
Solution (#96) (i) If we divide the given equation by 3 it becomes
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Following #95 we make the substitution z = Z + 1
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Expanding this we arrive at
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(ii) We now look to add (AZ +B)2 to both sides in such a way that the LHS becomes a square. From equation (1.32)
we know A2 is a non-zero root of
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Following Algorithm 1.29 we make the substitution x = X−1 and with some simplifying we see the equation becomes
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Again following Algorithm 1.29 we now set
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and further set
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= −7.947523 . . .× 10−7.

T and U are cube roots of t and u, with the three roots X equalling T − U provided we choose T and U so that TU
is real. As we are only looking for a single non-zero root for X we may take

T = 1.332818 . . . , U = −0.009262 . . . , X = 1.342081 . . . , x = 0.342081 . . .

with x being the required non-zero solution.
(iii) Then
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(iv) The four roots of equation (1.33) are the roots of the quadratics

Z2 −AZ −B +C = 0 and Z2 +AZ +B +C = 0,

so that
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Finally as zi = Zi + 1/6 then the four roots are, to 5 decimal places,

z1 = 0.45911 + 1.35967i, z2 = 0.45911− 1.35967i, z3 = 0.29574, z4 = −0.54728.


