Solution (#93) From #90 we know that $z^3 - mz + n = 0$ has three distinct real roots when m > 0 and $27n^2 < 4m^3$.

Recall the identity $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$. So if $z = k\cos \theta$ then

$$z^3 - mz + n = k^3 \cos^3 \theta - mk \cos \theta + n.$$

In order to write this expression as a multiple of $\cos 3\theta$ we need

$$\frac{k^3}{mk} = \frac{4}{3} \implies k = \pm \sqrt{\frac{4m}{3}}.$$

If we choose this positive value of k and set $z = k \cos \theta$ then

$$z^{3} - mz + n = 0,$$

$$\frac{4m}{3} \sqrt{\frac{4m}{3}} \cos^{3} \theta - m\sqrt{\frac{4m}{3}} \cos \theta + n = 0,$$

$$\frac{m}{3} \sqrt{\frac{4m}{3}} \cos 3\theta + n = 0,$$

$$\cos 3\theta = -n\sqrt{\frac{27}{4m^{3}}}.$$

As $27n^2 < 4m^3$ then

$$-1 < -n\sqrt{\frac{27}{4m^3}} < 1.$$

If n > 0 then 3θ can take values in the intervals

$$\frac{\pi}{2} < 3\theta_1 < \frac{3\pi}{2}, \qquad \frac{5\pi}{2} < 3\theta_2 < \frac{7\pi}{2}, \qquad \frac{9\pi}{2} < 3\theta_3 < \frac{11\pi}{2},$$

so that

so that
$$\frac{\pi}{6} < \theta_1 < \frac{\pi}{2}, \qquad \frac{5\pi}{6} < \theta_2 < \frac{7\pi}{6}, \qquad \frac{3\pi}{2} < \theta_3 < \frac{11\pi}{6},$$
 and this leads to three distinct values $\cos \theta_1, \cos \theta_2, \cos \theta_3$. A similar argument can be made if $n < 0$.