Solution (\#96) (i) If we divide the given equation by 3 it becomes

$$
z^{4}-\frac{2}{3} z^{3}+\frac{5}{3} z^{2}+\frac{2}{3} z-\frac{1}{3}=0
$$

Following \#95 we make the substitution $z=Z+\frac{1}{6}$ and the equation becomes

$$
\left(Z+\frac{1}{6}\right)^{4}-\frac{2}{3}\left(Z+\frac{1}{6}\right)^{3}+\frac{5}{3}\left(Z+\frac{1}{6}\right)^{2}+\frac{2}{3}\left(Z+\frac{1}{6}\right)-\frac{1}{3}=0 .
$$

Expanding this we arrive at

$$
\begin{equation*}
Z^{4}+\frac{3}{2} Z^{2}+\frac{32}{27} Z-\frac{77}{432}=0 \tag{8.6}
\end{equation*}
$$

(ii) We now look to add $(A Z+B)^{2}$ to both sides in such a way that the LHS becomes a square. From equation (1.32) we know A^{2} is a non-zero root of

$$
x^{3}+3 x^{2}+\frac{80}{27} x-\frac{1024}{729}=0
$$

Following Algorithm 1.29 we make the substitution $x=X-1$ and with some simplifying we see the equation becomes

$$
\begin{equation*}
X^{3}-\frac{1}{27} X-\frac{1726}{729}=0 \tag{8.7}
\end{equation*}
$$

Again following Algorithm 1.29 we now set

$$
D^{2}=\frac{m^{3}}{27}+\frac{n^{2}}{4}=\frac{1}{27}\left(\frac{-1}{27}\right)^{3}+\frac{1}{4}\left(\frac{1726}{729}\right)^{2}=\frac{27584}{19683}
$$

so we may take $D=(8 \sqrt{431}) /(9 \sqrt{3})$ and further set

$$
\begin{aligned}
t & =-n / 2+D=\frac{863}{729}+\frac{8 \sqrt{431}}{81 \sqrt{3}}=2.367626 \ldots \\
u & =n / 2+D=-\frac{863}{729}+\frac{8 \sqrt{431}}{81 \sqrt{3}}=-7.947523 \ldots \times 10^{-7}
\end{aligned}
$$

T and U are cube roots of t and u, with the three roots X equalling $T-U$ provided we choose T and U so that $T U$ is real. As we are only looking for a single non-zero root for X we may take

$$
T=1.332818 \ldots, \quad U=-0.009262 \ldots, \quad X=1.342081 \ldots, \quad x=0.342081 \ldots
$$

with x being the required non-zero solution.
(iii) Then

$$
A=\sqrt{x}=0.584877 \ldots, \quad B=-\frac{M}{2 A}=-1.013191 \ldots, \quad C=\frac{1}{2}\left(A^{2}+L\right)=0.921040 \ldots
$$

(iv) The four roots of equation (1.33) are the roots of the quadratics

$$
Z^{2}-A Z-B+C=0 \text { and } Z^{2}+A Z+B+C=0
$$

so that

$$
\begin{aligned}
& Z_{1}=\frac{A+\sqrt{A^{2}-4 C+4 B}}{2}=0.292438 \ldots+i 1.359673 \ldots \\
& Z_{2}=\frac{A-\sqrt{A^{2}-4 C+4 B}}{2}=0.292438 \ldots-i 1.359673 \ldots \\
& Z_{3}=\frac{-A+\sqrt{A^{2}-4 C-4 B}}{2}=0.129071 \ldots \\
& Z_{4}=\frac{-A-\sqrt{A^{2}-4 C-4 B}}{2}=-0.713949 \ldots
\end{aligned}
$$

Finally as $z_{i}=Z_{i}+1 / 6$ then the four roots are, to 5 decimal places,

$$
z_{1}=0.45911+1.35967 i, \quad z_{2}=0.45911-1.35967 i, \quad z_{3}=0.29574, \quad z_{4}=-0.54728
$$

