
1 Proof of stable rigidity

The rigidity problems reduces to some algebra: First from homotopy to simple ho-
motopy (collapsing cells) involves algebraic K-theory. Then from simple homotopy
to homeomorphisms involves different algebra. Both steps are achievable by splitting
space in controlled pieces.

The vocabulary is complicated, but the mechanism is elementary: Mayer-Vietoris
allows to exploit a decomposition of space.

2 Proof of Novikov conjecture

For this infinitesimal version, one can improve the result. The invariant can be
encoded in a differential equation. I will explain how differential equations can help
in topology. Speculation: possible connection with high dimensional expanders.

2.1 Dirac operator

It is a differential operator D whose square equals Laplacian. There is no such scalar
operator, but if one allows vector valued operators (i.e. matrices), then a solution
exists. The key to the solution on Rn is a set of n matrices ci such that c2i = −1 and
cicj + cjci = 0. Then set D =

∑
i ci

∂
∂xi

.

It turns out that D can be globally defined on manifolds (under a mild topological as-
sumption, similar to orientability, called spin), see the nice book by H.B. Lawson and
M. Michelson. Then D2 is not exactly equal to the Levi-Civita connection Laplacian,
there is an extra curvature term, due to non commutation of covariant derivatives,

D2 = Laplacian +
1

4
scalar curvature.

If scalar curvature is positive, this shows that D is invertible. This motivates us
to investigate when D is invertible. This is a rather untractable question, answer
changes when the metric is deformed. Something does not change, it is the Fredholm
index of D.

2.2 Index theory

By definition

Index(D) = dim(ker(D)) + dim(coker(D)).
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M. Atiyah and I. Singer’s Index Theorem is a formula that expresses Index(D) in
terms of a characteristic number (a sophisticated version of Euler number, see J.
Milnor’s book on Characteristic classes) denoted by Â(M),

Index(D) = Â(M).

This is a deep theorem, there are now elegant proofs, but they require lots of back-
ground.

Example 1 For the torus T n, Â = 0. Indeed, for flat metrics, ker(D) and coker(D)
can be determined explicitely.

Note that the Index Theorem alone is not sufficient to show that T n has no metric
with positive scalar curvature. One needs use the interaction with the fundamental
group, and work on the universal cover, this is work by M. Gromov and H.B. Lawson
in the early 80’s.

2.3 Higher index theory

Lift metric and Dirac operator to the universal cover M̃ . Positivity of scalar curvature
implies that D̃ is invertible. The fundamental group G acts on M̃ , it commutes with
D̃ so it acts on ker(D̃), this yields a linear representation of G. This is a finer
information than the mere dimension of ker(D̃) (which is usually infinite...). Due to
infinite dimensionality, ker(D̃) must be replaced by something that takes into account
the spectrum near zero. Therefore the Grothendieck ring R(G) of representations of
G must be replaced by some K-theory group K∗(C

∗
r (G)). This is what the term

higher index theory refers to.

2.4 Geometric Novikov conjecture

The strong Novikov conjecture requires an algorithm for deciding when index(D̃) is
non zero. It belongs to group theory.

One can also formulate an algorithm for arbitrary non compact manifolds, without
group actions. Here is an unusual non compact manifold: the disjoint union of all
round spheres Sk with radius k. The scaling is in order that scalar curvature is
bounded from below. So D is invertible, there is even a spectral gap. It is a coun-
terexample to the conjecture, since the topological index (element in a K-homology
group) does not vanish. I view this example as a higher dimensional expander.

Question. Construct a similar counterexample with bounded dimension.
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3 Embeddability in Banach spaces

This is joint work with G. Kasparov.

Definition 1 Let X be a Banach space. Say X has property (H) if there exists a
sequence of finite dimensional subspaces Vn ⊂ X (resp. Wn ⊂ H Hilbert space),
whose union V is dense in X (resp. H), and there exists a uniformly continuous
map from the unit sphere S(V ) to S(W ), W =

⋃
nWn which is a homeomorphism of

S(Vn) onto S(Wn) for all n.

Example 2 X = `p, H = `2, with obvious Vn and Wn, and φ is the Mazur map

φ(c0, c1, . . .) = (sgn(c0)|c0|p/2, sgn(c1)|c1|p/2, . . .).

Open question. Let c0 be the space of sequences which tend to 0. Does c0 have
property (H) ?

If it were true,

Theorem 2 If G admits a coarse embedding into a Banach space X with property
(H), then the strong Novikov conjecture holds for G.

Expanders do not coarsely embed in Hilbert space. Nevertheless, we can handle
Novikov conjecture

Bourdon: Are there groups which coarsely embed in spaces with property (H). I
answer by other uestions. B. Johnson and his student Lava ? show that `p does not
coarsely embed in `2 if p > 2. Mendel and Naor show that `p does not coarsely embed
in `q if p > q ≥ 2.

Open question. If p > q ≥ 2, find a bounded degree graph which coarsely embeds
in `q but not in `p. Find a group with the same property.

Example 3 Let
Cp = {T : H → H ; trace((T ∗T )p/2) <∞.

Then Cp has property (H).

I believe that our result covers groups occurring naturally in nature. For instance, let
N be a compact smooth manifold and G a finitely generated group of diffeomorphisms
of N .

Conjecture. G is coarsely embeddable into Cp for some p.
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