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Lecture 1

Several comments regarding graph metric approximations of the
Euclidean metric, scaling limits of graphs and local limits of graphs.



We will discuss how well the graph metric on bounded degree
graphs can approximate the metric of homogeneous manifolds
equipped with some invariant length metric.

Recall that the scaling limit of the Z2 grid is the L1 metric on the
plane.

In the first part we will remark on graph approximations of the
Euclidean (L2) metric.

In the second part we will look at approximating invariant metrics
on manifolds with a given topology.

The last part is about inducing Euclidean structure on graphs.
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Given a graph G = (V ,E ), the graph distance between any two
vertices is the length of the shortest path between them.



Slack-isometry

Definition
Two metric spaces G and H are said to be quasi-isometric if there
exists a map f : G → H and two constants 1 ≤ C <∞ and
0 ≤ c <∞, such that

I C−1dH(f (x), f (y))− c ≤ dG (x , y) ≤ CdH(f (x), f (y)) + c for
every x , y ∈ G ,

I For every y ∈ H there is an x ∈ G so that dH(f (x), y) < c .

Two metric spaces are said to be slack-isometric iff they are
quasi-isometric with multiplicative constant equal to 1.
That is, if we can take C = 1 in the definition.
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Gady’s question

Question
Is there a bounded degree graph which is slack-isometric to the
Euclidean plane?

The Pinwheel tiling, which is a non-periodic tiling defined by
Charles Radin (see Wikipedia), is a graph quasi-isometric to the
Euclidean plane where the multiplicative constant goes to 1
uniformly in the distance.

The Poisson Voronoi tessellation will almost surely have an
asymptotically Euclidean metric. Note that the Euclidean metric
underlies the construction.
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Near critical percolation

The Gromov-Hausdorff distance between two metric spaces is
obtained by taking the infimum over all the Hausdorff distances
between isometric embeddings of the two spaces in a common
metric space.

Can the L2 metric ”naturally” emerge as a limit of graph metrics
in the Gromov-Hausdorff distance?
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Near critical percolation

Consider the natural embedding of the square grid in the plane.

Dilute the planar square grid by removing edges independently
with probability q < 1/2. 1/2 is the critical percolation probability
(Kesten (80)). Thus almost surely there is a unique connected
dense infinite subgrid left.
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Near critical percolation

Condition on the origin to be in the infinite connected component
and look at large balls rescaled to have diameter 1.

For any fixed q the subadditive ergodic theorem was used in the
context of first passage percolation to show that the rescaled large
balls around the origin will a.s. converge in the Gromov-Hausdorff
distance to a centrally symmetric convex body in the Euclidean
plane.
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Near critical percolation

Conjecture

As q → 1/2 the limiting shape Gromov-Hausdorff converges to an
Euclidean ball.

Seems impossibly hard, since metric properties do not follow from
conformal geometry. Yet clear by simple simulations.
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Symmetric graphs

Definition
A graph G is vertex transitive if for every two vertices in G there is
an isometry of G mapping one to the other.



Symmetric graphs

Is there a sequence of finite vertex transitive graphs which
Gromov-Hausdorff converges to the sphere S2? (equipped with
some invariant length metric).



Symmetric graphs

Let (Gn) be an unbounded sequence of finite, connected, vertex
transitive graphs such that |Gn| = o(diam(Gn)d) for some d > 0.

Theorem (with Hilary Finucane and Romain Tessera)

Up to taking a subsequence, and after rescaling by the diameter,
the sequence (Gn) converges in the Gromov Hausdorff distance to
a torus of dimension < d, equipped with some invariant Finsler
metric.
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Symmetric graphs

In particular if the sequence admits a doubling property at a small
scale then the limit will be a torus equipped with some invariant
length metric. Otherwise it will not converge to a finite
dimensional manifold.

