Solution (#71) (i) and (ii) We have $z \neq 0$ and q = m/n be rational. So we may write $z = r \operatorname{cis} \theta$ for some choice of argument θ . Let

 $w = r^{m/n} \operatorname{cis}\left(\frac{m\theta}{n}\right).$

Note that $w^n = z^m$ by De Moivre's theorem. Further if α is any of the n roots of unity we have $(\alpha w)^n = \alpha^n w^n = z^m$

On the other hand if we also have $\zeta^n = z^m$ then $(\zeta/w)^n = 1$ and so $\zeta = \alpha w$ where α is an *n*th root of unity and so we've shown

 $z^{q} = \left\{ Z, \omega Z, \omega^{2} Z, \dots, \omega^{n-1} Z \right\}$

where $\omega = \operatorname{cis}(2\pi/n)$ as $\{1, \omega, \dots, \omega^{n-1}\}$ is the set of nth roots of unity. (iii) Let k be an integer. By Definition 1.24,

$$z^k = z^{k/1} = \left\{ w \in z \colon w^1 = z^k \right\} = \left\{ z^k \right\}.$$