Solution (\#100) Let a, b be non-zero complex numbers representing points A, B in the Argand diagram. For real numbers λ, μ we have

$$
\begin{aligned}
|\lambda a+\mu b| \geqslant|\lambda a| \Longleftrightarrow & |\lambda a+\mu b|^{2} \geqslant|\lambda a|^{2} \\
& \Longleftrightarrow(\lambda a+\mu b)(\lambda \bar{a}+\mu \bar{b}) \geqslant \lambda^{2}|a|^{2} \\
& \Longleftrightarrow \lambda^{2}|a|^{2}+\lambda \mu(a \bar{b}+\bar{a} b)+\mu^{2}|b|^{2} \geqslant \lambda^{2}|a|^{2} \\
& \Longleftrightarrow 2 \lambda \mu \operatorname{Re}(a \bar{b})+\mu^{2}|b|^{2} \geqslant 0 .
\end{aligned}
$$

If this holds for all real λ, μ then it must be the case that $\operatorname{Re}(a \bar{b})=0$. Conversely if $\operatorname{Re}(a \bar{b})=0$ then the inequality clearly holds for all real λ, μ.

Now $\operatorname{Re}(a \bar{b})=0$ if and only if

$$
\pm \frac{\pi}{2}=\arg (a \bar{b})=\arg \left(\frac{a \bar{b}}{|b|^{2}}\right)=\arg (a / b)
$$

so that $A O B$ is a right angle.