The proof relies on a recent quantitative version of Gromov’s
theorem on groups with polynomial growth obtained by Breuillard,
Green and Tao and a scaling limit theorem for nilpotent groups by
Pansu.
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Symmetric graphs

Establishing quantitative versions will have applications to random
walks and percolation on vertex transitive graphs.
For example:
Let G be a finite, d-regular connected vertex transitive graph.
View G as an electrical network in which each edge is a one Ohm
conductor.

Conjecture (with Gady Kozma)

For any two vertices

electric resistence(v , u) < Cd +
diam2(G ) log |G |

|G |
.

In addition for a sequence of vertex transitive graphs, if the
diameter is o(|Gn|) then the electric resistance between any two
vertices is o(diam(Gn)).
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Symmetric graphs

Since finite vertex transitive graphs, when converge to a manifold,
converge to tori, it follows that the infimum over all such, of the
Gromov Hausdorff distance to Sn, is attained. Which one is the
closest?

Is the skeleton of the truncated icosahedron (soccer ball) the
closest to S2?

”Proof”: Otherwise we will have different design for soccer balls.

See also Géode (géométrie) in French Wikipedia.
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Roughly transitive graphs

A metric space X is (C , c)-roughly transitive if for every pair of
points x , y ∈ X there is a (C , c)-quasi-isometry sending x to y .

If Gn is only roughly transitive and |Gn| = o
(
diam(Gn)1+δ

)
for

δ > 0 sufficiently small, we are able to prove, this time by
elementary means, that (Gn) converges to a circle.

Question
Is there an infinite (C , c)-roughly transitive graph, with C , c finite,
which is not quasi-isometric to a homogeneous space?

Where a homogeneous space is a space with a transitive isometry
group.
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Going in the opposite direction

Question
Which graphs can be realized as the nerve graph of a sphere
packing in Euclidean d-dimensional space?

Where vertices correspond to spheres with disjoint interiors and
edges to tangent spheres.



Going in the opposite direction

The rich two dimensional theory started with Koebe, who proved
that all planar graphs admits a circle packing.

In higher dimensions, Thurston observed that packability implies
order |G |(d−1)/d upper bound on the size of minimal separators.
There is an emerging theory with many still open directions.

Pansu is currently developing a large scale conformal maps theory
using packings.
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Metrics on graphs from packings

Three results and a question.

Theorem (with Oded Schramm)

The grid Z4, T3 × Z and lattices in hyperbolic 4-space cannot be
sphere packed in Euclidean R3.
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Metrics on graphs from packings

Let (Gn) be a sequence of finite, (k > 2)-regular graphs with girth
growing to infinity,

Theorem (with Nicolas Curien)

For every d there exists an N(d) such that Gn is not regularly
sphere packed in Euclidean d-dimensional space for any n > N(d).

The proof uses sparse graphs limits. By regularly we mean uniform
upper bound on the ratio of the radii of neighboring spheres.
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Metrics on graphs from packings

The following is an extension to higher dimension of a theorem of
Bowditch (1995) for planar graphs, following a suggestion by
Gromov.

Theorem (with Nicolas Curien)

Let G be an infinite locally finite connected graph which admits a
regular packing in Rd . Then we have the following alternative:
either G has a positive Cheeger constant, or they are arbitrarily

large subsets S of G such that |∂S | < |S |
d−1

d
+o(1).



Metrics on graphs from packings

Question
Show that any packing of Z3 in R3 has at most one accumulation
point in R3 ∪ {∞}.



Lecture 2

Critical and off critical metric spaces.
Some families of metric spaces are naturally parameterized by the
reals. The critical spaces are usually more exotic.
We will present few examples.
These spaces sometimes admits combinations of properties which
are impossible in the vertex transitive world.
We start with the classic model First Passage Percolation of for
perspective.
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First Passage Percolation

Perturb the graph metric by assigning independent identically
distributed length to the edges of a graph. E.g. associate to each
edge an independent length having Bernoulli or exponential
distribution.

