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Abstract

We prove that the -lling order is quadratic for a large class of solvable groups and asymptotically quadratic
for all Q-rank one lattices in semisimple groups of R-rank at least 3. As a byproduct of auxiliary results
we give a shorter proof of the theorem on the nondistorsion of horospheres providing also an estimate of a
nondistorsion constant.
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1. Introduction

In this paper we give an estimate of the -lling order in some particular cases of in-nite -nitely
generated groups and of Lie groups. We may talk about -lling area of a loop in Riemannian
manifolds, in -nitely presented groups and, more generally, in metric spaces. In a metric space we
-x a small � and de-ne, following [20, Section 5.6], the �--lling area of a loop as the minimal
number of small loops of length at most � (“bricks”) one has to put one next to the other in order
to obtain a net bounded by the given loop. Usually we choose �= 1. By means of the -lling area
one can de-ne the -lling function and the -lling order in a metric space. The -lling order is the
order in ‘ of the maximal area needed to -ll a loop of length ‘ (see Section 2.1 for de-nitions and
details). With the terminology introduced in Section 2.1, if in a metric space X a function in the
same equivalence class as the -lling function is smaller that ‘; ‘2 or e‘, it is sometimes said that
the space X satis+es a linear, quadratic or exponential isoperimetric inequality.
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It is interesting to study these notions for two reasons at least: because a -nitely presented group
� has a solvable word problem if and only if its -lling function is (bounded by) a recursive function,
and because the -lling order is a quasi-isometry invariant [2].

We recall that a quasi-isometry between two metric spaces (X1; d1) and (X2; d2) is a map q :X1 →
X2 such that

1
L
d1(x; y)− c6d2(q(x); q(y))6Ld1(x; y) + c; ∀x; y∈X1;

for some -xed positive constants c and L, and such that X2 is at -nite HausdorG distance from the
image of q. If such a map exists between X1 and X2, the two metric spaces are called quasi-isometric.
A property invariant up to quasi-isometry is called a geometric property.

We shall study two classes of metric spaces: Lie solvable groups endowed with a left invariant
Riemannian structure and nonuniform lattices in semisimple groups endowed with a left invariant
word metric. The solvable groups are interesting as far as few things are known on their behaviour
up to quasi-isometry. In the case of nilpotent groups there is more information. First, a consequence
of Gromov’s theorem on polynomial growth [19] is that virtual nilpotency is a geometric property in
the class of groups (we recall that a group is called virtually nilpotent if it has a nilpotent subgroup
of -nite index). In nilpotent groups, the -lling order is at most polynomial of degree c + 1, where
c is the class of the group [18,20], and it is exactly polynomial of degree c+1 if the group is free
nilpotent [5,20]. In the Heisenberg group H3 it was shown by Thurston in [13] that the -lling order
is cubic (which implies that H3 is not automatic). The other Heisenberg groups H2n+1, n¿ 2, have
quadratic -lling. This was conjectured by Thurston in [13], Gromov gave an outline of proof in
[20, Section 5:1A′

4] and D. Allcock gave the complete proof [1] by means of symplectic geometry.
Olshanskii and Sapir [29] later gave a combinatorial proof.

The behaviour is more diversi-ed in the case of solvable groups. To begin with, the property of
being virtually solvable is not a geometric property in the class of groups anymore [12]. On the other
hand, certain solvable groups are very rigid with respect to quasi-isometry [14–16]. Therefore, the
estimate of a quasi-isometry invariant for a class of solvable groups, as the one given in this paper,
should be interesting. The -lling order is already known for some solvable groups. Thurston has
shown that the group Sol has exponential -lling (so it is not automatic) [13]. Gersten showed that
the Baumslag–Solitar groups BS(1; p) have exponential -lling order for p �= 1, which in particular
implies that they are not automatic, while they are known to be asynchronously automatic. Gromov
[20, Section 5.A.9] showed that RnoRn−1, n¿ 3, has quadratic -lling order. Arzhantseva and Osin
[3, Theorem 1.4] constructed a sequence of discrete nonpolycyclic solvable groups with -lling orders
that are at most cubic. We should note here that the discrete solvable groups we deal with in this
paper are all polycyclic, as lattices in Lie groups.

We also study nonuniform lattices in semisimple groups. It is known that their -lling order
is at most exponential [20]. The exact -lling order is already known for almost all cases when
the ambient semisimple group is of R-rank one (see the comments following Remark 4.2). If the
semisimple group has R-rank 2 then the -lling order is exponential [23]. We note that this has
already been proven by Thurston in [13] in the particular case of SL3(Z), from which result he
deduced that SL3(Z) is not combable. Also, Thurston stated that the -lling order of SLn(Z); n¿ 4,
is quadratic [17, Remark, p. 86]. In a previous paper we have proved that for some Q-rank one
lattices (among which the Hilbert modular groups) and for some solvable groups the -lling order is
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at most “asymptotically cubic” [11]. In this paper we prove the following more general and stronger
results.

Theorem 1.1. Let X be a product of Euclidean buildings and symmetric spaces of noncompact
type, X of rank at least 3. Let � be a geodesic ray which is not contained in a rank one or in a
rank two factor of X .

(1) The +lling order in the horosphere H (�) of X endowed with the length metric is quadratic.
(2) Let S be a Lie group acting by isometries, transitively with compact stabilizers on the horo-

sphere H (�) of X . In S endowed with any left invariant metric the +lling order is quadratic.
The same is true for every discrete group � acting properly discontinuously cocompactly on
H (�), � endowed with a word metric.

By length metric we mean the length of the shortest path metric.
The previous result has been obtained independently by Leuzinger and Pittet [24] in the case

X = SLn(R)=SO(n).
For a de-nition of Euclidean buildings see [22], for a de-nition of horospheres see Section 2.3.

We note that the quadratic estimate on the -lling function is sharp. This is because in a product
of symmetric spaces of noncompact type and Euclidean buildings which is of rank r¿ 3, every
horosphere contains isometric copies of the Euclidean space Er−1 and there are projections of the
horosphere on each of these copies decreasing the distance.

Theorem 1.2. The +lling order in every irreducible Q-rank one lattice of a semisimple group of
R-rank at least 3 is at most asymptotically quadratic. That is, for every �¿ 0 there exists ‘� such
that

A(‘)6 ‘2+�; ∀‘¿ ‘�:

The -lling order in every Q-rank one lattice in a semisimple group of rank at least 2 is at least
quadratic. This is due to the fact that there are maximal Mats in the symmetric space of noncompact
type associated to the semisimple group on which the lattice acts cocompactly. Thus, Theorem 1.2
gives an “asymptotically sharp” estimate.

Examples where the two theorems apply:
(1.a) Let n be an integer, n¿ 3, and let Na=(a1; a2; : : : ; an) be a given -xed vector with at least three

nonzero components. Let � :Rn−1 → GL(n;R) be an injective homomorphism whose image consists
of all diagonal matrices with diagonal entries (et1 ; et2 ; : : : ; etn) verifying a1t1 + a2t2 + · · ·+ antn = 0.

The hypothesis of Theorem 1.1(2), is satis-ed by the solvable group Sol2n−1(�) = Rno� Rn−1.
More precisely, let us consider N� :Rn → GL(n;R) with N�(t1; t2; : : : ; tn) equal to the diagonal matrix
with diagonal entries (et1 ; et2 ; : : : ; etn). We endow the semidirect product Rn o N� Rn with the left
invariant Riemannian structure that coincides with the canonical structure of R2n at the origin. The
group Sol2n−1(�) can be seen as a subgroup of Rno N� Rn.

The map

 :Rno N� Rn → H2 × · · · ×H2︸ ︷︷ ︸
n times

;

 ((x1; x2; : : : ; xn); (t1; t2; : : : ; tn)) = ((x1; et1); (x2; et2); : : : ; (xn; etn));
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is an isometry. Here H2 denotes the hyperbolic plane and each copy of H2 is endowed with the
cartesian coordinates given by the half-plane model. We consider the geodesic ray � in H2×· · ·×H2

de-ned by

�(s) = ((0; ea1s); (0; ea2s); : : : ; (0; eans)); s¿ 0:

The group Sol2n−1(�) can be identi-ed to H (�) via the map  . The hypothesis that the vector Na
has at least three nonzero components implies that � is not contained in a rank one or a rank two
factor of X =H2 × · · · ×H2.

(1.b) Let n be an integer, n¿ 4, and let Nb be a -xed vector (b1; b2; : : : ; bn) with
∑n

i=1 bi =0. We
consider the solvable group Sn( Nb) of upper triangular matrices of order n with the set of diagonals
of the form {(et1 ; et2 ; : : : ; etn) | ∑n

i=1 ti = 0;
∑n

i=1 biti = 0}. Let X be the irreducible symmetric space
SL(n;R)=SO(n), of rank n−1. It can be seen as the set of positive de-nite quadratic forms on Rn of
determinant one in the canonical base. We consider the geodesic ray % in X de-ned so that %(s) is
the diagonal quadratic form with coeOcients (eb1s; eb2s; : : : ; ebns), s¿ 0. The group Sn( Nb) acts simply
transitively on H (%).

(2) Theorem 1.2 applies to every irreducible lattice in a semisimple group having R-rank at least
3 and an R-rank one factor (as such a lattice is a Q-rank one lattice [30, Lemma 1.1]). In particular,
Theorem 1.2 applies to the Hilbert modular groups PSL(2;OK), where OK is the ring of integers of
a totally real -eld K with [K :Q]¿ 3.

In [32] and [35] one can -nd other examples of Q-rank one lattices in semisimple groups of real
rank at least 3.

The paper is organised as follows. In Section 2 we recall some basic facts about -lling area,
asymptotic cones, buildings and Q-rank one lattices in semisimple groups. We recall that every
such lattice acts with compact quotient on a space X0 obtained from the ambient symmetric space
X =G=K by deleting a countable family of disjoint open horoballs (see Section 2.4). It follows that
the -lling order in the lattice is the same as the -lling order in X0.
The solvable groups we consider act on horospheres. Since the projection of the exterior of the

corresponding open horoball on the horosphere diminishes distances, one can study the whole exterior
of the open horoball, which can also be denoted by X0, instead of the horosphere.

Thus, both in the case of lattices and of solvable groups it suOces to estimate the -lling order
in a metric space X0 obtained from a symmetric space of noncompact type by deleting a family of
disjoint open horoballs. The main tool we use to obtain such an estimate is the asymptotic cone.
The notion of asymptotic cone has been introduced by Gromov [19], Van Den Dries and Wilkie
[34], and consists, philosophically speaking, of giving “an image seen from in-nitely far away”of a
metric space (see Section 2.1 for de-nition and properties). To every metric space can be associated
a whole class of asymptotic cones (possibly isometric). There are similarities of arbitrary factor
“acting” on this class, that is, sending a cone into another (Remark 2.1.1).

We dispose of a result, due to Gromov and Papasoglu, allowing to deduce from an uniform
estimate of the -lling order in all asymptotic cones an estimate of the -lling order in the initial
metric space (Section 2.1, Theorem 2.1.2). Thus, instead of considering the space X0 one can consider
its asymptotic cones. Let K0 be such an asymptotic cone. It is not diOcult to prove that each K0 is
obtained from an Euclidean building K by deleting a family of disjoint open horoballs.

In Section 3 we -rst place ourselves in an Euclidean building. Essentially, an Euclidean building
is a bunch of “Mats”, that is, of isometric copies of an Euclidean space. By deleting disjoint horoballs
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one makes polytopic holes into these Mats. These polytopic holes can take, up to similarity, only a
-nite number of shapes. Thus, we may hope to reduce the problem of -lling a loop in a space like
K0 to that of -lling a loop in an Euclidean space with polytopic holes. We -rst prove some global
and local properties of such a polytopic hole, that is, of the trace of a horoball in a maximal Mat.
We also provide a way to join two points on a connected horosphere with polygonal lines of length
comparable to the distance, in two diGerent cases (see Lemmas 3.3.1 and 3.3.2). As a byproduct of
these results we give new proofs of the theorems on the nondistorsion of horospheres in Euclidean
buildings and symmetric spaces of noncompact type (Theorems 3.3.3 and 3.3.5 in this paper).

In Section 4 we prove the main theorem, Theorem 4.1, on the -lling order in the exterior of
a disjoint union of open horoballs. We give here an outline of the proof. First we argue in an
Euclidean building K which is 4-thick and of rank at least 3. We show that a loop contained in
the exterior of one open horoball, K \Hbo(�), where � is a geodesic ray not parallel to any rank 2
factor, has a quadratic -lling area if the loop is included in one apartment (Proposition 4.1.1). Then
we show that under the same hypothesis the same conclusion is true for certain loops included in
the union of two apartments (Proposition 4.2.2). Then we prove Theorem 4.3, which is a weaker
version of Theorem 4.1. This is done as follows. Up to spending a linear -lling area, a generic loop
can always be assumed to be included in a -nite union of apartments, the number of apartments
being of the same order as the length ‘ of the loop. In -lling the loop, there is a problem when
one passes from one apartment to another. More precisely, by means of Proposition 4.2.2 one can
show that when passing from one apartment to another, in the process of -lling the loop, one might
have to spend an area of order ‘2. This explains why instead of a quadratic -lling area, one obtains
a cubic -lling area, in this -rst approach. For certain curves contained in a union of apartments of
uniformly bounded cardinal a quadratic -lling area is obtained.

In Section 4.4 it is shown that part (b) of Theorem 4.3 implies part (b) of Theorem 4.1 and in
particular Theorem 1.1. The proof of the previous implication is done in two steps. Firstly, it is
shown that loops composed of a uniformly bounded number of minimising almost polygonal curves
have quadratic -lling area (see the end of Section 3 for a de-nition of minimising almost polygonal
curves). Secondly an induction procedure is applied.

Section 4.5 contains the proof that Theorem 4.3, (a), implies Theorem 4.1, (a), and Theorem 1.2.
According to Theorem 2.1.2, in order to prove Theorem 4.1, (a), it is enough to prove that the
-lling order is quadratic in all the asymptotic cones of a space X0 on which a Q-rank one lattice �
acts properly discontinuously cocompactly. By Theorem 4.3, (a), it is already known that in every
asymptotic cone K0 of X0 the -lling order is at most cubic. It is shown that in reality the -lling
order in every K0 is not cubic but quadratic.

To understand the proof of the previous statement we should see -rst why the -lling order in
the Euclidean plane is quadratic. In the Euclidean plane, every loop C of length ‘ can be -lled
with at most (‘='1)2 bricks of length '1 (one may think of the bricks as being small squares). To
-ll it with bricks of length '2 � '1, it is enough if we -ll the '1-bricks with '2-bricks, which
can be done with ('1='2)2 bricks for each '1-brick. In this way the initial loop C is -lled with at
most (‘='2)2 bricks of length '2. Thus, the fact that for every ', however small, we may -ll C
with at most (‘=')2 '-bricks is due to the fact that the quadratic -lling is preserved in the small.
This should also happen, under replacement of the exponent 2 by the exponent 3, in a space with
a cubical -lling order. But in the space K0 the -rst important remark is that, when one -lls a loop
of length ‘ with bricks of length 1, one puts k2‘2 bricks with uncontrolled shapes and k1‘3 bricks
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which bound small Euclidean squares entirely contained in K0 (Remark 4.3.2). This means that, for
'¡ 1, the '--lling area of the loop tends to become more and more quadratic as ' becomes smaller
and smaller. Since we may choose bricks as small as we want, the quadratic factor will end by
dominating the cubic factor. By applying similarities (Remark 2.1.1), since this is a reasoning which
is done simultaneously in all asymptotic cones, one can return to bricks of length one and obtain a
quadratic -lling order.

In the Appendix we provide an isoperimetric inequality for a hypersurface in an Euclidean space
composed of points at a -xed distance from a certain polytope P (Proposition 5.6). From this, by
means of Lemma 5.4, we derive an isoperimetric inequality for every polytopic hypersurface whose
points are at a distance between R¿ 0 and aR; a¿ 1, from the polytope P. The constants appearing
in the isoperimetric inequality in the -rst case depend only on P while in the second case they also
depend on a. The second result is useful in the proof of our main theorems.

Notations: Throughout the whole paper, in a metric space X , B(x; r) denotes the open ball of
center x∈X and radius r ¿ 0, S(x; r) denotes its boundary sphere, Nr(A) = {x∈X |d(x; A)6 r},
@Nr(A) = {x∈X |d(x; A) = r}, QNr(A) = {x∈X |d(x; A)¡r}, and Extr(A) = {x∈X |d(x; A)¿ r},
where A ⊂ X .

We also use, though not systematically, the Vinogradov notation a � b or b � a for a6C · b,
where C is a positive universal constant. We write a � b if a� b and b� a.

2. Preliminaries

2.1. Filling area, +lling order, asymptotic cone

The notion of -lling area of a loop is well de-ned in the setting of Riemannian manifolds as well
as in -nitely presented groups (see for instance [8, Chapter I, Section 8.1.4]). In the sequel we recall
the meaning of this notion in geodesic metric spaces, following [20, Section 5.F]. Let X be such a
space and �¿ 0 a -xed constant. We call “loops” Lipschitz maps C from S1 to X . We call +lling
partition of C a pair consisting of a triangulation of the planar unit disk D2 and of an injective map
from the set of vertices of the triangulation to X; . :V→ X , where . coincides with C on V∩S1.
The image of the map . is called +lling disk of C. We can join the images of the vertices of each
triangle with geodesics (for the vertices which are endpoints of arcs of S1, we replace the geodesic
with the arc of C contained between the images of the vertices). We call the geodesic triangles thus
obtained bricks. The length of a brick is the sum of the distances between vertices (for the vertices
which are endpoints of arcs of S1, we replace the distance with the length of the arc of C contained
between the two images of the vertices). The maximum of the lengths of the bricks in a partition
is called the mesh of the partition. The partition is called �-+lling partition of C if its mesh is at
most �. The corresponding -lling disk is called �-+lling disk of C. We call �-+lling area of C the
minimal number of triangles in a triangulation associated to a �--lling partition of C. We denote
it with the double notation A�(C) = P(C; �). If no �--lling partition of the loop C exists, we put
A�(C) = +∞.
In each of the three cases (Riemannian manifolds, -nitely presented groups, geodesic metric

spaces) when we have de-ned a notion of “-lling area” for loops, we can now de-ne the +lling
function A :R∗

+ → R∗
+ ∪{+∞}, A(‘) := the maximal area needed to -ll a loop of length at most ‘.
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In a metric space X , for � -xed, we use the notation AX� (‘) and we call this function the �-+lling
function of X . Whenever there is no possibility of confusion, we drop the index X . In order to
obtain -nite valued -lling functions, we work in metric spaces for which there exists /¿ 0 such
that every loop has a /--lling disk and A/(‘)¡+∞, ∀‘¿ 0. A metric space satisfying the previous
property is called /-bounded simply connected.

Let f1 and f2 be two functions of real variable, taking real values. We say that the order
of the function f1 is at most the order of the function f2, and we denote it by f1 ≺ f2, if
f1(x)6 af2(bx+c)+dx+e;∀x, where a, b, c, d, e are -xed positive constants. We say that f1 and
f2 have the same order, and we denote it by f1 $ f2, if f1 ≺ f2 and f2 ≺ f1. The relation $ is
an equivalence relation. The equivalence class of a numerical function with respect to this relation
is called the order of the function. If a function f has (at most) the same order as the function
x; x2; x3; xd or exp x it is said that the order of the function f is (at most) linear, quadratic, cubic,
polynomial, or exponential, respectively.

Let X be a /-bounded simply connected geodesic metric space. For every /6 �16 �2 we have

A�2(‘)6A�1(‘)6A�2(‘) · A�1(2�2):
It follows that all �--lling functions with �¿ / have the same order. We call it the +lling order

of X . If a geodesic metric space Y is quasi-isometric to X then Y is also bounded simply connected
and it has the same -lling order as X . If � is a -nitely presented group, its Cayley graph is
/-bounded simply connected for some / depending on the presentation and its -lling order is the
same as the order of the Dehn function. We recall that the Dehn functions corresponding to diGerent
presentations of the group have the same order [2].

In the sequel we shall deal only with bounded simply connected geodesic metric spaces. We shall
omit to recall this hypothesis each time.

