and Y to be *quasi-isometric*):

- (1) there exist two constants $L \geq 1$ and $C \geq 0$ and a map $f: X \to Y$ such that:

 - $\frac{1}{L} \operatorname{dist}(x, x') C \leq \operatorname{dist}(f(x), f(x')) \leq L \operatorname{dist}(x, x') + C$ every point in Y is at distance at most C from a point in f(X).
- (2) there exist two constants $L \geq 1$ and $C \geq 0$ and two maps $f: X \to Y$ and $g: Y \to X$ such
 - $\operatorname{dist}(f(x), f(x')) \leq L \operatorname{dist}(x, x') + C$ and $\operatorname{dist}(g(y), g(y')) \leq L \operatorname{dist}(y, y') + C$
 - $\operatorname{dist}(f(g(y)), y) \leq C$ and $\operatorname{dist}(g(f(x)), x) \leq C$.
- (3) there exist $N_X \subset X$ and $N_Y \subset Y$ separated nets, a constant $\lambda \geq 1$ and a map $g: N_X \to N_Y$ that is a λ -bi-Lipschitz bijection, that is, a bijection satisfying the inequalities:

$$\frac{1}{\lambda}d(x,y) \le d(f(x), f(y)) \le \lambda d(x,y).$$

Exercise 3. Let T_m denote the regular simplicial tree in which every vertex has valency m.

- (1) Prove that for every integer $m \geq 3$, T_m is quasi-isometric to T_3 . What are the explicit constants of the quasi-isometry?
- (2) Deduce that any two free groups of finite rank, F_n and F_k , endowed with any two word metrics, are bi-Lipschitz equivalent. Find explicit constants λ for the bi-Lipschitz bijection, in terms of the ranks n and k.

Exercise 4. Prove that there exists an ultrafilter \mathcal{U} on \mathbb{Z} containing all the non-trivial subgroups of \mathbb{Z} (profinite ultrafilter).

Exercise 5. Let G be a finitely generated group and S a fixed finite generating set. The goal of the exercise is to show that the Følner definition of amenability implies the existence of a mean.

Recall that the Følner definition of amenability requires that for every finite subset F of G and every $\epsilon > 0$ there exists Ω finite subset in G such that $\Omega \triangle F\Omega$ has cardinality at most ϵ card Ω .

(1) Prove that it suffices that the Følner condition is satisfied for S and arbitrary ϵ .

(2) Let ω be an ultrafilter on \mathbb{N} . For every integer $n \geq 1$, let Ω_n be a set such that $\Omega_n \triangle S\Omega_n$ has cardinality at most $\frac{1}{n}\operatorname{card}\Omega_n$. Prove that the map $m:\ell^\infty \to \mathbb{R}$ defined by

$$m(f) = \lim_{\omega} \frac{1}{\operatorname{card} \Omega_n} \sum_{g \in \Omega_n} f(g)$$

is a $G\!\!-\!\!\operatorname{left}$ invariant mean. Above \lim_ω signifies the $\omega\!\!-\!\!\operatorname{limit}$ of the sequence.