Richardson (1973) proved the first shape theorem, when the length
has exponential distribution and the graph is the Zd lattice.
The r ball around the origin, rescaled to have diameter 1, GH
converges to a deterministic centredly symmetric convex shape a.s.
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First Passage Percolation

Simulations indicates that the limiting shape is not the Euclidean
ball. Kesten showed that the shape is not the Euclidean ball in
high enough dimension.
In the eighties, Cox, Durrett, Kesten and other extended the
limiting shape to other distributions.
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First Passage Percolation

The main open problems are regarding quantitative rate of
convergence and geodesics in the random FPP metric on the grid.
It is conjectured that the variance of the distance from the origin
to (n, 0) in two dimensions is n2/3 and it has a Tracy-Widom
distribution. So far only an upperbound of n

log n is known. In higher
dimensions it is conjectured to be much more concentrated and
there are no results at all except for trees.
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First Passage Percolation

Furstenberg asked (80’s) if a.s. there are two sided infinite
geodesics? It is still open and even the structure of geodesic rays is
only very partially understood. due to Hoffman, Damron and
Newman among others.



Pertubations, beyond first passage percolation(FPP)

We now describe several random metrics, the first two can be
viewed as perturbations of the grid as FPP, but with slightly
stronger perturbation ”causing the underling grid metric to almost
disappear”.



LRP

Start with the one dimensional finite grid Z/nZ with the nearest
neighbor edges, add to it additional edges as follows. Between, i
and j add an edge with probability β|i − j |−s , independently for
any pair.

The main problem is how does the distance between 0 and n grows
typically in this random graph?
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LRP

The off critical cases:
When s > 2 distance is order n, when 1 < s < 2 distance is
polylogn (Biskup (2003)), when s = 1 distance is log n

log log n
(Coppersmith, Gamarnik and Sviridenko (2002)) . and when s < 1
distance is uniformly bounded(Benjamini, Kesten, Peres and
Schramm (2004)).



LRP

The critical case:
When s = 2 the distance is of the form θ(nf (β)), where f is strictly
between 0 and 1 (Sly and Ding (2012)).
Continuity, monotonicity, or even a guess for f are still open.

These natural random graphs looks very different from vertex
transitive graphs. E.g. when 1 < s < 2 the mixing time of simple
random walk is a.s. ns−1.
That is, small diameter do not exclude small bottlenecks as in
vertex transitive graphs.
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CCCP

Examine bond percolation on Zd . Each edge is open with
probability p independently. Clusters are connected components of
open edges. For any d > 1, there is 0 < pc < 1, such that if
p < pc all the clusters are finite a.s. and the diameter of the
clusters has exponential tail. If p > pc there is a unique infinite
cluster. While for the critical probability pc it is conjectured that
there is no infinite cluster and diameter of clusters has polynomial
tail. True in dimensions 2 and d large.



CCCP

The unique infinite cluster, for p > pc is a random perturbation of
the grid. E.g. asymptotics of the heat kernel are the same, how
can we get ”interesting” critical geometry?

Conditioning on the critical percolation to have an infinite cluster
results in a graph with infinitely many cut points.
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CCCP

Here is a suggestion:
Contract each cluster into a single vertex. The result is a random
graph G with high degrees (each vertex v ∈ G is a cluster C in Zd

and its degree is the number of closed edges coming out of C).
When the percolation is subcritical one expects to see a
perturbation of the lattice. A random version of a rough isometry,
but when the percolation is critical the random geometric structure
obtained is expected to be rather different.
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CCCP

We say CCCP instead of G (CCCP standing for Contracting
Clusters of Critical Percolation).
For example (with Ori Gurel-Gurevich and Gady Kozma) we have:
When d = 2, the CCCP has exponential volume growth a.s.
When d > 6 the CCCP has double-exponential volume growth a. s.
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Random subdivisions

There is growing interest in establishing a rigorous theory of two
dimensional continuum quantum gravity. Heuristically, quantum
gravity is a metric chosen on the sphere uniformly among all
possible metrics. Although there are successful discrete
mathematical quantum gravity models, we do not yet have a
satisfactory continuum definition of a planar random length metric
space (rather than random measure).