A nonprincipal ultra+lter is a -nitely additive measure ! de-ned on all subsets of N, taking as
values 0 and 1 and taking always value 0 on -nite sets. Such a measure always exists [10]. For a
sequence in a topological space, (an), one can de-ne the !-limit as the element a with the property
that for every neighbourhood N(a) of a, the set {n∈N | an ∈N(a)} has !-measure 1. We denote
a by lim! an. If it exists, the !-limit is unique. Any sequence in a compact space has an !-limit
[7, I.9.1].

Let (X; d) be a metric space. We -x a sequence (xn) of points in X , which we call sequence
of observation centers, a sequence of positive numbers (dn) diverging to in-nity, which we call
sequence of scalars, and a nonprincipal ultra-lter !. Let C be the set of sequences (yn) of points
in X with the property that d(xn; yn)=dn is bounded. We de-ne an equivalence relation on C:

(yn) ∼ (zn) ⇔ lim
!

d(yn; zn)
dn

= 0:

The quotient space of C with respect to this relation, which we denote X!(xn; dn), is called
the asymptotic cone of X with respect to the observation centers (xn), the scalars (dn) and the
nonprincipal ultra-lter !. It is a complete metric space with the metric

D([yn]; [zn]) = lim
!

d(yn; zn)
dn

:

We say that the set A ⊂ X!(xn; dn) is the limit set of the sets An ⊂ X if

A= {[xn] | xn ∈An !-almost surely}:
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We denote A= [An].
In our arguments we shall use the following very simple but important remark.

Remark 2.1.1. The map

I� :X!(xn; dn)→ X!

(
xn;

1
�
dn

)
; I�([xn]) = [xn]

is a similarity of factor �.

There is a relation between the -lling order in the asymptotic cones and the -lling order in the
initial space, established by Papasoglu (see [11, Theorem 2.7]), who adapted an idea of Gromov for
this purpose.

Theorem 2.1.2 (Papasoglu). Let X be a geodesic metric space. If there exists C¿ 0 and p¿ 0
such that in every asymptotic cone of X we have that

A1(‘)6C · ‘p; ∀‘¿ 1;

then there exists /¿ 0 such that the space X is /-bounded simply connected and for every �¿ 0
there exists ‘� ¿ 0 such that

AX/ (‘)6 ‘p+�; ∀‘¿ ‘�:

2.2. Spherical and Euclidean buildings

For this section we refer mainly to [22], but also to [10,33].
Before discussing about buildings we introduce some terminology in Euclidean spaces. For a subset

A in an Euclidean space Ek we call a>ne span of A, and we denote it by SpanA, the minimal aOne
subspace of Ek containing A. Two polytopes of codimension one are called parallel if their aOne
spans are parallel. A subset A of Ek is called relatively open if it is open in SpanA. The relative
interior of a subset B of Ek is its interior in SpanB.

In an Euclidean sphere Sk , we call spherical span of a subset 6 the trace on the sphere of the
aOne span of the cone of vertex the origin over 6. We denote it Span 6. We say that two subsets
6 and 6′ in Sk are orthogonal to each other if Span 6 and Span 6′ are orthogonal. In a spherical
building two subsets 6 and 6′ are orthogonal if they are both contained in the same apartment and
are orthogonal. We can also de-ne the distance between a point and a convex set in a spherical
building each time they are both contained in an apartment as the spherical distance between them
in that apartment.

Let 7 be a spherical building. Throughout the whole paper we shall suppose that for all spherical
buildings, the associated Weyl group acts on the associated Coxeter complex without -xed points.
In this way we rule out the case of spherical buildings having a sphere as a factor and of Euclidean
buildings and symmetric spaces of noncompact type having an Euclidean space as a factor.

An apartment is split by each singular hyperplane in it into two halves called half-apartments.
All simplices in 7 which are not chambers are called walls, the codimension one simplices are also
called panels. Intersections of singular hyperplanes in an apartment are called singular subspaces.
A chamber is said to be adjacent to a singular subspace if their intersection is a wall of the same
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dimension as the subspace. We also say, in the previous situation, that the singular subspace supports
the chamber.

We say that a panel separates a chamber and a point if there is at least one apartment containing
the three of them and in each such apartment the spherical span of the panel separates the point and
the interior of the chamber.

Two chambers are said to be adjacent if they have a panel in common and disjoint interiors.
A gallery of chambers is a sequence of chambers such that every two consecutive chambers are
adjacent. The number of chambers composing it is called the length of the gallery. Given a point and
a simplex, the combinatorial distance between them is the minimal length of a gallery of chambers
such that the -rst chamber contains the point and the last contains the simplex. For every such
gallery of minimal length between the point and the simplex, the last of its chambers is called the
projection of the point on the simplex.

Lemma 2.2.1. Let 7 be a spherical building, let x be a point and 6 a panel in it such that there is
no singular hyperplane containing both. There is a unique projection of x on 6, which is contained
in every apartment A containing x and 6.

Proof. Let A0 be an apartment containing x and 6. We choose an interior point y of 6 which
is not opposite to x. If the geodesic joining x to y is contained in a singular hyperplane H then
x and 6 are contained in H. Therefore, the geodesic joining x to y has a point y0 in the in-
terior of a chamber W having 6 as a panel. Since the second chamber having 6 as a panel is
separated of x by 6, it follows that W is the projection of x on 6. Every apartment A contain-
ing x and 6 contains by convexity the geodesic joining x to y through y0, therefore it contains
also W.

For every wall M in the spherical building we call star of M, and we denote it Star(M), the set
of chambers including M. We use the same name and notation for the union of all the chambers
including M. A building is called c-thick if for every panel P, the cardinal of Star(P) seen as a
set of chambers is at least c.

Every spherical building 7 admits a labelling [9, IV.1, Proposition 1]. With respect to this labelling
one can de-ne a projection of the building on the model spherical chamber p :7→ 8mod. Given a
subset C in 7 its image under this projection, p(C), is called the set of slopes of C.

The model Coxeter complex of 7 is the Coxeter complex S which is isomorphic to each of its
apartments; for every labelling in the spherical building there is a compatible labelling on the model
Coxeter complex and a compatible projection ps :S→ 8mod.

Given an apartment A in 7 and a chamber W in it one can always de-ne a map retrA;W :7→
A which preserves labelling and combinatorial distances to W and diminishes the other com-
binatorial distances [33, Section 3.3–3.6]. This map is called the retraction of 7 onto A with
center W.

De�nition 2.2.2. Let S be a Coxeter complex with a labelling, 8mod its model spherical chamber
and ps :S → 8mod the projection corresponding to the labelling. Let 9 be a given point in 8mod.
The set of orthogonals to 9 is the set of points q∈8mod such that any preimage of q by ps is at
distance .=2 from a preimage of 9 by ps. We denote this set Ort(9).
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We note that if S is the model Coxeter complex of a spherical building 7, endowed with a
labelling compatible with the one of 7, Ort(9) also coincides with the set of points q∈8mod such
that any preimage of q by p :7→ 8mod is at distance .=2 from a preimage of 9 by p.
If S and S′ are two simplicial complexes, their join, denoted by S ◦ S′, is a simplicial complex

having as vertex set the disjoint union of the sets of vertices of S and of S′ and having one simplex
6 ◦ 6′ for every pair of simplices 6∈S and 6′ ∈S′. We also allow for the possibility that one of
the two complexes is empty, and we make the convention that S ◦ ∅= S.

There is a geometric interpretation of the join of spherical complexes which goes as follows. Let
S and S′ be spherical simplices in the Euclidean spheres Sk−1 ⊂ Ek and Sm−1 ⊂ Em, respectively.
The join S ◦ S′ is the spherical simplex in Sk+m−1 obtained by embedding S together with Sk−1

into Sk+m−1 and likewise S′ together with Sm−1, such that the embeddings of Sk−1 and Sm−1 are
orthogonal, and considering the convex hull of S ∪ S′ in Sk+m−1. One may also say that S ◦ S′ is
obtained from S and S′ by gluing the endpoints of a quarter of a circle to every pair of points x∈S
and x′ ∈S′. Since this also makes sense for two spherical complexes and in particular for spherical
buildings, we thus get a geometric de-nition of the join 7 ◦7′ of two spherical buildings 7 and 7′.
Kleiner and Leeb [22, Section 3.3] proved the following:

• every decomposition as a join of the model chamber of a spherical building, 8mod=81◦82◦· · ·◦8n,
or of the associated Coxeter complex S= S1 ◦ S2 ◦ · · · ◦ Sn imply a decomposition of the spherical
building 7 = 71 ◦ 72 ◦ · · · ◦ 7n such that 8i and Si are the model chamber and the associated
Coxeter complex of 7i, respectively.

• a spherical building 7 is not a join of two nonempty spherical buildings if and only if its model
chamber 8mod has diameter ¡.=2 and dihedral angles 6 .=2.

Lemma 2.2.3. Let 7 be a labelled spherical building and let q be a point in it such that for every
decomposition of 7 as a join, 7 = 71 ◦ 72, q is contained neither in 71 nor in 72. Then in every
chamber containing it, q is not orthogonal to any wall of the chamber.

Proof. Suppose q is contained in the interior of a chamber 8. If q is orthogonal to a wall of 8 then
the diameter of 8 is strictly greater than .=2. This is impossible, as the diameter of 8 is at most
.=2.

Suppose q is contained in the interior of a wall 6. If q is orthogonal to another wall 6′ such that
6 and 6′ are both included in a chamber 8 then the diameter of 8 and of the model chamber 8mod
is .=2.

If 6 and 6′ intersect in a wall, this wall being orthogonal to an interior point of 6 it follows
that the diameter of 6, hence the diameter of 8, is ¿.=2. Since this is impossible, we may
suppose that 6 and 6′ do not intersect. Let m be the convex hull of 6 and 6′ in 8. We have
m = 6 ◦ 6′.

The building 7 is decomposable as a join because 8mod has diameter .=2. The maximal decom-
position of 7 as a join, 7 = 71 ◦ 72 ◦ · · · ◦ 7n, induces a maximal decomposition of 8 as a join,
8=81 ◦82 ◦ · · · ◦8n, which in its turn induces a decomposition of m, m=m1 ◦m2 ◦ · · · ◦mn (where
some of the mi might be empty). It follows that 6 = mi1 ◦ mi2 ◦ · · · ◦ mis and 6

′ = mj1 ◦ mj2 ◦ · · · ◦
mjt ; {i1; i2; : : : ; is} � {j1; j2; : : : ; jt}= {1; 2; : : : ; n}. This implies that q∈ 6 ⊂ 7i1 ◦ 7i2 ◦ · · · ◦ 7is , which
contradicts the hypothesis.
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The following simple remark enlightens us more on the geometry of spherical buildings.

Remark 2.2.4. Let 7 be a labelled spherical building, p :7 → 8mod the projection on the model
chamber induced by the labelling and 9 a point in 8mod. The set D(9) = {d(x; 6) | x∈7;p(x) = 9; 6
simplex in 7} is -nite and, when ordered in the increasing order, it contains either three consecutive
terms of the form (.=2)−�0; .=2; (.=2)+�′

0 or two consecutive terms of the form (.=2)−�0; (.=2)+
�′
0, where �0 and �′

0 depend only on 9. If there is no decomposition of 8mod as 9 ◦ 81 then
�0; �′

0¡.=2.

Notations: Let X be a CAT(0)-space and let @∞X be its boundary at in-nity. For every x∈X
and �∈ @∞X , we denote by [x; �) the unique ray having x as origin and � as point at in-nity. For
two geodesic segments or rays [x; a) and [x; b) we denote by “x(a; b) the angle between them in x
(see [22] for a de-nition). We denote by dT the Tits metric on @∞X . For every point x and every
geodesic ray � we denote by �x the ray of origin x asymptotic to �.

Let now X be a symmetric space of noncompact type or an Euclidean building or a product of
a symmetric space of noncompact type with an Euclidean building, X of rank r. In the sequel,
for simplicity, we call the apartments in Euclidean buildings also maximal Mats. For de-nitions and
results in symmetric space theory and in Euclidean building theory we refer to [8,21,22]. We only
recall that

• m-Mats are isometric copies of the Euclidean space Em; m6 r; singular m-Mats(subspaces) are
m-Mats which appear as intersections of composing it; we also call singular (r − 1)-Mats singular
hyperplanes;

• half-apartments are halves of apartments determined by singular hyperplanes;
• the faces of the Weyl chambers are called walls; the codimension 1 walls are also called panels;
• two Weyl chambers are called adjacent if they have the vertex and a panel in common and disjoint

interiors;
• a singular subspace  is said to be adjacent to a Weyl chamber W or to support W if  ∩W is

a wall of the same dimension as  ;
• a gallery of Weyl chambers is a -nite sequence of Weyl chambers such that every two consecutive

Weyl chambers are adjacent; its length is the number of Weyl chambers composing it; a minimal
gallery is a gallery of minimal length among the ones which have the same -rst and last Weyl
chambers as itself;

• for every wall M we de-ne Star(M), which we call the star of M , as the set of all Weyl chambers
having the same vertex as M and including M ; we use the same name and notation for the union
of all these Weyl chambers;

• Weyl polytopes are polytopes which appear as intersections of half-apartments (they may have
dimension smaller than r, as we may intersect opposite half-apartments);

• an Euclidean building is called c-thick if every singular hyperplane is the boundary of at least c
half-apartments of disjoint interiors.

The boundary at in-nity of X , @∞X , is a spherical building ([29, Chapters 15 and 16; 5, Appendix
5]). The model Coxeter complex and chamber of @∞X are sometimes called the model spherical
Coxeter complex and chamber of X .



994 C. Drut0u / Topology 43 (2004) 983–1033

If X is a c-thick Euclidean building then @∞X is a c-thick spherical building. If X decomposes
as X = X1 × X2 then @∞X = @∞X1 ◦ @∞X2. For every maximal Mat F in X we denote F(∞) its
boundary at in-nity (which is an apartment). We likewise denote �(∞); W (∞);  (∞) the boundary
at in-nity of a ray �, a Weyl chamber W , a singular subspace  . If two maximal Mats F1; F2

have F1(∞) = F2(∞) then F1 = F2. If F1(∞) ∩ F2(∞) is a half-apartment and X is an Euclidean
building then F1 ∩ F2 is a half-apartment. A maximal Mat F is said to be asymptotic to a ray � if
�(∞)∈F(∞).
If X is an Euclidean building, one can de-ne the space of directions in a point x as the space of

equivalence classes of geodesic segments having x as an endpoint with respect to the equivalence
relation “angle zero in x”. We denote it by 7xX , and we call its elements directions in x. We denote
by xa the direction corresponding to the geodesic segment or ray [x; a). Given a geodesic ray �,
we denote by �x the direction in x of the ray of origin x asymptotic to �. For every convex set C
containing x we de-ne the set of directions of C in x, Cx, as the set of directions xa corresponding
to all [x; a) ⊂ C.

With respect to the metric induced by the angle, 7xX becomes a spherical building. If X is
a c-thick homogeneous Euclidean building then for every x, 7xX is a c-thick spherical
building.

If a segment [x; b) and a convex set C are both included, near x, in the same apartment, then
the distance between xb and Cx in 7xX is well de-ned. We denote it either by “x(xb;Cx) or by
“x(b;C).
If X is a homogeneous Euclidean building then for every x, 7xX has the same model chamber

as @∞X , 8mod, so, with respect to some labelling, one can de-ne a projection px :7x → 8mod.
Moreover, one can choose a labelling on 7xX compatible with the one on @∞X , that is, such that
for every point � in @∞X we have p(�) =px(x�). We call this common value the slope of the ray
[x; �). In the sequel we suppose that for every x∈X the spherical building 7xX is endowed with
the labelling compatible with the one of @∞X . This implies that if [x; y] is a nontrivial geodesic
segment then for every a∈ [x; y[; pa(ay) = px(xy). We call this common value the slope of the
segment [x; y]. We note that the slope of the segment [x; y] is in general not the same as the
slope of the segment [y; x] (since, generically, two opposite points in a spherical building do not
project on the same point of 8mod, but on two points sent one onto the other by the opposition
involution).

If X is a product of symmetric spaces and Euclidean buildings and �∈ @∞X , we call the slope
of the ray [x; �) the image of � by the projection p : @∞X → 8mod.

We call the ray or segment [x; �) regular (singular) if its slope is in Int 8mod (@8mod). If 9 is a
slope in X we also call its set of orthogonals set of orthogonal slopes.

For a convex set C in a Euclidean building, its set of slopes is the set of all slopes of all nontrivial
segments [x; y] ⊂ C. It is a set invariant with respect to the opposition involution.

According to [22, Proposition 4.3.1] every decomposition of 8mod as a join, 8mod = 81 ◦ 82,
corresponds to a decomposition of X as a product, X = X1× X2, such that 8i is the model chamber
of the factor Xi; i = 1; 2.
We say that a slope 9 is parallel to a factor of X if 8mod decomposes nontrivially as a join

8mod = 81 ◦ 82 and 9∈81. Using the previous remark one can verify that a slope is parallel to
a factor if and only if one(every) segment or ray of slope 9 is contained in the copy of a factor
of X .
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Lemma 2.2.5. Let D be a half-apartment in an Euclidean building K and let W be a Weyl chamber
with a panel in @D and with interior disjoint of D. Then there exists an apartment including both
D and W .

Proof. By Proposition 3.27 of Tits [33], there is an apartment A in 7xK including both Wx and
Dx. The chamber Wx has an opposite chamber W ′

x in Dx. Let � be a regular ray in W and �′ the
opposite ray in W ′. There exists a unique apartment F containing the regular geodesic � ∪ �′. It
follows that it contains W and W ′, therefore also @D which is the convex hull of the two opposite
panels W ∩ @D and W ′ ∩ @D. Since D is the convex hull of @D and of W ′ we may conclude.

In particular, two adjacent Weyl chambers are always included in an apartment, in an Euclidean
building.

De�nition 2.2.6. Let F be an apartment in an Euclidean building. We say that another apartment F ′
is a rami-cation of F if either F ′ =F or F ∩F ′ is a half-apartment. If the case F ′ =F is excluded,
F ′ is called a strict rami-cation of F .

Corollary 2.2.7. Let F be an apartment and W ′ a Weyl chamber adjacent to a Weyl chamber
W ⊂ F . Let D be the half-apartment in F containing W such that @D contains the panel W ∩W ′.
There exists a rami+cation F ′ of F including D ∪W ′.

2.3. Horoballs and horospheres

Let X be a CAT(0)-space and � a geodesic ray in X . The Busemann function associated to � is
the function f� :X → R; f�(x) = limt→∞ [d(x; �(t)) − t]. This function is well de-ned and convex.
Its level hypersurfaces Ha(�) = {x∈X |f�(x) = a} are called horospheres, its level sets Hba(�) =
{x∈X |f�(x)6 a} are called closed horoballs and their interiors, Hboa(�) = {x∈X |f�(x)¡a},
open horoballs. We use the notations H (�); Hb(�); Hbo(�) for the horosphere, the closed and open
horoball corresponding to the value a= 0.

For two asymptotic rays, their Busemann functions diGer by a constant. Thus, the families of
horoballs and horospheres are the same and we call them horoballs and horospheres of basepoint �,
where � is the common point at in-nity of the two rays.

Remark 2.3.1. Let � be a geodesic ray in a complete CAT(0)-space X and let a¡b be two real
numbers.

(a) There is a natural projection pba of Hb(�) onto Ha(�) which is a surjective contraction.
(b) The distance from a point x∈Hb(�) to pba(x) is b− a.

Proof. For every x∈Hb(�) we consider the ray �x. The point pba(x) is the intersection of �x with
Ha(�). For every point y∈Ha(�) the ray �y can be extended to a geodesic by the completeness of
X , and this geodesic intersects Hb(�) in a unique point x. However the extension itself may not be
unique. The property (a) follows by the convexity of the distance.
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Lemma 2.3.2. Let X be a product of symmetric spaces of noncompact type and Euclidean buildings
and let �1; �2; �3 be three distinct points in @∞X . If there exist three open horoballs Hboi of
basepoints �i; i=1; 2; 3, which are mutually disjoint then �1; �2; �3 have the same projection on the
model chamber 8mod.

Proof. The proof is given in the proof of Proposition 5.5 [10], step (b).

