
Solution (#93) From #90 we know that z3 −mz + n = 0 has three distinct real roots when m > 0 and

27n2 < 4m3.

Recall the identity cos 3θ = 4cos3 θ − 3 cos θ. So if z = k cos θ then

z3 −mz + n = k3 cos3 θ −mk cos θ + n.

In order to write this expression as a multiple of cos 3θ we need
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If we choose this positive value of k and set z = k cos θ then
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If n > 0 then 3θ can take values in the intervals
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and this leads to three distinct values cos θ1, cos θ2, cos θ3. A similar argument can be made if n < 0.