Random subdivisions

One possible toy model is to start with a unit square divide it four
squares and now recursively at each stage pick a square uniformly
at random from the current squares (ignoring their sizes) and
divide it to four squares and so on.



Random subdivisions

Look at the minimal number of squares needed in order to connect
the bottom left and top right corner with a connected set of
squares.

We conjecture that there is a deterministic scaling function, such
that after dividing the random minimal number of squares needed
after n subdivisions by it, the result is a non degenerate random
variable. Establishing the conjecture will provide a random planar
length metric space.
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Stationary graphs

A distribution on rooted graphs is called stationary if it invariant
under re-rooting a long a simple random walk path.
This is weakening of the notion of vertex transitive graphs.
Examples include limits of finite graphs with the root chosen
proportional to the degree. In particular graphs obtained using a
subdivision rule.
Try to imagine planar triangulation with polynomial volume growth
of balls around the root which is faster than quadratic. Try to
imagine such a growth around each vertex of the triangulation or
stationary planar triangulation’s with polynomial volume growth
which is faster than quadratic.
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Cuts in planar graphs

Theorem (with Panos Papasoglu )

Let G be a planar graph such that the volume function of G
satisfies V (2n) < CV (n) for some constant C > 0. Then for every
vertex v of G and integer n, there is a domain Ω such that
B(v , n) ⊂ Ω, Ω ⊂ B(v , 6n) and the size of the boundary of Ω is at
most order n.

That is, for a volume doubling planar graphs even with polynomial
growth faster than quadratic there are still linear cuts, unlike say
the 3 dimensional grid.
How can this be combined with stationarity and large growth?
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Cuts in planar graphs

This suggests that such a graph has a fractal structure of cactus
like folds at all scales in order to account for the volume together
with the small cuts as seen from every point.
The facts above suggest heuristically that volume is generated by
large fractal mushrooms, and that the complements of balls have
many connected components.



Cuts in planar graphs

We conjecture that the simple random walk spend a long time is
such traps and hence is subdiffusive (that is, dist(o,Xn) � nα

where X (n) denotes the simple random walk starting at o and
α < 1/2) ?

Note that no such small cuts in the context of vertex transitive
graphs.
E.g. Aldous proved that for any finite vertex transitive graph the
isoperimetric constant is at least order 1

diameter .
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Limits

A limit of finite graphs Gn is a random rooted infinite graph (G , ρ)
with the property that neighborhoods of Gn around a random
vertex converge in distribution to neighborhoods of G around ρ.

Formally, let (G , o) and (G1, o1), (G2, o2), . . . be random
connected rooted locally finite graphs. We say that (G , o) is the
limit of (Gj , oj) as j →∞ if for every r > 0 and for every finite
rooted graph (H, o ′), the probability that (H, o ′) is isomorphic to a
ball of radius r in Gj centered at oj converges to the probability
that (H, o ′) is isomorphic to a ball of radius r in G centered at o.

A random rooted finite graph (G , o) is unbiased, if given G the
root o is uniformly distributed among the vertices of G . In
particular given a (possibly random) graph we will consider the
distribution on rooted graphs obtained by rooting at a random
uniform vertex.
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Hint: A random uniform vertex in the n-levels full binary, is near
the leaves.
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The limit of the n-levels full binary tree is the canopy tree,
consisting of half line N with a binary tree of height n rooted at n
and the root is on the line with geometric(1/2) distance to 0.
This example illustrates the following, With Oded Schramm we
proved(2001) that limits of bounded degree finite planar graphs are
a.s. recurrent for the simple random walk.
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Limits of triangulations with no genus restriction

Guth, Parlier and Young (2010) studied pants decomposition of
random closed surfaces obtained by randomly gluing N Euclidean
triangles (with unit side length) together.

They gave bounds on the size of pants decomposition of random
compact surfaces with no genus restriction as a function of N.
Their work indicates that the injectivity radius around a typical
point is growing to infinity.