2.4. Q-rank 1 lattices

A lattice in a Lie group G is a discrete subgroup � such that � \ G admits a -nite G-invariant
measure. We refer to [6], [27] or [31] for a de-nition of Q-rank 1 lattices in semisimple groups. In
the introduction we gave some examples of Q-rank 1 lattices. In the sequel we list the two main
properties of Q-rank 1 lattices that we use. The -rst one relates the word metrics to the induced
metric.

Theorem 2.4.1 (Lubotzky, Mozes, Raghunathan [25], [26]). On every irreducible lattice of a
semisimple group of rank at least 2, the word metrics and the induced metric are bilipschitz
equivalent.

By means of horoballs one can construct a subspace X0 of the symmetric space X = G=K on
which the lattice � acts with compact quotient.

Theorem 2.4.2 (Prasad [30] and Raghunathan [31]): Let � be an irreducible lattice of Q-rank
one in a semisimple group G. Then there exists a +nite set of geodesic rays {�1; �2; : : : ; �k}
in the symmetric space X = G=K such that the space X0 = X \ ⊔k

i=1

⋃
@∈� Hbo(@�i) has com-

pact quotient with respect to � and such that any two of the horoballs Hbo(@�i) are disjoint or
coincide.

Lemma 2.3.2 implies that p({@�i(∞) | @∈�; i∈{1; 2; : : : ; k}}) is only one point which we de-
note by 9 and we call the associated slope of � (we recall that p is the projection of the
boundary at in-nity onto the model chamber). We have the following property of the associated
slope:

Proposition 2.4.3 (Drut$u [10, Proposition 5.7]): If � is an irreducible Q-rank one lattice in a
semisimple group G of R-rank at least 2, the associated slope, 9, is never parallel to a factor
of X = G=K .

In particular, if G decomposes into a product of rank one factors, 9 is a point in Int 8mod, that is
the rays @�i; i∈{1; 2; : : : ; k}, are regular.
Since the action of � on X0 has compact quotient, � with the word metric is quasi-isometric to X0

with the length metric. Thus, the asymptotic cones of � are bilipschitz equivalent to the asymptotic
cones of X0. Theorem 2.4.1 implies that one may consider X0 with the induced metric instead of
the length metric. We study the asymptotic cones of X0 with the induced metric.
First there is a result on asymptotic cones of symmetric spaces and Euclidean buildings.
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Theorem 2.4.4 (Kleiner and Leeb [22]): Every asymptotic cone of a product X of symmetric spaces
of noncompact type and Euclidean buildings, X of rank r¿ 2, is an Euclidean building K of rank
r which is homogeneous and ℵ1-thick. The apartments of K appear as limits of sequences of
maximal Eats in X . The same is true for Weyl chambers and walls, singular subspaces and Weyl
polytopes of K. Consequently, @∞K and @∞X have the same model spherical chamber and model
Coxeter complex.

In the sequel, in every asymptotic cone K of a product X of symmetric spaces and Euclidean
buildings we shall consider the labelling on @∞K induced by a -xed labelling on @∞X . We denote
by P the projection of @∞K on 8mod induced by this labelling and by S the associated Coxeter
complex.

Concerning the asymptotic cone of a space X0 obtained from a product of symmetric spaces and
Euclidean buildings by deleting disjoint open horoballs, we have the following result.

Theorem 2.4.5 (Drut$u [11, Propositions 3.10, 3.11]): Let X be a CAT(0) geodesic metric space and
let K = X!(xn; dn) be an asymptotic cone of X .

(1) If (�n) is a sequence of geodesic rays in X with d(xn; �n)=dn bounded and �= [�n] is its limit
ray in K, then H (�) = [H (�n)] and Hb(�) = [Hb(�n)].

(2) If X0 = X \⊔
�∈R Hbo(�) and d(xn; X0)=dn is bounded then the limit set of X0 (which is the

same thing as the asymptotic cone of X0 with the induced metric) is

K0 = K
∖ ⊔
�!∈R!

Hbo(�!); (2.1)

where R! is the set of rays �! = [�n]; �n ∈R.

We note that if X is a product of symmetric spaces and Euclidean buildings, the mutual disjointness
of the horoballs Hbo(�); �∈R, implies by Lemma 2.3.2 that p({�(∞) | �∈R}) reduces to one
point, 9, if card R �= 2. Then P({�!(∞) | �! ∈R!}) = 9.

We also need the following result.

Lemma 2.4.6. Let X be a product of symmetric spaces of noncompact type and Euclidean build-
ings, X of rank r¿ 2, and let K = X!(xn; dn) be an asymptotic cone of it. Let F! and �! be an
apartment and a geodesic ray in K, F! asymptotic to �!. Let �! = [�n], where �n have the same
slopes as �!. Then

(a) F! can be written as limit set F! = [Fn] with Fn asymptotic to �n !-almost surely;
(b) every geodesic segment [x; y] in F!\Hbo(�!) can be written as limit set of segments [xn; yn] ⊂

Fn \ Hbo(�n).

Proof. (a) Suppose -rst that �! is regular with slope 9. Then �n are of slope 9. Let F! = [F ′
n] and

let x′n be the projection of �n(0) onto F ′
n. We may replace in the argument each ray �n with the

ray asymptotic to �n of origin x′n. So in the sequel we may suppose that �n has its origin x′n in F ′
n.

By hypothesis we have [�n] ⊂ [F ′
n], hence there exist rays �′

n ⊂ F ′
n of slopes 9 and origin x′n such

that if x′′n is the -rst point of �n at distance dn from �′
n, lim! d(xn; x′′n)=dn = +∞. If such a point
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x′′n does not exist then �n ⊂Ndn(Fn). This implies that �n ⊂ Fn and we are done. So we suppose
that x′′n always exists. It follows that “x′

n
( N�n; N�′

n)→ 0 as n→∞. For n suOciently large, �n(+∞)
becomes opposite to �opn (+∞) in @∞X , where �

op
n is the ray opposite to �′

n in F ′
n. This happens

because up to isometry we may suppose that Fn, x′n and �′
n are -xed and then we can use the lower

semi-continuity of the Tits metric with respect to the cone topology.
Let Fn be the unique maximal Mat containing �n(+∞) and �opn (+∞) in its boundary. With an

argument up to isometry similar to the previous one we can prove that d(x′n; Fn) is uniformly bounded
by a constant M . Let x′′′n be the projection of x′′n on Fn. Let Wn be the Weyl chamber of vertex
x′′′n containing �opn (∞) in the boundary and let W ′

n be the Weyl chamber asymptotic to it of vertex
projF′

n
(x′′n). The HausdorG distance dH (Wn;W ′

n) is at most dn + M hence in the asymptotic cone
dH ([Wn]; [W ′

n])6 1. On the other hand, lim! d(xn; x′′n)=dn = lim! d(xn; x′′′n )=dn =+∞, so [Wn] = [Fn]
and [W ′

n] = [F ′
n]. It follows that dH ([Fn]; [F ′

n])6 1 which implies [Fn] = [F ′
n] = F!.

The case when �! is singular can be reduced to the previous case by choosing �0! regular in the
same Weyl chamber as �! and asymptotic to F! and repeating the previous argument.
(b) The set F!\Hbo(�!) as well as !-almost all sets Fn\Hbo(�n) are half-Mats and the conclusion

follows easily.

3. Horospheres in Euclidean buildings: intersections with apartments and nondistorsion

3.1. Intersection of a horoball with an apartment: global properties

We -rst introduce a notation. For every k-Mat  (not necessarily singular) and every geodesic ray
� such that inf x∈ f�(x)¿−∞ we denote

Min (�) =
{
y∈ 

∣∣∣∣f�(y) = inf
x∈ f�(x)

}
:

We recall that f� denotes the Busemann function associated to �. We use a similar notation for
a half-apartment D instead of the Mat  .

We describe some global features of intersections between horoballs/horospheres and apartments.

Proposition 3.1.1 (Drut$u [10, Proposition 3.1, Lemmata 3.2, 3.8]). Let K be an Euclidean building,
F an apartment in it and � ⊂ K a geodesic ray of slope 9. Let {�1; �2; : : : ; �k} be the points in
F(∞) opposite to �(∞), k6 q0, where q0 is the number of chambers of the spherical Coxeter
complex S associated to @∞K.

(a) The Eat F can be written as F =
⋃m
i=1 [F ∩ Fi], where

• each Fi is an apartment with Fi(∞) containing �(∞);
• each F(∞) ∩ Fi(∞) contains a unique point �ji opposite to �(∞).

If 9∈ @8mod then it is possible that there exist i1 �= i2 with �ji1 = �ji2 .
(b) The intersection Hb(�)∩ F , if nonempty, is a convex polytope in F . The hypersurface H (�)∩ F

has at most k faces.
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(c) Suppose inf x∈F f�(x)¿ − ∞. The set MinF(�) is a Weyl polytope with at most m faces,
m= m(S). All the slopes of MinF(�) are included in Ort(9).
(c1) If MinF(�) has codimension 1 in F then it is included in a singular hyperplane  . There

exists j= j(S) such that:
• every two a>ne spans of codimension one faces of MinF(�), if not parallel, make dihedral

angles greater that j and smaller than .− j;
• every a>ne span of a codimension one face of MinF(�) makes with every H ∩  , H

singular hyperplane diFerent of  , dihedral angles greater that j and smaller than .− j,
if not parallel to it.

(c2) If  is a k-Eat (not necessarily singular) contained in F such that inf x∈ f�(x)¿ −∞
then Min (�) is the intersection of a Weyl polytope with  .

Proof. We prove the statements that are not proved in the quoted reference. We note that (b)
follows from (a) since Hb(�)∩F is a convex set, Hb(�)∩F =

⋃m
i=1 [Hb(�)∩F ∩Fi], Hb(�)∩Fi is

a half-apartment and F ∩Fi is a Weyl polytope. In (c) the fact that the number of faces of MinF(�)
is uniformly bounded is a consequence of the fact that all faces are supported by intersections of
the aOne span with singular hyperplanes, and that, by the convexity of MinF(�), there can be at
most one face parallel to a -xed face.

Suppose MinF(�) has codimension 1 and is not included in a singular hyperplane. Then it contains
a segment [x; y] of regular slope. Let W be a Weyl chamber in F of vertex x including (x; y] in
its interior. It follows that “x(Wx; �x)¡.=2, which implies that f� takes in W smaller values
than f�(x). This contradicts the de-nition of MinF(�). Hence MinF(�) is contained in a singular
hyperplane  . Let j¿ 0 be such that in S every two distinct singular codimension 2 subspaces
are at HausdorG distance at least j and at most . − j one from the other. The second part of the
statement in (c1) then follows from the fact that all aOne spans of codimension 1 faces of MinF(�)
are codimension 2 singular subspaces in F .

Corollary 3.1.2. Let K be an Euclidean building, � ⊂ K a geodesic ray of slope 9 and F an
apartment which intersects Hbt(�). For every s¿ t the projection in F of Hs(�)∩F onto Ht(�)∩F
is a contraction. Moreover, there exists a constant a¿ 1 depending only on 9 and on the spherical
Coxeter complex S of K such that the distance from a point of Hs(�) ∩ F to its projection onto
Ht(�) ∩ F is at most a(s− t).

Proof. The -rst statement is a straightforward consequence of Proposition 3.1.1, (b), and of the fact
that Hbt(�) ⊂ Hbs(�).

If 9 is parallel to a factor of rank 1 of K then the second statement is obvious, with a=1. Suppose
9 is not parallel to a rank 1 factor of K.
Let x be a point in Hs(�)∩ F and y its projection on Ht(�)∩ F . For every point z ∈Hbt(�)∩ F ,

“y(yx; yz)¿ .=2. Let M be the unique wall or Weyl chamber of vertex y containing the segment
(y; x] in its interior. Then M cannot have a segment in common with Ht(�) ∩ F , otherwise the
diameter of My in the spherical building 7yK would be ¿.=2. It follows that “y(My; �y)¿.=2
and therefore, by Remark 2.2.4, that “y(My; �y)¿ (.=2)+ �0, with �0 depending only on 9 and on
S. In particular, “y(yx; �y)¿ (.=2)+ �0, which implies that s=f�(x)¿f�(y)+d(y; x)sin �0 = t+
d(y; x)sin �0. The conclusion follows with a= 1=sin �0.
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Corollary 3.1.3. Let K be an Euclidean building, F an apartment in it and � a ray of slope 9.
If inf x∈F f�(x) = −m¿ −∞ then there exists a constant a¿ 1 depending only on the spherical
Coxeter complex of K and on 9 such that

Nm(MinF(�)) ⊂ Hb(�) ∩ F ⊂Nam(MinF(�)):

Proof. The -rst inclusion follows from the fact that the Busemann function f� is Lipschitz of
constant 1. The second inclusion follows from the previous corollary applied to H−m(�) ∩ F and
each H−s(�) ∩ F with 06 s¡m.

Corollary 3.1.3 shows that the shape of MinF(�) is important for the shape of F ∩ Hb(�).
Therefore, in the sequel we formulate results about the way MinF(�) changes when we change the
apartment F with a rami-cation of it.

Lemma 3.1.4 (Drut$u [10, Lemma 3.12]). Let K be a 4-thick Euclidean building of rank at least 2,
let � be a geodesic ray in it, not parallel to any factor, let F be an apartment, D a half-apartment
in F and  the a>ne span of MinD(�) in F . Let D0 be the half-apartment in F opposite to D,
and let D1; D2 be two other half-apartments of boundary H = @D and interiors mutually disjoint
and disjoint of F .

If the singular hyperplane H neither contains  nor is orthogonal to it then infDi f�¿ infD f�;
∀i∈{0; 1; 2}, and MinDi∪D(�) =MinD(�) for at least two values of i in {0; 1; 2}.

Lemma 3.1.4 implies that in an apartment F , by eventually changing a half-apartment, we can
always make sure that MinF(�) stays in a single half-apartment, and by applying the Lemma twice
we can even make sure that MinF(�) stays in a strip determined by two parallel hyperplanes.
The only thing needed to apply the Lemma is a singular hyperplane which neither contains nor
is orthogonal to the aOne span of MinF(�). The following results are about the existence of such
singular hyperplanes.

Lemma 3.1.5. Let X be a product of symmetric spaces of noncompact type and Euclidean build-
ings, X of rank r¿ 2, let � be a geodesic ray which is not parallel to any factor of X , let F
be a maximal Eat containing � and let  ⊂ F be a singular Eat orthogonal to �. Every Weyl
chamber of F has an adjacent singular hyperplane which is neither parallel to  (or containing
 ) nor orthogonal to  .

Proof. Since all Weyl chambers are translations of a -nite set of Weyl chambers with com-
mon vertex, we may restrict the problem to Weyl chambers having the vertex on  . Let W be
such a Weyl chamber. If  supports W then the result follows from Lemma 3.11 [10]. Sup-
pose  does not support W . If the dimension of  is k then the number of singular hyper-
planes supporting W and containing  must be strictly less than r − k. So there are at least
k + 1 hyperplanes supporting W and not containing  . They cannot be all orthogonal to  be-
cause if we choose vectors orthogonal to each of these hyperplanes we obtain a family of at
least k + 1 linearly independent vectors, so the entire family cannot be contained
in  .
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Corollary 3.1.6. Let X and � be as in the previous Lemma. If F is a maximal Eat not containing
�, P is a Weyl polytope in F on which f� is constant and  is its a>ne span, the conclusion of
the Lemma 3.1.5 still holds.

Proof. By Proposition 3.1.1, (a), a relatively open subset A of the Weyl polytope P shall be
entirely contained into an intersection F ∩ Fi, where Fi contains a ray �i asymptotic to � and
F(∞) ∩ Fi(∞) contains a unique point � opposite to �(∞). Let �op be a ray with origin on A
and �op(∞) = �. Then �op is included in F ∩ Fi and in Fi it is opposite to a ray parallel to
�i. Hence it is orthogonal to A and to  in F , on one hand, and on the other hand, it is not
parallel to a factor in X . By applying Lemma 3.1.5 with �op instead of � we obtain the same
conclusion.

3.2. Intersection of a horoball with an apartment: local properties

We look at an intersection F ∩ H (�) in the neighbourhood of one of its points x. The -rst
and the second part of the following proposition give a meaning to the directions orthogonal to
the codimension one faces of F ∩ H (�) through x. The third part describes a situation in which
F ∩ H (�) has two codimension one faces through x symmetric with respect to a singular hy-
perplane through x. This result is essential in the argument of “breaking the faces” described in
Lemma 3.3.2.

Proposition 3.2.1. Let K be an Euclidean building, � ⊂ K a geodesic ray of slope 9 and F an
apartment which intersects Hb(�). Let x∈F ∩ H (�).

(a) There exists �¿ 0 such that F ∩ B(x; �) = ⋃s
i=1 [F ∩ Fi ∩ B(x; �)], where

• Fi is an apartment and Fi ∩ B(x; �) contains �x ∩ B(x; �);
• each Fi ∩ B(x; �) contains at least one set of the form W ∩ B(x; �), where W is a Weyl

chamber of F of vertex x;
• each set F ∩ Fi ∩ B(x; �) contains only one segment of length �, [x; ai), of direction xai

opposite to �x.
If 9∈ @8mod then it is possible that there exist i1 �= i2 with ai1 = ai2 .

(b) Every codimension one face of F ∩ H (�) through x is orthogonal to one of the segments
[x; ai). A segment [x; ai) is orthogonal to a face of F ∩H (�) through x if and only if for some
component F ∩Fi∩B(x; �) including it either “x(�x; (F ∩Fi)x)¡.=2 or “x(�x; (F ∩Fi)x)=.=2
and (F ∩ Fi)x contains a panel orthogonal to �x.

(c) Suppose F ∩ Hbo(�) �= ∅. If x is in the interior of a codimension one face of F ∩ H (�) then
there exists �¿ 0 such that F ∩ B(x; �) contains �x ∩ B(x; �).

(d) Let W 1 and W 2 be two adjacent chambers in F of vertex x, W 1 ∩W 2 =M . Suppose that W 1
x

and W 2
x are at the same combinatorial distance from �x and that “x(Wt

x ; �x)¡.=2; t = 1; 2.
Suppose no singular hyperplane through �x contains Mx. Then there exist i1 �= i2 such that
Wt ∩ B(x; �) ⊂ F ∩ Fit ∩ B(x; �); t = 1; 2, and the segments [x; ai1 ] and [x; ai2 ] are symmetric
with respect to SpanM .



1002 C. Drut0u / Topology 43 (2004) 983–1033

Proof. (a) We choose an auxiliary ray �0. If � is regular, then �0 = �x while if � is singular we
choose a Weyl chamber W 0 of vertex x containing �x, and �0 a regular ray in W 0 of origin x. Let
{B1; B2; : : : ; Bs} be the points in Fx opposite to �0 and let Ai be the unique apartment containing
Bi and �0. By Lemma 3.10.2 of Kleiner and Leeb [22], every point in Fx lies in some Ai, so
Fx=

⋃s
i=1 [Fx ∩Ai]. By Lemma 4.2.3 of Kleiner and Leeb [22], Ai=(Fi)x, where Fi is an apartment

in the Euclidean building containing x. Lemma 4.1.2, (1), and Sublemma 4.4.1 of Kleiner and Leeb
[22] allow to conclude that (a) is true.

(b) First we notice that if Ort(9) �⊂ @8mod then any open set in it contains a regular point, while if
Ort(9) ⊂ @8mod any open set in it contains a point in the interior of a panel. For every codimension
one face f of H (�) ∩ F through x we consider a point C∈ fx, regular if we are in the -rst case or
in the interior of a panel if we are in the second case. The point C is contained in Fx ∩Ai for some
i∈{1; 2; : : : ; s}. It follows that an open subset of f is included in F ∩Fi ∩B(x; �), so it is orthogonal
to [x; ai).

We now prove the equivalence stated in (b). We only prove the direct implication, since the
reciprocal is an easy consequence of (a) and of previously used results. Suppose that [x; ai) is
orthogonal to a codimension one face f of H (�) ∩ F through x. We choose a point C as previously
in fx. In 7xK we consider the geodesic between xai and C, of length .=2. This geodesic contains a
regular point C0 �= C in a chamber Wx ⊂ Fx intersecting fx either in a relatively open set of regular
points or in a panel. On the other hand, Wx is included in some (F ∩ Fj)x and the geodesic from
C to C0 extends to a geodesic of length .=2 with endpoint the opposite direction xaj. But since in
Fx the geodesic from C to C0 extends in a unique way, it follows that j = i. Since (F ∩ Fj)x has in
common with fx either a relatively open set of regular points or a panel, we may conclude.

