Today I explain what constructive coarse embeddability means. I start with a more intuitive concept, asymptotic dimension.

1 Asymptotic dimension

2 Definition

Definition 1 (Gromov) The asymptotic dimension of metric space X is the smallest integer n such that for each r > 0, there exists a uniformly bounded cover $\{U_i\}_i$ of X, i.e.

- 1. the diameters of U_i 's are bounded,
- 2. each r-ball intersects at most n + 1 members of the covering.

Example 1 \mathbb{Z} has asymptotic dimension 1, \mathbb{Z}^d has asymptotic dimension d. A regular tree has asymptotic dimension 1.

Proposition 2 Hyperbolic groups have finite asymptotic dimension.

Linial: A similar concept arises in theoretical computer science.

2.1 Alternative definition

Proposition 3 Asymptotic dimension of X is the smallest integer n such that for all r > 0, X can be covered by n + 1 subset X_i , each of which being a disjoint union of r-separated subsets X_{ij} , of bounded diameters.

This definition is very flexible. I will give examples of asymptotic dimension estimates.

2.2 $Sl(n,\mathbb{Z})$

Let us start with the group $G = Sl(n, \mathbb{Z})$. It is a subgroup of the continuous group $Gl(n, \mathbb{R})$. Equip $Gl(n, \mathbb{R})$ with a left-invariant Riemannian or Finsler metric (up to quasi-isometry, the choice of such a metric is irrelevant).

Use Gram-Schmidt orthogonalization to write any matrix $S \in Gl(n, \mathbb{R})$ as a product

$$S = TU,$$

where T is lower triangular and U is orthogonal. The map $S \mapsto T$ is a quasi-isometry of $Gl(n, \mathbb{R})$ to the group $T(n, \mathbb{R})$ of upper triangular matrices. This leads to

 $asdim(Gl(n,\mathbb{R})) = asdim(T(n,\mathbb{R})).$

 $T(n, \mathbb{R})$ is a semi-direct product of an abelian group (diagonal matrices) with a nilpotent group (unipotent matrices). This can be used to show that $\operatorname{asdim}(T(n, \mathbb{R})) < \infty$. This implies that $\operatorname{asdim}(Sl(n, \mathbb{Z})) < \infty$.

The exact value of $\operatorname{asdim}(Sl(n,\mathbb{Z}))$ is not exactly known. It is conjectured to equal the cohomological dimension.

Question. Let *M* be a simply connected nonpositively curved manifold. Is asdim(*M*) < ∞ ?

There are results for subclasses (e.g. symmetric spaces, strictly negative curvature), and also for classes of CAT(0) spaces: buildings, cube complexes.

2.3 A weird example

Let π be a transcendental number. Let $\Gamma \subset T(2,\mathbb{R})$ be the subgroup of matrices of the form

$$\begin{pmatrix} \pi^k & \sum_{\ell=-m}^m n_\ell \pi^\ell \\ 0 & \pi^{-k} \end{pmatrix}, \quad k \in \mathbb{Z}, \quad n_\ell \in \mathbb{Z}.$$

 Γ is finitely generated, but not discrete. Equip it with the word metric. Let Γ_0 be the subgroup where k = 0. It is free abelian of infinite rank. The metric induced on Γ_0 is an ℓ^1 metric. Γ_0 contains a quasi-isometric \mathbb{Z}^d for every d, so $\operatorname{asdim}(\Gamma_0) = \infty$ and $\operatorname{asdim}(\Gamma) = \infty$ as well.

 Γ is also known as the wreath product $\mathbb{Z} \wr \mathbb{Z}$.