Gamburd and Makover (2002) showed that as N grows the genus
will converge to N/4 and by Euler’s characteristic the average
degree will grow to infinity.
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Limits of triangulations with no genus restriction

Take a uniform measure on triangulations with N triangles
conditioned on the genus to be CN for some fixed C < 1/4 and a
uniformly chosen root.

We conjecture that as N grows, this random surface converges to
a rooted random triangulation of the hyperbolic plane with average
degree 6/(1− 4C ).

In particular we believe that the local injectivity radius around
typical vertex will go to infinity on such a surface as N grows.
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Stochastic Hyperbolic Infinite Quadrangulation

The Uniform infinite planar quadrangulation (UIPQ) (Angel and
Schramm, Krikun) is analogous to the limit of random planar
triangulation (zero genus) for quadrangulation.

Philippe Chassaing constructed the UIPQ via Schaeffer’s bijection
from a labeled critical Galton-Watson tree conditioned to survive.

We propose the study of an infinite random quadrangulation
constructed similarly from a labeled super critical Galton-Watson
trees.
We conjecture that such a stochastic hyperbolic infinite
quadrangulation describes the limit of random finite
quadrangulation with genus growing linearly in the number of
quadrangulation.
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Shiq

We know that simple random walk on the Shiq has positive speed
a. s.

Unlike the zero genus UIPQ which is recurrent (Gurel-Gurevich and
Nachmias) and sub diffusive (with Curien), basic properties of the
Shiq are still unknown.



Hyperfinite

Gábor Elek introduced the notion of a hyperfinite graph family: a
collection of graphs is hypefinite if for every ε > 0 there is some
finite k such that each graph G in the collection can be broken
into connected components of size at most k each has boundary of
size at most ε of it’s size.

Theorem (Oded Schramm)

If a sequence of finite graphs converges to a hyperfinite limit, then
the sequence itself is hyperfinite.

The Shiq is not hyperfinite.



Lecture 3

More on geometry and probability.



Connective constant

Connective constants for self avoiding walks admit some partial
analogy with the critical probability of percolation. Both monotone
with respect to inclusion and graph covering. With Hugo
Duminil-Copin we briefly formulate the analogous conjectures in
the context of self avoiding walks:

Let G be a graph (for concreteness one can think on Zd). Self
avoiding walk (SAW) is a random walk that does not return to a
vertex that he already visits.
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Connective constant

Define SAW (n) as the uniform measure on all the avoiding paths
walk of length n from a fixed root. By sub multiplicativity
µ = lim |SAW (n)|1/n exists and is called the connective constant of
the graph.



Connective constant

Conjecture

There is c > 1, µ > c for all infinite connected vertex transitive
graph excluding Z.

Maybe the ladder is a graph with the smallest connective constant
other than Z, among all vertex transitive? Otherwise consider an
infinite path and add a parallel edge to every second edge, to get
µ =
√

2.
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Connective constant

One way to establish the conjecture is to show that every infinite
vertex transitive graph covers an infinite vertex transitive graph of
girth bounded by a fixed constant. As for all such graph it easy to
show a uniform lower bound, yet large girth seems only to help.
This is likely not the case but hopefully leaves a small family of
graphs to be studied. (Yair Glasner suggested that, due to
Margulis super rigidity, maybe Cayley graphs of SL3(Z) do not
cover other infinite graphs?)



Connective constant

A stronger conjecture is,

Conjecture

µ is continuous with respect to local convergence of infinite vertex
transitive graphs.

Given a Cayley graph, for any generating set corresponds a
connective constant µ. This suggests a canonical generating sets
minimizing µ. Gady Kozma conjectured that for planar Cayley
graphs µ is algebraic, and he showed that the set of all connective
constants of groups contains an interval.
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Scale invariance



Expander at all scales?

Definition
Let G = (V ,E ) be a finite graph. Define the Cheeger constant of
G to be

h(G ) = inf
0<|S |< |V |

2

|∂S |
|S |

.

If G is an infinite graph we set

h(G ) = inf
0<|S |<∞

|∂S |
|S |

.

An infinite graph G with h(G ) > 0 is called non-amenable.
Otherwise it is called amenable.