(c) Let H be the aOne span of the face containing x. If H is not a singular hyperplane then we
choose [a; b] a regular segment through x; x �= a; b. In 7xK, �x is contained in a geodesic from xa
to xb. It follows that �x is contained in Fx and we may conclude by Lemma 4.1.2 of Kleiner and
Leeb [22].

Suppose H is a singular hyperplane. We choose W and W ′ two opposite Weyl chambers in F
of vertex x supported by H , and [x; a] ⊂ W; [x; b] ⊂ W ′ two opposite regular segments. Suppose
W ∩B(x; �) ⊂ Hb(�) for a small �. Then “x(�x;Wx)¡.=2. If “x(�x; xa)= (.=2)− � and since the
opposition involution is an isometry from Wx to W ′

x we have “x( N�x; xb) = (.=2) + �. It follows that
N�x is on a geodesic from xa to xb, hence N�x ∈Fx.
(d) Statement (a) implies that there exists it such that Wt∩B(x; �) ⊂ F∩Fit∩B(x; �); t=1; 2. Since

W 1
x and W 2

x are at the same combinatorial distance from �x and no singular hyperplane through �x
contains the common panel Mx, according to Lemma 2.2.1 none of W 1

x or W 2
x can be the projection

of �x on Mx and both are separated from �x by Mx. Also, W 1
x �= W 2

x implies i1 �= i2. Moreover, W 1
x

and W 2
x are at the same combinatorial distance from (W 0)x, with W 0 chosen as in the proof of (a).

This implies that retr(Fi1 )x ;(W 0)x(W
2
x ) =W

1
x .

The hypothesis that “x(Wt
x ; �x)¡.=2 implies that there exist two points Dt in the interiors of Wt

x
with “x(Dt; �x)¡.=2; t=1; 2, and px(D1)=px(D2). In (Fit)x the geodesic @t joining �x to Dt extends
to a geodesic joining �x to xait . The previous considerations imply that retr(Fi1 )x ;(W 0)x(D2)= D1, hence
that retr(Fi1 )x ;(W 0)x(@2) = @1 and in particular that @1 and @2 intersect Mx in the same point E. In Fx
the geodesics from E to D1 and from E to D2 are symmetric with respect to SpanMx, so the same is
true for their prolongations to xai1 and to xai2 , respectively. In particular, ai1 and ai2 are symmetric
with respect to SpanM , which ends the proof.
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Corollary 3.2.2. Let K be a 3-thick Euclidean building, x a point in it and � ⊂ K a geodesic
ray of slope 9. Let W be a Weyl chamber of vertex x such that Wx does not contain �x and
“x(�x;Wx)¡.=2. Let M be a panel such that Mx separates Wx and �x. Then there exists a Weyl
chamber Ŵ adjacent to W , with Ŵ ∩W =M , such that in any apartment F containing both W
and Ŵ the point x is contained in two faces of F ∩ H (�).

Proof. Remark 2.2.4 implies that “x(�x;Wx)6 (.=2)−�0, where �0 depends only on 9. There exist
at least two Weyl chambers adjacent to W containing M and at least one of these two chambers,
Ŵ , has the property that Wx and Ŵx are at the same combinatorial distance from �x. Let F be an
apartment containing W and Ŵ . We denote Ĥ the aOne span of M in F . By Proposition 3.2.1,
(d), x is contained into two faces of F ∩ H (�), orthogonal to two segments [x; a1) and [x; a2)
symmetric with respect to SpanM . By the properties of M , Ĥ does not contain [x; a1). Also, if Ĥ
would be orthogonal to [x; a1) then Mx would be orthogonal to xa1 in 7xK. This would contradict
“x(�x;Mx)6“x(�x;Wx)6 (.=2)−�0 and “x(�x; xa1)=.. Therefore, Ĥ is not orthogonal to [x; a1)
neither. It follows that [x; a1) and [x; a2) are not on the same line, which implies that the two
corresponding faces are distinct.

3.3. Nondistorsion of horospheres

In the proof of Theorem 4.3 we shall need the following two Lemmata. As a byproduct we
also obtain new and considerably shorter proofs of the Theorems 1.1 and 1.2 in Drut$u [10] on the
nondistorsion of horospheres in Euclidean buildings and symmetric spaces.

Both Lemmata deal with the possibility of joining two points x; y in the intersection of an apart-
ment with a horosphere F∩H (�) with a polygonal line included in F∩H (�) and of length comparable
to d(x; y). Lemma 3.3.1 states that this can easily be done if x and y are contained into nonparallel
codimension one faces of F ∩ H (�). Lemma 3.3.2 deals with the case when x and y are contained
in the interiors of codimension 1 parallel faces. The main idea in the argument is that, by choosing
a singular hyperplane skew to the two aOne spans of the two faces and by changing one of the
two half-apartments bounded by this hyperplane one is able to “break” one of the faces into two
diGerent faces. The details we give in the statement of the Lemma on the diGerent possibilities of
“breaking” one of the two faces will be necessary further on.

Lemma 3.3.1 (Nonparallel faces). Let K be an Euclidean building of rank at least 2 and of spher-
ical Coxeter complex S, and let � be a geodesic ray in it of slope 9, not parallel to a rank one
factor. There exists a constant C = C(S; 9) such that for every apartment F intersecting Hb(�),
every two points x; y∈F ∩H (�), contained into two distinct nonparallel codimension one faces of
F ∩H (�), can be joined with a polygonal line in F ∩H (�) of length at most Cd(x; y). Moreover,
the polygonal line may be chosen in a half-plane in F having as boundary the line xy.

In particular, the previous statement applies for every pair of points in F ∩ H (�) one of which
is contained into two diFerent codimension one faces of F ∩ H (�).

We note that the hypothesis of � not being parallel to a rank one factor ensures the existence of
two nonparallel faces.
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Proof. By hypothesis, x and y are contained into two codimension one faces of the convex polytope
F ∩Hb(�) whose aOne spans, H and H ′, respectively, are not parallel. The set of slopes of both H
and H ′ is Ort(9). There is a minimal possible dihedral angle between two distinct and non-parallel
hyperplanes of set of slopes Ort(9), which we denote by &. So “(H;H ′)¿ &. As F ∩ Hb(�) is
a convex polytope, it is entirely included in a skew quadrant determined by H and H ′, which we
denote by Q. On the other hand, we have x∈H and y∈H ′. Since “(H;H ′)¿ &, there exists a
constant C depending only on & such that x and y may be joined with a polygonal line included in
@Q of length at most Cd(x; y). The polygonal line of minimal length will be of the form [x; z]∪[z; y]
with z ∈H ∩ H ′. The plane P determined by the points x; y; z in F intersects Hb(�) in a convex
polygon entirely included in a sector of vertex z and sides the rays through x and y. It follows that
the polygonal line joining x and y in P ∩ H (�), contained inside the triangle xyz, has length at
most Cd(x; y).

Notation: Henceforth for a pair of points x; y, in the intersection of an apartment with a horo-
sphere F ∩ H (�), x; y in nonparallel faces, we shall denote by Lxy a polygonal line joining them
in F ∩ H (�), of length at most Cd(x; y), included in a half-plane of boundary xy, constructed as
previously.

Lemma 3.3.2 (Breaking parallel faces). Let K, � and 9 be as in the previous Lemma with the
additional hypothesis that K is 3-thick and that � is not parallel to any factor of K. Let F be an
apartment intersecting Hb(�), and x and y two points in the interiors of two distinct codimension
one faces of F ∩ H (�) with parallel a>ne spans H and H ′, respectively. Let M0 be the unique
Weyl chamber or wall of vertex x including (x; y] in its interior. We de+ne the set CN to be
either Star(M0) ∩ F if M0 is a wall or M0 if M0 is a Weyl chamber.

(1) There exists a constant C=C(S; 9) and a rami+cation F ′ of F containing M0 such that x and
y may be joined in F ′ ∩ H (�) with a polygonal line of length at most Cd(x; y).

(2) The choice of the rami+cation F ′ can be made as follows:
(a) Suppose (M0)x does not contain �x. Let W be a Weyl chamber in CN such that Wx is

not the projection of �x on (M0)x if M0 is a wall. Then there exists a rami+cation F ′ of
F including W such that x is contained into two codimension one faces of F ′ ∩ H (�).

(b) Suppose (M0)x contains �x.
(b1) If the connected component of CN∩H (�) containing y has at least two faces then F ′=F .
(b2) Suppose the connected component of CN∩H (�) containing y has one face. Let W be a

Weyl chamber in CN. For every hyperplane Ĥ supporting W which is neither orthogonal
nor coincident with H , there exists a rami+cation F ′ of F containing W and such that
@(F ′ ∩ F) = Ĥ and all the points in H (�) ∩ Ĥ ∩ W \ {x} are in two diFerent faces of
F ′ ∩ H (�).

Proof. In Fig. 1, the cases (b1) and (b2) are represented.
We prove that the choices of the rami-cation F ′ proposed in (2) are always possible and that

they satisfy (1).
By hypothesis (x; y) ⊂ F ∩ Hbo(�). It follows that “x(xy; �x)¡.=2 which, by Remark 2.2.4,

implies that “x((M0)x; �x)6 (.=2)− �0, �0 = �0(9;S).
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Fig. 1. Types of intersections between the set CN and the horoball H (�).

(2) (a) The chamber Wx does not contain �x and it has a panel Mx separating Wx and �x. This
and the fact that “x(Wx; �x)6 (.=2) − �0 imply, by Corollary 3.2.2 and Lemma 2.2.5, that there
exists a rami-cation F ′ of F with the desired properties.
(2) (b) The hypothesis that � is not parallel to any factor and Lemma 2.2.3 imply that �x is not

perpendicular near x to any wall of any Weyl chamber in CN. In particular, the intersection of H
with CN reduces to the point x. This implies that the intersection of any Weyl chamber in CN
with H ′ is a simplex of diameter 6 c · d(x; y), c = c(9;S). It follows that CN ∩ H ′ is a convex
polytope in H ′ of diameter 6 c′ · d(x; y), c′ = c′(9;S). From this and the fact that the connected
component of CN ∩ H (�) containing y is included in the truncated polytopic cone determined by
CN and H ′ we can deduce that the diameter of the connected component of CN∩H (�) containing
y, considered with its length metric, is at most c′′ · d(x; y), c′′ = c′′(9;S).

(b1) By hypothesis there exists y1 in the connected component of CN ∩ H (�) containing y,
which is contained into two faces. The previous considerations imply that y1 may be joined to y
with a polygonal line in F ∩H (�) of length at most c′′ · d(x; y). Lemma 3.3.1 implies that y1 may
be joined to x with a polygonal line in F ∩ H (�) of length at most C(c′′ + 1) · d(x; y).

(b2) In this case the connected component of CN ∩H (�) containing y is simply CN ∩H ′. Let
W and Ĥ be as in the statement. The existence of Ĥ is guaranteed by Corollary 3.1.6. We denote
M =W ∩ Ĥ , D̂ the half-apartment bounded by Ĥ including W and D̂′ the opposite half-apartment
in F . We prove the statement in (b2) for an arbitrary point y1 ∈ Int M ∩H (�)= Int M ∩H ′. Suppose
y1 is also in the interior of the face of F ∩H (�) of span H ′, otherwise we are in the case (b1) and
we may take F ′ = F .

By hypothesis �x ∈ (M0)x so �x ∩ B(x; �) ⊂ M0 ∩ B(x; �) for a small �¿ 0. Let d be the line
in F containing the segment �x ∩ B(x; �). The fact that d ∩ M0, [x; y] and M are contained in the
same Weyl chamber implies that the skew quadrant determined by Ĥ and H ′ containing [x; y] has
a dihedral angle �¡.=2 (Fig. 2). The same follows for the opposite quadrant, contained in D̂′. Let
DH ′ and DĤ be the half-hyperplanes bounding the latter quadrant. For a small �1, H (�) ∩ D̂′ ∩
B(y1; �1) =DH ′ ∩ B(y1; �1).
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Fig. 2. Quadrants determined by Ĥ and H ′.

Let D̂′′ be another half-apartment bounded by Ĥ whose interior is disjoint from F . We consider the
apartment F ′=D̂∪D̂′′. Suppose by absurd that y1 is in the interior of a codimension one face also in
F ′∩H (�). Let DH ′′ be the half of the aOne span of this face contained in D̂′′. As previously DH ′′
makes with DĤ the dihedral angle � and, for a small �2, H (�) ∩ D̂′′ ∩ B(y1; �2) =DH ′′ ∩ B(y1; �2).
In the apartment D̂′ ∪ D̂′′, the quadrant Q bounded by DH ′ and DH ′′ and containing DĤ has

dihedral angle 2�¡. and veri-es @Q ∩ B(y1; �) ⊂ H (�), where � = min(�1; �2) and @Q denotes
the boundary of Q. The convexity of the Busemann function f� implies that for �′ small enough,
DĤ ∩ B(y1; �′) ⊂ Q ∩ B(y1; �′) ⊂ Hb(�). This gives a contradiction in F , in which Hb(�) is on the
opposite side of H ′ than DĤ .

We recall that if a subset Y in a metric space (X; dX ) is endowed with its own metric dY , the metric
space (Y; dY ) is said to be nondistorted in (X; dX ) if the set {dY (y1; y2)=dX (y1; y2) |y1; y2 ∈Y; y1 �=
y2} has a -nite upper bound and a positive lower bound. An upper bound of this set is called a non-
distorsion constant of Y in X . An upper bound of a set of the form {dY (y1; y2)=dX (y1; y2) |y1; y2 ∈
Y; dX (y1; y2)¿D} is called a nondistorsion constant of Y in X for su>ciently large distances.

The previous two Lemmata imply the following theorem

Theorem 3.3.3 (Drut$u [10, Theorem 1.2]). Let K be a 3-thick Euclidean building of rank at least
2 and � a geodesic ray in it. The following three properties are equivalent:

(P1) The horosphere H (�) endowed with its length metric is nondistorted in K;
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(P2) H (�) is connected;
(P3) � is not parallel to a rank one factor of K.

Proof. The implications (P1)⇒ (P2) and (P2)⇒ (P3) are obvious. We show (P3)⇒ (P1). We may
suppose that � is not parallel to any factor of K. For if K = K1 × K2 and if there exists a ray r in
K1 and a point x in K2 such that �(t) = (r(t); x), then H (�) = H (r) × K2, so it will be enough to
prove (P1) for r in K1, by hypothesis K1 being of rank at least 2.
If � is not parallel to any factor of K then Lemmata 3.3.1 and 3.3.2, (1), allow to conclude that

(P1) is true.

Remark 3.3.4. Let H (�) be a horosphere in a 3-thick Euclidean building, K, of rank at least 2, and
suppose � is not parallel to a rank one factor.

(a) Lemmata 3.3.1 and 3.3.2 imply that we may -nd a nondistorsion constant C0 of H (�) in K
which can be eGectively computed given the model spherical Coxeter complex of K and the
slope 9 of �. More precisely, C0 can be computed given:
• the minimal dihedral angle between two distinct hyperplanes of sets of slopes Ort(9);
• the dihedral angles between one hyperplane H in an apartment F , H of set of slopes Ort(9),
and each of the singular hyperplanes supporting a Weyl chamber W ⊂ F which contains a
ray orthogonal to H .

(b) Two points x; y∈H (�)∩F , where F is an apartment, may be joined either by a polygonal line
of type Lxy contained in F or a rami-cation of it, or by the union of a planar polygonal line in
H (�) ∩ F joining y to a point y1 with a line Lxy1 contained in F or a rami-cation of it. This
and Proposition 3.1.1, (b), imply in particular that x and y may always be joined by a polygonal
line in H (�) with at most 2q0 edges and of length 6C0d(x; y). We denote this polygonal line
by Lxy.

Theorem 3.3.3 implies the following.

Theorem 3.3.5 (Drut$u [10, Theorem 1.3]). Let X be a product of symmetric spaces of noncompact
type and Euclidean buildings, X of rank at least 2 and � a geodesic ray in it. The following two
properties are equivalent:

(P∗
1) The horosphere H (�) is nondistorted;

(P∗
2) � is not parallel to a rank one factor of X .

In [10, Section 4], there is a proof of the fact that Theorem 3.3.3 implies Theorem 3.3.5.
In the sequel we shall relate the nondistorsion constant of a horosphere H (�) in a product X of

symmetric spaces and Euclidean buildings to the model spherical Coxeter complex of @∞X and to
the slope 9 of �.
Let X and � be as in the previous theorem, � satisfying property (P∗

2). Let x; y be two points in
X \Hbo(�). We consider a sequence of points x0 = x; Nx0; x1; Nx1; : : : ; xp; Nxp=y satisfying the following
properties:

(1) 06p6 3q0 and d(x; xi); d(x; Nxi)6 2C0d(x; y); ∀i∈{0; 1; : : : ; p};
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(2) if p¿ 1, for every i∈{0; 1; : : : ; p − 1} there exists a maximal Mat Fi such that [ Nxi; xi+1] ⊂
Fi \ Hbo(�);

(3) if p¿ 1, 7p−1
i=0 d( Nxi; xi+1)6 2C0d(x; y).

Let Li be a curve of minimal length between xi and Nxi in X \Hbo(�). The curve joining x and y
obtained as L0 ∪ [ Nx0; x1] ∪ L1 ∪ [ Nx1; x2] ∪ · · · ∪ Lp−1 ∪ [ Nxp−1; xp] ∪ Lp is called an almost polygonal
curve joining x and y. The points x0 = x; Nx0; x1; Nx1; : : : ; xp; Nxp=y are called the vertices of the almost
polygonal curve.

We denote

j(x; y) = inf
{

max
i∈{0;1;:::;p}

d(xi; Nxi) | {xi; Nxi}i∈{0;1; :::;p}vertices of an almost polygonal curve
}
:

We denote

j(d) = sup{j(x; y) | x; y∈X \ Hbo(�); d(x; y) = d}:
The de-nition of an almost polygonal curve implies that j(x; y)64C0d(x; y) and that j(d)64C0d.

Lemma 3.3.6. We have that j(d) = o(d).

Proof. We argue by contradiction and suppose that there exists a sequence of pairs of points
xn; yn ∈X \Hbo(�) with d(xn; yn)=dn and j(xn; yn)¿�dn; �¿ 0. Without loss of generality we may
suppose that xn; yn ∈H (�). In the asymptotic cone X!(xn; dn) let x! = [xn]; y! = [yn] and �! = [�].
According to Remark 3.3.4, (b), x! and y! may be joined in H (�!) by a polygonal line with at
most 2q0 segments and of length at most C0. Let x0! = x!; x1!; : : : ; x

p
! = y! be the vertices of this

line, p6 2q0. Each segment [xi!; x
i+1
! ] is contained in an apartment Fi! asymptotic to �!. By Lemma

2.4.6, we can write Fi!=[Fin], where each Fin is asymptotic to �. The segment [xi!; x
i+1
! ] is limit of a

sequence of segments [ Nxin; x
i+1
n ] ⊂ Fin\Hbo(�). The sequence x0n=xn; Nx

0
n; x

1
n; Nx

1
n; x

2
n; : : : ; x

p
n ; Nx

p
n =yn satis-

-es the properties (1), (2), (3) in the de-nition of an almost polygonal curve !-almost surely. Also
lim! d(xin; Nx

i
n)=dn=0; ∀i∈{0; 1; 2; : : : ; p}. This contradicts the fact that j(xn; yn)¿�dn; ∀n∈N.

An immediate consequence of Lemma 3.3.6 is an improvement of Theorem 3.3.5. In the theorem
only the nondistorsion is stated, without any speci-cation on nondistorsion constants. Let C be such a
constant. Two points x and y in X \Hbo(�) with d(x; y)=d can be joined in X \Hbo(�) by an almost
polygonal curve of length at most 2C0d + 3q0Cj(d). Lemma 3.3.6 implies that for d suOciently
large the length of the almost polygonal curve is at most 3C0d. Thus 3C0 is a nondistorsion constant
of X \ Hbo(�) in X for suOciently large distances.

Corollary 3.3.7. Let X be a product of symmetric spaces of noncompact type and Euclidean build-
ings such that each factor is of rank at least 2. Then there exists a constant C0 depending only on
the model spherical Coxeter complex S of X such that for every geodesic ray � in X every two
points x; y∈X \ Hbo(�) su>ciently far away from each other can be joined in X \ Hbo(�) by an
almost polygonal curve of length at most C0d(x; y). In particular, C0 is a nondistorsion constant
of X \ Hbo(�) and of H (�) in X for su>ciently large distances.
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Proof. The conclusion of the argument preceding the statement of the Corollary was that for every
geodesic ray � in X , every two points x; y∈X \ Hbo(�) suOciently far away from each other can
be joined in X \Hbo(�) by an almost polygonal curve of length at most 3C0d(x; y). We recall that
C0 = C0(S; 9) where 9 = P(�(∞)). The dependence of C0 on 9 is made explicit in Remark 3.3.4,
(a). From this dependence it follows that the function associating to each 9 in 8mod the constant
C0 is continuous. In particular, it has a lowest upper bound C′

0. Then C0 = 3C′
0 is a nondistorsion

constant of X \ Hbo(�) in X for suOciently large distances, for every geodesic ray � in X .

Remark 3.3.8. We can generalise all the previous arguments to the case of a space X0 = X \⊔
�∈R Hbo(�) with R -nite and all rays in R of the same slope 9. The only diGerence in the

de-nition of an almost polygonal curve is that we must replace condition 06p6 3q0 in (1) by
06p6 3q0·card R. Lemma 3.3.6 remains true.

Notations: In the sequel we deal only with spaces X0 = X \
⊔
�∈R Hbo(�) with all �∈R of the

same slope satisfying property (P∗
2). Suppose R is -nite and x; y are two points in X0. If the ambient

space X is an Euclidean building, we denote by Lxy a curve joining x and y in X0 obtained from
[x; y] by replacing each subsegment [x′; y′]=[x; y]∩Hb(�) with a curve Lx′y′ as described in Remark
3.3.4, (b). If X has a symmetric space as a factor, we denote by Lxy an almost polygonal curve
joining x and y with maxi d(xi; Nxi)6 2j(x; y). We call such a curve a minimising almost polygonal
curve joining x and y (though the appropriate name should probably be “almost minimising almost
polygonal curve”).

4. Filling in Euclidean buildings and symmetric spaces with deleted open horoballs

In this section we prove the following result:

Theorem 4.1. Let X be a product of symmetric spaces of noncompact type and Euclidean buildings,
X of rank at least 3, and let X0 be a subset which can be written as

X0 = X
∖ ⊔
�∈R

Hbo(�):

Suppose X0 has the following properties:

(P1) for every point x of X0 there exists a maximal Eat F ⊂Nd(X0) such that x∈Nd(F), where
d is a universal constant;

(P2) all rays � in R have the same slope, and the common slope is not parallel to a rank one
factor or to a rank two factor of X . Then
(a) the +lling order in X0 is asymptotically quadratic, that is

∀�¿ 0; ∃‘� such that A1(‘)6 ‘2+�; ∀‘¿ ‘�;

(b) if the set of rays R is +nite then the +lling order in X0 is quadratic, that is

A1(‘)6C‘2; ∀‘;
where the constant C depends on X and on the cardinal of R.
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Remark 4.2. It suOces to prove Theorem 4.1 under the hypothesis that the common slope of all
rays �∈R is not parallel to any factor.

Proof. Let X = X1 × X2 be a decomposition as a product, let 8mod = 81
mod ◦ 82

mod be the corre-
sponding decomposition of the model chamber of @∞X and suppose 9∈81

mod. Then X0 = (X1 \⊔
�1∈R1

Hbo(�1))× X2. Any loop can be projected onto a loop entirely included into a copy of the
factor X1\

⊔
�1∈R1

Hbo(�1), and between the two loops there is a -lling cylinder of quadratic surface.
Thus, it suOces to prove the result in X1 \

⊔
�1∈R1

Hbo(�1).

The order of the -lling in X0 can be speci-ed in many of the cases when 9 is parallel to a factor
of rank at most 2. With an argument as in the proof of the previous remark we reduce the problem
to the case when X is itself of rank at most 2. The -lling order in X0 is quadratic if X =Hn

R; n¿ 3,
or X =Hn

C; n¿ 3, or cubic if X =H2
C (the last two statements are consequences of results in [1,13,

Section 8.1.1; 21, Section 5:A′
4]), exponential if X is a symmetric space of rank two [23], and linear

if X is a tree or X =H2
R.

Before proving Theorem 4.1 we prove the following intermediate result.

Theorem 4.3. Let K be a 4-thick Euclidean building of rank at least 3 and let K0 be a subspace
of it of the form

K0 = K
∖ ⊔
�∈R!

Hbo(�): (4.1)

Suppose K0 has the following properties:
(P1) through every point of K0 passes an apartment entirely contained in K0;
(P2) all rays �∈R! have the same slope 9 which is not parallel to a rank one factor or to a

rank two factor of K.
Then

(a) the +lling order in K0 is at most cubic, that is

A1(‘)6C · ‘3; ∀‘¿ 0;

where C = C(9;S);
(b) if the set of rays R! is +nite then every loop C in K0 composed of at most m segments and

of length ‘ has

A1(C)6C · ‘2;

where C = C(9;S; m).

The proof of Theorem 4.3 is done in several steps. First we study loops included in one apartment
of the Euclidean building.

Notation: Henceforth for a curve L without self-intersection and two points x; y on it we denote
Lxy the arc on L of endpoints x and y.
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4.1. Loops contained in one apartment

Proposition 4.1.1. Let K be a 4-thick Euclidean building of rank at least 3, F an apartment in it,
� a ray of slope 9 not parallel to a rank two factor and C :S1 → F \ Hbo(�) a loop of length ‘.
There exists a positive constant L= L(9;S) such that the -lling area of the loop C in K \ Hbo(�)
satis-es

A1(C)6L · ‘2:

Proof. We show that we may suppose C(S1) ⊂ F ∩ H (�). If a -lling disk obtained by joining a
-xed point of C(S1) with all the other points does not intersect F ∩Hbo(�) then we are done. We
suppose therefore the contrary which implies that C(S1) is in the 2‘ neighbourhood of F ∩ Hb(�).
By Corollary 3.1.2 we may project C on F ∩H (�) and obtain a curve C′ :S1 → F ∩H (�) of length
at most ‘. Since C(S1) ⊂N2‘(F ∩Hb(�)), the segments along which we project the curve C on C′
form a cylinder in F \Hbo(�) with area of order ‘2. So it suOces to -ll C′. Thus, we may suppose
from the beginning that C(S1) ⊂ F ∩ H (�).

With an argument as in the proof of Remark 4.2 we may reduce to the case when � is not parallel
to any factor. By hypothesis, we may suppose that the rank of K is not 2. If K has rank one then
it is an R-tree, every horosphere is totally disconnected in it so every loop in H (�) reduces to a
point. In the sequel we suppose that K is of rank at least 3.

In the case when inf x∈F f�(x)=−∞ the result has been proven in [11], in the proof of Proposition
4.3, in which it appears as case (1). So in the sequel we suppose inf x∈F f�(x) = −m¿ −∞. Let
 be the aOne span of MinF(�). The idea of the proof is to change eventually the apartment F
with another apartment containing the loop, in which MinF(�) is at a HausdorG distance of order
‘ from a polytope of codimension 3. More precisely, we prove that by eventually changing the
apartment F we may suppose that either MinF(�) is of codimension 3 or MinF(�) is of codimension
2 but contained in a codimension one I‘-strip in  or MinF(�) is of codimension 1 but contained
in a codimension two (j; I‘)-strip in  , where I and j are constants depending only on 9 and
S. See De-nition A.5 for the diGerent notions of strips. The previous situation already occurs if  
has codimension at least 3. In the sequel we suppose  has codimension one or two. By Corollary
3.1.6 there exists a singular hyperplane H1 in F which neither contains nor is orthogonal to  .
For technical reasons we suppose H1 intersects C(S1). For every x∈C(S1) we consider H1(x) the
singular hyperplane through x parallel to H1, and we consider S =

⋃
x∈C(S1)H1(x). The strip S

either intersects or does not intersect the relative interior of MinF(�). We show that in both cases
we can change F in such a way that MinF(�) either has one dimension less or is contained in a
codimension one strip in  .

If the strip S does not intersect the relative interior of MinF(�) then there exists a hyperplane
H ′

1 parallel to H1 such that

• C(S1) is contained in one half-apartment D of F bounded by H ′
1 while MinF(�) is contained in

the opposite half-apartment D′;
• H ′

1 ∩MinF(�) has codimension at least 1 in  .

By Lemma 3.1.4 there exists a half-apartment D1 of boundary H ′
1 and interior disjoint of F such

that MinD′∪D1(�)=MinD′(�). Then MinD∪D1(�)=MinH ′
1
(�) has codimension one in  . By replacing

the initial Mat F with D ∪ D1 we may therefore increase the codimension of MinF(�) with 1.
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Suppose the strip S intersects the relative interior of MinF(�). Let Ha
1 and Hb

1 be the extremal
hyperplanes of this strip. The distance between them is at most ‘. By applying Lemma 3.1.4 twice
we may suppose that MinF(�) is entirely contained in the strip. That is, MinF(�) is contained in
the strip determined by Ha

1 ∩ and Hb
1 ∩ in  . Since there is a -nite number of possibilities for

the dimension of  and the angle between  and H1, there exists a constant I = I(9;S) such that
Ha

1 ∩  and Hb
1 ∩  are at distance at most I‘ from each other. Thus, MinF(�) is contained in a

codimension one I‘ -strip in  .
If  has codimension 2, this -nishes the proof. The only case left is when  has codimension 1,

so it is a singular hyperplane, according to Proposition 3.1.1, (c). To -nish the proof in this case it
is enough to -nd another singular hyperplane H2 in F which neither contains nor is orthogonal to
 and such that  ∩ H1 ∩ H2 has codimension 2 in  . The hyperplane H1 remained in the Mat F
even after the changes presented previously were performed, so the latter condition makes sense.

Let W be a Weyl chamber adjacent both to H1 and to H1 ∩ and let M =W ∩H1 ∩ . If there
exists a hyperplane H ′ supporting W which does not contain M and which is not orthogonal to  
we take H2 = H ′. If not then all hyperplanes supporting W and not containing M are orthogonal
to  . By Corollary 3.1.6 one of these hyperplanes, H ′′, is not orthogonal to SpanM = H1 ∩  . It
follows that H ′′ is not orthogonal to H1. We consider H2 the image of H1 by orthogonal symmetry
with respect to H ′′. Since H1 is not orthogonal to  and does not contain  , the same is true for
H2. Also H1 ∩H2 coincides with H1 ∩H ′′ so it diGers from H1 ∩ , as the latter contains M while
H ′′ does not contain M . Therefore, H1 ∩ H2 ∩  has codimension 2 in  .
By repeating with H2 the argument done previously with H1 we obtain a Mat F ′ containing the

image of the loop C such that MinF′(�) is contained in a codimension two (j; I‘)-strip in  .
By Corollary 3.1.3, Nm(MinF(�)) ⊂ Hb(�) ∩ F ⊂ Nam(MinF(�)). Lemma A.4, (b), in the

Appendix implies that the projection p of H (�) ∩ F onto @Nm(MinF(�)) is bilipschitz with respect
to the length metrics, the bilipschitz constant depending only on a. According to Proposition A.6 in
the Appendix and to Proposition 3.1.1, (c1), the -lling area of the loop p ◦ C in @Nm(MinF(�)) is
at most L(1 + I)‘2. Hence the -lling area of C in H (�)∩ F is bounded by L′‘2, with L′ depending
only on the constants a and I, so on the model spherical Coxeter complex S of K and on 9.

4.2. Loops contained in two apartments

We show that loops in the exterior of a horoball which are composed of two arcs, each arc
contained in one apartment, have a quadratic -lling area outside the horoball. We also have to add
a condition on the two apartments: they must have at least a Weyl chamber in common.

First we prove an intermediate result.

Lemma 4.2.1. Let K be a 4-thick Euclidean building of rank at least 3, let F; F ′ be two apartments
having a half-apartment D0 in common and let � be a ray of slope 9 not parallel to a rank two
factor. Let x and y be two points in D0 \ Hbo(�) and Cxy ⊂ F \ Hbo(�), C′

xy ⊂ F ′ \ Hbo(�) two
curves without self-intersections joining x and y, of length at most ‘.

There exists a positive constant L= L(9;S) such that the +lling area of the loop C = Cxy ∪ C′
xy

in K \ Hbo(�) satis+es

A1(C)6L · ‘2:
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Proof. Notations: For every two points a; b∈Cxy we denote Cab the arc of Cxy between a and b.
We use a similar notation for C′

xy.
Step 1: We show that we can reduce to the case where x; y∈D0∩H (�) and Cxy; C′

xy are the shortest
polygonal curves joining x and y in F ∩ H (�) and F ′ ∩ H (�), respectively. If [x; y] ∩ Hb(�) = ∅
then we can -ll the loop [x; y] ∪ Cxy in F \ Hbo(�) and the loop [x; y] ∪ C′

xy in F ′ \ Hbo(�),
respectively, with quadratic areas, and we can conclude. In the sequel we suppose [x; y] ∩Hb(�) �=
∅. Let [x′; y′] = [x; y] ∩ Hb(�) and let NCx′y′ ; NC′

x′y′ be the shortest polygonal curves joining x′ and
y′ in F ∩ H (�) and F ′ ∩ H (�), respectively. The loop Cxy ∪ [x; x′] ∪ NCx′y′ ∪ [y′; y] is contained in
F \ Hbo(�) and has length of order ‘. By Proposition 4.1.1 it can be -lled with an area of order
‘2. Likewise for the loop C′

xy ∪ [x; x′]∪ NC′
x′y′ ∪ [y′; y]. So it suOces to -ll the loop NCx′y′ ∪ NC′

x′y′ with
an area of order ‘2.

Notations: We denote H = @D0. Let D and D′ be the half-apartments opposite to D0 in F and
F ′, respectively.

Step 2: We reduce the problem to the case when x; y∈H .
If one of the two arcs Cxy;C′

xy is entirely contained in D0 \Hbo(�) then Proposition 4.1.1 allows
to conclude. In the sequel we suppose that both Cxy and C′

xy have points in Int D and in Int D′,
respectively. Let x1 be the nearest point to x of Cxy ∩ H and y1 the nearest point to y of Cxy ∩ H .
Let c be the shortest polygonal curve joining x1 and y1 in F ′ ∩ H (�). Since x1 and y1 are already
joined in F ′ ∩ H (�) by the curve Cx1x ∪ C′

xy ∪ Cyy1 whose length is of order ‘ we may deduce the
same for the length of c. According to Proposition 4.1.1 the loop c ∪ Cx1x ∪ C′

xy ∪ Cyy1 can be -lled
with an area of order ‘2. To conclude, it suOces to prove that the loop c ∪ Cx1y1 can be -lled with
an area of order ‘2.

Step 3: We show that by eventually adding some area of order ‘2, we may suppose that Cxy is
entirely contained into one half apartment of F bounded by H . The same argument done for C′

xy
and F ′, and Proposition 4.1.1 imply then the conclusion of the lemma.

Let x2 be the nearest point to x on Cxy contained in a codimension one face of F∩H (�) nonparallel
to a codimension one face through y. If no such point exists then Cxy = [x; y] is entirely contained
in H . If x2 = x, by eventually adding an area of order ‘2, we replace Cxy with a planar polygonal
line Lxy joining x; y as in Lemma 3.3.1, and we are done. We suppose in the sequel that x2 exists
and it is diGerent of x. It follows that x and y are in the interiors of two parallel codimension one
faces of F ∩ H (�) and that Cxx2 coincides with the segment [x; x2] entirely contained in the face
through x. We replace Cx2y with Lx2y, and add some area of order ‘2. If Lx2y intersects H only in
y then the curve Cxy thus modi-ed is included in one half-apartment. Suppose Lx2y ∩ H = {x3; y}.
The polytopic hypersurface H ∩ H (�) contains the points x; y; x3 and it cannot have three distinct
parallel codimension one faces. It follows that the point x3 can be joined either to x or to y with
a polygonal line of length of order ‘. Thus, we replace either Cxx3 or Cx3y with a polygonal line
in H ∩ H (�), by eventually adding some area of order ‘2. In both cases we obtain a new curve
included in one half-apartment of F of boundary H .

We now prove the more general statement we need.

Proposition 4.2.2. Let K be a 4-thick Euclidean building of rank at least 3 and let � be a ray
of slope 9 not parallel to a rank two factor. Let F and F ′ be two apartments having at least a
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Weyl chamber W0 in common. Let [x; y] be a regular segment with endpoints in W0 \Hbo(�) and
Cxy ⊂ F \Hbo(�), C′

xy ⊂ F ′ \Hbo(�) two curves joining x and y of length at most ‘. There exists
a positive constant L = L(9;S) such that the +lling area of the loop C = Cxy ∪ C′

xy in K \ Hbo(�)
satis+es

A1(C)6L · ‘2:

Proof. To simplify we may suppose that W0 has vertex x. As in Step 1 of the previous proof, we
show that we may suppose that x; y∈W0∩H (�); (x; y) ⊂ Hbo(�); and that Cxy and C′

xy are polygonal
lines of minimal length joining x; y in F ∩H (�) and F ′∩H (�), respectively. This rules out the case
when � is parallel to a rank one factor.

Let Wop
0 be the Weyl chamber of vertex x opposite to W0 in F ′. For every minimal gallery of

Weyl chambers in F ′ stretched between W0 and Wop
0 , W 0 = W0; W 1; : : : ; Wp0 = Wop

0 there exists
by Corollary 2.2.7 a sequence of apartments F0 = F; F1; : : : ; Fp0 = F ′ such that each Fi+1 is a
rami-cation of Fi containing W 0; W 1; : : : ; W i+1. We show that, by eventually replacing F ′ with a
rami-cation of it and adding an area of order ‘2 we can choose a minimal gallery between W0 and
Wop

0 in F ′ in such a way that in each Fi ∩H (�) the points x and y may be joined by a polygonal
line of length of order d(x; y). This and the repeated application of Lemma 4.2.1 will imply the
conclusion.

The inclusion (x; y) ⊂ Hbo(�) implies “x(�x; (W0)x)¡“x(�x; xy)¡.=2. There are several cases,
which we denote as in Lemma 3.3.2.

(a) Suppose (W0)x does not contain �x. By Corollary 3.2.2 there exists a Weyl chamber Ŵ adjacent
to W0 with the property that in any apartment containing W0 ∪ Ŵ x is contained into two faces of
the trace of H (�) in the apartment. According to Corollary 2.2.7 there exists a rami-cation F ′′ of
F ′ including W0 ∪ Ŵ . We apply Lemma 4.2.1 to the loop composed of C′

xy and of a polygonal line
Lxy ⊂ F ′′ and we conclude that, up to an additional quadratic -lling area, we may suppose from
the beginning that F ′ includes W0 ∪ Ŵ . We choose the gallery from W0 to Wop

0 such that W 1 = Ŵ .
Each apartment Fi for i¿ 0 includes W0∪ Ŵ so x is contained into two faces of Fi∩H (�). Lemma
3.3.1 implies that in each Fi the points x and y may be joined outside Hbo(�) by a polygonal line
of length of order d(x; y).

(b1) Suppose �x ∈ (W0)x and the connected component of W0∩H (�) containing y has at least two
faces. We choose an arbitrary minimal gallery of Weyl chambers between W0 and Wop

0 in F ′ and
take the corresponding sequence of apartments. Every apartment Fi contains W0 and by the previous
hypothesis and Lemma 3.3.2 the points x and y can be joined in Fi ∩H (�) by a polygonal line of
length of order d(x; y).

(b2) Suppose �x ∈ (W0)x and the connected component of W0 ∩ H (�) containing y has only one
face. Lemma 3.3.2, (b2), implies that in a rami-cation F ′′ of F ′ all the points in the intersection of
a panel M of W0 with H (�) are in two diGerent faces of F ′′ ∩ H (�). By eventually applying once
Lemma 4.2.1, we may suppose that F ′ has this property itself. We choose the gallery from W0 to
Wop

0 in F ′ such that W 1 ∩W0 =M . Since each apartment Fi for i¿ 0 includes W0 ∪W 1, in each
Fi the points in Int M ∩ H (�) are in two diGerent faces of Fi ∩ H (�). According to Lemma 3.3.2,
(b2), in each intersection Fi ∩H (�) the points x and y can be joined by a polygonal line of length
of order d(x; y).
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4.3. Proof of Theorem 4.3

An important tool in our argument is the set of “good slopes” with respect to the slope of a ray
de-ning a horosphere. These “good slopes” are the slopes which are transverse to the
horosphere.