A sequence of graphs {Gn} is of a uniform expander if there is
h > 0, for all n, h(Gn) > h.



Expander at all scales?

Question
Is there a family {Gn} of finite d-regular graphs, |Gn| → ∞, so
that all balls in all the Gn’s are uniform expanders?

That is, there is h > 0, for all r > 0 and any v in any of the graphs
Gn’s the ball B(v , r) is h- expander, expander with a uniform edge
expansion constant h. Note e.g. that if Gn is a sequence of
expanders with girth growing to infinity, then if r is smaller than
the girth then the balls of radius r are trees and thus not uniform
expanders as r grows.
We conjecture that there is no such family. If there is it will give a
”useful” new network architecture.
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Expander balls

For vertex transitive graphs a positive answer to the following
conjecture regarding percolation on expanders will show that no
such graph exists. The proof will proceed by constructing a
limiting nonamenable vertex transitive graph with a unique infinite
cluster whenever percolation occurs.

Question
Let G be a bounded degree expander, further assume that there is
a fixed vertex v ∈ G , so that after performing p = 1/2 percolation
on G ,

P1/2(diam(connected component of v) > diam(G )/2) > 1/2,

Show that there is a giant component w.h.p? G is not assumed to
be transitive.



Expander balls

The following two questions are regarding the rigidity of the global
structure given local information.

Question
Given a fixed rooted ball B(o, r), assume there is a finite graph
such that all its r -balls are isomorphic to B(o, r), e.g. B(o, r) is a
ball in a finite vertex transitive graph, what is the minimal
diameter of a graph with all its r -balls isomorphic to B(o, r)? Any
bounds on this minimal diameter, assuming the degree of o is d?
Any example where it grows faster than linear in r, when d is fixed?
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Expander balls

Few comments,
Note that a 3-ball in the grandparent graph does not appear as a
ball in a finite vertex transitive graph.

When the rooted ball is a tree, this is the girth problem.

One can consider a weaker version e.g. when we require only that
most balls are isomorphic to B(o, r).

Not assuming a bound on the degree, consider the 3-ball in the
hypercube, is there a graph with a smaller diameter than the
hypercube so that all its 3-balls are that of the hypercube?
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Expander balls

Question (with Romain Tessera)

Let X is the Euclidean or the hyperbolic plane, together with a
triangulation, whose triangles are at most of diameter r . Suppose
for each pair of Euclidean (or hyperbolic) balls of radius r , B1,B2

centered on vertices of this triangulation, there is a Euclidean (or
hyperbolic) isometry mapping B1 to B2 respecting the
triangulation (in the obvious way).

Does it imply that the triangulation is periodic?



Percolation on groups

Dilute a graph by keeping each edge independently with probability
p. Look at the events: ”there are infinite connected components”
and ”there is a unique infinite component”.

Denote the critical probability for the first event pc and for the
second pu.
For vertex transitive graphs uniqueness monotonicity holds.
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For which graphs there is a critical probability strictly between 0
and 1?

For which graphs pc < pu? For which graphs pu < 1?

Is pc < pu a quasi isometric invariant, even between vertex
transitive graphs?
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Percolation on groups

G amenable vertex transitive then pc = pu.
It is conjectured that for nonamenable vertex transitive graphs
pc < pu.

Pak and Nagnibeda proved that for any nonamenable Cayley graph
there are generating sets for which pc < pu.
This is relevant to question if there is a Cayley graph with
expander balls.
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Say a graph G is Liouville if it admits no non constant bounded
harmonic functions. Unlike transience for random walk, the

Liouville property is not quasi isometric invariant.
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Harmonic functions on groups

A long standing problem it is quasi isometric invariant in the
context of vertex transitive graphs?

Nonamenable vertex transitive graphs are not Liouville. If any
graph quasi isometric to a non amenable vertex transitive graph is
not Liouville. This will imply that there are no Cayley graphs with
expander balls.
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Random foliations

Can you foliate Rd with Brownian paths?