Lemma 4.3.1 (Drut$u [11, Lemmata 4.9, 4.10]). (1) Let 7 be a labelled spherical building, and 9
a point in 8mod. For every small positive number �1 there exists a continuum of points B∈8mod
such that d(B; Ort(9))¿�1.
(2) Let K be an Euclidean building and � a ray of slope 9. If a geodesic segment [x; y] has

slope B as in (1) then f� decreases or increases on it with a rate at least equal to sin �1.

If 9∈8mod and �1¿ 0 are -xed, we call slopes B∈8mod verifying the condition in Lemma 4.3.1,
(1), �1-good slopes with respect to 9. Slopes which moreover verify d(B; @8mod)¿�1 are called
�1-good regular slopes with respect to 9. Whenever there is no possibility of confusion we omit 9
and �1.

Proof of Theorem 4.3. Since the arguments for the proofs of (a) and (b) follow the same lines, we
shall present them simultaneously, specifying the diGerences whenever they occur. We shall refer to
the case when R! is -nite as the -nite case and to the other case as the general case. In the -nite
case we consider C :S1 → K0 a Lipschitz loop of length ‘ composed of at most m segments, while
in the general case we consider C :S1 → K0 an arbitrary Lipschitz loop of length ‘.

Step 1: We choose a -nite set of points on C(S1). Let P0 be a point on C(S1) which we choose
to be endpoint of a segment in the -nite case. Let F be an apartment through P0 entirely contained
in K0 and b a point in F(∞) such that its projection on 8mod is a �1-good regular slope B with
respect to 9. The point b is contained into a unique spherical chamber 80 of F(∞).
In the general case we -x a small '¿ 0 and choose a -nite sequence P0; P1; : : : Pn of points

on C(S1), with n6 2‘=', which determine a partition of C(S1) into arcs of length at most '. We
consider the rays rk = [Pk; b) (Fig. 3, (b)) and apartments Fk containing these rays, where F0 = F .
Each Fk has at least a Weyl chamber of boundary at in-nity 80 in common with F .

In the -nite case let Q0 = P0; Q1; : : : ; Qj; j6m, be the endpoints of the segments composing
C(S1). Each segment [Qi; Qi+1] is contained in an apartment F ′

i . By applying Proposition 3.1.1, (a),
to the Mat F ′

i and to the ray [P0; b) we obtain a partition of [Qi; Qi+1] into at most q0 segments, each
segment contained in an apartment asymptotic to [P0; b). In the end we obtain P0; P1; : : : ; Pn; n6mq0,
points on C(S1) such that each [Pk; Pk+1] ⊂ C(S1) is contained in an apartment Fk asymptotic to
[P0; b) (Fig. 3,(a)). Both rk = [Pk; b) and rk+1 = [Pk+1; b) are contained in Fk .

We know that d(Pk; F0)6d(Pk; P0)6 ‘; ∀k ∈{1; 2; : : : ; n}. By Lemma 4.6.3, [22], all points M
of rk with d(M;Pk)¿d(Pk; F0)=sin �1 are contained in F0. So rk is included in F0 at least starting
from the point Mk on it with d(Mk; Pk) = ‘=sin �1. We note that d(P0; Mk)6 ‘(1 + 1=sin �1). It
follows that the hyperplane in F0 orthogonal to r0 at distance ‘(1+1=sin �1) from P0 intersects each
rk in a point Nk . The convexity of the distance implies that d(Ni; Nj)6d(Pi; Pj);∀i �= j. The closed
polygonal curve C′ with vertices N0; N1; N2; : : : ; Nn has length at most ‘ and is entirely included in
F0 so in K0. The -lling area of C′ in K0 is then quadratic. To end the proof it suOces therefore to
-nd a “-lling cylinder” between the loops C and C′ of the desired area in K0. We note that each
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Fig. 3. Construction of the -lling cylinder.

segment [Pk; Nk] has length smaller than d(Pk; P0) + d(P0; N0) + d(N0; Nk)6 ‘(3 + 1=sin �1) and it
has its endpoints in K0, but it is not necessarily contained in K0.

Step 2: An auxiliary construction is needed in the general case. In this case [Pk; Nk] and
[Pk+1; Nk+1] are not in the same apartment asymptotic to r0. We remedy this by constructing for
each segment [Pk+1; Nk+1] a “copy” of it contained in Fk and coinciding with [Pk+1; Nk+1] on most
of its length.

Let Rk+1 be the -rst point in which the ray rk+1 meets the apartment Fk . By Lemma 4.6.3, [22],
d(Pk+1; Rk+1)� '. If Rk+1 is contained in Fk ∩ K0 then we denote it by P′

k+1. If it is contained in
some Hbo(�)∩Fk then, as f� is Lipschitz of constant 1 and f�(Pk+1)¿ 0 we have f�(Rk+1)� −'.
Since the ray rk+1 has a good slope, either by continuing along rk+1 towards b or by going in
Fk in the opposite direction a distance � ' away, we meet H (�) ∩ Fk . We denote this point of
intersection of the ray rk+1∩Fk (or of its opposite in Fk) with H (�) by P′

k+1. In both cases we have
d(Pk+1; P′

k+1) � ', which implies that d(Pk; P′
k+1) � '. To simplify ulterior arguments we make

the convention that in the -nite case, P′
k+1 = Pk+1.

In the sequel we replace simultaneously the pair of segments [Pk; Nk] and [P′
k+1; Nk+1], both

contained in Fk , with curves in K0 of length of order ‘. We do this by deforming them in order to
avoid each horoball they intersect. We discuss the two cases separately.

Step 3: We -rst consider the general case. In this case we begin with a global modi-cation: we
replace each segment [x; y] appearing as [Pj; Nj]∩Hb(�) or as [P′

j; Nj]∩Hb(�); j∈{0; 1; : : : ; n}; [x; y]
of length at most ', by a polygonal line Lxy, where Lxy has the signi-cance given in the end of
Section 3.3.
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Next we construct simultaneous deformations of the pairs of segments [Pk; Nk] and [P′
k+1; Nk+1],

thus modi-ed, in order to avoid a horoball Hb(�). There are three possible situations:
(a) Hb(�) intersects both segments into subsegments [x; y] ⊂ [Pk; Nk] and [x′; y′] ⊂ [P′

k+1; Nk+1]
of length strictly larger than ';

(b) one of the intersections [Pk; Nk] ∩ Hb(�) and [P′
k+1; Nk+1] ∩ Hb(�) is empty or of length at

most ', while the other has length strictly larger than ';
(c) both intersections are either empty or of length at most '.
The case (c) is already dealt with by the global modi-cation done in the beginning. We consider

the case (a). We suppose that x and x′ are the endpoints which are nearer than y and y′ to Pk and
P′
k+1, respectively.
The points x and x′ cannot be contained in the interiors of two distinct and parallel codimension

1 faces of Fk ∩H (�), as the spans of these faces must not separate points in the set [x; y]∪ [x′; y′],
by the convexity of Fk ∩Hb(�). Lemma 3.3.1 implies that x and x′ can be joined in Fk ∩H (�) by
a polygonal line Lxx′ of length � d(x; x′). Similarly, y and y′ can be joined in Fk ∩ H (�) by a
polygonal line Lyy′ of length � d(y; y′). The distances d(x; x′) and d(y; y′) are both of order '.

We have two possibilities.
(1) There exist x1 ∈{x; x′} and y1 ∈{y; y′} such that x1 and y1 are contained into two nonparallel

codimension 1 faces of H (�) ∩ Fk .
(2) Every two points x1 ∈{x; x′} and y1 ∈{y; y′} are contained in the interiors of two parallel

codimension 1 faces of H (�) ∩ Fk .
In case (1) according to Lemma 3.3.1 we can join x1 and y1 by a polygonal line of length

� d(x1; y1). This and the previous remark on the possibility of joining x; x′ and y; y′, respectively,
imply that in this way we can join both x; y and x′; y′ by polygonal lines of lengths comparable to
the distances in H (�) ∩ Fk .

In case (2) it follows that x; x′ are in the interior of the same codimension 1 face, and the
same for y; y′, and the spans of the two faces are two parallel hyperplanes H and H ′, respectively.
Let W and W ′ be the Weyl chambers of vertices x and x′, respectively, and boundary at in-n-
ity 80. The Weyl chamber W contains the segment (x; y] in its interior and so does W ′ for the
segment (x′; y′]. As f� decreases on [x; y] of slope B it follows that “x(�x;Wx)¡“x(�x; xy)¡
(.=2)− �1.

Proposition 3.2.1, (c), implies that for small �¿ 0, Fk∩B(x; �) contains �x∩B(x; �) and Fk∩B(x′; �)
contains �x′ ∩ B(x′; �). The chambers Wx and W ′

x′ simultaneously contain or do not contain �x and
�x′ , respectively.

Suppose Wx and W ′
x′ do not contain �x and �x′ , respectively. If the panel M of W has the property

that Mx separates �x and Wx, the same is true for the panel M ′ of W ′ asymptotic to M , with respect
to �x′ . Either M or M ′ has the property that W ∪W ′ is on one side of its aOne span. Suppose it
is M and let Ĥ be its aOne span. By Lemma 3.3.2, (2), (a), there exists a rami-cation F ′

k of Fk
with @(F ′

k ∩ Fk) = Ĥ , containing W (and consequently W ′) and such that x is in at least two faces
of F ′

k ∩ H (�). It follows that, by replacing Fk by F ′
k , the point x may be joined with a polygonal

line Lxy to y.
Suppose that Wx and W ′

x′ contain �x and �x′ , respectively. Suppose the connected component of
W ∩ H (�) containing y has at least two faces. The proof of Lemma 3.3.2, (2), (b1), implies that
there exists a point y1 in H (�)∩Fk , which may be joined in H (�)∩Fk to y by a polygonal line of
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length � d(x; y) and to x by a polygonal line Lxy1 . The same is true for y′ and x′ if the connected
component of W ′ ∩ H (�) containing y′ has at least two faces.
Finally, if both W ∩ H (�) and W ′ ∩ H (�) have only one face, its aOne span must be H ′. We

choose a hyperplane Ĥ supporting W neither orthogonal nor coincident to H and Ĥ ′ parallel to Ĥ
and supporting W ′. Either Ĥ or Ĥ ′ have W ∪W ′ on one side. Suppose it is Ĥ . By Lemma 3.3.2,
(2), (b2); there exists a rami-cation F ′

k of Fk including W ∪W ′ and by @(F ′
k ∩ Fk) = Ĥ such that

the points in W ∩ Ĥ ∩H (�) \ {x} are in two diGerent faces of H (�)∩ F ′
k . Therefore, we can join y

to one of these points, y1, by a segment in H (�)∩W of length � d(x; y) and we can join y1 to x
in H (�) ∩ F ′

k by a polygonal line Lxy1 .
We replace the segments [x; y] and [x′; y′] by the polygonal lines joining their endpoints in H (�)

obtained in each of the previous cases. Now we consider the case (b). Suppose that Hb(�)∩ [Pk; Nk]
is a segment [x; y] of length strictly larger than ', while Hb(�) ∩ [P′

k+1; Nk+1] is either empty or a
segment [x′; y′] of length at most '. The other case is symmetric and treated analogously. Due to
the fact that d(Pk; P′

k+1) and d(Nk; Nk+1) are of order ', we have, according to [11, Lemma 4.11],
that d(x; y)� '.
Suppose that H (�) ∩ [P′

k+1; Nk+1] is a non-trivial segment [x′; y′]. Then x′ and y′ are already
joined by a polygonal line Lx′y′ of length � d(x′; y′), according to the modi-cation done in
the beginning of the step. As in case (a), we can show that x; x′ and y; y′ can be joined in
Fk ∩ H (�) by polygonal lines Lxx′ and Lyy′ , respectively, of lengths comparable to the
distances.

Assume x′ and y′ are contained into two parallel codimension one faces of Fk ∩ H (�). Given H
and H ′ the aOne spans of these faces, Fk ∩ H (�) is contained in the strip determined by H and
H ′. In particular d(x; y)6d(x′; y′)6 ', which gives a contradiction. Hence, x′ and y′ are contained
into two non-parallel codimension one faces of Fk ∩H (�), so they can be joined in Fk ∩H (�) by a
polygonal line Lx′y′ of length � d(x′; y′). Thus, we can join x and y in Fk ∩H (�) by the polygonal
line Lxx′ ∪ Lx′y′ ∪ Lyy′ of length of order d(x; y).

Suppose that Hb(�) does not intersect [P′
k+1; Nk+1]. Let W be the Weyl chamber of vertex x

and boundary at in-nity T0. According to Lemmata 3.3.1 and 3.3.2, x and y can be joined by a
polygonal line of length � d(x; y) either in Fk ∩H (�) or in F ′

k ∩H (�), where F ′
k is a rami-cation

of Fk containing W .
We replace [x; y] by the polygonal line joining its endpoints obtained in each of the cases above.
Step 4: We consider the -nite case. In this case, we study not only the pair of segments [Pk; Nk]

and [P′
k+1; Nk+1], but also the full quadrangle Qk having them as opposite edges. By full quadrangle

we mean the planar domain bounded by a quadrangle.
We consider a horoball Hb(�) intersecting Qk . The intersection Hb(�) ∩ Qk is a planar convex

polygon. We recall that by hypothesis Hbo(�) cannot intersect [Pk; P′
k+1] or [Nk; Nk+1]. We have

three possible situations:
(A) Hb(�) intersects both [Pk; Nk] and [P′

k+1; Nk+1] into subsegments [x; y] and [x′; y′], respec-
tively;

(B) Hb(�) intersects only one of the segments [Pk; Nk] and [P′
k+1; Nk+1];

(C) Hb(�) intersects none of the segments [Pk; Nk] and [P′
k+1; Nk+1].

The case (A) is dealt with exactly as the case (a) in Step 3. We obtain that x; x′ and y; y′ can be
joined in Fk ∩ H (�) by polygonal lines Lxx′ and Lyy′ , respectively, of lengths of order ‘. We also
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obtain that, by eventually replacing Fk with a rami-cation of it, we can join a point x1 ∈{x; x′} to
a point y1 ∈{y; y′} by a polygonal line Lx1y1 in Fk ∩ H (�), of length of order ‘.

We replace [x; y] and [x′; y′] by the polygonal lines joining their endpoints thus obtained.
(B) Suppose that Hb(�) ∩ [Pk; Nk] = [x; y], while Hb(�) ∩ [P′

k+1; Nk+1] = ∅. The other case is
symmetric. The boundary of Hb(�) ∩ Qk is composed of [x; y] and of a polygonal line Lxy of
endpoints x; y and of length of order ‘. We replace [x; y] by Lxy.
(C) In this case Hb(�) ∩ Qk is a convex polygone entirely contained in the interior of Qk . Since

the boundary of Qk has length of order ‘ and since the projection onto a convex domain diminishes
distances, it follows that H (�) ∩ Qk has length of order ‘. Proposition 4.1.1 implies that the loop
H (�) ∩ Qk can be -lled in K0 with an area of order ‘2.

We introduce some notations for both the general and the -nite case.
We denote by @k the curve between Pk and Nk thus obtained and by @′k+1 the curve between P′

k+1
and Nk+1. We denote by Ck the loop composed of the curves @k , @k+1, LPkPk+1 and [Nk; Nk+1], We
denote C′

k = @k ∪ @′k+1 ∪LPkP′
k+1
∪ [Nk; Nk+1] and C′′

k+1 = @
′
k+1 ∪ @k+1 ∪LPk+1P′

k+1
. We note that in the

-nite case although P′
k+1 = Pk+1 the curves @′k+1 and @k+1 do not coincide: one is a curve contained

in Fk or in rami-cations of it while the other is contained in Fk+1 or in a rami-cation of it. In the
-nite case, LPkPk+1 =LPkP′

k+1
= [Pk; Pk+1] and LPk+1P′

k+1
= {Pk+1}. In the general case the shapes of

these lines do not really matter. Since the notion of area we work with is discrete all that matters
is that the sets {Pk; P′

k+1; Pk+1} have diameters of order '. In the general case we may replace the
loop C(S1) with the loop

⋃n−1
k=0 LPkPk+1 ∪LPnP0 . Since the two loops are at a HausdorG distance of

order ' one from the other the replacement can be done up to adding a linear -lling area.
We construct the -lling cylinder by -lling in all the loops Ck . We do this in two steps: -rst we

-ll all the loops C′
k , then all the loops C′′

k+1.
Step 5: We -ll the loop C′

k . First, for every pair of segments [x; y] = [Pk; Nk] ∩ Hb(�) and
[x′; y′]=[P′

k+1; Nk+1]∩Hb(�), which comes from the cases (a) or (b) in Step 3 or from the case (A)
in Step 4, we -ll the loops obtained by joining x to x′, y to y′, x to y and x′ to y′ by polygonal
lines. According to the construction in Step 3, (a), and in Step 4, (A), the sub-arc @xy of @k of
endpoints x; y and the sub-arc @′x′y′ of @′k+1 of endpoints x′; y′ eventually diGer at their ends, where
one is eventually obtained from the other by adding either Lxx′ or Lyy′ or both. Thus, the loop
@xy ∪Lxx′ ∪ @′x′y′ ∪Lyy′ is reduced to an arc and there is no area needed to -ll it. In the case (b) of
Step 3, @xy = Lxx′ ∪ Lx′y′ ∪ Lyy′ , while @′x′y′ =Lx′y′ . In this case the loop @xy ∪ Lxx′ ∪ @′x′y′ ∪ Lyy′ is
reduced to two arcs and the loop Lx′y′ ∪Lx′y′ , hence it has -lling area 1 for ' small enough. Since
d(x; y)¿ ', we can write that the -lling area in this case is � d(x; y).
What remains to be -lled is the set of loops of the form @y Nx ∪ L Nx Nx′ ∪ @y′ Nx′ ∪ Lyy′ , where y; y′ are

the upper endpoints of a pair of segments as previously and Nx; Nx′ are the lower endpoints of the next
pair, @y Nx is the arc of @k between y and Nx, @y′ Nx′ is the arc of @′k+1 between y′ and Nx′.

In the general case the arc @y Nx is at HausdorG distance of order ' from the segment [y; Nx] and the
same is true for the arc @y′ Nx′ with respect to the segment [y′; Nx′]. On the other hand, the segments
[y; Nx] and [y′; Nx′] are at HausdorG distance of order ' one from the other. It follows that the loop
@y Nx ∪ L Nx Nx′ ∪ @y′ Nx′ ∪ Lyy′ can be -lled with an area of order d(y; Nx) in K0.

In the -nite case the loop @y Nx∪L Nx Nx′ ∪@y′ Nx′ ∪Lyy′ has length of order ‘ and it can be -lled with an
area of order ‘2 in K0, by Step 4, (B) and (C), and the fact that there are -nitely many horoballs.
We conclude that to -ll the loop C′

k we need an area of order 7d(x; y) + 7d(x′; y′) + 7d(y; Nx),
so of order ‘ in the general case, and an area of order ‘2 in the -nite case.
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Step 6: Now we -ll the loop C′′
k+1.

First we consider the -nite case. In this case P′
k+1=Pk+1 and the two arcs @k+1 and @′k+1 composing

the loop diGer only between pairs of points x′; y′ such that [x′; y′] = [Pk+1; Nk+1] ∩ Hb(�). The arc
of @′k+1 between x′ and y′, which we denote @′x′y′ , is in Fk or a rami-cation of it, while the arc of
@k+1 between x′ and y′, @x′y′ , is in Fk+1 or a rami-cation of it. Both arcs have length of order ‘.
The apartments Fk and Fk+1 or their respective rami-cations have in common a Weyl chamber of
boundary 80 and vertex x′. Proposition 4.2.2 implies that the loop @′x′y′ ∪ @x′y′ can be -lled with
an area of order ‘2. Since there is a uniformly bounded number of such loops along [Pk+1; Nk+1],
composing C′′

k+1, we conclude that C′′
k+1 can be -lled with an area of order ‘2.

In the general case @k+1 and @′k+1 diGer between pairs of points x′; y′ such that [x′; y′]=[P′
k+1; Nk+1]

∩ Hb(�) = [Pk+1; Nk+1] ∩ Hb(�) and d(x′; y′)¿', and they may also diGer near P′
k+1 and Pk+1,

respectively. For a pair of points x′; y′ as previously, we reason as in the -nite case by means of
Proposition 4.2.2. The only diGerence is that the lengths of @x′y′ and of @′x′y′ are of order d(x′; y′)
so the area needed to -ll @′x′y′ ∪ @x′y′ is of order d(x′; y′)2.

We analyse what happens near P′
k+1 and Pk+1. We recall that we denoted by Rk+1 the -rst point

in which the ray rk+1 meets the apartment Fk . We have that d(Pk+1; Rk+1) � '. When we chose
P′
k+1 in Step 2 we had three cases:

(1) Rk+1 is contained in Fk ∩ K0 and P′
k+1 = Rk+1;

(2) Rk+1 is contained in some Hbo(�) ∩ Fk and P′
k+1 ∈ [Rk+1; Nk+1] ∩ H (�);

(3) Rk+1 is contained in some Hbo(�)∩Fk and Rk+1 ∈ [P′
k+1; Nk+1] ; in this case Rk+1 ∈ [P′

k+1; y
′
0]∩

[x′0; y′
0] where the segments [P′

k+1; y
′
0] and [x′0; y′

0] are the intersections of Hb(�) with
[P′
k+1; Nk+1] and [Pk+1; Nk+1], respectively.

In the cases (1) and (2) the curve @k+1 contains with respect to @′k+1 an extra-arc of length � '
which we may ignore.

In the case (3), @′k+1 and @k+1 diGer between P′
k+1; y

′
0 and x

′
0; y

′
0, respectively, and @k+1 contains the

extra-arc between Pk+1 and x′0 which we may likewise ignore, as being of order '. Let @P′
k+1 ;y

′
0
be the

curve which replaces the segment [P′
k+1; y

′
0] in @

′
k+1 and @x′

0 ;y
′
0
the curve which replaces the segment

[x′0; y′
0] in @k+1. The endpoints of these two curves do not coincide. We consider the horosphere

H−c0'(�) containing Rk+1. Let y′′
0 be the second intersection point of [Rk+1; Nk+1] with H−c0'(�).

By Corollary 3.1.2 the curves @P′
k+1 ;y

′
0
and @x′

0 ;y
′
0
project onto two curves c1 and c2 of smaller length,

contained in H−c0'(�) ∩ Fk and H−c0'(�) ∩ Fk+1, respectively, at HausdorG distance � ' from the
initial curves. By eventually extending ci ; i=1; 2, with arcs of length � ' one may suppose that both
have Rk+1 and y′′

0 as endpoints. By Proposition 4.2.2 one needs a '--lling area of order d(Rk+1; y′′
0 )

2

to -ll c1 ∪ c2. By the properties of the horospheres formulated in Section 2.3, the '--lling area
previously found for c1 ∪ c2 gives a �--lling area for @P′

k+1 ;y
′
0
∪ @x′

0 ;y
′
0
∪Lx′

0 ;P
′
k+1
, with � � '. For '

suOciently small � is smaller than 1.
In the end we obtain that in the general case the loop C′′

k+1 can be -lled with an area of order
7x′ ;y′d(x′; y′)2 + d(Pk+1; y′

0)
26 ‘2.

Step 7: We conclude that to -ll the loops C′
k and C′′

k+1, so to -ll the loop Ck , we need an area
of order ‘2. By summing over {1; 2; : : : ; n} we obtain a -lling area of order n‘2 for the initial loop.
In the -nite case this gives an area of order ‘2 while in the general case this gives an area of order
‘3.
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Remark 4.3.2. The cubic order in the general case comes from the fact that to -ll the loops C′′
k an

area of order ‘2 is needed. On the other hand, since the -lling disk of each C′′
k is obtained by means

of Proposition 4.2.2, the bricks of length at most 1 composing it are boundaries of small Euclidean
triangles entirely contained in a polytopic surface H (�) ∩ F .
Thus, for a generic loop of length ‘ we obtain a 1--lling disk composed of k1‘3 boundaries of

small Euclidean triangles entirely contained in polytopic surfaces of type H (�) ∩ F and of k2‘2

bricks on which nothing special can be said.

4.4. Quadratic +lling order in solvable groups

By means of Theorem 4.3, (b), we prove Theorem 4.1, (b). A consequence of it is Theorem 1.1.
First we prove an intermediate result.

Proposition 4.4.1. Let X be a product of symmetric spaces of noncompact type and Euclidean
buildings, X of rank at least 3, and let X0 be a subset of it which can be written as

X0 = X
∖ ⊔
�∈R

Hbo(�):

Suppose that the set of rays R is +nite and suppose X0 has the properties (P1) and (P2)
formulated in Theorem 4.1. For every m¿ 4 there exists a constant K depending on m, on X ,
on the cardinal of R, on the constant d appearing in (P1) and on the slope 9 appearing in (P2),
such that for every loop C in X0 of length ‘ composed of at most m minimising almost polygonal
curves,

AX01 (C)6K‘2: (4.2)

Proof. It suOces to prove that (4.2) is satis-ed for loops C of length at least ‘0 for ‘0 suOciently
large. We reason by contradiction. Suppose that in X there exists a sequence of subsets X n0 = X \⊔
�∈Rn

Hbo(�) with card Rn6N and 9 the common slope of all rays in Rn, such that X n0 has
properties (P1), with a constant d independent of n, and (P2) and in each X n0 there exists a loop Cn
of length ‘n¿ ‘0 composed of at most m minimising almost polygonal curves, with

AX
n
0

1 (Cn)¿ n‘2n: (4.3)

In each X n0 we consider a loop Cn of minimal length with the previous properties. Inequality (4.3)
implies that ‘n must diverge to +∞. Let xn be a point on the image of Cn and let K=X!(xn; ‘n=10)
and K0 = [X n0 ]. We may write K0 = K \ ⊔

�!∈R!
Hbo(�!), where all rays �! have slope 9. Since

card Rn6N;∀n∈N, and since ! chooses one out of a -nite number of possibilities, card R!6N .
The space K0 has properties (P1) and (P2) formulated in Theorem 4.3. The limit set of the sequence
of loops Cn is a loop C of length 10 composed of at most 3q0mN segments. According to Theorem
4.3, (b), C can be -lled with an area of at most 100C. Moreover, each of the 100C bricks composing
the -lling disk is an Euclidean triangle contained either in the exterior of a set of polytopes in a
maximal Mat, F \ ⊔

�!∈R!
Hbo(�!), or in a face of a polytope F ′ ∩ H (�!); �! ∈R!, that is in a

hyperplane F∩H (�!), where F is asymptotic to �!. Thus, each of the bricks Bi; i∈{1; 2; : : : ; 100C},
composing the -lling disk is the limit of a sequence of Euclidean triangles Bni contained either in
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Mat sets of type Fni \
⊔
�∈Rn

Hbo(�) or in intersections Fni ∩ H (�ni ) with �ni ∈Rn and Fni asymptotic
to �ni .

Let Ei and Ej be the edges along which two bricks Bi and Bj are glued one to the other. We
recall that all edges have length at most '6 1. Let Eni and Enj be the sequences of edges of Bni and
Bnj , respectively, such that [Eni ] = Ei = Ej = [Enj ]. The HausdorG distance �nij between E

n
i and Enj has

the property that lim! �nij=‘n = 0. By joining with minimising almost polygonal curves the pairs of
endpoints of Eni and Enj which coincide in the limit we obtain a loop, Cnij. We can divide the loop
Cnij into approximately '‘n=�nij loops with lengths of order �nij composed of two minimising almost
polygonal curves and of two subsegments of Eni and Enj , respectively. Since ‘n was the minimal
length of a loop satisfying (4.3), each of these loops has -lling area � n(�nij)

2. It follows that

AX
n
0

1 (Cnij)� n‘n�nij.
We -ll Cn in X n0 by -lling each of the bricks Bni ⊂ Fni \

⊔
�∈Rn

Hbo(�) and Bni ⊂ Fni ∩ H (�ni )

and each of the loops Cnij. We obtain a -lling area AX
n
0

1 (Cn)6 100C · I(‘2n=100) + 200CI′n‘n�nij. It
follows that n‘2n6C · I‘2n + 200CI′n‘n�nij. If we divide the inequality by n‘2n and we consider the
!-limit, we obtain 16 0, a contradiction.

Proof of Theorem 4.1, (b). We proceed by induction. First we need some constants. According to
Theorem 3.3.5, X0 is nondistorted in X . Let C be a nondistorsion constant of X0 in X . A minimising
almost polygonal curve joining two points x; y in X0 has length at most 2C0d(x; y) + 6q0NCj(x; y),
where N= card R. The inequality j(x; y)6 4C0d(x; y) implies that its length is at most kd(x; y)
with k=2C0 + 24q0NCC0. Let b be an integer which is very large compared to k. Then there exists
an integer M between b(k + 1) and b2=2. Let K be the constant provided by Proposition 4.4.1 for
loops composed of at most M minimising almost polygonal curves. Let C =max{2Kk2; 2M; 1}. We
show by induction on n the following statement:

(In) If 16 ‘6 bn then A1(‘)6C‘2:

(I0) is satis-ed because C¿ 1. Suppose (In) is satis-ed and let us prove (In+1). Let C be a
loop of length ‘∈ (bn; bn+1]. We divide the loop C into M arcs of equal length and we join the
endpoints of these arcs by almost polygonal curves. We obtain M loops c1; c2; : : : ; cM , of lengths
at most (‘=M)(1 + k) and one loop C0 of length at most k‘ composed of M minimising almost
polygonal curves. By Proposition 4.4.1, A1(C0)6Kk2‘2.

Since M¿ b(k+1), (1+k)=M6 1=b, hence each ci has length at most ‘=b. If n=0 then it follows
that A1(ci) = 1 and that A1(C)6M + Kk2‘26C‘2. If n¿ 1 then by (In), A1(ci)6C‘2=b2;∀i. It
follows that A1(C)6CM (‘2=b2) + Kk2‘26C‘2.

Remark 4.4.2. In order to obtain Theorem 1.1 in the Introduction from Theorem 4.1, (b), we only
need to verify that if the space X0 is the exterior of an open horoball, then it veri-es property (P1).
This is proved in [11, proof of Corollary 4.16].

4.5. Asymptotically quadratic +lling order in lattices

In this section we prove Theorem 4.1, (a). A consequence of it is Theorem 1.2, since a space X0 on
which a Q-rank one lattice acts cocompactly, endowed with the induced metric, has asymptotically
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quadratic -lling order. We note that such a space X0 satis-es properties (P1) and (P2) formulated
in Theorem 4.1 (see [10, Propositions 5.5 and 5.7] and [28, Lemma 8.3]).

Proof of Theorem 4.1, (a). By Theorem 4.3, (a), in every asymptotic cone K0 of X0 we have the
inequality A1(‘)6 k‘3; ∀‘¿ 0, where k=k(X0). We show that the -lling order is actually quadratic
in every asymptotic cone K0. We have similarities between asymptotic cones (Remark 2.1.1) which
allow to deduce that in every asymptotic cone A'(‘)6 k(‘=')3;∀'¿ 0. We recall that A1(‘)6 k‘3

means that we need at most k‘3 bricks of length at most 1 to -ll a loop of length ‘. By con-
struction of the -lling disk, k1‘3 of these bricks bound small Euclidean triangles entirely contained
into intersections of horospheres with apartments, while at most k2‘2 bricks have shapes on which
we know nothing. If a small loop c1 of length less than 1 bounds an Euclidean triangle entirely
contained into the intersection of a horosphere with an apartment, then its '--lling area in K0 sat-
is-es A'(c1)6 k(1='2);∀'∈ [0; 1[. If a loop c2 has length at most one and is arbitrary, at least
A'(c2)6 k(1='3). Thus, for a generic loop C of length at most ‘ we have

A'(C)6 k1‘3 · k 1
'2

+ k2‘2 · k 1
'3
: (4.4)

If we replace ' by ‘=M , we obtain

P
(
‘;
‘
M

)
6 k ′

1‘M
2 +

k ′
2

‘
M 3:

If one takes
√
M6 ‘6 2

√
M , one obtains

P
(
‘;
‘
M

)
6CM 2:5: (4.5)

But since, by similarities and changing cone (Remark 2.1.1), one can modify the length, the
relation (4.5) holds for every length ‘ and every M in every asymptotic cone. We conclude that the
-lling order is at most 2.5 in all asymptotic cones.

In the same way one can show that the -lling order is quadratic in all asymptotic cones. Suppose
that the minimal order of -lling common to all asymptotic cones is 2 + �. Then in all asymptotic
cones we have A1(‘)6 k‘2+�. By means of similarities we conclude that in all asymptotic cones
A'(‘)6 k( ‘')

2+�. Then we can modify the inequality (4.4) and write that for a generic loop C of
length at most ‘

A'(C)6 k1‘3 · k 1
'2

+ k2‘2 · k 1
'2+�

;

which implies that in all asymptotic cones we have

P
(
‘;
‘
M

)
6 k ′

1‘M
2 +

k ′
2

‘�
M 2+�:

For lengths ‘∈ [M�=2; 2M�=2], we obtain

P
(
‘;
‘
M

)
6CM 2+�−(�2=2):

The previous inequality can be generalised to all lengths, by similarities and changing cone. It
-nally gives a -lling order 2 + � − �2=2 in all asymptotic cones. This contradicts the minimality of
the order 2 + �.
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Thus, we get a quadratic -lling order in all asymptotic cones of X0, hence an asymptotically
quadratic -lling order in X0, by Theorem 2.1.2.
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Appendix A.

We prove several useful results of Euclidean geometry.
Notations: Let  be an aOne subspace of dimension k in the Euclidean space En. For every

p∈ we denote  ⊥
p the subspace orthogonal to  through p of dimension n− k.

If L is an aOne subspace of  and p∈L, we denote L⊥
p; the intersection L⊥

p ∩  .

We consider P a convex polytope in the Euclidean space En; n¿ 2,  its aOne span and k the
common dimension of P and  . We suppose k6 n− 1.
For every x0 ∈P we denote

Kx0(P) = {x∈ En |d(x;P) = d(x; x0)}:
For a face f of P we denote by Int f the relative interior of f if dim f¿ 1. We make the convention

Int f = f if f is a vertex.

Lemma A.1. (1) For every point x0 ∈ Int f, Kx0(P) is a convex polytopic cone in (Span f)⊥x0 . It coin-
cides with the convex hull of  ⊥

x0 and of a convex polytopic cone K 
x0(P) contained in (Span f)⊥x0 ; .

(2) For every two points x0; y0 in Int f, Ky0(P) is the image of Kx0(P) by the translation of
vector −−→x0y0.

Proof. If x �= x0 the fact that d(x;P)=d(x; x0) is equivalent to the fact that for every y∈P \ {x0},
“x0(x; y)¿ .=2. If x0 ∈ Int f then “x0(x; y) = .=2 for every y∈ f \ {x0}. Therefore, we may write

Kx0(P)={x∈(Span f)⊥x0 |〈−→x0x;−→x0y〉60; ∀y∈P\{x0}}; (5.1)

where 〈̃u; ṽ〉 denotes the scalar product of the vectors ũ and ṽ.
For two points x0; y0 in Int f, there exists �¿ 0 such that P∩B(y0; �) is the image of P∩B(x0; �)

by translation of vector −−→x0y0. This and relation (5.1) imply (2).
For every x∈Kx0(P); x �=x0, we can decompose −→x0x in a unique way as

−−→
x0x′+

−−→
x0x′′; x′∈ ; x′′∈ ⊥

x0 .

Then 〈−→x0x;−→x0y〉60⇔〈−−→x0x′;−→x0y〉60;∀y∈P\{x0}. Let K 
x0(P) be the set of points x′ ∈ satisfying

the latter condition. To end the proof of (1) it remains to show that K 
x0(P) is a polytopic cone in

(Span f)⊥x0 ; .
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Suppose f is a vertex p of P, in which case x0 = p and (Span f)⊥p; = . In a neighbourhood of
p, P coincides with the convex hull of the edges of endpoint p. Let y1; y2; : : : ; yr be the endpoints
distinct of p of all the edges through p. We can write

K 
p (P) = {x∈ | 〈−→px;−→pyi〉6 0; ∀i∈{1; 2; : : : ; r}}: (5.2)

This is a convex polytopic cone.
Suppose f has dimension at least 1. Then x0 ∈ Int f implies that K 

x0(P) ⊂ (Span f)⊥x0 ; . In a
neighbourhood of x0, P coincides with the convex hull of Span f and P ∩ (Span f)⊥x0 ; . It follows
that

K 
x0(P) = {x∈ (Span f)⊥x0 ; |〈−→x0x;−→x0y〉6 0;∀y∈P ∩ (Span f)⊥x0 ; ; y �= x0}:

The point x0 is a vertex of the convex polytope P ∩ (Span f)⊥x0 ; . This and the argument done in
the case when f was a vertex allow to conclude that K 

x0(P) is a convex polytopic cone.

Remark A.2. (1) If x0 ∈ IntP then Kx0(P) =  ⊥
x0 .

(2) For every x0 ∈P we have @NR(P) ∩Kx0(P) = S(x0; R) ∩Kx0(P).
(3) Let f be a face of P or P itself. The closure of the set

⋃
x0∈Int f Kx0(P) is the set

Kf(P) = {x∈ En |d(x;P) = d(x; f) = d(x; x0); [x; x0] ⊂ (Span f)⊥x0}:

Notation: Let x0 ∈P. For every face f containing x0 we denote

Kf
x0(P) =Kx0(P) ∩Kf(P):

Lemma A.3. Suppose either k6 n − 2 or k = n − 1 and P �=  . Suppose P has m faces. Let the
hypersurface @NR(P); R¿ 0, be endowed with the length metric d‘. Two arbitrary points x; y in
@NR(P) can be joined with a curve C in @NR(P) such that

• length C � d‘(x; y);
• C = C1 ∪ C2 ∪ · · · ∪ Ck , with k6m+ 1, such that each Ci is contained in Kf(P) ∩ @NR(P) for
some face f= f(i) (possibly f=P) and each Ci is composed of at most two segments parallel to
Span f and one arc of circle contained in a set of the form Kx0(P) ∩ @NR(P), where x0 ∈ f.

Proof. Let g be a geodesic joining x and y in @NR(P). We consider a minimal set of faces
f1; f2; : : : ; fk of P (where P itself is considered a face) such that g ⊂ ⋃k

i=1 Kfi(P). We -x the face
fi. Let p and q be the -rst and, respectively, the last point of g contained in Kfi(P). Let p0 and
q0 be the projections of p and q on P. If p = q we can ignore the face fi, which contradicts the
minimality of the set of faces. Hence p �= q. Let p′ be the image of p by the translation of vector−−→p0q0. There are two cases: either fi is of codimension at least 2 in En or fi =P is of codimension
one.

Suppose fi is of codimension at least 2. Then p and q can be joined in @NR(P) by the curve
Ci composed of the segment [p;p′] and of the arc of circle joining p′ and q in S(q0; R)∩Kq0(P).
The length of this curve is � d(p; q), so � d‘(p; q).

Suppose fi=P is of codimension one. If  is not separating p and q then p′=q and we can join
p and q by Ci = [p; q]. Suppose  separates p and q. Let z ∈ @P be such that d(p0; z) + d(z; q0) =
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inf t∈@P[d(p0; t) + d(t; q0)]. Let p′′ and q′′ be the respective images of p and q by the translations
of vectors −→p0z and −→q0z. Then p and q can be joined in @NR(P) by the curve Ci composed of
the segments [p;p′′]; [q; q′′] and a half circle of length .R joining p′′ and q′′ in Kz(P) ∩ S(z; R).
In order to prove that the curve Ci thus obtained has length � d‘(p; q) it suOces to prove that
d‘(p; q)¿d(p0; z) + d(z; q0). Every curve joining p and q in @NR(P) of length d‘(p; q) has at
least one point E in  . Then d‘(p; q)¿d(p; E)+d(E; q)¿d(p0; E′)+d(E′; q0)¿d(p0; z)+d(z; q0),
where E′ is the projection of E on P.
In all cases the curve previously described, joining p and q in @NR(P), has length � d‘(p; q)

and it is composed of at most two segments and one arc of circle.
We repeat the previous argument for each face fi. We obtain in the end a curve C joining x and

y, of length � d‘(x; y), which decomposes as C=C1 ∪C2 ∪ · · · ∪Ck , where each Ci corresponds to
a face fi, and k6m+ 1.

Lemma A.4. Suppose the polytope P is either of codimension at least 2 or of codimension 1 and
diFerent of  . Let a¿ 1 be a +xed constant.

1. The projection of @NaR(P) onto @NR(P) is bilipschitz with respect to the length metrics, the
constant of the bilipschitz equivalence depending only on a.

2. Let R be a convex polytope in En. If

NR(P) ⊂ R ⊂NaR(P)

then the projection of the hypersurface @R onto @NR(P) is bilipschitz with respect to the length
metrics, the bilipschitz constant depending only on a.

Proof. (a) Let x; y be two points in @NaR(P) and let x′; y′ be their respective projections on
@NR(P). Since NR(P) is a convex set, d‘(x; y)¿d‘(x′; y′). In order to prove the converse in-
equality, we join x′ and y′ in @NR(P) by a curve C = C1 ∪ C2 ∪ · · · ∪ Ck as in Lemma A.3.
For every arc Ci we construct the arc C′

i by considering for each point xi ∈Ci its projection
x0i on P and the intersection x′i of the ray of origin x0i through xi with @NaR(P). The length
of C′

i is at most the length of Ci multiplied by a. Then d‘(x; y)6
∑k

i=1 length(C′
i)6

a
∑k

i=1 length (Ci) = a · length(C)� ad‘(x′; y′).
(b) Let x and y be two distinct points on @R and let x′ and y′ be their respective projections on

@NR(P). Obviously, d‘(x; y)¿d‘(x′; y′). We note that x′ is on the segment [x; x0], where x0 is the
projection of x on P. Let x′′ be the intersection point of @NaR(P) with the ray through x of origin
x0. The point y′′ is obtained from y in the same way. By (a) d‘(x′′; y′′)� ad‘(x′; y′). In the sequel
we show that d‘(x; y)� d‘(x′′; y′′). The following remark is essential. By the convexity of R, every
hyperplane H in En containing a codimension 1 face of @R has the property that the distance from
P to H is at least R. In particular, for every point �0 ∈P and every nontrivial segment [�; B] ⊂ @R,
the distance from �0 to the line �B is at least R.
We join x′′ and y′′ in @NaR(P) as in Lemma A.3, by a curve C = C1 ∪ C2 ∪ · · · ∪ Ck of length

� d‘(x′′; y′′). Each Ci is joining two points pi and qi, whose projections on P; p0
i and q0i , are

contained in a face fi of P, and such that [pi; p0
i ] and [qi; q0i ] are orthogonal to fi. We note that

qi ≡ pi+1;∀i. Let Npi = [pi; p0
i ] ∩ @R and Nqi = [qi; q0i ] ∩ @R. It suOces to prove that d‘( Npi; Nqi) �

length (Ci) for every i.
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Fig. 4. The plane O.

Suppose fi is of codimension at least 2. Then Ci is composed of a segment [pi; p′
i] and of an arc

of circle between p′
i and qi. Let Np′

i=[p′
i ; q

0
i ]∩@R; p̃i=[pi; p0

i ]∩@NR(P) and p̃′
i=[p′

i ; q
0
i ]∩@NR(P).

The plane O determined by pi; p′
i ; p

0
i and q0i intersects P either in a convex polygon P′ having

[p0
i ; q

0
i ] in the boundary or in [p0

i ; q
0
i ]. The intersection O∩ @NaR(P) includes the segment [pi; p′

i],
O ∩ @NR(P) includes the segment [p̃i; p̃′

i] and the intersection O ∩R is a polygon containing Npi
and Np′

i in its boundary (Fig. 4).
Let [�; B] be a segment in the polygonal line O ∩ @R which is also included in the quadrangle

p̃i−p̃′
i−p′

i−pi. Let [�0; B0] be its projection onto [p0
i ; q

0
i ]. Since the distance from �0 to the line �B is

at least R, while d(�0; �)6 aR, it follows that “�(�0; B)¿ arcsin 1
a , hence that d(�; B)6 ad(�0; B0).

This implies that d‘( Npi; Np′
i)6 ad(pi; p′

i) = ad‘(pi; p
′
i).

Let q̃i = [q0i ; qi] ∩ @NR(P). The plane O′ determined by p′
i ; q

0
i and qi intersects P in a convex

polygon and its face fi in the point q0i . The intersections O′∩@NaR(P) and O′∩@NR(P) contain the
arcs of the circles of center q0i and radius aR and R, respectively, joining p′

i ; qi and p̃
′
i ; q̃i, respectively

(Fig. 5). The fact that d‘( Np′
i ; Nqi)6 cd‘(p′

i ; qi), with c a constant depending on a, follows from [10,
Lemma 3.5].

We conclude that d‘( Npi; Nqi)6d‘( Npi; Np′
i) + d‘( Np′

i ; Nqi)6 ad‘(pi; p′
i) + cd‘(p′

i ; qi)6 – · length Ci,
where –=max(a; c).

Suppose fi ≡ P is of codimension 1. In this case Ci consists either of the segment [pi; qi]
or of the union of two segments parallel to  with an arc of circle of length .aR in a set
of the form Kz(P) ∩ S(z; aR). In the -rst situation, we conclude by looking at the plane deter-
mined by pi; p0

i ; qi; q
0
i and repeating the -rst part of the previous argument. In the second sit-

uation we split Ci into its three components. For each of the two segments we repeat the -rst
part of the previous argument, for the arc of circle we repeat the second part of the previous
argument.
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Fig. 5. The plane O′.

Now we prove the key Euclidean geometry result on -lling in hypersurfaces. We use the following
terminology. Let  be an aOne subspace in En and let F : En → R be a linear form such that  is
not parallel to ker F .

De�nition A.5. We call codimension one d-strip in  a set of the form {x∈ | a6F(x)6 b}
such that its boundary hyperplanes in  are distance d apart. We call codimension two (j; d)-strip
in  the intersection of two codimension one d-strips such that all the dihedral angles between
the boundary hyperplanes of one strip and the boundary hyperplanes of the other are greater
than j.

Proposition A.6. Suppose that n¿ 3.
(1) If P has codimension at least 3 then there exists an universal constant L¿ 0 such that for

every R¿ 0 the +lling function in @NR(P) satis+es

A1(‘)6L · ‘2; ∀‘¿ 0:

(2) If P has codimension at least 2 and it is contained in a codimension one �-strip in  then
there exists an universal constant L¿ 0 such that for every R¿ 0 the +lling function in @NR(P)
satis+es

A1(‘)6L · (‘2 + ‘�); ∀‘¿ 0:
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(3) Suppose P has codimension one and it is contained in a codimension two (j; �)-strip in  .
Suppose moreover that

• every two nonparallel a>ne spans of codimension one faces of P make dihedral angles greater
than j and smaller than .− j;

• every a>ne span of a codimension one face of P makes with a hyperplane bounding the
(j; �)-strip dihedral angles greater than j and smaller than .− j, if it is not parallel to it.

Then the same conclusion as in (2) occurs.

The -rst step in the proof is the following lemma.

Lemma A.7. Let C :S1 → @NR(P) be a loop of length ‘¡R. Then its +lling area in @NR(P)
satis+es

A1(C)6L‘2;

where L is an universal constant.

Proof. Let x∈C(S1) and x0 its projection on P. Then “x0(x; y)¿ .=2;∀y∈P\{x0}. Let H and H ′
be the hyperplanes orthogonal to [x; x0] through x0 and x, respectively. The hyperplane H separates
x and P and d(x; H) = R. Since ‘¡R it follows that C(S1) ∩H = ∅. We project the curve C onto
a curve C′ in H ′. Let for every y∈C(S1) the point y′ be its projection on H ′. For every a∈P,
“y(y′; a)¿ .

2 , therefore d(y
′; a)¿d(y; a). It follows that the -lling cylinder between C and C′ of

area � ‘2 composed of the segments [y; y′]; y∈C(S1), is contained in ExtR(P). The hyperplane H ′
is also contained in ExtR(P) and we can -ll C′ in it with an area � ‘2. Hence C can be -lled in
ExtR(P) with an area � ‘2. By projecting on @NR(P) we conclude.

Proof of Proposition A.6. Let C :S1 → @NR(P) be a loop of length ‘. According to Lemma A.7
we may suppose ‘¿R.

(1) By eventually slightly perturbing C(S1) we may suppose C(S1)∩ = ∅. This is true in every
Kf(P) ∩ @NR(P), where f is a face of P, therefore it is true on @NR(P).

For every x∈C(S1) let x0 be its projection on P, x′0 its projection on  ⊥
x0 and x′ the intersection

between the ray of origin x0 through x′0 and S(x0; R). We consider the arc of circle axx′ joining x
and x′ in Kx0(P) ∩ S(x0; R). The curve C′ :S1 → @NR(P); C′(9) = x′ for 9 such that C(9) = x,
has length at most ‘. If x; y∈C(S1) ∩Kf(P) then the HausdorG distance between axx′ and ayy′ is
at most d(x; y). Since

⋃
f Kf(P) covers @NR(P), we conclude that the arcs of circle axx′ with x

varying on C(S1), compose a “-lling cylinder” between C and C′ of area � ‘R� ‘2.
Let now x′ be a point on C′(S1) and x0 its projection on P. We have [x′; x0] ⊂  ⊥

x0 . For every
y′ ∈C′(S1) of projection y0 on P we consider y′′ its image by translation of vector −−→y0x0. The curve
C′′ composed of the points y′′ has length at most ‘ and the segments [y′; y′′] compose a -lling
cylinder of area � ‘2 between C′ and C′′. The curve C′′ is contained in  ⊥

x0 ∩ S(x0; R), a sphere of
dimension at least 2, and it can be -lled in this sphere with an area � ‘2.

(2) We may again suppose, modulo a slight perturbation of C, that C(S1) ∩  = ∅. As in (1)
we can construct a -lling cylinder of area � ‘2 between the curve C and a curve C′′ of length
at most ‘ contained in  ⊥

x0 ∩ S(x0; R), for some point x0 ∈P. The polytope P is contained in a
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codimension one �-strip S bounded by two hyperplanes H1 and H2 in  . Let x1 ∈H1 at distance at
most � from x0. We translate the curve C′′ with the vector −−→x0x1. We obtain a curve C′′′ of the same
length in  ⊥

x1 ∩ S(x1; R). The -lling cylinder between C′′ and C′′′ composed of segments parallel
and of equal length to [x0; x1] has area at most ‘�. The curve C′′′ is contained in @NR(S). Since
NR(P) ⊂ NR(S), it suOces to -ll C′′′ in @NR(S) with a quadratic area to end the argument.
Such a -lling can be constructed in KH1(S) ∩ @NR(S).
(3) In this case KP(P) ∩ @NR(P) has two connected components isometric to P, which we

denote O1 and O2. We -x #¿ 0 small and we consider M# the set of points y∈NR(P) such that
“y0(y; )6#, where y0 is the projection of y on P. We denote QM# the set of points y∈NR(P)
such that “y0(y; )¡#. We also consider the set of points y∈NR(P) such that “y0(y; )¿#
and we denote O#

i its connected component containing Oi; i=1; 2, @O#
i =O

#
i ∩M# and QO#

i =O
#
i \M#.

We simplify the shape of the loop under study in three steps and in the fourth step we prove the
estimate on the -lling area.

Step 1: Suppose C(S1) is entirely contained in M#. For every point x∈C(S1) let x0 be its
projection on P and x1 the intersection point between  ⊥

x0 and O1. Let axx1 be the arc of circle
joining x and x1 in @NR(P) and x′ the intersection point between axx1 and @O#

1 . For two points
x and y we have d(x1; y1) = d(x0; y0)6d(x; y). This implies that the arc of circle axx1 varies
continuously in x and that dH (axx1 ; ayy1)� d(x; y). In particular, when x varies on C(S1) the point
x′ describes a curve C′ on @O#

1 of length � ‘ and axx1 ∩M# describes a -lling cylinder between C
and C′ of area � ‘R, hence � ‘2.
Suppose C(S1) contains a point x outside M#, for instance x∈ QO#

1 . We endow S1 and corre-
spondingly C(S1) with an orientation. Let y1; Ny 1; : : : ; ys; Ny s be points on C(S1) in the sense of
the given orientation such that the arcs of C(S1) between the pairs of points (x; y1); ( Ny s; x) and
( Ny i; yi+1)i∈{1;2; :::; s−1} are contained in O#

1 ∪O#
2 while the arcs between (yi; Ny i)i∈{1;2; :::; s} are contained

in QM#. We consider the arc @i of endpoints yi; Ny i and of length ‘i.
Suppose yi; Ny i are both in @O#

k ; k ∈{1; 2}. For every point y∈ @i let y0 be its projection on P,
y1 the intersection point between Ky0(P) and Ok and y′ the intersection point between the arc of
circle joining y to y1 and @O#

k . As y varies, y′ describes an arc @′i in @O#
k of length � ‘i. The

loop @i ∪ @′i can be -lled by means of the arcs joining y and y′ with an area of order ‘iR.
Suppose yi ∈ @O#

k ; Ny i ∈ @O#
l , {k; l}={1; 2}. We use the same notations and arguments as previously

and thus to every y∈ @i we associate a point y′ in @O#
k . Let @

′
i be the curve described by the points

y′ in @O#
k . The loop composed of @i; @′i and the arc of circle joining Ny i to Ny′

i has length � ‘i and
it can be -lled with an area of order ‘iR.

We conclude that, by eventually adding an area of order ‘R, so ‘2, we may suppose that the
intersection of C(S1) with QM#, if non-empty, is composed of arcs of circle. Thus, we may suppose
that either C(S1) ⊂ O#

1 ∪O#
2 or the points y1; Ny 1; : : : ; ys; Ny s on C(S1) considered previously are such

that moreover yi ∈ @O#
k ; Ny i ∈ @O#

l , {k; l}= {1; 2}, yi and Ny i have the same projection yi0 on P and
the arc @i of C(S1) between yi and Ny i is an arc of circle in Kyi0

(P) ∩ @NR(P).

Step 2: Let g be either C(S1), if C(S1) ⊂ O#
1 ∪O#

2 , or one of the sub-arcs of C(S1) of endpoints
(p; q) = ( Ny i; yi+1) or ( Ny s; y1). The curve g is in both cases contained in O#

k ; k ∈{1; 2}. For every y
on g let y0 be its projection on P and y′ the intersection point between  ⊥

y0 and Ok . The points
y′ describe a curve g′ in Ok of length at most equal to the length of g and if ayy′ denotes the
arc of circle joining y and y′ in Ky0(P) ∩ @NR(P), dH (ayy′ ; azz′)6d‘(y; z) for every y; z ∈ g. If
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g = C(S1) ⊂ O#
k then g′ is a loop in Ok and ayy′ ; y∈ g, compose a -lling cylinder of area � ‘R

between g and g′. Since g′ can be -lled in Ok with an area � ‘2, this ends the argument in this
case, and by the -rst part of Step 1 also in the case when C(S1) ⊂M#. If g �= C(S1), in the loop
C we replace each sub-arc of type g with app′ ∪ g′ ∪ aqq′ and we obtain a new loop C′ and a -lling
cylinder between C and C′ of area � ‘2. The length of the loop C′ is � ‘ since instead of each
arc g we have g′ of smaller length and instead of each arc @i we have ay′

i yi ∪ @i ∪ a Ny i Ny′
i
of length

� R, while the length of @i is at least 2#R.
We may moreover replace in C′ each curve ay′

i yi ∪ @i ∪ a Ny i Ny′
i
with an arc of circle @′i joining

the opposite points y′
i ; Ny

′
i in @NR(P). For each such replacement we have to add an area of order

O(R2) = O((length @i)2), therefore on the whole we add an area of order O(‘2).
In the end we may therefore suppose that our loop C is composed of curves in O1, curves in O2

and arcs of circle joining points in O1 to points in O2.
Step 3: Let p1; Np1; : : : ; ps; Nps be points on C(S1) in the sense of the given orientation such that:

• the arcs of C(S1) of endpoints pi; Npi are in O1 ∪O2;
• the pairs of points ( Npi; pi+1) or ( Nps; p1) have the same projection qi or qs, respectively, on P
and the arc of C(S1) of endpoints ( Npi; pi+1) or ( Nps; p1) is an arc of circle of length .R in
Kqi(P) ∩ @NR(P) or in Kqs(P) ∩ @NR(P), respectively.

It follows s = 2Q. Suppose p1; Np1 are in O1. Then pi; Npi are in O1 if i is odd and in O2 if i is
even. If we join with segments in O1 the pairs of points Npi; pi+2 for all i odd, 16 i6 s − 3, and
Nps−1; p1, and we also join with segments in O2 the pairs of points pj; Npj for all j even, we cut the
loop into one loop contained in O1, Q loops contained in O2 and Q “quadrangles” composed of two
segments and two arcs of circle. The -lling area is quadratic for the loops contained in O1 ∪ O2.
We show that each “quadrangle” of length 'i has a -lling area of order '2i + 'i�, thereby ending the
proof.

Step 4: Let C be a curve of length ‘¿R and such that there exist p; q; Nq; Np points on it in the
sense of the chosen orientation such that the arcs of endpoints p; q and Np; Nq are segments contained
in O1 and O2, respectively, and the arcs @ of endpoints Np;p and @′ of endpoints q; Nq are arcs of circle
in Kp0(P)∩ @NR(P) and in Kq0(P)∩ @NR(P), respectively, where p0; q0 ∈ @P: By hypothesis P
is contained in a codimension two (j; �)-strip S in  .

If p0 and q0 are in the same codimension one face f of P then, modulo an area � R2, we may
suppose C(S1) is contained in Kf ∩ @NR(P), in which it can be -lled with a quadratic area.
Suppose p0 and q0 are in the interiors of two codimension one faces of P, of parallel aOne spans

L and L′. There exists a hyperplane H bounding S not parallel to L and L′. Let p1
0 and q10 be

the projections of p0 and q0, respectively, onto H along L and L′. Let @1 be the image of @ by

translation of vector
−−−→
p0p1

0 and @′1 the image of @′ by translation of vector
−−→
q0q10. Let p1; Np1 be the

endpoints of @1 and q1; Nq1 the endpoints of @′1. By hypothesis L and H form dihedral angles greater
than j and smaller than .− j and likewise for L′ and H . It follows that d(p1

0; q
1
0)� d(p0; q0) and

therefore that the loop C′ = [p1; q1] ∪ @′1 ∪ [ Nq1; Np1] ∪ @1 has length of order ‘. It also follows that
d(p0; p1

0); d(q0; q
1
0)� �.

Between the loops C and C′ can be constructed a -lling cylinder of area � �‘. Modulo an area
of order R2 we may moreover suppose that @1 and @′1 are in @NR(H)∩D, where D is the half-space
of boundary Span(H ∪  ⊥

p1
0
) whose interior is disjoint of P: In @NR(H) ∩ D the loop C′ thus
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modi-ed can be -lled with an area � ‘2. We thus construct a -lling disk for C of area � ‘2 + ‘�
in ExtR(P).

Suppose p0 and q0 are contained into two nonparallel codimension one faces f; f′ of P, of aOne
spans L and L′. Modulo an area of order R2 we may suppose @ ⊂Kf

p0
(P) and @′ ⊂Kf′

q0(P). Let
R =L ∩L′. By hypothesis L and L′ form dihedral angles greater than j and smaller than .− j.
This implies that there exists z0 ∈R such that d(p0; z0) + d(z0; q0)� d(p0; q0). Let @̃ be the image
of @ by translation of vector −−→p0z0 and @̃′ the image of @′ by translation of vector −−→q0z0. Between the
loop C̃ = @̃ ∪ @̃′ and C there is a -lling cylinder of area � ‘2. Let Q be the skew quadrant in  
determined by L and L′ and containing P. In KW(Q) ∩ @NR(Q) the loop C̃ can be -lled with an
area � R2. We thus obtain a -lling disk for C in ExtR(P) of area � ‘2.
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